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Abstract

We present a novel approach for non-stationary

Gaussian process regression (GPR), where the

three key parameters – noise variance, signal

variance and lengthscale – can be simultaneously

input-dependent. We develop gradient-based in-

ference methods to learn the unknown function

and the non-stationary model parameters, with-

out requiring any model approximations. For

inferring the full posterior distribution we use

Hamiltonian Monte Carlo (HMC), which con-

veniently extends the analytical gradient-based

GPR learning by guiding the sampling with the

gradients. The MAP solution can also be learned

with gradient ascent. In experiments on several

synthetic datasets and in modelling of tempo-

ral gene expression, the non-stationary GPR is

shown to give major improvement when model-

ing realistic input-dependent dynamics.

1 Introduction

Gaussian process regression has emerged as a power-

ful, yet practical class of non-parametric Bayesian mod-

els that quantify the uncertainties of the underlying process

using Gaussian distributions (Rasmussen and Williams,

2006). Gaussian processes are commonly applied to time-

series interpolation, regression and classification, where the

GP can provide predictive distributions (Rasmussen and

Williams, 2006).

The standard GP model assumes that the model parame-

ters stay constant over the input space. This includes the

observational noise variance ω2, as well as the signal vari-

ance σ2 and the lengthscale ℓ of the covariance function.

The signal variance determines the signal amplitude, while
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the characteristic lengthscale defines the local ‘support’

neighborhood of the function. In many real world prob-

lems either the noise variance or the signal smoothness, or

both, vary over the input space, implying a heteroscedas-

tic noise model or non-stationary function dynamics, re-

spectively (Le et al., 2005; Wang and Neal, 2012). In

both cases, the analytical posterior of the GP becomes in-

tractable (Tolvanen et al., 2014). For instance, in biologi-

cal studies, rapid signal changes are often observed quickly

after perturbations, with the signal becoming smoother in

time (Heinonen et al., 2015).

Non-stationary models have been introduced from several

perspectives. The treed GP model contains multiple piece-

wise GPs of varying covariances (Gramacy, 2005). Sev-

eral authors have proposed transforming or warping the in-

put space to achieve effective non-stationarity (Sampson

and Guttorp, 1992; Schmidt and O’Hagan, 2003). Snoek

et al. (2014) infer parametric warpings for multi-task GPs.

In spatial statistics, spatial warpings have been extensively

studied (Anderes and Stein, 2008). Another approach is to

model the temporal evolution of the GP covariance matrix

directly with generalised Wishart processes (Wilson and

Ghahramani, 2011).

Several authors have proposed extending GPs directly with

input-dependent parameters. These latent parameters are

treated as separate Gaussian processes and inferred jointly

with the unknown function (Tolvanen et al., 2014). In a het-

eroscedastic noise GPs, a latent noise variance is inferred

in a maximum likelihood (ML) (Kersting et al., 2007) or

maximum a posteriori (MAP) fashion (Quadrianto et al.,

2009). Fully Bayesian inference methods include MCMC

sampling (Goldberg et al., 1997) and variational and expec-

tation propagation approximations of the posterior (Lazaro-

Gredilla and Titsias, 2011; Tolvanen et al., 2014). Non-

stationarities can also be included in the signal variance or

lengthscale by the use of non-stationary variants of kernel

functions (Gibbs, 1997). Non-stationary lengthscales for

Gaussian processes were introduced by Gibbs (1997) and

further extended by Paciorek and Schervish (2004) with

MCMC inference. Recently, Tolvanen et al. (2014) intro-

duced a non-stationary signal variance using expectation
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propagation and approximate variational inference.

In this paper we introduce the first non-stationary and het-

eroscedastic GP regression framework, in which the three

main components (noise variance, signal variance and the

lengthscale) can be simultaneously input-dependent, with

direct GP priors. We propose an inference method for the

exact joint posterior of the underlying signal, under the

Gaussian likelihood, and all three latent functions, avoiding

the need for introducing variational or expectation propa-

gation approximations (Lazaro-Gredilla and Titsias, 2011;

Tolvanen et al., 2014). We use HMC-NUTS, which can

effectively sample the posterior guided by the analytical

model gradients. Furthermore, an exact MAP solution

arises as a simple gradient ascent on the posterior. We dra-

matically improve the performance of both approaches by

posterior whitening using Cholesky decompositions of the

latent function priors. Our experiments demonstrate the

necessity of non-stationary GPR to model realistic input-

dependent dynamics, while in simpler conditions the pro-

posed method performs comparably to conventional sta-

tionary or previous non-stationary GPR models.

In Section 2 we introduce the non-stationary GP model. In

its subsections we first introduce MAP and HMC inference,

discuss model whitening and finally define the predictive

distributions. Section 3 presents experimental results on

several synthetic and one real biological datasets, and we

conclude in Section 4. The implementation is available at

github.com/markusheinonen/adaptivegp.

2 Heteroscedastic non-stationary GP model

Let y = (yi)
n
i=1 ∈ R

n be an observation vector over n in-

puts x = (xi)
n
i=1 ∈ R

n. We assume an additive regression

model,

y(x) = f(x) + ε(x), ε(x) ∼ N (0, ω(x)2),

where both the underlying signal f(x) and the zero-mean

observation noise variance ω(x)2 are unknown functions to

be learned1. We proceed by first placing a zero mean GP

prior on the unknown function f(x),

f(x) ∼ GP (0,Kf (x, x
′)), (1)

which assumes that cov(f(x), f(x′)) = Kf (x, x
′). We use

a non-stationary generalisation of the squared exponential

kernel (Gibbs, 1997),

Kf (x, x
′) = σ(x)σ(x′)

√

2ℓ(x)ℓ(x′)

ℓ(x)2 + ℓ(x′)2

× exp

(

−
(x− x′)2

ℓ(x)2 + ℓ(x′)2

)

, (2)

1We assume univariate inputs throughout this paper. See Sup-
plementary Material for a generalisation into multivariate inputs.

where x, x′ ∈ R, and σ(x) and ℓ(x) are input-dependent

signal variance and lengthscale functions, respectively. The

kernel reduces into a standard squared exponential kernel

if both are constant. We show the kernel (2) is positive

definite in the Supplementary Material.

We model the lengthscale, signal variance and noise vari-

ance with latent functions. We are interested in smoothly

varying latent functions and thus we place separate GP pri-

ors on them:

log(ℓ(t)) ≡ ℓ̃(t) ∼ GP (µℓ,Kℓ(x, x
′))

log(σ(t)) ≡ σ̃(t) ∼ GP (µσ,Kσ(x, x
′))

log(ω(t)) ≡ ω̃(t) ∼ GP (µω,Kω(x, x
′)),

where we set the priors on the logarithms to ensure their

positivity. We select separate standard squared exponential

covariances for each,

Kc(x, x
′) = α2

c exp

(

−
(x− x′)2

2β2
c

)

,

where c ∈ {ℓ, σ, ω}. The model has nine hyper-parameters

θ = (µℓ, µσ, µω, αℓ, ασ, αω, βℓ, βσ, βω) that define the

prior for the three latent functions ℓ̃, σ̃ and ω̃. The means µ

determine latent function means, while the α’s are scaling

terms. The β’s are the characteristic lengthscales of the pri-

ors. In practice, the µ’s and α’s have a small effect on the

models, whereas the β’s have a large effect on the model by

determining the smoothness of the latent functions. They

can be set based on prior knowledge or using grid-search

over suitable values.

Given a dataset (x,y), the model can equivalently be writ-

ten as f |ℓ,σ ∼ N (0,Kf ), where f = (f(xi))
n
i=1 is a la-

tent function vector at the observed points x and Kf ∈
R

n×n has elements [Kf ]ij = Kf (xi, xj) computed using

eq. (2) with signal standard deviations σ = (σ(xi))
n
i=1 and

lengthscales ℓ = (ℓ(xi))
n
i=1. Finally, the data likelihood is

y|ℓ,σ,ω ∼ N (0,Kf + Ω), where Ω = diagω2 ∈ R
n×n

is a diagonal noise matrix and ω
2 = (ω(xi)

2)ni=1 are the

noise variances. We note that no current method has stud-

ied a non-stationary parameterisation with all three input-

dependent parameters.

To infer latent functions from the full posterior

p(f , ℓ̃, σ̃, ω̃|y,θ) we introduce two approaches in the

next two Sections2. We propose to learn the MAP esti-

mate p(f |ℓ̃MAP, σ̃MAP, ω̃MAP,y), or infer the full posterior

using HMC sampling. Both approaches are based on the

analytical gradients of the latent functions.

2.1 Maximum a posteriori estimation

As the first approach, we follow the approaches by Kersting

et al. (2007) and Quadrianto et al. (2009), and resort to find-

2In the following we omit the hyperparameters θ for notational
clarity

733



Heinonen, Mannerström, Rousu, Kaski, Lähdesmäki

ing the MAP solution of the latent posterior p(ℓ̃, σ̃, ω̃|y),

ℓ̃MAP, σ̃MAP, ω̃MAP = argmax
ℓ̃,σ̃,ω̃

p(ℓ̃, σ̃, ω̃|y),

where f has been marginalised out. Using Bayes’ theorem

this is equivalent to maximizing the marginal likelihood

L = p(y|ℓ̃, σ̃, ω̃)p(ℓ̃, σ̃, ω̃), (3)

which evaluates to

N (y|0,Kf+Ω)N (ℓ̃|µℓ,Kℓ)N (σ̃|µσ,Kσ)N (ω̃|µω,Kω),

and whose logarithm we denote as the marginal log likeli-

hood (MLL).

The partial derivatives of the log of marginal likelihood (3)

with respect to the latent functions are analytical:

∂ logL

∂ℓ̃i
=

1

2
tr

(

(aaT −K−1
y )

∂Ky

∂ℓ̃i

)

− [K−1

ℓ̃
(ℓ̃− µℓ̃)]i

∂ logL

∂σ̃
= diag

(

(aaT −K−1
y )Kf

)

−K−1
σ̃ (σ̃ − µσ̃)

(4)

∂ logL

∂ω̃
= diag

(

(aaT −K−1
y )Ω

)

−K−1
ω̃ (ω̃ − µω̃)

where a = (Kf + Ω)−1y and
∂Ky

∂ℓ̃i
is given in the Supple-

mentary Material.

We perform gradient ascent over the MLL, logL. The so-

lution is only guaranteed to converge to a local optimum,

and hence we perform multiple restarts from random ini-

tial conditions. The MAP solution is adequate when the

posterior is close to unimodal.

Given the MAP solution, the function posterior

p(f |ℓ̃MAP, σ̃MAP, ω̃MAP) ∼ N (mMAP,ΣMAP) is a Gaus-

sian with

mMAP = KT
f (Kf +ΩMAP)

−1y

ΣMAP = Kf −KT
f (Kf +ΩMAP)

−1Kf ,

where Kf has been computed with eq. (2) using MAP la-

tent vectors log(ℓ) = ℓ̃MAP and log(σ) = σ̃MAP, and ΩMAP

with log(ω) = ω̃MAP.

2.2 HMC inference

As a second approach we sample the latent poste-

rior p(ℓ̃, σ̃, ω̃|y) using Hamiltonian Monte Carlo (HMC)

(Hoffman and Gelman, 2014; Neal, 2011). In HMC, an

additional momentum variable is introduced for each of

the model variables, and the extended model is interpreted

as a Hamiltonian system. Time evolution of the Hamil-

tonian dynamics is simulated to produce proposals for the

Metropolis algorithm. The latent posterior p(ℓ̃, σ̃, ω̃|y) is

proportional to the marginal likelihood in eq. (3), and thus

the HMC sampling of (ℓ̃, σ̃, ω̃) uses the same gradients
(

∂ logL

∂ℓ̃
, ∂ logL

∂σ̃
, ∂ logL

∂ω̃

)

from eq. (4) as the MAP solution.

Thus, we only need to do HMC sampling over the three la-

tent vectors (ℓ̃, σ̃, ω̃) and the posterior of f for each sample

follows analytically as a Gaussian, leading to a mixture of

m Gaussians.

The function posterior p(f |y) can then be approximated

with the HMC samples

p(f |y) =

∫∫∫

p(f |ℓ̃, σ̃, ω̃,y)p(ℓ̃, σ̃, ω̃|y)dℓ̃dσ̃dω̃

≈
1

m

m
∑

i=1

p(f |ℓ̃i, σ̃i, ω̃i,y), (5)

where

ℓ̃i, σ̃i, ω̃i ∼ p(ℓ̃, σ̃, ω̃|y) (6)

are m HMC samples of the latent posterior. The function

posterior p(f |ℓ̃i, σ̃i, ω̃i,y) = N (mi,Σi) for each HMC

sample is a Gaussian with

mi = KT
fi
(Kfi +Ωi)

−1y

Σi = Kfi −KT
fi
(Kfi +Ωi)

−1Kfi ,

where Kfi is a non-stationary kernel matrix computed us-

ing ℓ̃i and σ̃i, and Ωi is the diagonal noise covariance ma-

trix of ω̃i.

2.3 Posterior whitening

The posterior of the latent vectors is, by definition, highly

correlated due to Gaussian priors, leading to inefficient

Monte Carlo sampling. To ease the sampling, we perform

the sampling over the whitened latent vectors (Kuss and

Rasmussen, 2005),

ℓ̊ = L−1
ℓ ℓ̃, Kℓ = LℓL

T
ℓ

σ̊ = L−1
σ σ̃, Kσ = LσL

T
σ

ω̊ = L−1
ω ω̃, Kω = LωL

T
ω ,

with Cholesky decompositions of the corresponding GP

prior covariances, which are fixed based on the hyperpa-

rameters θ. The derivatives of the MLL with respect to

the whitened parameters can be retrieved analytically. E.g.

the lengthscale becomes ∂ logL

∂̊ℓ
= ∂ logL

∂Lℓ̊ℓ

∂Lℓ̊ℓ

∂̊ℓ
= LT

ℓ ∇ℓ̃
L,

where the last term is the standard gradient of the non-

whitened model defined in eq. (4). The two other parame-

ters follow the same procedure. In practice the whitening

leads to several orders of magnitude improvement on infer-

ence speed.

2.4 Making predictions

Both the MAP solution and the HMC sampler infer val-

ues of the latent functions only at the n observed inputs
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x. To extrapolate the values of the unknown function

and the latent functions over arbitrary target points x⋆ ∈
R

n⋆ , we approximate the predictive distribution (Goldberg

et al., 1997) by extrapolating the latent functions ℓ̃, σ̃, ω̃ to

ℓ̃⋆, σ̃⋆, ω̃⋆ independently of the data y, and then express

the function posterior f⋆ with them. That is, we approx-

imate p(ℓ̃⋆|ℓ̃MAP,y) by p(ℓ̃⋆|ℓ̃MAP) and p(σ̃⋆|σ̃MAP,y) by

p(σ̃⋆|σ̃MAP), which have analytical forms. With the MAP

solution we have

p(f⋆|ℓ̃MAP, σ̃MAP, ω̃MAP,y) (7)

≈

∫∫

p(f⋆|ℓ̃MAP, ℓ̃⋆, σ̃MAP, σ̃⋆, ω̃MAP,y)

× p(ℓ̃⋆|ℓ̃MAP)p(σ̃⋆|σ̃MAP)dℓ̃⋆dσ̃⋆

≈
1

s

s
∑

j=1

p(f⋆|ℓ̃MAP, ℓ̃j⋆ , σ̃MAP, σ̃j⋆ , ω̃MAP,y)

where we approximate the integral by drawing s samples

{ℓ̃j⋆}
s
j=1, {σ̃j⋆}

s
j=1 of n⋆ dimensions from the conditional

Gaussians ℓ̃⋆|ℓ̃MAP and σ̃⋆|σ̃MAP (See Supplementary Ma-

terial). This results in a mixture of s corresponding Gaus-

sians N (mMAP,j⋆ ,ΣMAP,j⋆), where

mMAP,j⋆ = KT
MAP,j⋆

(KMAP,MAP +ΩMAP)
−1y

ΣMAP,j⋆ = Kj⋆,j⋆ −KT
MAP,j⋆

(KMAP,MAP +ΩMAP)
−1KMAP,j⋆ ,

and where Kj⋆,j⋆ ∈ R
n⋆×n⋆ , KMAP,j⋆ ∈ R

n×n⋆ and

KMAP,MAP ∈ R
n×n are computed with eq. (2) over the latent

vectors (ℓ̃MAP, σ̃MAP) over inputs x, or using (ℓ̃j⋆ , σ̃j⋆) over

inputs x⋆. The simplest approximation is to denote the con-

ditional means ℓ̃j⋆ = E[ℓ̃⋆|ℓ̃MAP] and σ̃j⋆ = E[σ̃⋆|σ̃MAP] as

the sole samples with s = 1. This is a sufficient approxi-

mation if the inputs x are sufficiently dense.

The predictive distribution given the HMC sample

{ℓ̃i, σ̃i, ω̃i} is derived analogously. We average over the

m HMC samples instead of a single MAP solution, and

over the s samples {ℓ̃ij⋆}
s
j=1 and {σ̃ij⋆}

s
j=1 from the con-

ditionals, resulting in

p(f⋆|y) ≈ p(f⋆|{ℓ̃i, σ̃i, ω̃i},y) (8)

≈
1

ms

m
∑

i=1

s
∑

j=1

p(f⋆|ℓ̃i, ℓ̃ij⋆ , σ̃i, ℓ̃ij⋆ , ω̃i,y)

≈
1

ms

m
∑

i=1

s
∑

j=1

N (mi,j⋆ ,Σi,j⋆)

where mi,j⋆ = KT
i,j⋆

(Ki + Ωi)
−1y and Σi,j⋆ = Kj⋆,j⋆ −

KT
i,j⋆

(Ki +Ωi)
−1Ki,j⋆ , and where the kernel matrices are

computed using ℓ̃i, σ̃i and ℓ̃ij⋆ , σ̃ij⋆ .

We note that a slower but perhaps more elegant alternative

is to model latent functions jointly over concatenated inputs

xt ≡ (x,x⋆), resulting in ℓt ≡ (ℓ, ℓ⋆), and analogously for

the other functions. In this case the function posterior con-

tains the predictive posterior with the approximation used

in eq. (7), but the latent vector sizes increase to n+ n⋆.

Table 1: Datasets with varying forms of non-stationarities.

The column ‘n’ defines the total number of data points and

the column ‘ntrain’ the number of training points.

Dataset Non-stationary functions n ntrain

Dσ σ(t) 100 50

Dℓ ℓ(t) 150 75

Dσ,ω σ(t), ω(t) 100 50

Dℓ,ω ℓ(t), ω(t) 150 75

Dℓ,σ,ω ℓ(t), σ(t), ω(t) 90 45

Mω ω(t) 133 67

Tσ,ω ω(t), σ(t) 500 250

J N/A 101 50

3 Experiments

We assess the performance of the proposed method on sev-

eral synthetic and real datasets. We experiment with five

simulated datasets, four empirical datasets and a gene ex-

pression time series dataset (Heinonen et al., 2015). The

empirical datasets contain the SP500 index S, the motorcy-

cle dataset M (Silverman, 1985), the 3rd ‘jump’ dataset J

from Paciorek and Schervish (2004) and a non-stationary

dataset T from GPstuff demo_epinf (Vanhatalo et al.,

2013). The five additional simulated datasets were gener-

ated with different combinations of non-stationarities (See

Table 1). We expect datasets exhibiting specific types of

input-dependent characteristics to require a model with a

corresponding input-dependent parameter.

We scale all outputs to range [−1, 1] and the inputs to range

[0, 1]. For each dataset, we use half of the data as training

data and the rest as test data. We will assess the perfor-

mance on the test data with mean squared error MSE =
1

ntest

∑

i(y
test
i − [m⋆]i)

2 and with the mean log-predictive

density NLPD = −
∑

i log p(y
test
i |[m⋆]i, [Σ⋆]ii), where

smaller value is better. For consistency, we model the

stationary parameters as vectors c1 of length ntrain for

c = {ω, σ, ℓ} whenever a parameter is not set as non-

stationary.

We run MAP optimisation from 10 different initial condi-

tions and choose the one with the highest MLL value. We

run 10 chains of 1000 samples of HMC-NUTS sampling

using model whitening (Algorithm 3 of Hoffman and Gel-

man (2014), ǫ = 0.01, maximum tree depth 10). For our

datasets setting s = 1 with the conditional means was suf-

ficient for obtaining an accurate predictive posteriors. We

define all hyperparameters µ to be the mean of their corre-

sponding parameter functions. We set all hyperparameters

α to a large value of 1, which allows high freedom in the

range of the corresponding parameters. We empirically se-

lect the hyperparameters β from a set {0.05, 0.1, 0.2}, and

fixed βℓ = βσ = 0.1 and βω = 0.2 throughout the ex-

periments, which gave good results on all datasets. The

MAP inference is approximately as fast as vanilla GP re-
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Table 2: Test MSE and NLPD results on the synthetic datasets over various MAP models. Optimal values are in boldface.

The optimal or second to optimal NLPD values follow a diagonal line. Smaller value is better for both quantities.

Mω Dσ Dℓ Dω,σ Dω,ℓ Dω,σ,ℓ J Tω,σ

Method MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD

GP 3.91 0.11 0.21 −1.31 0.71 −0.85 0.44 −0.86 0.54 −1.04 0.16 −1.25 1.48 −0.32 17.83 0.10
(ω)-GP 3.91 −0.22 0.21 −1.27 2.46 −0.47 0.45 −0.98 2.69 −1.28 0.33 −1.73 3.51 −0.58 17.35 0.01
(σ)-GP 3.93 0.17 0.18 −1.37 0.64 −0.93 0.43 −0.94 0.52 −1.07 0.17 −0.42 1.38 1.04 16.84 0.07
(ℓ)-GP 3.94 0.16 0.18 −1.38 0.53 −1.05 0.44 −0.88 0.41 −1.16 0.17 −0.34 1.35 −0.72 17.63 0.09

(ω, σ)-GP 3.87 −0.23 0.18 −1.30 0.65 −0.86 0.43 −1.07 0.56 −1.51 0.15 −1.61 1.60 −0.66 16.33 −0.02

(ω, ℓ)-GP 4.02 −0.19 0.19 −1.31 0.53 −0.93 0.42 −0.99 0.40 −1.83 0.17 −0.90 1.38 −0.47 9.30 0.01
(ω, σ, ℓ)-GP 3.90 −0.21 0.19 −1.32 0.53 −0.90 0.45 −0.98 0.43 −1.70 0.16 −1.79 1.47 −0.32 9.77 −0.00

MSE
0 1 2 3 4 5

N
L

P
D

-2

-1.5

-1

-0.5

0

0.5
MAP vs HMC

MAP solutions
HMC solutions

(a) All datasets and models

MSE
0.45 0.5 0.55 0.6 0.65 0.7

N
L

P
D

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8
Dataset Dl with l-GP

HMC samples
HMC mean
MAP solution

(b) Dℓ dataset with ℓ-GP model

Figure 1: The MSE and NLPD performance of the HMC posterior samples. (a) Comparison of test errors between MAP

and HMC mean solutions over all datasets and methods (8× 7 = 56, x-axis limited to 5 for clarity). (b) Test errors of the

HMC samples compared to the HMC mean and MAP solution on a single Dℓ dataset with ℓ-GP model.

gression, while HMC sampling took several hours on the

tested datasets (data not shown).

3.1 Regression performance

Table 2 shows the MSE and NLPD performance on the

test folds of the synthetic datasets using MAP GP mod-

els with different combinations of non-stationary parame-

ters. For each dataset, the model with the lowest NLPD, or

second lowest NLPD value, is the one where the model’s

non-stationarities match those of the dataset. For instance,

the dataset T contains heteroscedastic noise and input-

dependent signal variance σ. For this, the best NLPD

performance is obtained with a matching ω, σ-GP, and

with a fully non-stationary ω, σ, ℓ-GP as well. The vanilla

(stationary) GP performance is always surpassed by non-

stationary models on datasets with non-stationary dynam-

ics.

Adding ‘unnecessary’ non-stationarities retains or only

slightly worsens the performance, with the major exception

being the dataset J. Here, the lengthscale is clearly input-

dependent (NLPD −0.72, optimal), while in contrast the

non-stationary signal variance σ is unable to model the data

(NLPD 1.04). Adding heteroscedastic weakens the model,

giving a strong indication of a homoscedastic noise model.

3.2 HMC performance

We explored the difference between the MAP solution and

the HMC sampling. In practice we found the MAP to be

slightly better on average regarding the MSE and NLPD

values (See Figure 1a). However, the sampling is able to

explore the multimodality of the latent posterior (See Fig-

ure 5). Figure 1b shows the test errors of the individual

HMC samples in comparison to the MAP solution with the

Dℓ dataset using the ℓ-GP model. The HMC solution in-

cludes numerous samples that are better, while on average

being slightly worse than MAP.

The dataset Dℓ contains several latent modes (See Fig-

ure 4, bottom), which the HMC sampler captures. These

modes include latent functions that imply a ‘shortcut’ or

a ‘zigzag’ signal around timepoints 0.18 or 0.75, or both.

The HMC samples are centered mostly around the shortcut

profile at the earlier timepoint, while only a few samples
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Figure 2: Comparison of the MLL, MSE and NLPD values (x-axis) of the stationary GP, ω-GP and (ω, σ, ℓ)-GP over the

205 gene expression time series (x-axis) against the heteroscedastic GP on the y-axis. Each row contains a triplet of values

corresponding to the three GP models of the same time series.
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Figure 3: Comparison of three GP models on an example gene expression time series.

with the shortcut profile exist at the later timepoint. The

MAP solution has chosen both zigzags. The latent posterior

shows largest variance in the signal variance σ(t) compo-

nent, while the lengthscale ℓ(t) and noise variance ω have

tighter distributions.

3.3 Biological dataset

We demonstrate the method with a biological dataset of

205 gene expression time series measurements of human

endothelial cells after irradiation at time t = 0. Due to

the irradiation the dataset exhibits non-stationary dynam-

ics as the cells try to repair themselves and revert back to

steady states. The gene expressions are measured over 8

days (0.5, 1, 2, 3, 4, 7, 14, 21) in three replicates (Heinonen

et al., 2015). The goal is to construct a realistic model of

the underlying gene expression process and the underlying

dynamics with no knowledge of the ‘true’ expression lev-

els, given only the small number of sparse measurements.

We modeled the dataset using stationary GP, heteroscedas-

tic ω-GP and three non-stationary GPs: (ω, σ)-GP, (ω, ℓ)-
GP and with (ω, σ, ℓ)-GP. We found the performance of

the three non-stationary GPs to be similar. Figure 2 indi-

cates the MLL, MSE and NLPD values of the 205 time-

series under stationary, heteroscedastic or completely non-

stationary models. Addition of heteroscedasticity greatly

increases the model fits, while also improving the data

likelihoods against the function posterior. Finally the

completely non-stationary GP still improves model fits,

while consistently improving the NLPD values, with simi-

lar MSE performance compared to the HGP. Figure 3 com-

pares the three models learned from an example gene ex-

pression time series (See Supplementary Material for addi-

tional models).

3.4 Latent function reconstruction

An interesting application of the proposed method is to

learn the ‘true’ input-dependent parameters of the data gen-

erating process, with only samples of the function f and no

samples of the underlying parameters. The key question is

how accurately the parameters of the non-stationary model

can be inferred in this setting. Due to the lack of empiri-

cal datasets with ‘gold-standard’ input-dependent parame-

ter values, we show promising results on parameter recon-

struction error on simulated data.

We simulate a noisy sample where true generating latent

parameter functions ℓ(·), σ(·), ω(·) are known. We infer

both the MAP solution and sample the posterior of the la-

tent parameter processes ℓ, σ, ω and the unknown function

f . Figure 5 highlights the MAP and HMC solutions in

comparison to the generating parameters, and to the state-
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Figure 4: The set of function posteriors corresponding to the latent function samples are plotted in gray, and the MAP

solution in green, along with the training and test data (top). The latent function sample is drawn with green (σ), red (ℓ)

and blue (ω) colors, with the MAP solution highlighted with bold lines (bottom).

of-the-art σ, ω-GP model of Tolvanen et al. (2014). Given

only a single noisy time series from a generating function, a

range of matching parameter processes can be inferred. As

shown in Figure 5, the obtained HMC parameter samples

overlap with the generating parameters, while the MAP so-

lution differs slightly due to the inherent randomness in the

noise and in data sampling.

4 Discussion

In this paper, we have proposed a fully non-stationary

Gaussian process regression framework, where all three

key components can be input-dependent. Our approach

uses analytical gradient-based techniques to perform infer-

ence with HMC sampling and MAP estimation. We are

able to effectively sample from the exact posterior of the la-

tent functions. We have shown that the method is able to in-

fer the underlying latent functions and improve regression

performance when the datasets truly are non-stationary, and

achieve equivalent performance to a stationary model when

they are not.

The interplay between the signal variance and the length-

scale is an interesting topic (Diggle et al., 1998; Zhang,

2004). When modeling the ‘jump’ dataset the non-

stationary signal variance was unable to model dynamics,

while a non-stationary lengthscale produced a good model.

This is natural since the signal variance serves as a linear

amplitude over the function f , while the lengthscale has

a possibly non-linear effect on the function model. In ad-

dition, the non-stationary squared exponential kernel can

be changed into any differentiable non-stationary covari-

ance function with input-dependent parameters, e.g. the

non-stationary Matérn kernel could be used (Paciorek and

Schervish, 2004).

The gradient-based HMC is a powerful inference tool

for Gaussian processes, and could be further enhanced

by utilizing natural gradients or position-dependent mass

matrices with Riemannian Manifold HMC (Girolami and

Calderhead, 2011). We note that the method could be ex-

tended by also inferring the hyperparameters θ using HMC.

However, proper care has to be taken to set their priors.
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Figure 5: Latent function reconstruction errors (top) over a non-stationary simulated dataset with known non-stationary

dynamics. Completely non-stationary GP model (bottom) posteriors, MAP solution (dashed line) and generating latent

functions (black solid lines) with 150 data points. The latent lengthscales and noises are estimated correctly, while signal

variance is approximately matched. Dashed black lines shows the comparison to the state-of-the-art σ, ω-GP model of

Tolvanen et al. (2014).
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