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Abstract. When designing or maintaining an hydraulic struc-

ture, an estimate of the frequency and magnitude of extreme

events is required. The most common methods to obtain

such estimates rely on the assumption of stationarity, i.e. the

assumption that the stochastic process under study is not

changing. The public perception and worry of a changing cli-

mate have led to a wide debate on the validity of this assump-

tion. In this work trends for annual and seasonal maxima in

peak river flow and catchment-average daily rainfall are ex-

plored. Assuming a two-parameter log-normal distribution,

a linear regression model is applied, allowing the mean of

the distribution to vary with time. For the river flow data, the

linear model is extended to include an additional variable, the

99th percentile of the daily rainfall for a year. From the fitted

models, dimensionless magnification factors are estimated

and plotted on a map, shedding light on whether or not geo-

graphical coherence can be found in the significant changes.

The implications of the identified trends from a decision-

making perspective are then discussed, in particular with re-

gard to the Type I and Type II error probabilities. One strik-

ing feature of the estimated trends is that the high variability

found in the data leads to very inconclusive test results. In-

deed, for most stations it is impossible to make a statement

regarding whether or not the current design standards for the

2085 horizon can be considered precautionary. The power of

tests on trends is further discussed in the light of statistical

power analysis and sample size calculations. Given the ob-

served variability in the data, sample sizes of some hundreds

of years would be needed to confirm or negate the current

safety margins when using at-site analysis.

1 Introduction

A realistic estimate of the expected high flows of a river is

of vital importance when designing hydraulic structures or

when assessing the flood risk of a certain area. Such esti-

mates are typically obtained through frequency analysis of

annual maxima series (AMS) of observed peak flows using

statistical extreme value models (e.g. Stedinger et al., 1993;

Institute of Hydrology, 1999). The standard methods for the

frequency analysis of extreme events assume that the sta-

tistical properties of the extreme generating process are not

changing, which is to say that the stochastic process is sta-

tionary. It has long been recognized that the assumption of

stationarity is, at best, an approximation, since anthropogenic

activities such as construction of reservoirs, urbanization and

channel alignment will most likely have introduced changes

in the river flow process in many catchments. More recently,

concerns over the potential impact of climate change on the

hydrological process have been raised (e.g. Hirsch, 2011).

The perception that the river flow process is changing has

caused a lively debate on whether stationarity should be dis-

regarded in favour of different approaches based on climate

modelling, (e.g. Milly et al., 2008) or whether, even acknowl-

edging that stationarity is at best an approximation, it should

still be the starting point for any analysis (e.g. Stedinger and

Griffis, 2011; Cohn and Lins, 2005). In view of the exten-

sive discussion on climate change and its impact on the natu-

ral processes, much effort has been put into investigating the

existence, or not, of trends in hydro-meteorological records.

Hannaford and Marsh (2008), for example, investigated the

hydrological flow records from 87 undisturbed “benchmark

catchments” in the UK and concluded that there was evi-

dence of upward trend in high-flow data (but not for the
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annual maximum) from maritime-influenced upland catch-

ments in the north and west of the UK. However, there was no

compelling evidence for trend in lowland areas in the south

and east of the country. A further study by Hannaford and

Buys (2012) investigated the seasonal changes in different

flow quantiles for the same benchmark catchments, divid-

ing the year into four different seasons. They found that the

proportion of catchments with a relevant change can be very

different for the different flow quantiles, and that the propor-

tion of catchments showing high increases or decreases in

high flows can be very variable from season to season. Laizé

and Hannah (2010) also discuss the importance of studying

trends not only in the annual series but also dividing the

data into different seasons. Trends in UK extreme rainfall

data have been studied by Jones et al. (2013) who reported

an increase of intensity in long-duration events, but a de-

cline in intensity for short-duration summer rainfall. Jenk-

ins et al. (2008) also report a decrease in rainfall during the

summer season and an increase in winter rainfall, with a par-

ticular increase of high-rainfall events in winter. As Rodda

et al. (2010) point out, it is difficult to discern whether or

not the observed changes in extreme rainfall pattern can be

linked to human activities, as the signal for change can be

quite variable. The appropriate methodology and approaches

used in trend studies are still a debated issue: the same di-

rection of a signal in a data series can be identified by dif-

ferent methods, but these might give contrasting indications

when it comes to evaluating the statistical and practical sig-

nificance of the estimated signal; see Lins and Cohn (2005)

for a full commentary on this. In fact, novel approaches are

continuously being introduced, adapting the standard statis-

tical methods to the actual properties found in the observed

data series, which are in most cases relatively short and there-

fore only provide a limited view of a very complex, variable

and potentially slow-changing processes. Examples of stud-

ies attempting to address issues of incomplete information on

long-term change and variability in the flood series include

Salas and Obeysekera (2014), who revise the methods for re-

turn period estimation using a geometric distribution and in-

troduce changing probabilities over time; in order to reduce

the variability of return period estimates obtained by the short

recorded annual maxima series, Macdonald et al. (2013) and

Gaume et al. (2010) propose to include historical evidence

of large floods; Cohn and Lins (2005) discuss the importance

of accounting for long-term persistence in the data series and

how this would affect tests for non-stationarity; Renard et al.

(2008) discuss methods to simultaneously analyse data from

homogeneous regions to assess regional consistency and field

significance; Merz et al. (2012) point out that a more rigor-

ous approach is needed when reporting cause–effect claims

and stress the need for sound hypothesis-testing frameworks.

The methods presented in this work deal with the analysis of

annual and seasonal maxima, although peaks over the thresh-

old (POT) methods are also widely used in flood frequency

analysis: rather than using the maximum recorded in each

year these models are used to model series of exceedances

of a high threshold (e.g. Lang et al., 1999 for an introduction

on POT models). POT data might indeed offer larger series

and allow for the frequency of large floods to be directly es-

timated. However, annual POT series are not as widely avail-

able as annual maxima series, and for the UK no seasonal

POT series exist, or could be readily produced from the raw

data available to the authors.

This study investigates trends in the annual and seasonal

maximum instantaneous peak river flow and catchment av-

erage daily rainfall totals, and discusses the statistical test-

ing framework by which trends are generally identified. First

a simple trend model is applied to the observed series of both

river flow and rainfall: assuming a two-parameter log-normal

distribution, an estimate for trends in time is then obtained by

the least squares method applied to the log-transformed se-

ries (see Sect. 3). The estimated trend can be transformed

into a dimensionless magnification factor which indicates

how the T-year flood would change on a given timescale.

The magnification factors are computed for a large number

of catchments across the UK (see Sect. 4), i.e. the analy-

sis is not restricted to catchments with a near-natural flow

regime. In Sect. 4.1 results for near-natural flow regimes are

discussed. For the peak river flow series, the initial model

with time as the only variable is further extended by includ-

ing a process-related variable to account for the effect of

the rainfall-related climate variability. Estimates for the time

component in this latter model will give a better indication

of whether any change can be detected in the high-flow pro-

cess itself. Finally, Sect. 5 discusses the implications that the

estimated trends could have for decision making in terms of

statistical hypothesis testing and power analysis, focusing on

the annual peak river flow maxima model as this will be most

relevant for the design and maintenance of hydraulic struc-

tures.

2 Data

The different data sets employed in the study, the annual and

seasonal (summer and winter) instantaneous peak river flow

and the catchment-average daily rainfall, are introduced be-

low. An annual maxima for a water year indicates the maxi-

mum value recorded in the period from October to Septem-

ber. Winter events are the ones occurring in the October–

March period, summer events the ones occurring in the

April–September period.

2.1 Peak river flow data

The annual maximum series and seasonal maximum series of

peak river flow were extracted from the monthly maximum

peak flow data available from the UK National River Flow

Archive (NRFA). Only catchments which were classified as

being “suitable for QMED” and “suitable for Pooling” in the

National River Flow Archive HiFlows-UK data set v.3.1.1
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(National River Flow Archive, 2014) have been included in

the study. This should ensure that only flood data of rea-

sonably good quality are included. In addition, a minimum

record length of 20 years was imposed for a catchment to be

included in the study. A further quality control was done by

manually inspecting records for which a Pettitt test indicated

the presence of a change point. For some of the series where

a change point was identified, a comparison between the an-

nual series available from HiFlows-UK and the annual series

extracted from the monthly data showed large discrepancies,

mostly due to changes in the gauging structure and/or rating

curve. Series in which HiFlows-UK reported about changes

in the rating curve or the gauging structure were removed;

if no reason was found to justify a change in the data, the

series were kept in the study. This was done to exclude sta-

tions in which unnatural changes have occurred, as these sta-

tions would often show significant large trends. As Renard

et al. (2008) point out, keeping series which are affected by

quality issues in the data set might distort the perception of

the size and direction of the natural changes. After the re-

moval of series which experienced spurious changes, the an-

nual maxima for the peak flow of each station were extracted

and compared to the HiFlows-UK AMAX data. If for a sta-

tion large discrepancies were found between the two series

the station was discarded from the final study: this step would

ensure that only stations in which data have gone through a

complete quality control are present in the study. Finally, for

each station, the information is considered as missing if data

were missing for more than two months in a water year. The

time coverage of the peak flow series for the different hydro-

metric areas are shown in Fig. 1. A map with the location of

the hydrometric areas can be found at National River Flow

Archive (2014) or in Marsh and Hannaford (2008), where

the Severn and the Trent areas are both included in the EA

Midlands hydrometric area. Note that stations are grouped

into hydrometric areas based on the actual authority respon-

sible for the maintenance of the gauging stations, not on the

stations’ hydrological characteristics. The data coverage be-

gins in 1935 and the number of gauged catchments increases

with time. By the mid-1970s most of the catchments included

in the study are gauged, although missing data are present in

some records. Water years in which the annual maxima was

recorded during the summer months are shown in red. There

are visible clusters of summer events in the different areas for

some years; this is just one of the many indications of how

correlated the series for neighbouring stations are. Although

only 18 % of the annual maxima are recorded in the summer,

these events are often some of the largest events in the whole

record. For 30 % of the stations the largest peak in the se-

ries occurred during the summer months, and for 53 % of the

stations the largest summer event is one of the three largest

events in the whole series. Figure 2 shows how the propor-

tion of summer events of the total number of annual maxima

is fluctuating between decades. Although the median propor-

tion of summer events does not fluctuate much, the variability

Fig. 1. Time coverage for the annual maximum river peak flow se-

ries. Events occurring in summer are indicated in red.

Fig. 2. Proportion of summer events in the annual maximum peak

river flow series, shown separately for each decade. The number of

stations with at least 7 years of data used to compute the proportions

is indicated below the x axis.

is very large. This may be related to the exaggeration of the

rainfall divide between the northwest and the southeast of the

country that occurred in the late 1980s and largely through

the 1990s. The north and west was then even more than usu-

ally dominated by widespread frontal rainfall (orographically

enhanced mainly in winter), whereas high flows in the south-

east would to a relatively higher degree be caused by local-

ized heavy convective rainfall in the summer. This would re-

sult in the north and west experiencing fewer summer flood

events (compare the time series for west Scotland, W-SEPA,

against the series from the southeast area, NE-EA, Anglian-

EA, S-EA in Fig. 1), while the southeast would retain, or

even increase, its relatively higher proportion of flood events

in summer, resulting in the high variability seen in Fig. 2.
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Fig. 3. Median ratio of annual and seasonal maximum peak river flow over long-term median of the annual maximum, shown separately for

each decade. The number of stations with at least 7 years of data used to compute the proportions is indicated below the x axis.

The rainfall divide was associated with the location of the

preferred mid-latitude storm track, as also captured by the in-

crease in the North Atlantic Oscillation Index from the 1960s

up to the 1990s (e.g. Osborn, 2006). This is also the main rea-

son why trend analyses carried out for this period of record

result in significant upward trends in high flows in the north

and west (e.g. Hannaford and Marsh, 2008). In Fig. 3, box

plots of the median ratio of the observed annual and sea-

sonal (winter, summer) maxima over the long-term median

annual maximum (QMED) are shown, separately for each

decade. The well-documented (Hannaford and Marsh, 2008)

drier conditions of the years between 1965 and 1975 are vis-

ible for both the annual and seasonal maxima, but it would

seem that the levels of river flows in the last decade have

not been substantially different from observed levels in other

decades.

The general patterns shown in Figs. 2 and 3 are still visible

when similar figures are drawn using only the stations with

data available in all decades (plots not shown). In these fig-

ures Northern Ireland and the North of Scotland are under-

represented due to a lack of data in the early decades (see

Fig. 1).

2.2 Gridded daily rainfall data

Catchment average daily rainfall (CADR) series were ex-

tracted from a gridded data set at 1 km resolution, which

covers the whole of the UK for the water years from 1961

to 2010. The data set is obtained using interpolation meth-

ods applied to the observed values of a dense network of rain

gauges, see Keller et al. (2005) for further details. From the

CADR data set, annual and seasonal maxima series of daily

rainfall totals were extracted, in order to investigate whether

any evidence of changes in the extreme rainfall pattern can

be seen. In Fig. 4 the proportion of summer events in the

annual and seasonal series for each decade is shown. About

Fig. 4. Proportion of summer events in the annual maximum rainfall

series, shown separately for each decade. The number of catchments

used to compute the proportions is indicated below the x axis.

half of the rainfall annual maxima are recorded in the sum-

mer months which is considerably more than the 18 % of an-

nual maximum river flows that occur in summer. This shows

the importance of drier soils in summer for inhibiting river

flow formation. The (median of the) proportion of rainfall

events occurring in summer is roughly inversely related to

the North Atlantic Oscillation Index, which showed an in-

crease from the 1960s to the 1990s (e.g. Osborn, 2006). As

discussed for Fig. 2, the high value of this index towards the

late 1980s and 1990s signifies a dominance of frontal rainfall

in the hilly north and west which tends to be orographically

enhanced mainly in winter, thus reducing the proportion of

annual maximum rainfall events occurring in summer in this

area. This reduction in the median of the proportion of sum-

mer events is also discernible for the river flows in Fig. 2,

albeit much less clearly. In Fig. 5 box plots of the median

ratio of the observed maximum rainfall over the long-term

Nat. Hazards Earth Syst. Sci., 14, 1125–1144, 2014 www.nat-hazards-earth-syst-sci.net/14/1125/2014/
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Fig. 5. Median ratio of annual and seasonal maximum rainfall over long-term median of the annual maximum, shown separately for each

decade. The number of catchments used to compute the proportions is indicated below the x axis.

median annual maximum (RMED) are shown for each sea-

son, separately for each decade. The rainfall medians seem to

be quite variable from decade to decade, with very different

patterns for the different seasons. This is probably related

to the large-scale atmospheric circulation. For example, for

the winter season (Fig. 5b) the decadal pattern of the rainfall

medians agrees with that of the North Atlantic Oscillation

Index, which is known to have an influence on winter precip-

itations in the UK (Burt and Howden, 2013). The difference

between the decadal patterns for rainfall (Fig. 5) and river

flow (Fig. 3) is an indication of the complexity of the fac-

tors which regulate the interplay between precipitation and

run-off generation.

For each catchment average daily rainfall series, the value

of the 99th percentile in each water year is also extracted.

This value corresponds more or less to the 1-in-100-day rain-

fall event, and is used as an indication of the potential for

large rainfall events in the year. Rather than the maximum

value for a series, which could be highly influenced by singu-

lar rare events, the 99th percentile is a more stable indicator

of whether a year has been characterized by larger or smaller

rainfall extremes. The quantity has previously been used in

a study by the UK Met Office (Met Office, 2013) which ex-

plored the long-term patterns in national high-rainfall events.

Figure 6 shows a map of results for a Mann–Kendall trend

test performed on the 99th percentile of rainfall series for

each catchment, and identifies catchments for which the 99th

rainfall percentile appears to be changing in time. A consis-

tent increase can be seen in the east of Scotland and some

other scattered catchments around the country. For approx-

imately 82 % of the catchments no change can be detected

with a Mann–Kendall test at a 0.05 significance level.

Fig. 6. Results for a Mann–Kendall test of no change in the annual

series of the 99th quantile for daily rainfall. Significance tested at

a αMK = 0.05 level.
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2.3 Final data sets for analysis

The analyses presented in the remainder of the paper are

based on the catchments and water years for which both

gridded rainfall data and at least 20 years of river flow data

were available. This corresponds to 446 stations for the wa-

ter years between 1961 and 2010. The mean and median

record lengths for the high-flow data are respectively 39.3

and 40 years, and a total of 17 529 station years have been in-

cluded in the study. The selected catchments allow for a fairly

good spatial coverage of the UK, although coverage of North

Wales is poor, due to a lack of long records.

3 Methods

The evidence, or not, of changes in hydrological extremes

for the whole of the UK is investigated using the approach

suggested by Vogel et al. (2011). The core idea is to quan-

tify in a simple way what would be the expected change

in the magnitude of events with a given return period over

a defined time period. A two-parameter log-normal distri-

bution (LN2) is assumed for annual and seasonal peak flow

and daily rainfall maxima. For each catchment the observed

flow and rainfall maxima series, respectively xF and xR,

are log-transformed and inference is based on the quantities

yF = log(xF) and yR = log(xR) which are by definition as-

sumed to be normally distributed. The quantile function for

the LN2 distribution is given by

xp = exp
{

µy + σyz1−p

}

, (1)

where µy and σy correspond to the mean and the standard

deviation of the log-transformed distribution and z1−p is the

quantile of the standard normal distribution which is ex-

ceeded with probability p. The 1-in-T-years event is cal-

culated by taking p = 1/T . In the stationary case, the µy

and σy parameters are assumed to be constant and can be

estimated with different estimation procedures. In the non-

stationary case, one or both the LN2 parameters are as-

sumed to be varying. Much effort has been put particu-

larly into investigating whether the location parameter µy is

changing, see for example the review of change detection by

Kundzewicz and Robson (2004). A non-stationary extension

of the stationary model in Eq. (1) can be defined by relating

the change in the location parameter to time through a simple

linear relationship as

µ(t) = β0 + β1t, (2)

where t is a variable describing time (e.g. the series of water

years). In the framework of a linear regression model this

becomes

log(xt ) = yt = µ(t) + εt = β0 + β1t + εt , (3)

where εt is a zero-mean, homoscedastic, normally distributed

error term. xt denotes the value at time t of the variable under

study (either the peak flow or the daily rainfall maxima), and

it is assumed that observations at different time points t are

independent from each other. Estimates for β0 and β1 can be

obtained via standard linear regression methods, and a sta-

tistical two-sided test on H0 : β1 = 0 will give indication of

non-stationarity in the stochastic process. The quantile func-

tion in the non-stationary case is obtained by substituting the

constant location parameter, µy , in Eq. (1) with the formula

in Eq. (2) and then becomes

xp(t)=exp
{

µy(t)+σyz1−p

}

=exp
{

β0+β1t+σyz1−p

}

. (4)

Rather than comparing the estimated β1 values, Vogel et al.

(2011) suggest to use a non-dimensional magnification factor

M1t defined as the ratio of the quantile function at a time

(t + 1t) and the quantile function at time t , which for the

LN2 distribution is given by

M1t = xp(t + 1t)

xp(t)
= exp {β11t} . (5)

Magnification factors larger (smaller) than one indicate that

the magnitude of the events occurring with probability p is

increasing (decreasing). In other words, magnification fac-

tors larger (smaller) than one indicate that the current 1-in-

T-year event in the future will have a higher (smaller) prob-

ability of happening than the one that would be expected in

the stationary case. When using a LN2 distribution the value

of M1t only depends on the slope β1 and the time span 1t ,

and not on the chosen exceedance probability p. Other dis-

tributional assumptions would lead to more complex formu-

las with an explicit dependence on the return period 1/p.

Laio et al. (2009) show that the two-parameter log-normal

distribution is an acceptable assumption for a large propor-

tion of the catchments in the UK, and discuss the difficulties

involved in testing a distributional assumption. A visual in-

spection of the residuals, εt , obtained from model (Eq. 3)

seemed to confirm the goodness of the normality assump-

tion. If a deviation from normality was found in the data, this

was often due to the presence of a very high or low annual

maximum in the series: once the influential point is removed

from the series the residuals would show a normal behaviour.

The non-robustness of linear regression to influential points

is a well known issue and the effects on the final estimates

can be rather severe, especially if these outliers are located at

the beginning or end of the series. The use of robust meth-

ods to fit the linear model in Eq. (2) was tested on many

catchments and did not give substantially different results; if

only one or two outliers are present in the central part of the

data series, these will not have too strong an effect on the

results. A visual check of the model residuals was also car-

ried out for the rainfall data and did not raise major doubts

on the normality assumption, although again some catch-

ments showed a very small proportion of outliers. Taking the

catchment average rather than individual rain gauge values

ensures that some very localized large events are smoothed
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out and makes the data less skewed. As discussed in Sect. 4,

a Shapiro–Wilkinson normality test was performed on the

model residuals for both rainfall and flow series, in order to

evaluate the goodness of the distributional assumption. Re-

sults are only presented for data series which do not seem to

strongly deviate from the normality assumption.

3.1 A more complete approach to non-stationarity

The model in Eq. (2) is a rather simple model, relating the

changes in the flow-generating process only to the time co-

variate. Visual inspection of flood time series typically show

a large variability between years, indicating a high level of

climatic influence. In an attempt to better estimate any un-

derlying trend, the 99th rainfall percentile was introduced

as a second covariate. In this way it is possible to separate

the effect of the rainfall climatology from time on the high-

flow process, verifying whether or not there are underlying

changes in the high-flow process. Consequently, the non-

stationary model in Eq. (2) is updated to a multivariate model

as

µ(t) = β0 + β1t + β2rt , (6)

where rt is the 99th percentile of the daily rainfall in wa-

ter year t . The value of β1 in this model then describes how

time has an impact on the process, after the potential for large

rainfall events of a given year has been taken into account.

It is an indication of what is left to explain in the model,

when a process-related variable is also taken into account.

The values of β2 will give an indication of how important

the potential for large rainfall events of the water years is in

explaining the variability in the data: for some catchments,

where the catchment characteristics or water management

have a strong impact, this might be less of an important vari-

able. In this study the variable has been found to be signifi-

cant for a large majority of the catchments, and it explains

a fair proportion of the inter-year variability of the flood

records. The 25th, 50th and 75th percentiles of the R2 for

a model with only the 99th percentile of the daily rainfall

as covariate (µ(t) = β0 + β2rt ) fitted to all the 446 annual

peak flow series in the data set are equal to 0.1, 0.2, and

0.3. From the model in Eq. (6) one can again compute the

magnification factor M1t as in Eq. (5): this is now an indica-

tion of how the quantile function would change in a certain

time span 1t for a constant rt value. Similarly the magni-

fication factor can be computed for river flow correspond-

ing to 1r changes in the 99th percentile of daily rainfall for

a constant time t as M1r = exp{β21r}. Finally, magnifica-

tion factors for both time and rainfall changes can be com-

puted. As an example, in Fig. 7 magnification factors ob-

tained from the model in Eq. (6) for different values of 1t

and 1r are shown. The left panel of the figure shows the

magnification factor as a function of time for three differ-

ent 99th percentile of rainfall increase scenarios. The values

chosen for the rainfall increase are based on the interquar-

Fig. 7. Illustrative examples of magnification factors for river

flows for different values of 1t and 1r , taking β1 = 0.001

and β2 = 0.045.

tile range for the observed 99th percentile of daily rainfall,

which is approximately equal to 7. In contrast, the right panel

illustrates changes in the magnification factor caused by the

increase in the rt values for three different time steps. The

values of β1 = 0.001 and β2 = 0.045 have been chosen as

representative (median) of the values found in the models

fitted to the annual river flow series used in this study. The

plot shows the effect of an interaction between time and the

potential increases in rainfall on the magnification factor val-

ues. This paper will primarily focus on the time-related mag-

nification factor M1t , although the model in Eq. (6) could

be used to assess the effect on flood risk of long-term fore-

casts of rainfall. This latter application is not pursued fur-

ther here, as it would require long-term forecasts of catch-

ment averaged rainfall. Finally, although the inclusion of the

99th percentile of rainfall explains a large part of the vari-

ability in the flow process, the runoff process is complex

and for a more complete model specification variables such

as soil moisture deficit and urbanization could be included.

Soil moisture deficits, longer aggregations (months) of rain-

fall, evapotranspiration and/or temperature would help to de-

scribe the longer-term water balance and might improve the

model, especially for more groundwater-dominated catch-

ments, which respond more slowly to heavy rainfall events.

The interaction between these variables would make their in-

clusion in the model a complex task, and the analyses pre-

sented in this work therefore build around the simpler model

in Eq. (6).
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4 Results

For all the annual and seasonal maximum series of both peak

flow and rainfall the decadal (10 years) magnification factors

M10 = exp{β110} were estimated for the simpler model in

Eq. (2) in which time is the only explanatory variable. Fur-

ther, only for the peak river flow series was the more com-

plex model involving the 99th rainfall percentile described

in Eq. (6) estimated and the corresponding M10 values com-

puted. The time horizon of 10 years is useful for understand-

ing short-term changes and is used by Vogel et al. (2011):

results on the same timescale are shown in this work to al-

low for a comparison to those results. The choice of the time

horizon (1t) and the return level T do not have an effect

of the interpretation of the magnification factors (see Eq. 5)

and their relevance. As discussed in Sect. 3 the modelling

framework relies on the assumption that the log-transformed

data are normally distributed. In order to avoid spurious re-

sults which could result from severe model misspecification,

a Shapiro–Wilkinson test for normality was performed on the

model residuals at significance level αnorm = 0.01. As men-

tioned in Sect. 3, a more detailed look at the model residuals

which appeared to be non-normal highlighted the fact that in

many cases the low p values observed for a normality test

would have been much larger if the highest or lowest ob-

servations in the series were taken out. The normality tests

were then performed on the subset of residuals without the

two most extreme points, and these results are used in the

remainder of the paper. Results for the annual, winter and

summer maxima series are presented in Figs. 8–10 respec-

tively. In each figure, results are shown for the magnification

factors M10 obtained using the following three models:

a. log
(

xF,t

)

= β0 + β1t + εt , a model for peak flow data

with time as the only explanatory variable (panel a);

b. log
(

xR,t

)

= β0 + β1t + εt , a model for daily rain-

fall data with time as the only explanatory variable

(panel b);

c. log
(

xF,t

)

= β0+β1t +β2rt +εt , a model for peak flow

data with time and the 99th quantile of daily rainfall as

explanatory variables (panel c).

The M10 values indicated as significant correspond to catch-

ments for which the β1 coefficient was found to be signifi-

cantly different from 0 at a αreg = 0.1 level, using the stan-

dard inference based on the t distribution. Note that tak-

ing αreg = 0.1 for a two-sided test on β1 = 0 will result in

accepting as significantly different from 0 the same slopes

which would have been identified if using a unidirectional

test at αreg = 0.05 for two separate one-sided t tests on β1.

Indeed, more than simply testing whether a generic change

is detected in the data, a more relevant point is to have an

understanding of whether or not an increase or a decrease

can be detected. More discussion on the implications of the

testing framework can be found in Sect. 5. In Fig. 8 the

results for the annual maxima series are shown. Note that,

from the formula in Eq. (5), the M10 values correspond to

exponentials of the estimated βt coefficients, so βt = −0.04

would imply a decrease of the magnitude of annual maxima

of 33 % since M10 = exp(−0.04 · 10) = 0.67. Similarly, for

βt = 0.04, M10 = exp(0.04 · 10) = 1.5. In Fig. 8a, showing

results for model (a), there is a consistent presence of upward

trends, mostly in the northern part of England and Scotland,

and a smaller cluster in South Wales. A few downward trends

are also seen in the far south and far north of Great Britain.

Interestingly, most catchments with non-normally distributed

residuals are located in the southeast of England: it is pos-

sible that the non-normality could be related to the slowly

responding nature of the catchments in this area. The trends

displayed in Fig. 8b for model (b) indicate an increase for the

annual rainfall maxima for the northern half of the UK, with

some decrease observed in small clusters in the rest of the

country. Once the 99th percentile of annual daily rainfall is

included in the model for high flows (Fig. 8c), the picture of

upward and downward trends becomes more scattered, with

many downward trends appearing in Scotland and around the

country.

Winter high-flow trends in Fig. 9a again show some ge-

ographical clusters of upward trends in North England and

in Scotland. Again, normality has been rejected for many of

the series in the southeast. For rainfall maxima, in Fig. 9b,

some local clusters of upward trends can be observed, mostly

in the north of England and Scotland. The residual effect

of time in model c shown in Fig. 9c seems to be less ho-

mogeneous. Both upward and downward trends are visible,

with some clustering of upward trends in the northwest of

England. The results for the summer series are shown in

Fig. 10. A noticeable feature of the M10 values for the peak

flows in Fig. 10a is the large cluster of downward trends in

the south and southeast of England, contrasting the upward

trends found in the north and west of Great Britain and in

Northern Ireland. Rainfall maxima also seem to be decreas-

ing in the southern part of England, although the magnitude

of the change is much smaller than for river flows. Finally,

results for model (c) show an even larger effect of time when

the 99th percentile of annual daily rainfall is included in the

model. Downward trends are visible in the south of England

and some clusters also appear in the north and west. At the

same time many of the upward trends in Fig. 10a become

smaller or not significant, i.e. once the potential for large

rainfall events of a year is taken into account there is less

evidence of upward trends in summer high-flow data.

The model in Eq. (6) includes the 99th percentile of rain-

fall as an explanatory variable, but the runoff process is com-

plex and for a more complete model specification variables

such as soil moisture deficit and urbanization could be in-

cluded. A changing climate with expected higher tempera-

tures and increased evaporative demands which deplete the

underground water stores would be consistent with lower
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Fig. 8. Estimated decadal magnification factor M10 for: (a) peak flow maxima with time as the only explanatory variable (model (a)), (b) daily

rainfall maxima with time as the only explanatory variable, and (c) peak flow maxima with time and the 99th percentile of daily rainfall as

explanatory variables – annual maxima series.

Fig. 9. Estimated decadal magnification factor M10 for: (a) peak flow maxima with time as the only explanatory variable (model (a)), (b) daily

rainfall maxima with time as the only explanatory variable, and (c) peak flow maxima with time and the 99th percentile of daily rainfall as

explanatory variables – winter maxima series.

summer high flows in slowly responding catchments, which

are mostly located in the south and east of the UK. This is

also the part of the country with a more continental, drier,

climate. Many of the records used in the analysis end in

the summer of 2011, i.e. during the 2010–2012 drought

that affected particularly the south and east of the coun-

try, see Kendon et al. (2013). Even though the records have

been selected to be relatively long, the effect of ending the
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Fig. 10. Estimated decadal magnification factor M10 for: (a) peak flow maxima with time as the only explanatory variable (model (a)),

(b) daily rainfall maxima with time as the only explanatory variable, and (c) peak flow maxima with time and the 99th percentile of daily

rainfall as explanatory variables – summer maxima series.

observation period in an exceptionally dry period could ex-

acerbate the signal of downwards trends. A re-analysis per-

formed for the period until 2008, not shown here, confirms

that this is the case, although the main pattern of decreasing

trends in the south and east remains visible.

The results for the winter and summer series for both river

flow and rainfall give different results, highlighting differ-

ent patterns in the regions of the UK. The annual maxima

series are a realization of different high-flow generating pro-

cesses, which can be pragmatically divided into summer and

winter processes, characterized by different conditions, like

rainfall patterns, soil moisture and evapotranspiration. Look-

ing at both annual and seasonal series can give a better under-

standing of possible changes in the hydrological processes.

4.1 A closer look at undisturbed catchments

In a large part of the British catchments human interventions

might have altered the river flow; changes detected in the

presence of notable artificial interventions would be a reflec-

tion of these rather than the result of a real change in the high-

flow generating process. In order to investigate whether the

identified changes can be attributed to human intervention,

the results for all the 446 catchments presented in the section

above are compared with the results obtained when fitting

the same models to the subgroup of the undisturbed bench-

mark catchments described in Hannaford and Marsh (2008)

and Marsh and Hannaford (2008). In Tables 1–3 a sum-

mary of this comparison for, respectively, the annual, winter

and summer series is shown. In each table the proportions of

significantly negative, non-significantly different from 0 and

significantly positive estimated slope coefficients are shown

for the whole data set, for the catchments which are not part

of the benchmark catchments and for the benchmark catch-

ments. The differences in total numbers of catchments used

for each model and each season is due to the fact that the

significance test is only performed on estimated models in

which the residuals appear to be normally distributed. The

total number and percentage of models in which the normal-

ity assumption could not be accepted are also shown in each

table. As already seen in Kjeldsen et al. (2012), in general

there appear to be little difference in the proportions of sig-

nificant and non-significant coefficients for the non-natural

and near-natural catchments, although a marked difference

can be seen for model (c) in the summer series. In Fig. 11

the maps for the whole summer data set, for the non-natural

and near-natural subsets is shown, with a lower proportion

of non-significant estimated slopes in Fig. 11c. The differ-

ence in the proportions of significant coefficients for the two

subsets might be partially a consequence of the higher num-

ber of near-natural series in the southern part of the country.

Overall, no major differences have been found between the

proportion of significant and non-significant coefficients in

the non-natural and near-natural series: the changes observed

in the whole data set do not appear of be the result of human

influences on the catchments.
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Table 1. Comparison of the proportions of significant and non-significant estimated slope coefficients in the whole data set, the non-natural

series and near-natural series – annual maxima series.

Negative Non-significant Positive Total Non-normal (%)

Model (a) All 3.1 78.6 18.3 398 48 (10.8)

Non-benchmark 2.7 79.0 18.3 328 36 (9.9)

Benchmark 4.3 77.1 18.6 70 12 (14.6)

Model (b) All 2.8 87.0 10.2 431 15 (3.4)

Non-benchmark 2.3 87.0 10.7 355 9 (2.5)

Benchmark 5.3 86.8 7.9 76 6 (7.3)

Model (c) All 8.1 81.5 10.4 405 41 (9.2)

Non-benchmark 7.8 82.3 9.9 334 30 (8.2)

Benchmark 9.9 77.5 12.7 71 11 (13.4)

Table 2. Comparison of the proportions of significant and non-significant estimated slope coefficients in the whole data set, the non-natural

series and near-natural series – winter maxima series.

Negative Non-significant Positive Total Non-normal (%)

Model (a) All 2.0 82.5 15.5 400 46 (10.3)

Non-benchmark 1.8 82.5 15.7 331 33 (9.1)

Benchmark 2.9 82.6 14.5 69 13 (15.9)

Model (b) All 0.5 83.1 16.4 433 13 (2.9)

Non-benchmark 0.0 83.3 16.7 353 11 (3.0)

Benchmark 2.5 82.5 15.0 80 2 (2.4)

Model (c) All 4.4 86.8 8.8 408 38 (8.5)

Non-benchmark 4.5 86.9 8.6 336 28 (7.7)

Benchmark 4.2 86.1 9.7 72 10 (12.2)

Table 3. Comparison of the proportions of significant and non-significant estimated slope coefficients in the whole data set, the non-natural

series and near-natural series – summer maxima series.

Negative Non-significant Positive Total Non-normal (%)

Model (a) All 8.4 81.1 10.6 417 29 (6.5)

Non-benchmark 8.4 81.2 10.4 346 18 (4.9)

Benchmark 8.5 80.3 11.3 71 11 (13.4)

Model (b) All 9.0 89.4 1.6 434 12 (2.7)

Non-benchmark 9.0 89.3 1.7 355 9 (2.5)

Benchmark 8.9 89.9 1.3 79 3 (3.7)

Model (c) All 15.7 78.6 5.7 421 25 (5.6)

Non-benchmark 13.9 80.6 5.5 345 19 (5.2)

Benchmark 23.7 69.7 6.6 76 6 (7.3)
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Fig. 11. Estimated decadal magnification factor M10 for model (c) for all the available series (a), for series with non-natural flow (b) and for

series with near-natural flow (c) – summer maxima series.

5 Implications for decision making

The results presented in the previous section show that for

some catchments the assumption of stationarity in the loca-

tion parameter for the observed time series of extreme rain

and flow can be rejected. In this section, the implications of

these findings and the testing framework of non-stationarity

will be further investigated. The current procedure recom-

mended by Defra (2006) for considering the effect of cli-

mate change on design flood estimates in the UK is through

the use of precautionary safety factors. In practice, this is

done by first conducting a flood frequency analysis using

standard methods such as those presented in the Flood Esti-

mation Handbook (e.g. Institute of Hydrology, 1999; Kjeld-

sen and Jones, 2009) based on the assumption of stationar-

ity, and subsequently adding a safety margin of 20 % to the

design flow to represent changes expected by 2085. For the

final choice of design, it should be investigated whether this

increase in design flow has a significant impact on the de-

sign/management of the hydraulic structure. The choice of

20 % as a safety factor was based on modelling studies re-

ported by Reynard et al. (2004) who coupled downscaled

UKCIP02 scenarios of rainfall with a hydrological model to

assess future flood risk. Structures being constructed at this

point in time should be over-engineered with a view to still

comply with protection against the 100-year event in the fu-

ture (2085 in this case). Further studies (e.g. Environment

Agency, 2011) have used the UKCP09 projections of rain-

fall and temperature to estimate river flows and investigated

the importance of catchment properties in the response to cli-

mate change. The study identifies regional change factor in-

tervals and discusses how these should be employed. In order

to keep the presentation more readable the results discussed

in the remainder of this work are obtained assuming a na-

tional safety margin of 20 %, which seems reasonable for the

purpose, even considering the results in Environment Agency

(2011).

Having accepted the premise of increased flood risk and

put the appropriate safety procedures in place, rather than in-

vestigating whether or not a trend is detectable in the data,

it would be more relevant to investigate whether the trend

which can be currently detected in the data is larger than the

increase that the current design criteria already take into ac-

count. Assuming the change rate would stay the same as the

one identified at this point, this can also be seen as a test on

whether the current precautionary measures are safe enough

and whether they are supported by the currently observed

levels of change.

Consequently, it is suggested here to shift the attention

from a two-sided test on the presence of any trend (upward

or downward) in the observed data, to a one-sided test in

which it is investigated if the observed trend exceeds the

current safety margin. Starting from the guidelines by De-

fra (2006), which considered changes happening in roughly

85 years from the time of the underlying study, the focus here

is on the changes expected in 85 years from a time t . Express-

ing the level of change as a magnification factor, the ques-

tion is whether M85 > 1.2, with M85 = exp{β1 85} the 85 yr

magnification factor. Since log(M85) = β1 85, this translates
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Table 4. Schematic explanation of Type I, Type II errors in relation to the significance level, α, and power, π , of a test.

H0 is true H0 is not true

Test does not reject H0 Happens with probability 1 − α under H0 Type II error. Happens with probability β under H1

Test rejects H0 Type I error. Happens with probability α under H0 Happens with probability 1 − β = π under H1

into the following hypothesis framework:

H0 : β1 ≤ log(1.2)/85

H1 : β1 > log(1.2)/85. (7)

The future flood estimates in catchments for which the null

hypothesis H0 can be rejected would be expected to exceed

the design flood value that would be obtained using the safety

margin in the current guidelines. As Vogel et al. (2013) point

out, the standard hypothesis testing framework is built with

the purpose of having a small pre-fixed probability α (the sig-

nificance level) of not accepting the null hypothesis when the

null hypothesis is actually true (Type I error). An error of this

type in the framework in Eq. (7) would lead to an increase in

flood protection measures (likely a money investment) which

would turn out not to be necessary. The price to pay in order

to have a test with smaller probabilities of Type I errors, is

to actually perform a test with lower power, i.e. the ability

of identifying a trend when a trend exists in the data. The

complement of this is a higher probability β of not detecting

a trend when the trend is actually present (Type II error). Ta-

ble 4 shows the relationship between the hypothesis and the

consequences of either accepting or rejecting this hypothesis.

Committing a Type II error (rejecting the presence of a trend

when a trend actually exists), practically translates into not

updating flood protection measures when in fact it would be

overtopped more frequently than expected in the stationary

case. One then might rethink the trend detection routines in

order to increase the power of the test, and not only focus

on the Type I error. As discussed further in Sect. 5.1, due

to the close relationship between α and β, for a given α the

only way to reduce the probability of Type II errors is to re-

duce the variability of the test statistics by either increasing

the sample size (i.e. wait more years) or improving the way

in which the test statistic is estimated. This study tries to do

the latter by adding relevant variables in the trend model. For

many natural processes, evidence of change has been found

in the data, and there is an increasing perception in the pub-

lic discourse that changes are occurring in environmental and

hydrological systems. Moreover, there is a high social cost in

not being prepared to cope with increasing flood risk (Hall

et al., 2012). In response to this change of perception, Vo-

gel et al. (2013) urge the use of tests which shift the atten-

tion from the null hypothesis being that there is no change to

the case where the change is assumed to be happening. This

radically changes the objective of the analysis and could be

Fig. 12. (a) Sites for which the null hypothesis H0 : β1 ≤
log(1.2)/85 is rejected. (b) Sites for which the null hypothesis

H0 : β1 > log(1.2)/85 is rejected. Results shown for two different

significance levels α = 0.05 and α = 0.01.

translated into the following hypothesis framework:

H0 : β1 > log(1.2)/85

H1 : β1 ≤ log(1.2)/85. (8)

In this case, the future flood estimates in catchments for

which the null hypothesis H0 can be rejected are expected

not to exceed the design flood value that would be obtained

using the safety margin in the current guidelines.

Figure 12 shows the results for the annual river flow se-

ries when testing within the two different testing frame-

works in Eqs. (7) and (8) at two different significance levels

αreg = 0.05 and αreg = 0.01, based on the regression model

presented in Eq. (6). Stations for which a large change was

found in the flow series according to the testing framework

in Eq. (7) are shown in Fig. 12a. For these sites the null

hypothesis of magnification factor smaller than 1.2 is re-

jected and there is an indication that the floods for these

stations are increasing beyond what is catered for by the

20 % safety margin. These stations partially coincide with

the stations for which the highest M10 factors were found

(see Fig. 8), although the map in Fig. 12a adds the addi-

tional information on whether the estimated change is strong

enough to raise safety issues according to the current design

standards. In contrast, Fig. 12b shows the stations for which
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the null hypothesis H0 : β1 > log(1.2)/85 was rejected: these

sites are the ones for which the data do not support the as-

sumption that a worryingly large increase in the annual high-

flow process is occurring. Again, these stations are charac-

terized by very low M10 in Fig. 8. For the majority of the

catchments (80 % at a α = 0.05 significance level) the null

hypothesis is not rejected in either of the testing frameworks,

suggesting that it is not possible to reject either of the null hy-

potheses of an increase in estimated design floods to be either

smaller than 20 % or larger than 20 %. These results show

how difficult it is to obtain definite information on change

from such variable data and support the assertion by Lins

and Cohn (2005) that “stationarity and non-stationarity are

essentially indistinguishable” for river flows, given the cur-

rently available periods of record, when doing a single-site

analysis.

5.1 Testing and sample size

An important additional feature of statistical power analy-

sis theory is the possibility of calculating the sample size

which would be needed under certain specified assumptions

in order to attain a desired power (i.e. the probability of

not committing a Type II error). The issue is considered

as a routine step in many fields like clinical or behavioural

research: when setting up a study a decision needs to be

made regarding the amount of experimental units needed.

This choice is made based on the probability of the Type I

and Type II errors that the researcher is willing to accept, the

variability of the process under study and the precision that

is needed. Summarizing, the following quantities need to be

pre-specified:

– the significance level α,

– the power to be attained π = 1 − β,

– the variability τ of the parameter under study, in this

study the regression coefficient τ = sβ1
,

– the effect size (ES) δ, an indication of the mag-

nitude of the effect that would be relevant to the

stochastic process of interest, in this study the trend

magnitude.

The last quantity is rarely discussed in the standard presen-

tation of the hypothesis testing framework, but is very rele-

vant when calculating sample sizes, as it indicates the level

of precision to be achieved. It can also be interpreted as an

indication of where the alternative hypothesis really begins.

In a test for H0 : β1 = 0, it would be reasonable to not al-

ready start rejecting the null hypothesis for a test statistic

which gives indication of, say, β1 = 10−26, but rather allow

an ES value δ such that for any |β1| ≥ δ the null hypothesis

can be rejected. The ES can either be fixed beforehand by

the researcher, or can be derived from properties expected to

be found in the data based on previous studies. See among

others Cohen (1992) for a discussion on how to obtain ES

and Cohen (1994, 1990) for a detailed discussion on ES and

the importance of each pre-specified component in a power

analysis. For a univariate model, like the simple regression in

Eq. (2), the power π for a one-sided test with H1 : β1 > δ is

defined as

P
(

T̃ ≤ tα,n−2

)

= 1 − π, (9)

where T̃ is a t distribution with (n − 2) degrees of freedom

and non-centrality parameter
√

nδ/τ . The standard devia-

tion of the regression parameter in this case is estimated by

s
β̂1

= τ/
√

n. The term tα,n−2 corresponds to the 1 −α quan-

tile of a standard t distribution with (n − 2) degrees of free-

dom, i.e. the cutoff value which marks the beginning of the

rejection region. tα,n−2 changes as a function of the sample

size n and the significance level α. Equation (9) is often ap-

proximated with

P
(

T ≤ tα,n−2 −
√

nδ/τ
)

= 1 − π, (10)

where T is a standard t distribution random variable with

(n − 2) degrees of freedom. The decisions made on the size

of each of (α,τ,δ), the three quantities used in Eq. (10), will

have an effect on the sample size needed to attain the pre-

specified power π . A typical value for π is π = 0.8, which

translates into a probability of Type II error β = 0.2. For the

commonly used significance level α = 0.05 a power π = 0.8

corresponds to a 4 : 1 proportion of probability of Type II

errors over the probability of Type I errors.

In most cases, the value of τ would be unknown and dif-

ficult to estimate from previous studies or the researchers’

knowledge. However, for a univariate regression model the

value of τ can be related to ρ, the correlation between the de-

pendent and independent variables, which for the univariate

case corresponds to the square root of the well-known coeffi-

cient of determination R2 (see Appendix A for the derivation

of this relation). Thus, taking τ =
√

ρ2/
(

(1 − ρ2)δ2
)

the for-

mula in Eq. (10) can be rewritten as

P

(

T ≤ tα,n−2 −
√

nρ2/
(

1 − ρ2
)

)

= 1 − π, (11)

which corresponds to the formula used by Vogel et al. (2013).

Note that for this formula the ES δ is cancelled out from the

formula and the power levels are completely determined by

the sample size and the strength of the relationship between

the dependent and independent variable. Alternatively, the

value of τ can be estimated starting from the parameters σ

and sx , defined as the standard deviation of the model resi-

duals ε and the sample standard deviation of the independent

variable x, respectively. Taking τ = σ/(sx) then, the formula

in Eq. (10) can be rewritten as

P
(

T ≤ tα,n−2 −
√

nδsx/σ
)

= 1 − π. (12)
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Once the ES and the sample size have been fixed, power

levels in Eq. (12) are determined by the variability of the

model errors relative to the sample variability of the inde-

pendent variable. In the particular case studied in this work,

time (e.g. the water year) is the independent variable, so that

sx is changing and known for increasing sample sizes (see

Appendix A). From the formulas in Eqs. (11) and (12) it is

then clear that the power of the test on the regression pa-

rameter β1 will be strictly connected with the variability of

the dependent and independent variables in the model, and

the strength of the relationship between them. For multivari-

ate regression models like the one in Eq. (6), the relationship

between the different independent variables also play a role.

Thus, in order to do a power analysis for the effect of one of

the independent variables, some further assumptions need to

be made regarding these relationships. In order to keep the

presentation more readable the discussion in the remainder

of this section is limited to univariate models.

Computation of the sample size necessary to attain the de-

sired power of a test requires a number of assumptions on the

variability of the variables involved in the model. Depend-

ing on which information is more easily available and more

reliable, one of the two formulas in Eqs. (11) and (12) can

be used to investigate the relationship between sample size

and power. Levels of power for increasing sample sizes com-

puted using the formula in Eq. (11) are shown in the curves

in Fig. 13a: for higher R2 smaller sample sizes are needed

to attain a given power level. Since in the framework under

study each measurement corresponds to a water year, assum-

ing that a data series would start in a certain year, for exam-

ple 1970, each sample size corresponds to an end of record

year. On the lower x axis of Fig. 13 the year corresponding

to each sample size is indicated. The graph in Fig. 13a shows

representative power functions obtained with the 25th, 50th

and 75th percentile of the R2 for the fitted univariate mod-

els for flow data as in Eq. (2): the observed R2 are fairly

small and if a sample size for a test for trend in the flow

data was to be chosen based on the current levels of corre-

lation between time and flow data, it might only be possible

to obtain a reasonable power for the test by waiting for an-

other 500 years. In Fig. 13b levels of power for increasing

sample sizes computed using the formula in Eq. (12) for an

ES δ = log(1.2)/85 are shown: for lower standard deviations

of the model errors (σ ) smaller sample sizes are needed to

attain a given power level. Again, the representative values

of σ in the plot correspond to the 25th, 50th and 75th per-

centile of the estimated values of σ for the univariate models

fitted to flow data as in Eq. (2). It would appear that reason-

able power levels for a test on the regression coefficient for

models as in Eq. (2) should be attained by the end of the

21st century. The huge difference in the sample sizes chosen

using the two different formulas is partially due to the fact

that for the particular case at hand, when using the formula

in Eq. (12) one can also include the information on the ac-

tual sample standard deviation sx , which will necessarily in-

Fig. 13. Power functions for different sample sizes for a test with

significance level α = 0.05. In the left panel power functions are

shown for representative R2; in the right panel power functions for

δ = log(1.2)/85 are shown for representative model residual stan-

dard deviations σ .

crease for increasing sample sizes. When using the formula

in Eq. (11) the information on the increased variability of the

independent variable is not used. In a different experimental

setup, researchers might be able to control the sample stan-

dard deviation of the independent variable, but since this is

not possible in the case under study it only makes sense to

use this additional information.

It should be pointed out that when deciding on the sample

size for a designed experiment, power analysis should not be

performed ex post, after an experiment has been carried out,

but rather ex ante, in the experiment design step. A researcher

should have some knowledge on the variability of the pro-

cess under study and can decide on the sample size based

on this knowledge. This is clearly not a viable approach for

flow data, as researchers have no control on the variability of

the processes and more data can only be obtained by waiting

more years. It is important to stress that the sample sizes in-

dicated in Fig. 13 are only giving an indication of the time

needed to attain a required power when performing at-site

trend analysis on gauged peak flow under some pre-specified

conditions.

The power analysis for a regression parameter as discussed

in this section would be valid for complete, independent data

series. Some short-term and long-term autocorrelation might

be observed in hydrometric series, and would have an im-

pact on the variability of the test statistic and therefore on

the power levels, although less so for series of extremes (see

Hannaford and Marsh, 2008). Auto-correlation for the river-

flow and rainfall maxima series analysed in this work have

been found to be largely not significant (results not shown)

and Hannaford and Marsh (2008) show that correcting for
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the auto-correlation in river flow annual maxima series lead

to only marginally different results. Methods to overcome the

auto-correlation present in hydrometric data are discussed by,

among others, Yue et al. (2002).

Another source of uncertainty that would require fur-

ther corrections in power analysis is the correlation be-

tween events recorded in the same year at different stations.

Throughout the study each station has been analysed in iso-

lation, i.e. the stations are taken into consideration indepen-

dently, although correlations may exist between them, as

Fig. 1 suggests. Not accounting for the spatial correlation can

potentially lead to problems when trying to interpret the sig-

nificance of the results. However, accounting for it is a non-

trivial issue, see for example Davison et al. (2012) and Huser

and Davison (2014).

Another possible strategy to lower the number of years

needed for each station to detect possible spatially coherent

changes would be to apply a regional method for trend de-

tection, such as the ones presented in Renard et al. (2008)

and applied to a number of French and Alpine high river

flow variables in, respectively, Giuntoli et al. (2012) and Bard

et al. (2012). By analysing spatially and hydrologically co-

herent data together, stronger evidence can be found in favour

or against the presence of non-stationarity for hydrological

variables in a region. Some efforts have been made to de-

fine hydrologically coherent regions in the UK (e.g. Kingston

et al., 2013; Svensson and Prudhomme, 2005), and the main

division for the country would seem to be into two regions:

the northwest and the southeast. These two large regions

could be employed to perform a regional analysis, but they

might not be as well defined as the ones employed in the

French and Alpine studies. Identifying coherent regions for

high flows and rainfall patterns in the country would be a nec-

essary initial step to perform a regional analysis, and this is

beyond the scope of this paper. Moreover, for some regional

tests like the non-parametric approach presented in Renard

et al. (2008), the records for all stations included in the re-

gional study should all have data available for the same wa-

ter years: considering the several missing data which can be

seen in Fig. 1, a careful selection of which stations should be

included in a regional analysis also needs to be carried out.

6 Summary

This study has investigated the presence of trends in the lo-

cation parameter of the distributions for annual and seasonal

maxima series of peak river flow and daily rainfall totals

recorded in the UK. Building on Vogel et al. (2011), a di-

mensionless magnification factor is estimated for different

catchments and the presence of local patterns is investigated

by plotting the estimated factors on maps. For the peak river

flow data the simple time trend model is expanded by adding

a process-related variable: the 99th percentile of the daily

rainfall for each water year. This work only pursued a model

for µ, the location parameter of the distribution, assuming

the higher-order moments, like the dispersion, to be constant.

A detailed analysis of the variance function could be benefi-

cial, although a reliable estimate for the variance would ide-

ally require a higher number of observations for each station.

For the location parameter model, the 99th rainfall per-

centile explains a very large part of the variability seen in the

flow observations. The advantage of adding a rainfall-related

quantity is that any residual effect of time should be related

more to the other unknown drivers of change rather than pre-

cipitation, and that the variability of the slope estimate is re-

duced, thus giving more precise information. This is an at-

tempt in the direction of the better attribution effort (Merz

et al., 2012), and the framework could potentially accommo-

date additional variables other than time to better explain the

residual variability in the model.

Indeed the evidence for changing high flows is slightly dif-

ferent when the 99th rainfall percentile is taken into account

than when it is not. The results are shown in Figs. 8–10, and

for all the annual and seasonal series, the inclusion of the

99th rainfall percentile in the model affects the detection of

changes in the series. For annual and winter river flow series,

no systematic patterns seem to emerge, with some small scat-

tered clusters of decreasing and increasing trends. However,

there is a strong indication of decreasing maxima summer

flows, particularly in the southeast of England.

The last part of this work in Sect. 5 discusses some as-

pects of the statistical testing approach used to detect non-

stationarity and the implications for decision making. The

definition of non-stationarity can be expanded into some-

thing more relevant than the frequently used null-hypothesis

of no trend (H0 : β1 = 0), and the importance of Type II er-

rors is discussed. Indeed, the statistical testing framework

used in any study should be formulated thinking carefully

about the question that is relevant for the problem at hand.

With the data used in this study, only for a very small propor-

tion of stations can one of the two contrasting null hypothe-

ses H0 : β1 ≤ log(1.2)/85 and H0 : β1 > log(1.2)/85 be re-

jected. That is to say, for more than 80 % of the stations nei-

ther hypothesis can be rejected, and, assuming that the direc-

tion and strength of the future changes continue to be like

the ones detected at present, it cannot be determined whether

or not flood estimates are likely to exceed the current design

criteria for the 2085 horizon, or if they will be safely below

it. This striking result is due to the high natural variability

of the estimates for the regression coefficients: the trend sig-

nal is simply not strong enough to be really informative from

a statistical point of view. This is even more evident when

computing the sample sizes which would be needed to attain

relatively high power levels if the correlation values or the

model errors would be comparable to the ones obtained from

the models fitted to the data sets used in this study. Methods

to better account for, and use, the spatial correlation between

nearby stations might lead to more informative results.
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7 Conclusions

– Different patterns for changes are found in annual and

seasonal maximum instantaneous peak flow series.

– The potential for large rainfall events in each year ex-

plains a large part of the variability in the flow data.

– The testing framework does not need to be the usual

β1 = 0 test: it could be the translation of a relevant

question.

– Using such translated test hypothesis, and given the es-

timated trends at the present time, it is difficult to de-

tect changes in the flow series which would confirm

or negate the current design safety margins for climate

change.

– Given the observed variability in the data, sample sizes

of some hundreds of years would be needed to confirm

or negate the current safety margins when using at-site

analysis.
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Appendix A

A1 Derivation of some key quantities

In this appendix some of the formulas used in the approx-

imations in Eqs. (11) and (12) are derived. Most of these

derivations use known quantities for linear regression mod-

els. A comprehensive presentation of linear models can be

found in Neter et al. (1996).

In a model like the one in Eq. (3), yi = β0 +β1xi +εi with

εi ∼ N(0,σ 2), a test on the coefficient β1, with H0 : β1 = b1

against H1 : β1 6= b1, is based on the test statistic:

T = β̂1 − b1

s
β̂1

, (A1)

with s
β̂1

the estimated standard deviation for the estimated

coefficient β̂1. Under the null hypothesis it can be shown

that
(

β̂1 − b1

)

/s
β̂1

∼ tn−2. For a two-sided test at a signif-

icance level α, the null hypothesis would be rejected when

|T | > tα/2,n−2. It can be shown that s
β̂1

= σ/(
√

nsx), so that

Eq. (A1) becomes

(

β̂1 − b1

)

√
nsx

σ
. (A2)

To calculate the power of a test, it is necessary to make as-

sumptions on σ and/or sx : in a designed study sx would be

either known or kept under control, but this is not possible

for a test on trend in time.

A2 Derivation of the approximation in Eq. (11)

The value of σ can be related to the sample correla-

tion coefficient ρ̂ = cor(x,y). Since β̂1 = ρ̂sy/sx , we have

that sy = sx β̂1/ρ̂. Also ρ̂2 = 1 −
∑

(

ŷ − ȳ
)2

/
∑

(y − ȳ)2.

Combining these well known relationships, the variance of

the model residuals can be written as σ 2 =
(

1 − ρ̂2
)

s2
y =

(

−1 + 1/ρ̂2
)

s2
x β̂2

1 , so that

s
β̂1

=

√

(

−1 + 1/ρ̂2
)

sx β̂1

√
nsx

.

For b1 = 0, the test statistics in Eq. (A2) then reduces to

√
n

ρ̂2

√

(

1 − ρ̂2
)

.

A3 Derivation of the variance of a sequence of water

years

Let x be a sequence of numbers like the water years vari-

able. Since var(X+a) = var(X), the variance for a water year

record of length n corresponds to the variance of (1, . . . ,n).

For x = (1, . . . ,n) the mean is

x̄ = 1

n

n
∑

i=1

i = 1

n

(n + 1)n

2
= (n + 1)

2

so

(n − 1)s2
x

=
n

∑

i=1

(i − x̄)2

=
n

∑

i=1

(

i − (n + 1)

2

)2

=
n

∑

i=1

i2 − 2
(n + 1)

2

n
∑

i=1

i + n
(n + 1)2

4

= n(n + 1)(2n + 1)

6
− n(n + 1)2

4

= 1

12
n(n2 − 1) (A3)

so that s2
x

= n(n + 1)/12. This value for the variance of the

time variable is used when computing the power of a test

using the approximation in Eq. (12).
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