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Figure 1. Self-made photographic lens with one glass element only. Taken image without and with lens correction.

Abstract

Taking a sharp photo at several megapixel resolution tra-

ditionally relies on high grade lenses. In this paper, we

present an approach to alleviate image degradations caused

by imperfect optics. We rely on a calibration step to en-

code the optical aberrations in a space-variant point spread

function and obtain a corrected image by non-stationary de-

convolution. By including the Bayer array in our image for-

mation model, we can perform demosaicing as part of the

deconvolution.

1. Introduction

In an ideal optical system as described theoretically by

paraxial optics, all light rays emitted by a point source con-

verge to a single point in the focal plane, forming a clear

and sharp image. Departures of an optical system from this

behaviour are called aberrations, causing unwanted blurring

of the image.

Manufacturers of photographic lenses attempt to mini-

mize optical aberrations by combining several lenses. The

design and complexity of a compound lens depends on var-

ious factors, e.g., aperture size, focal length, and constraints

on distortions. Optical aberrations are inevitable and the de-

sign of a lens is always a trade-off between various param-

eters, including price. To correct these errors in software is

still an unresolved problem.

Rather than proposing new designs for complicated com-

pound lenses, we show that almost all optical aberrations

can be corrected by digital image processing. For this,

we note that optical aberrations of a linear optical sys-

tem are fully described by their point spread function

(PSF). We will show how PSFs encountered in real pho-

tographic lenses suffering from various optical aberrations

can be approximated as non-stationary convolutions. For a

given lens/camera combination, the parameters of the non-

stationary convolution are estimated via an automated cal-

ibration procedure that measures the PSF at a grid cover-

ing the image. We also include demosaicing into our im-

age reconstruction, because it fits naturally into our forward

model. Our results surpass current state of the art.

Main contribution: We show how to reconstruct a full-

color image, i.e., all three color channels at full resolution,

given a raw image that is corrupted by various monochro-

matic and chromatic aberrations, and Bayer filtered by a

color filter array (CFA) of our off-the-shelf camera. This

image reconstruction is even possible for heavily degraded

images, taken with a self-constructed lens consisting of a

single lens element attached to a standard camera, Fig. 1.

2. Related work

We are not aware of any work that tries to solve the de-

mosaicing and the correction of lens errors simultaneously.

There exist many different methods solely for demosaicing,

for reviews see [16, 7, 1, 13]. However, none of them model
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and exploit the aberration of the lens to facilitate demosaic-

ing as our method does.

Chromatic aberrations arise because the refractive index

of glass, and thus focal length and image scale, is depen-

dent on the wave length. A common approach to correct

for lateral chromatic aberrations is a non-rigid registration

of the different color channels [2, 10, 14]. Such methods

correspond to restricting our model to delta-peaked PSFs,

and generally ignore other optical aberrations. The method

of [4] measures chromatic aberration at edges through color

differences and compensates locally, however without us-

ing a PSF model of the lens. The approach in [9] also relies

on the estimation of sharp step edges and can be used in

a non-blind fashion. Even though full PSF are estimated,

they are only used to remove chromatic aberrations, where

a rough knowledge of the PSF is sufficient. None of these

approaches consider demosaicing.

A method that focuses on correcting coma has been pro-

posed in [6], showing how to reduce coma by locally ap-

plying blind deconvolution methods to image patches. This

method is designed for gray scale images and thus does nei-

ther consider chromatic aberration nor demosaicing.

Algorithmically related to our work is [5], consider-

ing sparsity regularization in the luminance channel, and

Tikhonov regularization in the two chromaticity channels.

However, [5] combines the image information from several

images, while our method works with a single image. Also,

[5] combines demosaicing with super-resolution, while we

combine it with correction for chromatic aberrations.

The image reconstruction problem we are addressing can

also be dealt with using the proprietary software “DxO Op-

tics Pro 6” (DXO), which tries to correct for image aber-

rations. DXO is considered state of the art among profes-

sional photographers and presumably uses the same kind of

information as our approach (it contains a custom database

of lens/camera combinations). It has been developed over a

number of years and is highly optimized. DXO states that

it can correct for “lens softness”, which their website1 de-

fines as image blur that varies across the image and between

color channels in strength and direction. It is not known to

us whether DXO models the blur as space-variant defocus

blur of different shapes or with more flexible PSFs as we

do; neither do we know whether DXO demosaics and de-

blurs simultaneously as we do. In the experimental section

we show that our results compare favorably against results

obtained by DXO.

Using deconvolution to correct for lens aberrations is

also discussed in [11]. This work focuses on removing lens

blur across multiple aperture and zoom settings of a given

lens. A calibration method similar to [9] is used. While

this method can correct aberrations across many different

1http://www.dxo.com/us/photo/dxo_optics_pro/

optics_geometry_corrections/lens_softness

settings of a lens, the blur shape is modelled as a Gaussian.

As can be seen in Fig. 6 this is not appropriate for strong

abberations considered in this paper. Also, the problem of

demosaicing is not treated.

There exist several papers which suggest calibration pro-

cedures to measure the lens, e.g. [17, 19, 9]. However, they

mainly focus on correcting geometric distortion or do not

address monochromatic aberrations.

3. Aberrations as a non-stationary convolution

While the aberrations of an imaging system can be de-

scribed as a simple matrix operator, the required matrix-

vector multiplication would be computationally expensive.

More efficient for describing blurs are convolutions, how-

ever, the usual stationary convolution applies the same blur

kernel across the whole image and can thus only describe

space-invariant PSFs, which are insufficient to model lens

aberrations. As can be seen in Fig. 4 on the left, the PSF

can vary in size, shape, orientation, position and intensity.

How can we approximate such a space-variant PSF in an

imaging model that allows efficient computation?

Hirsch et al. [8] presented the so-called Efficient Fil-

ter Flow (EFF) framework, which can model a PSF that

smoothly varies across the image. The basic idea is to cover

the image with overlapping patches each of which is as-

signed a blur kernel.

For notational simplicity, all images and blur kernels are

column vectors. The generalization to two-dimensional ma-

trices is straight-forward. Let x be some image, i.e., a col-

umn vector of length n, and f (r) a blur kernel or filter, i.e.,

a column vector of length k. The ith pixel value yi in the

blurred image y can be written as a linear combination of

the p differently blurred patches,

yi =

p−1
∑

r=0

k−1∑

j=0

f
(r)
j w

(r)
i−j xi−j for 0 ≤ i < n (1)

where w(r) ≥ 0 is a fixed weighting vector which is non-

zero only on the rth patch. Since the patches are usually

chosen to overlap, these weights smoothly interpolate be-

tween neighboring filters f (r). Note that the weighting vec-

tors have to sum up to one, i.e.

p−1
∑

r=0

w
(r)
i = 1 for 0 ≤ i < n. (2)

Let f be the column vector that we obtain by stacking all

local filters f (r). Since the space-variant blur in Eq. (1) is

linear in x and in f there exist matrices X and B such that

y = Xf = Bx. (3)

Below, we call X and B the EFF matrices.
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Note that if there is overlap between the patches, this can

effectively imply a different PSF at each pixel. Basically,

the method applies the overlap-add trick for convolution, so

it can be computed as efficiently as the convolution, while

being much more flexible. Next, we explain the lens aber-

rations we would like to correct.

Monochromatic aberrations. This class of aberrations

include spherical aberration (in spherical lenses, the fo-

cal length is a function of the distance from the axis) as

well as a number of off-axis aberrations: coma occurs in

an oblique light bundle when the intersection of the rays

is shifted w.r.t. its axis; field curvature occurs when the

focal surface is non-planar; astigmatism denotes the case

when the sagittal and tangential focal surfaces do not coin-

cide (i.e., the system is not rotationally symmetric for off

axis light bundles); distortion, which is the only aberration

we do not address, is related to a spatially varying image

scale. All these monochromatic aberrations lead to blur that

varies across the image. Any such blur can be expressed in

the EFF framework by appropriately choosing the local blur

filters f (0), . . . , f (p−1).

Chromatic aberration. The refraction index of most ma-

terials including glass is dependent on the wavelength of the

transmitted light. Axially, this results in the focus of a lens

being a function of the wavelength (longitudinal chromatic

aberration); off-axis, we observe lateral chromatic aberra-

tion caused by the fact that the different focal lengths for

different wavelengths directly imply that the image scale

slightly varies with wavelength. By modeling the three

color channels with separate space-variant PSFs, we are

able to describe such chromatic aberration. This means on

the color channels xR, xG, and xB each acts a blur BR, BG

and BB, which we can also write as a blur B acting on the

full color image x.

Vignetting. Because oblique light bundles do not reach

the focal plane in their entirety, the intensity of the image

falls off towards the image corners. This can be corrected by

photographing a flat field frame, i.e., an image of a homoge-

neous background, and dividing the image by it. While this

is straightforward, the EFF framework can also include vi-

gnetting into our model by omitting the energy conservation

constraint, in that case the filters f (r) in Eq. (1) do not have

to sum up to one, i.e., we only require
∑

j f
(r)
j ≤ 1 and

f
(r)
j ≥ 0 for all j and r. By allowing dimmer filters we au-

tomatically correct for vignetting using our procedure. Note

that Eq. (2) is unaffected by relaxing the energy conserva-

tion constraint.

4. Forward model including mosaicing

The image blurred by the blur B is the image that will

enter the CFA, just before being mosaiced. The operation

of the CFA can be described as a linear map represented

by some matrix D, whose result will be the image that hits

the photo-sensitive sensor behind the CFA. Note that D is

a rectangular matrix with three times as many columns as

rows.

The forward model combines the lens aberration and

Bayer filtering into a single matrix A and adds noise n, i.e.,

y = DBx+ n = Ax+ n. (4)

5. Recovering the corrected, full-color image

Assuming the weights in the Bayer matrix D to be fixed

and known (we use a trivial Bayer matrix disregarding

cross-talk between color channels) the linear transforma-

tion A, i.e., the PSF, is parameterized by the set of filters

that determine the EFF matrices BR, BG, and BB for the

three color channels. These filters depend on the lens and

the camera used. In Sec. 6 we will detail the experimental

setup and procedure how we measure these filters at regu-

larly placed sites.

Assuming the noise in Eq. (4) to be Gaussian, we could

recover the unknown full-color image x from a measured

raw image y by solving a least-squares problem, i.e., by

minimizing ‖y − Ax‖22 w.r.t. x. However, the PSF param-

eterized by the EFF framework is only an approximation to

the true PSF and is subject to errors. Using stochastic ro-

bust matrix approximation [3] and the assumption that each

of the n elements of the PSF exhibits a standard deviation

of σ with zero mean, we add a regularization term. Just for

the EFF matrices this would result in nσ2‖x‖22, including

the Bayer matrix the regularization can be approximated as

nσ2(‖xR‖
2
2/4 + ‖xG‖

2
2/2 + ‖xB‖

2
2/4).

One challenge of processing real photos is that pixels

might be saturated, their true values may be clipped due

to limited dynamic range. Thus the measured values of

clipped pixels are not in agreement with the physical model

of the blur. We exclude saturated pixels in the data-fidelity

term ‖y−Ax‖22 by summing only over non-saturated pixels.

This term corresponds to the likelihood term (or data fit)

of the implicitly underlying probabilistic model. However,

because we are trying to estimate three color channels from

a single raw image, which means there are three times as

many unknowns as observations, our deblurring problem

is ill-posed. To regularize it we include prior knowledge

about natural images: it has been shown that the image gra-

dients approximately follow a hyper-Laplacian distribution

[12, 18]. This can be incorporated into the optimization

problem by adding a regularization term of the form ‖∇x‖γγ
to the objective function. The effect of this regularization is



to penalize strong gradients and therefore to smooth the im-

age. We follow Farsiu et al. [5] who transformed the RGB

image to a luminance/chrominance color space (here we use

YUV) before applying the regularization. This allows us to

regularize more strongly in the chrominance channels, and

less in luminance. Note that the human eye is more sensitive

to differences in luminance than in chrominance, i.e., a visu-

ally pleasing result has to be sharp in the luminance channel.

The transformation from RGB to YUV is simply a matrix

vector multiplication [xT

Y
, xT

U
, xT

V
]T = C[xT

R
, xT

G
, xT

B
]T with

appropriately chosen matrix C. With xY, xU, and xV we we

can write our combined objective function as

∥
∥y −Ax

∥
∥
2

2
+ α

∥
∥∇xY

∥
∥
γ

γ
+ β

∥
∥∇xU

∥
∥
γ

γ
+ β

∥
∥∇xV

∥
∥
γ

γ
(5)

+nσ2(‖xR‖
2
2/4 + ‖xG‖

2
2/2 + ‖xB‖

2
2/4).

We obtained good results by setting α = 10−4, β = 10−3,

γ = 0.65 and σ = 10−3 in our simulated experiments. On

real images, the optimal values for α and β were smaller by

a factor of ten.

We minimize the objective function w.r.t. x adapting Kr-

ishnan and Fergus’ [12] approach to our setup, alternating

between a convex and a non-convex phase, with the non-

convex phase being accelerated by a lookup table.

6. Estimating the non-stationary convolution

Leaving aside diffraction effects (e.g., by ensuring the

pixel size to be larger than the Airy disk), a point light

source should influence just a single pixel on the imaging

sensor of a digital camera. However, this would only hap-

pen if a digital camera was a perfect optical system. In

practice, the various lens aberrations discussed above will

spread out the point light source over a larger region of the

imaging sensor. This local pattern characterizes the PSF, so

by recording these patterns across the image plane we can

set the filters of the non-stationary convolution described

above.

To automate the measurements, we mounted a camera

on a motor-driven platform with two rotational degrees of

freedom. A lens measurement process is conducted in a

completely dark room by remotely changing the angles of

the camera towards a point light source (a gas lamp emitting

light through an aperture of 100µm in 12 meters distance)

such that in subsequent exposures the light point is captured

at equidistant locations on the sensor.

In our experiments we use a 18 times 27 grid of support-

ing points for the EFF framework. The blur kernels were

recorded by averaging three dark frame subtracted images

of the point light source and thresholding noise. This sim-

ple setup gives sufficiently good measurements for the PSF,

as can be seen in the deconvolution results in Sec. 8.

Image (a) Deconv. (b) Demosaic. (c) Joint approach

then demosaic. then deconv.

1 23.09 25.92 26.35

2 30.11 31.92 32.23

3 30.67 33.47 33.68

4 29.12 32.23 32.49

5 22.58 26.08 26.62

6 24.84 27.09 27.47

7 27.87 33.07 33.47

8 20.32 23.77 24.28

9 28.02 32.11 32.51

10 28.54 31.53 31.96

11 25.92 28.77 29.11

12 29.51 32.67 33.04

13 21.32 23.32 23.81

14 25.34 28.32 28.79

15 28.90 32.14 32.52

16 28.41 30.40 30.68

17 28.22 31.33 31.68

18 25.06 27.75 28.20

19 24.77 27.87 28.46

20 27.66 31.40 31.78

21 25.27 28.17 28.63

22 26.86 29.61 29.95

23 30.00 34.08 34.59

24 23.74 26.06 26.34

Average 26.51 29.54 29.94

Table 1. Comparison of peak signal-to-noise ratios (PSNR in dB)

for Kodak image data set. Consistently, the joint approach outper-

forms the sequential demosaicing and deconvolution procedures

(higher number means better reconstruction).

Figure 3. Point spread function used for our simulations on the

Kodak image data set.

7. Results on simulated images

To test our method under controlled conditions we artifi-

cially blurred test images usually used for evaluating demo-

saicing algorithms from the Kodak PhotoCD. To simulate

the lens aberrations, we created a 4 × 6 filter array con-

taining measured blur kernels of a Canon 50mm f/1.4 lens

at maximum aperture on a Canon 5D Mk II. This filter ar-

ray are the parameters of a non-stationary convolution that

represent our estimated model of the artificial lens aberra-

tions. To account for the fact that the true PSF is not exactly

known, we modify these filters with a low pass filter before

convolving the ground truth images. In the image recon-



Ground truth Blurred and mosaiced (a) Deconv. (b) Demosaic. (c) Joint

input image then demosaic. then deconv. approach

PSNR 24.77 dB PSNR 27.87 dB PSNR 28.46 dB
Figure 2. Comparison of our joint approach vs. sequential demosaicing and deconvolution procedures. The PSF used for the simulations

are shown in Fig. 3. Gaussian noise with a SNR of 50 dB has been added.

struction process, the non-modified blur filters were used.

We then added white noise with signal to noise ratio 50 dB
and mosaiced the result with a Bayer filter array.

With the simulated experiments we want to investigate

whether (a) we should apply the aberration correction sep-

arately on each color channel and subsequently demosaic

with a state-of-the-art demosaicing algorithm [15], whether

(b) our aberration correction should be better applied to im-

ages that have been already demosaiced by a standard de-

mosaicing procedure, or whether (c) it is best to apply the

forward model that includes the mosaicing (as described in

Sec. 4), i.e., to jointly correct the aberrations and the demo-

saicing.

Tab. 1 compares the peak-signal-to-noise ratios (PSNR)

of the reconstructed images for the approaches (a), (b), and

(c) on the image data set. For all 24 images the joint ap-

proach (c) leads to the best results, approach (b) being a

close runner-up. This finding is also visually confirmed in

Fig. 2 where approach (c) leads to the best reconstruction.

Note that to suppress influence of the border region, a 15

pixel border on all edges has been excluded in the calcula-

tion of the PSNR.

We believe that our approach is able to compete with

state-of-the-art demosaicing algorithm because separating

demosaicing and deblurring has the disadvantage that it

does not require the result to be consistent with the image

formation model. Because of the blur, we gain knowledge

Figure 6. Interpolation of a mosaiced PSF at the example of a green

PSF from the Canon 50mm f/1.4 lens.

about possible values for missing color information. For ex-

ample, if we measure no light at a certain pixel, we can infer

that in the deblurred image the surrounding region given by

the size of the PSF also has to be dark. Furthermore, typ-

ical demosaicing algorithms do not take chromatic aberra-

tion into account, which lead to a spatial separation of edge

information across different color channels.

8. Results on real images

Using the automated procedure from Sec. 6, we approx-

imate the PSFs of three different lenses: (i) Canon 50mm

f/1.4, (ii) Canon 24mm f/1.4 L, and (iii) a self-built lens con-

sisting of a single glass element, see Fig 1. For the Canon

lenses, we took several pictures with a Canon 5D Mk II dig-

ital camera, for the self-built lens we used a Canon 5D Mk

I. We applied our image reconstruction procedure described

in Sec. 5 to these images and next describe the results.



In our PSF measurement we only obtain mosaiced ver-

sions. However, as can be seen in Fig. 6, the blur is suffi-

ciently well behaved such that bilinear interpolation gives a

good approximation to the true PSF.

Canon 50mm f/1.4. First, we use a Canon 50mm f/1.4

prime lens on a Canon 5D Mark II at maximum aperture.

The comparison between original photo and the image cor-

rected for lens errors is in Fig. 4. In Fig. 5, it is compared

with the result of DXO (see Sec. 2), a software that is also

able to correct for lens aberrations. Similar to our approach,

it relies on previously recorded information about the error

of a certain lens/camera-combination. In the comparison,

all image improvements except the correction for “lens un-

sharpness”, chromatic aberration and vignetting were deac-

tivated. While in the DXO result the edges are sharpened,

the objects have a halo, e.g., around the wooden bars, which

is not present in the original scene. This means the blur in-

troduced by the lens is not completely removed.

Canon 24mm f/1.4. Furthermore, we correct the errors

of a Canon EF 24mm f/1.4 at maximum aperture, which ex-

hibits considerably visible errors in the border regions of the

image at fully open aperture. The original and the corrected

image can be seen in Fig. 4. In the recorded image strong

chromatic aberration is visible as green and red lines near

edges, which are reduced in the deconvolved result. This

lens is not available in the DXO database for the Canon 5D

Mk II, so DXO cannot be applied.

Self-built lens with a single lens element. The two lenses

used above are high-end lenses with a complicated system

of compound lenses that are built to minimize optical errors.

Trying to make our algorithm fail, we constructed a simple

photographic lens from a single convex-concave lens with

focal length 120mm. Amazingly, the image can be well

reconstructed as can be seen in Fig. 1 and 4. In Fig. 4,

nearly no detail is recognizable in the grain of the wood

in the original image. Also, the pegs on the right and upper

edge of the image are hardly visible. The corrected image

does not suffer from these problems.

Running time. For the 21.1 megapixel photos taken with

the Canon lenses, the full-color non-convex optimization

problem has more than 60M unknowns. It needs about 5

hours running time on a quad-core computer. For the self-

built lens, we used a camera which produces 12.8 megapixel

images and a blur size of 200x200. In the EFF framework

with 27x18 supporting points, the processing takes about 7

hours using a MATLAB implementation of the algorithm.

This running time is impractical. However, we show how

the EFF framework can be used to do Direct Deconvolution

Figure 7. Comparison of deconvolution with optimization (left)

and direct method (right).

in Fourier space with a slightly modified version of our ob-

jective function. Since the demosaicing operator is not diag-

onal in Fourier space, we work on each already demosaiced

color channel separately and solve the problem

∥
∥y −Bx

∥
∥
2

2
+ α

∥
∥∇x

∥
∥
γ

γ
+ nσ2‖x‖22. (6)

This can be done with the approach of [12], however, the

inversion of B is necessary. Using the expression from [8],

the application of B in the EFF framework can be written

as

y =
∑

r

LT

rF
H Diag

(

FPf (r)
)

FKr Diag(w(r))

︸ ︷︷ ︸

B

x. (7)

In this summation over all patches, the matrix P zero-padds

each patch, the matrices Kr and Lr are cropping matrices.

F applies the discrete Fourier transform. This expression

can be approximately inverted as

x ≈ N
∑

r

Diag(w(r))1/2 · (8)

KT

r F
H
FPf (r) ⊙ (FLr Diag(w(r))1/2 y)

|FPf (r)|2 + |FR|2
,

where |z| and z denote entry-wise absolute value and com-

plex conjugate, respectively. The matrix R regularizes the

result, e.g., a discrete Laplace operator. The weighting N is

obtained by applying the inversion to a constant image and

is necessary to remove artifacts stemming from inverting

the windows. In Fig. 7 the results obtained by optimizing

the more sophisticated objective function (6) are compared

to the direct method. While losing a small amount of im-

age quality, the running time is only 2 minutes for a 21.1

megapixel image.

9. Conclusion

We have proposed a method to correct the aberrations in

optical imaging systems. A spatial-variant PSF is obtained

in a calibration step, encoding the errors of the imaging sys-

tem. These are then removed by non-stationary deconvolu-

tion. Furthermore, by requiring the corrected image to be



consistent with the image formation model, we are able to

recover missing image information. We have shown this

using the example of reconstructing color data lost in a mo-

saicing process.

Using controlled experiments on images artificially con-

volved with a non-stationary PSF, we have seen that our lin-

ear image formation model leads to better results than sep-

arately deblurring and demosaicing Bayer-filtered photos.

More importantly, we were able to show that in a real imag-

ing setup, we can correct the optical aberrations rather well

both for commercial camera lenses and optically poor sin-

gle element lenses. The results compare favorably to DXO,

a commercially available software package considered state

of the art in lens error correction among professional pho-

tographers.

9.1. Limitations

For the image taken with a one-element lens, we have

seen that although a drastic improvement can be achieved,

a perfect reconstruction was not possible. Moreover, our

measurement procedure suffers from the fact that the PSF

obtained are already subject to mosaicing, therefore the PSF

used in the joint demosaicing/deblurring are only an ap-

proximation. A better PSF could, e.g., be obtained with a

monochromatic camera and color filters. The general qual-

ity of the PSF could for example be improved with wave-

front measurement.

Also, the lens aberrations depend to a certain extent on

the settings of the lens (aperture, focus, zoom), which can

not be trivially modeled. In the case of lens blurs that can

be approximated as a Gaussian with spatially varying pa-

rameters, it has been demonstrated how the change of the

lens aberrations can be modeled [11]. In the case of non-

Gaussian blurs, as treated in this publication, this problem

has still to be solved. This would make our method feasi-

ble for lenses with a large number of possible settings, e.g.,

zoom lenses.

9.2. Future Work

A further common error of imaging systems, distortions,

can in principle also be encoded in a spatially varying PSF.

However, in the case of strong distortions this would require

PSFs as large as 500x500 pixels, say, and a large computa-

tional load. It would, however, be an elegant method for

correcting all optical aberrations in one framework.

We believe that our work can have significant implica-

tions for the design of lenses, which today are probably the

most expensive components of high-end camera systems.
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Figure 4. Comparison between original and corrected image and the respective PSFs.

Blurred image DXO Our approach
Figure 5. Comparison with DXO for images taken with a Canon EF 50mm f/1.4 lens. Best viewed on screen.


