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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W e  present a novel method for segmenting non- 

stationary textures. Our approach uses a multi- 
dimensional AM-FM representation for the texture, 
and provides the FM features to an SOFM-LVQ neural 
network system that performs the segmentation. For 
the segmentation, we use the eigenvalues of the instan- 
taneous frequency gradient tensor, and show how these 
eigenvalues capture the non-stationary structure of a 
texture. For a woodgrain image, the segmentation re- 
sults are shown to capture the essential non-stationary 
nature of the gram. 

1 Introduction 

Progress in tackling the problem of non-stationary 
texture segmentation has been hindered by the lack of 
effective models that capture the fundamental struc- 
ture of such images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([7], page 622). To capture the 
non-stationary structure of texture, we use an AM-FM 
model, and characterize non-stationarity as a multi- 
dimensional frequency modulation process. 

We begin with the AM-FM model. For an image g ,  
we write [I]: 

g ( . l , 2 2 ) = C a , ( 2 1 , ~ 2 ) e x ~ ( j ~ n ( z l , z 2 ) )  (1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 
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where a, denotes a slowly-varying amplitude function, 
and V&, denotes a slowly-varying instantaneous fre- 
quency vector. 

To capture the non-stationarity in an image, we de- 
velop measures for multi-dimensional frequency mod- 
ulation. Let the symbol 0, 0 = V$ denote the in- 

stantaneous frequency vector. Then, the instantaneous 

frequency gradient tensor is defined to be the matrix 

F, whose entries are the spatial derivatives of the in- 
stantaneous frequency. Using F, we express the rela- 
tive change in the instantaneous frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd o ,  by: 
dO = Fdx. Using the fact that F is real-symmetric, 
we can get a bound for the increase in the magnitude 
of the instantaneous frequency vector: 

From (2), we see that the maximum change in the mag- 
nitude of the instantaneous frequency vector occurs in 
the direction of the first eigenvector. In contrast, the 
minimal change in the magnitude of the instantaneous 
frequency vector occurs in the direction of the second 
eigenvector. Furthermore, it is easy to  show that the 
divergence of the instantaneous frequency vector is sim- 
ply the sum of the eigenvalues. Locally, a positive di- 

vergence implies that the instantaneous freqeuncy vec- 

tor field is emanating from a point. In contrast, a neg- 
ative divergence implies the instantaneous frequency 
vector field is converging towards a point. We will re- 
turn to this interpretation in Section 4. 

In Section 2, we will briefly describe the AM-FM 
demodulation algorithm that was used for computing 
the eigenvalues of the instantaneous frequency gradi- 
ent tensor. Then, in Section 3, we describe the neural 
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network system that was used for non-supervised seg- 

mentation of the eigenvalues. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, we apply 
the algorithm to a non-stationary texture and analyze 

the results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Feature extraction 

This makes the segmentation algorithm fast and suit- 

able for real time applications. 

First, we describe the first learning phase. The ob- 
jective of this phase is to provide a first "approximate" 
quantization of the input space (Voronoi vectors) by 
adapting the weights vectors of the neurons in the fea- 
ture map [3]. The algorithm for phase 1 is summarized 

In this section, we briefly outline how the eigenvalues 
are computed. We summarize the AM-FM demodula- 
tion algorithm in Figure 1. 

The AM-FM demodulation algorithm estimates the 

instantaneous frequency over a lattice of gabor filters 

(see [2] for more details). The Teager-Kaiser operator 

is used to estimate image energy over each channel [6]. 
Using: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Qc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 = II v w  II - w v 2 w  (3) 

the instantaneous frequency vector estimates are given 
by: 

To eliminate sign ambiguities, we select the candidate 
instantaneous frequency for which the image gives the 
largest projection (see step 6). 

For estimating the components of the instantaneous 
frequency gradient tensor, we convolve the instanta- 
neous frequency vector estimates with derivatives of 
gaussians. For example, to  estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdOi /dx j ,  we con- 
volve the ith component Oi with d g / d x j .  The eigen- 
values are then computed using the 'eig (.)' function 

in Matlab. 

3 Neural Network Pattern Recognition 
Technique 

A single-layer neural network is used for the segmen- 
tation of the woodgrain image. The developed ANN 
architecture is composed from two input nodes for the 
two eigenvalues and from three (or five) output nodes 
for the three (or five) possible classes. The segmen- 
tation procedure is implemented in three phases: in 

the first phase unsupervised learning is applied based 
on a modified one dimensional self-organizing feature 

map [4], [5], and competitive learning, in the second 
phase, in order to improve segmentation performance, 
the learning vector quantization is applied in a (self) 
supervised learning manner, and in the third phase the 
actual segmentation takes place. It should be noted 
that in each learning phase the input is presented to 

the network only once, for only one learning epoch. 

in Figure 2. After all inputs are presented to the net- 
work, the first adaptation of the weights vector is com- 
pleted and the system proceeds to the second learning 
phase. 

Second, we describe the second learning phase. The 
task of this phase is to  adapt the weights vectors 

slightly (move Voronoi vectors) in order to improve the 
segmentation quality. Here, we note that the LVQ is ac- 
tually a supervised learning technique, i.e. it demands 
prior knowledge of correctly labelled (classified) inputs. 
Since such a knowledge is not available, it is assumed 
that the adaptation carried out during the first learning 
phase is correct enough and thus the segmented inputs 
coming in will be correctly classified. Weights adap- 
tation and winner selection is again on-going. In this 

modified version of LVQ2 the implementation steps are 

given in Figure 3. After all inputs are presented to the 

network, the network is trained and the actual segmen- 
tation process starts. 

Third, we describe the segmentation phase. In the 
segmentation phase, all the input vectors are classified 
to one of the output nodes. The implementation steps 
for the segmenation phase are given in Figure 4. 

4 Results and Discussion 

In Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  we show segmentation results for a 
woodgrain image. We describe the results for three 
and five classes. The original woodgrain image is 
shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ( a ) .  Superimposed on the wood- 
grain image, we show the instantaneous frequency vec- 
tors. By convention, sign ambiguities in the instan- 
taneous frequency (resulting from the fact that: 
cos ( aTx) = cos ( - a T x )  ), are resolved by choosing 
the instantaneous frequency vector that points towards 
an instantaneous frequency of less magnitude). 

As shown in Figure 5(b), the segmentation results 
of Figures 5 ( e )  and 5 ( f )  are mostly influnenced by the 
sign of the divergence of the instantaneous frequency 

vector field. Next, we examine each of the segmenta- 
tion classes. For Figure 5 ( e ) ,  we have three classes. 
The three classes correspond to: 

0 class 1: XI ,  Xz are of comparable magnitude. 
In Figure 5 ( e ) ,  this class is characterized by the 
dark regions. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We 

class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2:  
In Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5(e ) ,  this segmentation class is shown as 
gray. It corresponds to  the dark region in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I  < 0, I X I  I >> I A2 I 

5(b) .  

class 3: A1 > 0 ,  I A1 I >> I I 
In Figure 5 ( e ) ,  this segmentation class is shown as 

white. It corresponds to the white region in Figure 

5(b)* 

begin with the first class. For horizontal coordi- - 
nate from 20 to 40, and vertical coordinate from 30 
to 70, we have ellipsoidal deformations in the original 
woodgrain. This is characterized by eigenvalues that 
are proportional to the grain compression. Since there 
is significant compression in the woodgrain in all di- 

rections, we get significant values for both eigenvalues. 

Hence, the results for the first class agree with our in- 

tuition on what we might expect. 

For both of the second and third clases, there is a 
direction along the image for which the woodgrain gets 

far more compressed, than any direction orthogonal to  
it. This is in the direction of the first eigenvector (with 

largest eigenvalue magnitude). The sign of this eigen- 
value also determines the sign of the divergence of the 
instantaneous frequency vector field. Furthermore, it 
is evident from Figures 5 ( b )  and 5(e) that only the sign 

of the divergence was important for the segmentation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As discussed earlier, the sign of the divergence of 

the vector field tells us whether the local instanta- 
neous frequency vector field points towards a point, 
or away from a point. To explain the sign change, we 
return to the region classified as class 1: of horizontal- 
coordinates 20 to  40, vertical coordinates 30 to  70. As 
we move south-east on the image, the grain is getting 
less and less compressed along one direction, while it 

becomes more and more compressed along the direc- 
tion orthogonal to  the direction of least compression. 
Now, the instantaneous frequency vectors still point 
towards the zero frequency region of the ellipsoidal de- 

formations. This means that the vector field is converg- 

ing. It has a negative divergence. As we keep moving 
south-east, the grain stops compressing, but starts de- 
compressing. This causes the instantaneous frequency 
vectors to change sign (by our convention). Now, the 
instantaneous frequency vector field is pointing away 
from the original zero frequency region. The vector 

field is diverging. It has negative divergence. 

If we examine the plots of Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5(a) and 
5(b )  along the boundaries where the divergence field 
changes sign, we see that the woodgrain is character- 
ized by regions of high grain compression, followed by 
low grain compression. The high compression regions 
are described by class 2, for positive eigenvalues, while 

the low compression regions are described by class 3 
for negative eigenvalues. 

In Figure 5(f), we have the results from using five 
segmentation classes. Comparing Figures 5(e) and 
5(f), we see that the first three classes of Figure 5(e) 
also dominate the five-class segmentation. However, 
the segmentation results of Figure 5 ( f )  show more sen- 

sitivity for the second eigenvalue. 

Overall, we find the segementation results for 
the three woodgrain classes to  be very meaningful. 
The segmentation classes characterize the fundamen- 

tal structure of the woodgrain. 
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Step  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Mirror-extend the image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( x )  (given in equation (8.3-1), [7]) 
Step  2. Apply logarithmic point oparator by setting: 
S tep  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Remove DC component, and normalize image energy to unity. 

Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Compute image energy A21]f4112 over gabor lattice 
Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Compute the instantaneous frequency estimates over channels with maximum energy. 

S t ep  6. For each estimate & I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd X 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) , eliminate two-quadrant ambiguities by taking 

the instantaneous frequency vector with the largest projection onto: 

I := log(1 + I) 

( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
)I h 

exp ( -*) exp [ -32, ( f4 , lZl  + $2232 

Step  7. Estimate the instantaneous frequency gradiet tensor components by differentiating 04. 
Step  8. Estimate the eigenvalues of the instantaneous frequency gradient tensor. 

Figure 1. The AM-FM demodulation algorithm. 

Step 1. Initialise weights at small random values. 
S t ep  2. Calculate distances between input vector and 

weights vectors for each output node I C :  
d k  = CiZ1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xi - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWi, k: )2 , where N = 2 and k = 1, 2, , M M being the number of classes 
The output node with minimum distance is the winner. 

Step 3. Adapt the weights. The weights for each output 
node k and for each i are adapted with 

The learning rate is a Gaussian function that gets narrower within time (neighbourhood). 
The learning rate is also frequency sensitive per output neuron, which means that it gets 
smaller the more often a neuron is selected as a winner. 

N 

Wi, k(t + 1) = Wi, k ( t )  + h k  (Xi - Wi, k(t) 

h k  = gexp [ - ( k - k w ) 2 t / 2 ] / &  

where 0 < g 5 1, 
number of times the specific node is selected winner. Setting the initial value of g = 1 forces 

the network to fast learning even with limited amount of data. 

kW is the winner node, t is the number of iterations and tk:,,, is the 

S tep  4. Go to Step 2 for all segmented inputs. 

Figure 2. The algorithm for Learning Phase 1. 
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Step 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUse the values of the weights vectors as obtained from learning phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  
Step 2 .  Present input and calculate distances dk between input vector xi  and weight vectors wi, k 

for each output node k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in Step 2 of Figure 2. 
The output node with minimum distance dkl is the first winner k l  and the output node with the 

following minimum distance dkz  is the second winner k2.  

are adapted with: 

The learning rate hkl begins from 0.2 and decreases linearly with the number of times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt k l ,  

the specific node k 1  is selected as first winner: 

If hkl  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0, then hkl = O  
The factor dkl/dka 

segmentation boundaries are close enough or little if the segmentation boundaries are far 
away. In other words the weights vector with the correct label is moved towards the input 
while the weights vector with incorrect label is moved away from it. 

Step 3. Adapt weights. The weights for the first and second winner output nodes k l ,  k2 

wi,kl(t  -k 1 )  = wi ,k l ( t )  f hkl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Zi - w i , k l ( t ) ) ,  wi,k2 = w i , k 2 ( t )  - 0.1 ( d k l / d k 2 )  hkl (xi - wi ,k2 ( t ) )  

hkl = 0.2 - O . O l t k 1 ,  

is used so as to move the second winner far away if the 

Step 4. Go to Step 2 for all segmented inputs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. The algorithm for Learning Phase 2. 

Step 1. Calculate distances between input vector and weight vectors using the d k  expression from 
Step 2 of Figure 2. The output node kw with minimum distance dkw is the winner and the input 
is assigned to the class of the winner node. 

Step 2. Repeat step 1 for all the inputs. 

Figure 4. The algorithm for the segmentation phase. 
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Figure 5. The segmentation of a woodgrain texture. (a) the wood grain image with the instantaneous 
frequency vectors (vector magnitudes were plotted using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog(1 + 100 * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ) ,  where M denotes the 
vector magnitude). (b) positive region of the divergence of the instantaneous frequency vectors, 
(positive divergence V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. O  > 0 plotted white), (c) first eigenvalue plot, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d) second eigenvalue plot, 
(e) segmentation results for three classes, and (f) segmentation results for five classes. 
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