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ABSTRACT

Previous searches for long-range correlations in DNA sequences

was carried out using statistical tools for stationary signals.

However, genomic signals are non-stationary as can be at-

tested by standard statistical tests for stationarity. In this pa-

per, we address, in the light of non-stationary time-series anal-

ysis, the questions of (i) the existence of long-range corre-

lations in DNA sequences and (ii) whether they are present

in both coding and non-coding segments or only in the lat-

ter. It turns out that the statistical differences between cod-

ing and non-coding segments are more subtle than previously

claimed by the stationary analysis. Both coding and non-

coding sequences exhibit long-range correlations, as asserted

by an evolutionary 1/f spectrum (i.e., having a time-dependent

spectral exponent). Moreover, the average spectral exponent

of non-coding segments is higher than its counterpart for cod-

ing segments. To prove that this observation is not an artifact

of the 1/f evolutionary spectrum, we show, using an index of

randomness that we derive from the frequency-time distribu-

tion of the genomic signals, that coding sequences are “more

random” (i.e., whiter) than non-coding sequences. We believe

that this result is likely the source of confusion and contro-

versy in previous work, which relied on stationary analysis of

DNA correlations.

Index Terms— Non-stationary time-series analysis; evo-

lutionary spectrum; evolutionary periodogram; Hilbert trans-

form; empirical mode decomposition (EMD).

1. INTRODUCTION

One intriguing characteristic of the DNA of eukaryotic 1 or-

ganisms is its mosaic organization into coding sequences, called

exons, interspaced by non-coding sequences, called introns.

Understanding the statistical characterization of the exon-intron

structure of eukaryotic genes not only help biologists dis-

criminate between coding and non-coding sequences, but also

provide valuable clues about the evolution of genes, the con-

straints which lead this evolution, and can be an important
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first step towards understanding gene-related diseases like can-

cer and Alzheimer disease.

In 1992, Peng et al. [1] uncovered the existence of long-

range power-law correlations in the DNA of eukaryotic or-

ganisms by constructing a map of nucleotide sequences onto a

walk, u(i), which they termed a “DNA walk.” The DNA walk

is defined by the rule that the walker steps up (u(i) = +1)

(resp., down (u(i) = −1)) if a pyrimidine (resp., purine) re-

sides at position i. This long-range statistical correlation in

DNA sequences means that nucleotides at any given position

appeared to be related to nucleotides thousands of bases away.

Moreover, they found such long-range correlations in non-

coding sequences (intron-containing genes and non-transcribed

regulatory sequences), but not in coding sequences (comple-

mentary DNA sequences (cDNA) or intron-less genes). The

latter coding sequences appeared to be similar to white noise

or exhibit at most short-range correlations (like Markov pro-

cesses). Similar observations were reported independently by

Li et al. in [2], who applied standard Fourier analysis to a

sample of genes. What is surprising in their findings is not

just the existence of long-range correlation, but also the par-

ticular form of the correlation structure: the 1/f -like spectra
2. This prompted a sequence of controversial papers, some

affirming [3] and others disputing either the existence of long

range correlations in DNA sequences or the statistical differ-

ence between coding and non-coding segments [4]. These

contradictory results relied on different numerical representa-

tions of the genomic sequences [3], but all of them used stan-

dard statistical and signal processing tools for stationary time-

series analysis: the root mean square fluctuation, F (l), which

is related to the autocorrelation function through a summation

[1], the autocorrelation function, C(l), and the power spec-

trum, S(f). These quantities can distinguish between two or

three types of behavior:

1. For white noise, we have C(l) ∼ δ(l), F (l) ∼ l1/2 and

S(f) ∼ 1.

2. If the sequence exhibits short-range correlations, such

as a Markov memory, then C(l) ∼ exp−l, F (l) ∼ l1/2,

and S(f) ∼ 1/f2.

3. If the sequence exhibits long-range correlations, then

2We say that a process has a 1/f spectrum if its power spectrum is of the

form σ2

fα , for some σ > 0 and α > 0 is the spectral exponent.



C(l) ∼ l−γ (γ > 0), F (l) ∼ l−β (β 6= 1
2 ), and S(f) ∼

1/fα (0 < α < 2).

Karlin and Brendel [5] first questioned the implicit stationar-

ity assumption in the analysis of Peng et al. [1], which was

based on the root mean square fluctuation F (l). They argued

that the assumption of stochastic stationarity is absurd in view

of the great degree of local and global heterogeneity in nu-

cleotide sequences. Peng et al. retaliated by proposing the

Detrended Fluctuation Analysis (DFA) technique [6]. The

DFA method constructs a stationary process from the non-

stationary genomic signal by dividing the entire sequence into

subsequences and subtracting the trend in each subsequence.

The DFA technique became a well-established method for de-

tecting long-range correlations in DNA and other natural and

man-made sequences [7]. However, the DFA is limited to the

very special case of non-stationary signals consisting of sta-

tionary signals with embedded trends, i.e.,

X(t) = c(t) + X0(t), (1)

where c(t) is a deterministic function and X0(t) is a sta-

tionary process. Observe that c(t) can be locally approxi-

mated by a polynomial function. So, by dividing the sequence

into (overlapping or non-overlapping) subsequences, estimat-

ing the linear trend in each subsequence and substracting it,

we obtain the underlying stationary signal X0(t). Chen et

al. [8] investigated the effects of three other types of non-

stationarities (signals with segments removed, signals with

random spikes and signals with different local behavior) on

the DFA method. Our extensive simulations and analysis of

nucleotide sequences found that DNA sequences exhibit dif-

ferent forms of non-stationarities that are more complex than

embedded trends. Therefore, any pursuit to solve the contro-

versy about the nature of genomic correlations should con-

sider techniques for wider classes of non-stationary signals.

The goal of this paper is to address, in the light of non-

stationary time-series analysis, the problems of (i) the exis-

tence of long-range correlations in eukaryotic DNA sequences,

and (ii) whether they are present in both coding and non-

coding segments or only in the latter. In our analysis, we

will rely on the purine-pyrimidine mapping of the nucleotides

proposed in [1] since our experiments have shown that the

statistical properties remain unchanged even when we adopt

a more complex multi-dimensional representation [9]. We

will first prove using Prietley’s statistical test for stationar-

ity that DNA sequences are non-stationary and the nature of

their non-stationarity is more complex than embedded trends.

Hence, classical tools for stationary time-series analysis (e.g.,

stationary correlation and power spectrum) and the DFA method

cannot be applied to DNA sequences. A generalization of

the periodogram for estimating the power spectrum of non-

stationary signals is given by the evolutionary periodogram

(EP) [10]. We show, using the EP, that DNA sequences (both

coding and non-coding) exhibit an evolutionary 1/f spec-

trum. That is, the spectral exponent is not constant but rather
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Fig. 1. DNA walks: In blue is the DNA walk for the human

geneTXNDC9 (GI:89161199); In green is the DNA walk for

a random gene sequence having the same nucleotide distri-

bution as TXNDC9; In red is the DNA walk for a random

sequence with uniform nucleotide distribution. Observe that

the random sequences are steadily monotonic as expected for

random walks with drift.

varies as a function of time (here, time denotes nucleotide

position). Experimentally, we observe that the average (over

time) spectral component of non-coding sequences is higher

than its corresponding value for coding sequences. To demon-

strate that this conclusion is not an artifact of the evolution-

ary 1/f model, we propose an index of randomness to quan-

tify how far is a process from white noise. Our experimen-

tal results show that, indeed, coding sequences are “whiter”

than non-coding sequences, confirming the evolutionary peri-

odogram results.

2. THE EVOLUTIONARY SPECTRUM AND TEST

FOR STATIONARITY

Priestley [11] proposed a method to test the overall stationar-

ity of the complete second-order properties of a time-series.

The basis of the method is to estimate its evolutionary (or

time-dependent) spectrum over a discrete range of time points,

and then test these spectra for uniformity over time. Priestley

suggested obtaining an estimate of the evolutionary spectrum

at time t0 and frequency ω0, ĥt0(ω0), by bandpass filtering

the signal around ω0, and then estimating the local power in a

short-time window. If now we write Yt,ω = log (ĥt(ω)) and

adopt the notation Yi,j = Yti,ωj
, then the test for stationarity

can be written in the form

H0 : Yij = µ + αi + βj + γij + eij ;

H1 : Yij = µ + βj + eij ,

where i = 1, · · · , I , j = 1, · · · , J , {eij} denotes the estima-

tion error of the evolutionary spectrum with variance σ2, The

parameters {αi}, {βj} may be interpreted as the main effects

of the time and frequency factors, respectively, and the {γij}
represent an interaction term between these two factors. Ob-

serve that if all the {γij} are zero, then log (ht(ω)) is additive



Table 1. Analysis of variance for a two-factor design

Item Degrees of freedom Sum of squares

Between times I − 1 ST = J
∑I

i=1(Yi. − Y..)
2

Between frequencies J − 1 SF = I
∑J

j=1(Y.j − Y..)
2

Interaction + residual (I − 1)(J − 1) SI+R =
∑I

i=1

∑I
i=1(Yij − Yi. − Y.j + Y..)

2

in terms of time and frequency, so that ht(ω) is multiplica-

tive. It is then not difficult to show that X(t) must be of the

form X(t) = c(t)X0(t), where c(t) is a deterministic func-

tion and X0(t) is a stationary process. Processes of this form

are called uniformly modulated processes. Observe that if the

exponential signal, eX(t), is uniformly modulated, then the

signal, X(t), has non-stationary trends as defined in Eq. (1).

Given the computed values of Yij , we construct the standard

analysis of variance table for a two-factor design, which with

the usual notation, is set out in Table 1.

1. In testing for stationarity, the first step is to test for the

interaction sum of squares, using the results, SI+R/σ2 ∼
χ2

(I−1)(J−1) (σ2 is assumed to be known so that all

comparisons are based on χ2 rather than F -tests.)

2. If the interaction is not significant, we conclude that

X(t) is a uniformly modulated process, and proceed

to test for stationarity by testing ST using ST /σ2 ∼
χ2

(I−1).

3. If, however, the interaction turns out to be significant,

we conclude that X(t) is non-stationary and non-uniformly

modulated.

4. Reversing the roles of “times” and “frequencies”, the

above procedure may be used to test for “complete ran-

domness” at all times.

Figure 1 shows the DNA walk of the Human gene TXNDC9.

Using the same statistical parameters in [11, Chapter 6], we

applied the above test to this gene with 95% confidence. We

obtain the following statistics for the exponential signal of the

Human gene TXNDC9: SI+R/σ2 = 1284.5 > χ2
336(0.05) =

379.74;ST /σ2 = 9.7× 107 > χ2
56(0.05) = 74.46;SF /σ2 =

6912.4 > χ2
6(0.05) = 12.59. The interaction, the between

times sum of squares and the between frequencies sum of

squares are highly significant confirming that the exponential

signal is non-stationary, non-uniformly modulated and non-

random. In particular, this genomic signal is non-stationary

and the nature of its non-stationarity is not associated with a

deterministic trend as in Eq. (1).

3. THE EVOLUTIONARY PERIODOGRAM AND

THE EVOLUTIONARY 1/F PROCESS

Much of the current evidence for long-range correlations in

DNA sequences stems from the experimentally observed 1/f

spectrum [12], [13]. The 1/f spectrum assumes the exis-

tence of a stationary process with a fixed spectral exponent

β. This assumption, however, is in contradiction to our asser-

tion that nucleotide sequences are non-stationary. We there-

fore propose a new evolutionary (time-dependent) 1/f spec-

trum whose spectral exponent β(n) varies in time. This ap-

proach also resolves the classical paradox of 1/f processes,

namely, the variance of a 1/f process with a spectral expo-

nent β, 1 < β < 2, obtained by integration of the power

spectral density, is infinite [14].

A generalization of the periodogram for estimating the

power spectrum of non-stationary signals is given by the evo-

lutionary periodogram (EP) [10]. The EP of a non-stationary

signal x(n), n = 0, · · · , N − 1, is defined as

S(n, f) =
N

M

∣

∣

∣

M−1
∑

i=0

P ∗

i (n)
N−1
∑

k=0

Pi(k)x(k)e−2πjfk
∣

∣

∣

2

, (2)

where ∗ denotes complex conjugate, and {Pi(n)}M−1
i=0 is an

orthonormal basis. In our simulations, we use the discrete

Legendre polynomials with M = 3. The EP of the coding

region of the Human MHY6 gene is shown in Fig. 2(a) for

n = 1000, 2000, 3000, 4000, 5000. Note that the two peaks,

corresponding to the frequencies 1/3 and 2/3, are known

to be related to the codon structure in DNA coding regions.

Also, note that the scaling exponent β is not constant, but

rather varies for different values of n. This shows that DNA

correlations are much more complex than power laws with

a single scaling exponent. Thus, the proposed time-varying

or “evolutionary 1/f” process, where the exponent β(n) is a

function of time, provides a far superior model of the corre-

lation structure of DNA sequences. We estimate the function

β(n) by a linear least-squares fit of the slope of the EP at each

time instant n. White noise corresponds to β(n) = 0. Fig-

ure 2(b) depicts a plot of β(n) versus log10(n) for the cod-

ing and non-coding regions of the Human gene TXNDC9.

Observe that, for this gene, both the coding and non-coding

regions exhibit long-range correlations. Moreover, the av-

erage exponent function of the non-coding region is higher

than the corresponding value in the coding region. Next, we

will demonstrate that our conclusion that (i) neither the cod-

ing nor non-coding regions are random and (ii) the “degree of

randomness” of the coding regions is higher than non-coding

regions, is not an artifact of the evolutionary 1/f model.
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Fig. 2. (a) Evolutionary Periodogram of the coding region of the Human MHY6 gene for n = 1000, 2000, 3000, 4000 and 5000.

The length of the gene is N = 5820. (b) The scaling exponent β(n) for the coding and non-coding regions of the Human gene

TXNDC9 as a function of log10(n).
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Fig. 3. Amplitude-frequency-time distribution using the Hilbert transform (amplitudes in log).

4. EMPIRICAL MODE DECOMPOSITION AND

INDEX OF RANDOMNESS

To quantify the statistical processes further, a more sensitive

index is needed to give a quantitative measure of how far the

process deviates from white noise; a prerequisite for such a

definition is a method to present the data in the frequency-

time space. There are many methods to obtain such a 3D

distribution, e.g., the spectrogram, the wavelet analysis and

the Wigner-Ville distribution. These techniques have been re-

viewed and assessed in [15], where the authors introduced a

new non-linear technique, called Empirical Mode Decompo-

sition (EMD), to represent non-stationary signals as sums of

AM-FM components by decomposing them into mode func-

tions and then applying the Hilbert Transform to each mode.

The analytic process Z(t) can then be expressed as [15]

Z(t) =
N

∑

j=1

aj(t)e
i2π

∫
fj(t)dt. (3)

Equation (3) enables us to represent the amplitude, aj(t), and

the instantaneous frequency, fj(t), as functions of time in a

three-dimensional plot, in which the amplitude can be con-

toured on the frequency-time plane. This frequency-time dis-

tribution of the amplitude is designated as the Hilbert spec-

trum. Figure 3 shows the Hilbert amplitude spectrum of a

pure sine wave, a Gaussian random noise, the Human gene

NOC2L and its coding and non-coding sequences. Visually,

the coding segment looks “whiter” that the non-coding one.

We propose to quantify the notion of “how far is a process

from a white noise” by defining the index of randomness at
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time instant t, IR(t), as the weighted variance or spread of

the spectrum at time t. So, for a pure sine wave, the spec-

trum is a delta function and the variance is zero; whereas for

a white noise, the spectrum is flat and the variance is infinite.

Analytically,

IR(t) =
1

N

N
∑

f=1

a(f, t)

max
f

{a(f, t)}
(f − µ(t))2, (4)

where a(f, t) is the amplitude of the Hilbert spectrum at fre-

quency f and time t, N is the maximum number of frequency

cells, and µ(t) = meanf∈I(t) {f}, where I(t) = {f : a(f, t) 6=
0}. Figure 4 displays the index of randomness plots of the

coding and non-coding regions of the Human gene NOC2L.

5. CONCLUSION

In the light of non-stationary time-series analysis, the statis-

tical differences between coding and non-coding sequences

are more subtle than previously concluded using the station-

ary analysis: Both coding and non-coding sequences exhibit

long-range correlations as attested by an evolutionary 1/f
spectrum. However, coding sequences are “whiter” than non-

coding sequences. The results of this paper are intended to be

the first step towards settling the debate of the nature of DNA

correlations and setting forward the progress of understanding

its origin and evolution.
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