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Abstract This paper introduces a framework for estimating stationary and non-stationary

return levels, return periods, and risks of climatic extremes using Bayesian inference. This

framework is implemented in the Non-stationary Extreme Value Analysis (NEVA) software

package, explicitly designed to facilitate analysis of extremes in the geosciences. In a Bayesian

approach, NEVA estimates the extreme value parameters with a Differential Evolution Markov

Chain (DE-MC) approach for global optimization over the parameter space. NEVA includes

posterior probability intervals (uncertainty bounds) of estimated return levels through Bayesian

inference, with its inherent advantages in uncertainty quantification. The software presents the

results of non-stationary extreme value analysis using various exceedance probability methods.

We evaluate both stationary and non-stationary components of the package for a case study

consisting of annual temperature maxima for a gridded global temperature dataset. The results

show that NEVA can reliably describe extremes and their return levels.

1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the

Risks of Extreme Events and Disasters (Field et al. 2012) stressed that continuation of the

observed Earth warming would change the frequency, severity and spatial pattern of climatic

extremes. Recently, climatic extremes have been widely studied at a range of spatial and

temporal scales (Jakob 2013; AghaKouchak et al. 2013; Diffenbaugh and Giorgi 2012; Kharin

et al. 2007; Easterling et al. 2000). Climatic extremes, including heavy precipitation events and

extreme hot days, have substantially increased in the past few decades (Alexander et al. 2006;

Vose et al. 2005). A recent study shows that even concurrent extremes (e.g., warm-dry and
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warm-wet conditions) have increased significantly in the second half of the 20th century (Hao

et al. 2013).

Under the assumption of a stationary climate, the concepts of return level and return period

provide critical information for design, decision-making, and assessing the impacts of rare

weather and climatic events (Rosbjerg and Madsen 1998). For example, the return level with a

T-year return period represents an event that has a 1/ T chance of occurrence in any given year

(Cooley et al. 2007). Infrastructure design concepts have long relied on stationary return levels,

which assume no change to the frequency of extremes over time (Klein et al. 2009). However,

the frequency of extremes has been changing and is likely to continue changing in the future

(Milly et al. 2008; IPCC 2007). Therefore, concepts and models that can account for non-

stationary analysis of climatic and hydrologic extremes are needed (e.g., Cooley 2013; Salas

and Obeysekera 2013; Parey et al. 2010).

Katz et al. 2002 present non-stationarity in extremes in terms of changing quantiles (termed

“effective return levels”), which vary as a function of time to keep the occurrence probability

of an extremal event constant. Alternatively, Rootzén and Katz 2013 introduced the concept of

Design Life Level to quantify the probability of exceeding a fixed threshold during the design

life of a project. A recent study describes an R-package developed for analysis of extremes

based on the concept of effective return levels (extRemes 2.0). Another available R-package

(GEVcdn: Cannon 2011) supplies a framework for a conditional density estimation network,

and can be used to perform non-stationary extreme value analysis. However, these packages

do not provide any non-stationary generalization of the concepts of return period and return

level frequently used in hydrology.

The concept of return period can also be extended to a non-stationary framework (e.g.,

Rootzén and Katz 2013; Salas and Obeysekera 2013). In this study, we introduce a framework

for non-stationary extreme value analysis for practical and effective analysis of climate

extremes under both stationary and non-stationary conditions using Bayesian inference. The

methods presented are available through a software package called Non-Stationary Extreme

Value Analysis (NEVA). Under the non-stationary assumption, NEVA provides three different

methods for estimation of return levels: (a) standard return levels (commonly used in hydro-

logic design) in which the exceedance probability is constant for any given return period

during the life of the design (hereafter, design exceedance probability); (b) constant thresholds

with time varying exceedance probability; and (c) effective return levels. A unique feature of

NEVA is that it offers the associated posterior probability intervals and uncertainty bounds for

the return level estimates under non-stationarity. These features make NEVA a practical and

attractive tool for users from across different fields, especially climatology and hydrology, to

analyze extremes under both stationary and non-stationary assumptions.

2 Extremes in a Non-stationary climate: theory

Extreme Value Theory (EVT) provides a rigorous framework for analysis of climate extremes

and their return levels (Katz et al. 2002; Coles 2001). Under a wide range of conditions, the

distribution of the maxima or minima converges to one of the three limiting distributions:

Gumbel, Fréchet, or Weibull (Katz et al. 2002; Leadbetter et al. 1983; Gumbel 1958). The

combination of these three distributions into one family is referred to as the Generalized

Extreme Value (GEV) distribution. A variety of studies apply the GEV to analyze extremes

(Katz 2013; Towler et al. 2010; AghaKouchak and Nasrollahi 2010; Beniston et al. 2007; El

Adlouni et al. 2007; Villarini et al. 2009; Kharin and Zwiers 2005; Zhang et al. 2001; Smith

2001; Gumbel 1942). This technique is often referred to as the block maxima approach (e.g.,
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Coles 2001). Another form of the EVT is known as the peak-over-threshold (POT) approach, in

which extreme values above a high threshold are analyzed using a generalized Pareto distribu-

tion (Coles 2001; Smith 1987). Both annual maxima and POT are widely applied in studying

climatic extreme events (Villarini et al. 2011; Li et al. 2005; Davison and Smith 1990).

The cumulative distribution function of the GEV can be expressed as (Coles 2001):

Ψ xð Þ ¼ exp − 1þ ξ
x−μ

σ

� �� �−1
ξ

� �
; 1þ ξ

x−μ

σ

� �� �
> 0 ð1Þ

The GEV distribution is flexible for modeling different behavior of extremes with three distribu-

tion parameters θ=(μ,σ,ξ): (1) the location parameter (μ) specifies the center of the distribution; (2)

the scale parameter (σ) determines the size of deviations around the location parameter; and (3) the

shape parameter (ξ) governs the tail behavior of the GEV distribution. The limiting case of ξ→ 0

gives the Gumbel distribution, ξ < 0 the Weibull distribution and ξ > 0 the Fréchet distribution.

The extreme value theory for stationary random sequences has been extensively studied

(Papalexiou and Koutsoyiannis 2013). In this study, stationarity is defined as time invariance of

extremes’ properties (Leadbetter et al. 1983). For a non-stationary process, the parameters of the

underlying distribution function are time-dependent (Renard et al. 2013; Gilleland andKatz 2011;

Katz 2010; Cooley 2009) and hence, the properties of the distribution would vary with time

(Meehl et al. 2000). In NEVA, the location parameter is assumed to be a linear function of time to

account for non-stationarity (Eq. 2), while keeping the scale and shape parameters constant:

μ tð Þ ¼ μ1t þ μ0 ð2Þ

where t is the time (in years), andβ=(μ1,μ0,σ,ξ) are the parameters. Alternativemodelsmay be used,

such as polynomial trends, step changes, trends on the scale or the shape parameter, etc. (Renard et al.

2013). The methodology presented in this study can be used with different types of trends in location

parameter. In hydrology and climate literature, the linear or log-linear models are usually preferred

when searching for trends in the occurrence of extreme events (Beguería et al. 2011). While NEVA

allows non-stationary σ and ξ (σ(t)=σ1(t)+σ0ξ(t)=ξ1(t)+ξ0), in this study, only non-stationarity

with respect to μ is discussed. The primary reason is that modeling temporal changes in σ and

ξ reliably requires long-term observations that are often not available for practical applications.

NEVA detects the presence of trends and non-stationarity in extremes in historical data

using the Mann-Kendall trend test (Kendall 1976; Mann 1945) at the user’s choice of

significance level. The default significance level is α=0.05, which is widely used in hydro-

logical research (Zhang et al. 2004). This nonparametric rank-based test avoids making an

assumption about the underlying distribution function (e.g., assuming the data is normally

distributed) of hydrological variables (Kundzewicz and Robson 2004). The null hypothesis of

no trend is rejected if the test statistic |ZS| is larger than the critical value Zα/2. The test returns

either 0 when |ZS| ≤ Zα/2 (the null hypothesis of no trend cannot be rejected) or 1 when |ZS| >

Zα/2 (the null hypothesis of no trend is rejected). If the null hypothesis is not rejected, NEVA

will perform extreme value analysis under the stationary assumption. Upon detection of a trend

at the 5 % significance level (α=0.05), the GEV distribution parameters will be estimated

under the non-stationary assumption (Eq. 2). This will allow estimating return values in a more

realistic way consistent with the behavior of climatic extremes.

NEVA uses a Bayesian technique to infer the GEV distribution parameters under stationary

and non-stationary conditions. The Bayesian-based Markov chain Monte Carlo (MCMC)

approach for obtaining the posterior distribution of parameters from an arbitrary distribution

has become increasingly popular and used in several studies of extremes (Stephenson and
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Tawn 2004; Coles and Powell 1996). This approach combines the knowledge brought by a

prior distribution and the observation vector y!¼ ytð Þt¼1:N t
(Eqs. 4 and 5) into the posterior

distribution of parameters θ=(μ,σ,ξ). Here, Nt denotes the number of observations (e.g.,

annual maxima) in the observation vector y! . The default priors for the location and scale

parameters are non-informative normal distributions, whereas the default for the shape parameter

is a normal distribution with a standard deviation of 0.3 as suggested in Renard et al. 2013. The

default priors can be changed to informative priors, and other choices of distribution functions can

be used in NEVA. The prior distributions for all parameters are assumed to be independent.

Assuming independence between observations, the Bayes theorem for estimation of GEV

parameters under the non-stationary assumption can be expressed as (Renard et al. 2013,

2006; Coles 2001):

p β
��� y!; x

� �
∝p y!

���β; x
� �

p β
���x

� �
ð3Þ

p y!
���β; x

� �
¼ ∏

t¼1

Nt

p
�
yt

���β; x tð Þ
�
¼ ∏

t¼1

Nt

p
�
yt

���μ tð Þ;σ; ξ
�

ð4Þ

where β=(μ1,μ0,σ,ξ) are the parameters. The stationarity can be treated as a special case of

the above equation without x(t):

p θ
��� y!

� �
∝p y!

���θ
� �

p θð Þ ¼ ∏

t¼1

Nt

p
�
yt

���θ
�
p θð Þ ð5Þ

where x(t) denotes the set of all covariate values under the non-stationary assumption. The

resulting posterior distributions p θj y!
� �

and p βj y!; x
� �

provide information about parameters

under stationarity θ=(μ,σ,ξ) or non-stationarity β=(μ1,μ0,σ,ξ). The entire process for infer-

ring distribution parameters in NEVA is summarized in Fig. 1 and Fig. 2 for stationary and

non-stationary conditions, respectively. NEVA generates a large number of realizations from

the parameter joint posterior distribution using the Differential Evolution Markov Chain (DE-

MC) (Vrugt et al. 2009; Ter Braak and Vrugt 2008; Ter Braak 2006). The DE-MC utilizes the

genetic algorithm Differential Evolution (DE) for global optimization over the parameter space

with the MCMC approach. The DE-MC’s simplicity, speed of calculation, and convergence

make it favorable over the conventional MCMC (Ter Braak 2006).

The main motivation for combining DE-MC with Bayesian inference is that one can obtain

the posterior probability intervals (uncertainty bounds) of estimated return levels taking into

account the uncertainty in all model parameters (non-stationary: μ0, μ1, σ, ξ; stationary: μ, σ,

ξ). It is worth noting that NEVA assesses convergence of the sampling approach statistically. A

method known as the criterion bR , suggested by (Gelman and K. Shirley 2011), is built into

NEVA as a convergence check. This method suggests that the bR values should remain below

the critical value of 1.1 (see Gelman and K. Shirley 2011 for more details on computing bR ).

In addition to the Mann-Kendall test, the likelihood-ratio test can be used to compare the fit

of the two nested models: the null model is the stationary (no trend) case (LNull), whereas the

alternative is the non-stationary (linear trend) case (LAlternative). The log-likelihood ratio can be

expressed as (Coles 2001):

D ¼ −2ln
LNull

LAlternative
ð6Þ
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In this paper, the modes of the posterior distributions are used as the parameter

estimates for the likelihood ratio test statistic instead of the maximum likelihood estimates

to ensure the test is still valid for Bayesian analysis. The likelihood ratio can then be

used to test (e.g., at the α=0.05 significance level) whether to reject the null model in

favor of the alternative. The test returns either 0 when the non-stationary model does not

fit significantly better than the stationary model or 1 when the non-stationary model fits

significantly better than the stationary model. Note that the Mann-Kendall and likelihood

ratio tests are both testing for trends, but under different assumptions: the Mann-Kendall

test allows for non-linear trends in the location parameter and any form of distribution,

while the likelihood ratio test assumes GEV distribution and only allows for a linear trend

in the location parameter.

In order to further evaluate the fit of the null model M1 (i.e., the stationary case), and the

alternative model M2 (i.e., the non-stationary case) based on the posterior distributions of

sampled parameters, the Bayes factor is computed as:

K ¼
Pr DA

���M 1

� �

Pr DA

���M 2

� � ¼

Z
Pr θ1

���M1

� �
Pr DA

���θ1;M1

� �
dθ1

Z
Pr θ2

���M2

� �
Pr DA

���θ2;M2

� �
dθ2

ð7Þ

Fig. 1 NEVA’s stationary GEV framework for extreme value analysis. The outputs are return levels versus return

periods
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where DA denotes input data, and θ stands for model parameters. The term Pr (DA|M) can be

exp r e s s ed us i ng a Mon t e Ca r l o i n t eg r a t i on e s t ima t i on a s Pr DAjMð Þ ¼

1

m
∑

i¼1

m

Pr DAjθ ið Þ
;M

� �−1
8
<
:

9
=
;

−1

, where m is the sample size (see Kass and Raftery 1995 for

more details). A value of K < 1 indicates that the non-stationary model (M2) fits better than the

stationary model (M1). Having multiple tests to detect stationarity or non-stationarity allows a

more rigorous assessment of the goodness-of-fit.

While the original NEVA is designed for analysis of maxima in time series, users can apply

NEVA for analysis of time series minima using the following transformation (Coles 2001):

min X 1;…;X nð Þ ¼ −max −X 1;…;X nð Þ ð8Þ

where X1,…,Xn is a time series of i.i.d. random variables.

Using the GEV distribution, NEVA computes the return periods and return levels of

extremes (see Eqs. 9 and 10). In this approach, return levels are expressed as a function of

the return period T (Cooley 2013):

T ¼
1

1−p
ð9Þ

Fig. 2 NEVA’s non-stationary GEV framework for extreme value analysis. The model outputs include: (1)

standard return levels with design exceedance probability; (2) standard return levels with time varying exceed-

ance probability; and (3) effective return levels
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where p is the non-exceedance probability of occurrence in a given year (assumed constant

under stationarity). The p− return level qp derived from the GEV distribution can be expressed

as (Coles 2001):

qp ¼ −
1

lnp

	 
ξ

−1

 !
�

σ

ξ
þ μ; ξ≠0ð Þ ð10Þ

In NEVA, the time-variant parameter (μ(t)) can be derived using different quantiles from

the DE-MC. For example, in this paper, μ(t) is computed as: (a) median of μ(t) (refers to the

effective return level for the year corresponding to the midpoint of the time series), and (b) 95

percentile of the DE-MC sampled μ(t) values. The latter can be considered a low risk (more

conservative) approach for extreme value analysis by taking the 95 percentiles of the μ(t)

values in historical observation to be used for future analysis (e.g., the effective return level for

a year near the end of the record). The model parameters will then be used to estimate the non-

stationary return levels as follows:

eμ ¼ Qk μt1;μt2;…;μtnð Þ; μ tð Þ ¼ μ1t þ μ0ð Þ ð11Þ

qp ¼ −
1

lnp

	 
ξ

−1

 !
�

σ

ξ
þ eμ; ξ≠0ð Þ ð12Þ

where κ=0.5 returns the median of n location parameters (μt1,μt2,…,μtn), and κ=0.95

corresponds to the 95 percentile of location parameters (a high quantile eμ indicating low risk

extreme value analysis). This approach is similar to the stationary case, but allows for

considering changes in the location parameter over time. This concept is termed design

exceedance probability in this paper.

In a recent study, Salas and Obeysekera 2013, proposed another non-stationary counterpart

of stationary return levels. In this approach, the probability that the first extreme event

exceeding a given fixed threshold will occur at time x=1 is denoted by q1, and the probability

that it will occur at time x=2 is (1−q1)q2, and so forth (exceeding probabilities q1,q2,q3,…,qt
vary over time). With the time varying exceedance probabilities qt, a non-stationary concept

determining the expected return period of the extreme event is outlined in Salas and

Obeysekera 2013. This concept is based on the expected waiting time until the first exceedance

of a fixed threshold, with the expected waiting time is calculated for time varying exceedance

probabilities. In NEVA, the proposed DE-MC-Bayesian approach is integrated into Salas and

Obeysekera 2013 to provide an alternative approach for non-stationary return level-return

period analysis with time varying exceedance probability. The parameter estimation, uncer-

tainty assessment, and sampling approach, as well as the log-likelihood test and Bayes factor

computation remain similar in both design exceedance probability and time varying exceed-

ance probability methods.

3 Results

In the following, NEVA is used for stationary and non-stationary extreme value analysis of

annual temperature maxima from the Climatic Research Unit (CRU, New et al. 2000) gridded

monthly temperature data (1901–2009). Fig. 3 displays the areas in which temperature block

maxima exhibit a significant trend at the 5 % level and hence, non-stationary behavior (see
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dark red pixels in Fig. 3). The white land areas correspond to locations that do not show a

significant trend in the annual temperature maxima. NEVA utilizes the suggested non-

stationary extreme value analysis algorithm (Fig. 2) for the dark red pixels in Fig. 3, and the

stationary algorithm (Fig. 1) in the rest of the pixels. The appropriate type of GEV (stationary

or non-stationary) is fitted to each grid of monthly temperature maxima separately (i.e., not

taking into account any spatial dependence or similarity of the trend at adjacent grid points).

Figure 4 shows the global annual temperature maxima return levels for the 5-year (4a) and

100-year (4b) return periods. As mentioned earlier, NEVA generates an ensemble of estimates

based on DE-MC sampling. The median of the ensemble is used as the final return level values

shown in Fig. 4. The uncertainty bounds of the computed return levels can be derived based on

5 % and 95 % posterior probability intervals of the ensemble as discussed below.

To further explore NEVA’s outputs, two pixels in the central (Latitude 40.02。N, Longitude

105.27。W) and western (Latitude 34.05 。N, Longitude 118.24 。W) United States are

selected for more detailed analysis (see green stars in Fig. 3). The two locations are close to

urban areas in Boulder, CO and Los Angeles, CA where long-term observation stations have

been available. In both locations, the Mann-Kendall trend test confirms the presence of non-

stationarity at the 5 % significance level (see Figure S1 in Supplementary Material). The initial

goodness-of-fit of the GEV model is assessed using Quantile-Quantile (Q–Q) plots of fitted

and observed temperature maxima (see Figure S2 in Supplementary Material). The plot of the

return levels versus the corresponding return periods at the two selected locations under both

stationary (ignoring the observed trend) and non-stationary assumptions are displayed in Fig. 5

and Fig. 6. In both figures, the top panels (a) show return levels under the stationary

assumption, while panels (b) exhibit non-stationary return levels for the observation period

(here, 1901–2009). Panels (c) and (d) display non-stationary return levels for 100 years beyond

observations (e.g., 2010–2109) using median and 95 percentile of sampled location parameters,

respectively (see Eqs. 11 and 12). Consequently, panels (d) in Figs. 5 and 6 are more

conservative estimates of future extreme return levels, and are termed as low risk (hereafter LR).

In the central U.S. (Fig. 5a), under the stationary assumption the posterior probability

bounds do not encompass the empirical return levels, which indicates the assumptions for this

model are not met. On the other hand, for the non-stationary model (Fig. 5b), the posterior

probability bounds enclose the empirical return levels, indicating reasonable simulations (see

the zoom in Fig. 5b). The selected point in the western U.S. (Fig. 6) exhibits a similar behavior.

Fig. 3 Global Mann-Kendall Trend Analysis (Significant trend in red; No significant trend in white). The Star-

marked locations are the pixels selected for time series analysis
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The non-stationary envelope of simulations (Fig. 6b) encompasses all of the empirical return

levels, while the stationary ensemble (Fig. 6a) does not enclose all the points, including few

points at the beginning and the last observation.

In the central U.S., the return levels under the stationary assumption (Fig. 5a) are much

lower than those under the non-stationary assumption (Figs. 5c, d). For example, the return

levels corresponding to the 50-year annual temperature maxima (ensemble median - red

dashed lines) are 14.3。C, 15.5。C and 16.1。C, under stationary, non-stationary, and LR

non-stationary, respectively. This result indicates that an unrepresentative assumption of

stationarity would lead to misinterpretation (in this example, underestimation) of extreme

climatic conditions. Another example is the pixel in the western U.S., where the positive trend

is not as strong as the one in the central U.S. (compare Figures S1a and S1b). Nonetheless, if

the observed linear trend continues in the future, the return levels will be underestimated under

the stationary assumption. Considering a 50-year return level (ensemble median - red dashed

lines), it is 28.5。C (stationary), 29.1。C (non-stationary), and 29.4。C (LR non-stationary). It

should be noted, that the annual maxima is based on mean monthly temperature values and the

daily maxima may exceed these values.

Once the parameters are sampled and return levels are simulated, the non-stationarity

assumption included in the location parameter is tested using the log-likelihood and Bayes

Fig. 4 5-year a and 100-year b annual monthly temperature maxima return levels (°C) under the non-stationary

assumption, derived using the standard return levels with k=0.5 in Eq. 11
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factor approach discussed in Eq. 6 and 7. In both the central and western U.S., the log-

likelihood test and Bayes factor confirm that the simulations exhibit non-stationary behavior

Fig. 5 Annual monthly temperature maxima return level vs. return period in the selected point in the central U.S.

under stationary a, non-stationary during the period of observations 1901–2009 b, non-stationary based on

median of sampled parameters c, and non-stationary based on the 95 percentile of the sampled parameters or Low

Risk (LR) non-stationary d
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consistent with the Mann-Kendall test results (p-values smaller than the 0.05 significance

level)—See Table S2 in Supplementary Materials.

Fig. 6 Annual monthly temperature maxima return level vs. return period in the selected point in the western

U.S. under stationary a non-stationary during the period of observations 1901–2009 b, non-stationary based on

median of sampled parameters c, and non-stationary based on the 95 percentile of the sampled parameters or Low

Risk (LR) non-stationary d
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As shown in the model flowchart (Fig. 2), NEVA can provide non-stationary return periods

based on a time varying exceedance probability. Figure 7 presents return period vs. return level

under stationarity and the corresponding non-stationary return periods for the two selected

points in the central and western U.S. In this framework, the exceedance probability qt varies

through time. Since temperature extremes exhibit an upward trend at both locations, the

exceedance probability qt will increase over time. The probability distribution of the waiting

time for the first extreme event to exceed a given threshold is a generalization of the geometric

distribution, which enables determining the expected return period. For instance, in the western

U.S., the 50-year return period under the stationary assumption corresponds to an approximate

30-year return period under a non-stationary condition (see Fig. 7b). In other words, an

Fig. 7 Annual monthly temperature maxima return levels vs. return period under stationary (bottom axes) and

the corresponding non-stationary (top axes) assumption at the selected points in the central a and western b

United States
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exceedance probability of 0.02 will increase to around 0.03 in a non-stationary climate.

Similarly, in the central U.S., a 50-year extreme changes to a 22-year event in a changing

climate. This framework allows displaying stationary and non-stationary return levels against

each other.

As shown in the model flowchart (Fig. 2), NEVA generates non-stationary return levels

based on both the standard definition in hydrology and the concept of effective return level. As

an example, Fig. 8 demonstrates effective return levels for the two selected points in the central

and western U.S. The figures show return levels versus the time covariate used in the linear

regression (Eq. 2). In this concept, the return levels vary over time such that the probability of

occurrence remains constant. Basically, the effective return level indicates what return level

should be used for all years to have the same risk. In the western U.S., the effective return level

corresponding to a 50-year (0.02 probability of occurrence) event during 1901–1950 is

28.5。C; whereas the same risk for a 100-year period (1901–2000) would be 28.8。C.

Similarly, for another 100-year period (e.g., 2001–2100) the 50-year event would be different

(here, 29.3。C). By providing both the standard and the effective return levels, as well as the

integrated time-varying exceedance probability non-stationary return periods, NEVA allows

the users to use the one that fits their application.

Fig. 8 Effective return levels under the non-stationary assumption at the selected points in the central a and

western b United States

Climatic Change (2014) 127:353–369 365



4 Conclusions

Substantial evidence shows that the climate is non-stationary, possibly due to anthropogenic

climate change. The assumption of stationarity in extreme value analysis is therefore ques-

tionable and statistical models that explicitly allow for non-stationarity are much needed.

Specifically, statistical models that can provide estimates of return levels under non-stationary

conditions are essential for design and risk assessment purposes. In this study, a practical

package named Non-stationary Extreme Value Analysis (NEVA) package is introduced for

assessing extremes in a changing climate.

NEVA offers a framework for estimating non-stationary return levels, return periods, and

risks of climatic extremes using Bayesian inference. In this approach, the model parameters are

estimated using a Differential Evolution Markov Chain (DE-MC) for global optimization over

the real parameter space with the Markov Chain Monte Carlo (MCMC) approach. NEVA also

provides the posterior probability intervals (uncertainty bounds) of estimated return levels by

combining DE-MC with Bayesian inference. A unique feature of the model is non-stationary

extreme value analysis using both design exceedance probability and time varying exceedance

probability methods.

The features and capabilities of NEVA can be summarized as follows: (a) the framework

assesses trends in the observations; (b) depending on the trend, it performs stationary or non-

stationary analysis of extremes and can test which model describes the data more appropriately

based on the model outputs; (c) it provides non-stationary return levels based on three methods

including one that resembles the standard approach in hydrology under stationarity, one based

on expected waiting time with time varying exceedance probability, and effective return levels;

and (d) NEVA includes a sampling framework that leads to uncertainty bounds of simulations.

The return level and return period estimates can be used in hydrology and climate studies to

assess the risk (probability of occurrence) of extremes.

By providing posterior probability intervals (e.g., 5 % and 95 % quantiles), NEVA offers a

range of return levels, and the user can select the upper bound (low risk) or the lower bound

(high risk) depending on the application at hand. Users can change the upper and lower bound

quantiles of the simulated ensembles and also the significance level of the trend analysis

component. Both stationary and non-stationary components of the package are evaluated using

Climatic Research Unit (CRU) observations. The results indicate that NEVA simulates GEV-

based return levels consistent with empirical observations. While the focus of this paper is on

climate extreme value analysis, the methodology can potentially be used in different areas

(hydrology, ecology, and economics) and with different data sets.

The authors stress that extreme value analysis and trend detection requires long-term and

reliable data. One could detect a significant trend based on, say, 10 years of data taken from

start and end points of opposite phases of an El Niño event. However, such a trend may not

persist in the future. In fact, there is no guarantee that future trends will be similar to those

estimated from the short-term or long-term past data. For time-varying probability of

exceedances to be accepted as a simple extrapolation of what results from historical trends,

one has to rely on the inertia of the climate system (i.e., typically few decades). To understand

when the inertia of the system stops, one should rely on other tools such as dynamical model

simulations. Therefore, care should be taken in extrapolating historical trends into the future,

especially for long-term projections of extremes. On the other hand, long term projections may

be affected by very different natural and anthropogenic drivers than the past. An observed

trend in extremes could be because of a combination of some forcings (e.g., greenhouse gas

emissions) and natural variability. In principle, one could add covariates such as El Niño

Southern Oscillation to the GEV along with the trend component. However, this would be
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challenging since different physically-based covariates (and often more than one) will be

necessary for different pixels/regions. More research efforts are needed in future to address

these issues in non-stationary extreme value analysis.
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