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Abstract. This paper focuses on the partial evaluation of local and remote 
memory accesses of distributed applications, not only to remove much of the 
excess overhead of message passing implementations, but also to reduce the 
number of messages, when some information about the input data set is known. 
The use of split-phase memory operations, the exploitation of spatial data 
locality, and non-strict information processing are described. Through a 
detailed performance analysis, we establish conditions under which the 
technique is beneficial. We show that by incorporating non-strict information 
processing to FFT MPI, a significant reduction of the number of messages can 
be archievd, and the overall system performance can be improved. 

1 Introduction 

Parallelization of scientific and engineering applications has become essential in 
modern computer systems. The variety of parallel paradigms, languages, runtime 
systems, and architectures makes optimization of parallel programs as equally 
demanding as the design of the parallel algorithm itself. High performance of the Fast 
Fourier Transform (FFT) is a key issue in many application [20]. There have been 
several attempts to parallelize FFT. For example, an algorithm suitable for 64-
processor nCUBE 3200 hypercube multicomputer was presented in [17] where a 
speedup of up to 16 with 64 processors was demonstrated. In [10], the binary 
exchange algorithm for the parallel implementation of FFT was presented. Also, FFT 
for hypercube multicomputers and vector multiprocessors was discussed in [19]. The 
implementation of a parallel FFT algorithm on a 64-processor Intel iPSC was 
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described in [3]. Finally, in [2], two FFT implementations (recursive and iterative), 
written in Id, were presented. 

Nevertheless, in spite of its reduction in complexity and time, FFT remains 
expensive mainly in distributed memory parallel computers where network latency 
significantly affects the performance of the algorithm. In most cases, the speedup 
which can be gained by parallelization is limited due to inter-process communication. 
Because of this, programming for distributed architectures has been somewhat 
restricted to regular, coarse-grained, and computation-intensive applications. FFT 
exploits fine grain parallelism, which means that an improvement at the 
communication level plays an extremely important role. Ideas for improvements 
include optimization by pipelining of communications such as considered in [6] 
where a simple communication mechanism named Active Messages was proposed. 
Under Active Messages, the network is viewed as a pipeline operating at a rate 
determined by the communication overhead and with a latency which is directly 
related to the message length and the network depth. 

Another approach to speeding up applications is based on Partial Evaluation (PE) 
[13]. PE [11] is an automatic program transformation technique which allows the 
partial execution of a program when only some of its input data are available, and it 
also “specializes” the program with respect to partial knowledge of the data. In [9], 
PE is incorporated in a library of general-purpose mathematical algorithms in order to 
allow the automatic generation of fast, special-purpose programs from generic 
algorithms. The results for the FFT show speedup factors between 1.83 and 5.05 if the 
size N of the input is available, where N ranges from 16 and 512. Good speedup for 
larger N is achieved despite the growth in code size which reaches O(N log2 N).  

In this paper, we present a 1D-FFT for distributed memory systems with an 
optimization at the communication level which reduces the number of messages by 
exploiting data locality and by applying a partial evaluation technique. We describe 
implementations based on multi-assignment and single-assignment data structures in 
distributed environments. Finally, we also discuss a caching mechanism for single-
assignment data structures. 

In the next section, we present several approaches to FFT parallelization. 
Description of our benchmark programs are made in section 3. In section 4, we 
discuss our experimental results. Lastly, conclusions are presented. 

2 FFT Optimization 

MPI provides many benefits for scalable parallel computations. However, one of its 
drawbacks is that it allows unrestricted access to data. The performance of MPI 
implementations is bounded by the performance of the underlying communication 
interface. However, an efficient interface does not necessarily guarantee a high 
performance implementation. One possible way to increase performance is to 
eliminate synchronization issues by non-strict data access and fully asynchronous 
operations, and to reduce the number of messages. We use single-assignment I-
Structures [1] (ISs) to facilitate asynchronous access when structure production and 
consumption can be allowed to proceed with a looser synchronization than 
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conventionally understood. In our implementation, ISs are managed by our 
Distributed I-Structure (DIS) memory system. We also use a mechanism to cache ISs 
memory requests; we call it Distributed I-Structures Software Cache (DISSC) to 
reduce number of messages by spatial and temporal locality exploitation, and by 
partial evaluation [4,21]. 

2.1 Non-strict Data Access and Software Caching 

Our DIS [14] is a linked list of ISs where multiple updates of a data element are not 
permitted. In DIS, each element maintains a presence bit which has three possible 
states: full, empty, or deferred, indicating whether a valid data has been stored in the 
element. Split-phase operations are used to enable the tolerance of request latencies 
by decoupling initiators from receivers of communication/synchronization 
transactions. DISs facilitate the exploitation of parallelism while timing sequences 
and determinacy issues would otherwise complicate its detection, regain flexibility 
without losing determinacy, and avoid the cache coherence problem [16]. However, 
the overhead of DIS management becomes its major drawback [14]. In order to solve 
this problem, we use a caching mechanism, the Distributed I-Structure Software 
Cache (DISSC). Several efforts related to the optimization of IS memory systems 
using a caching mechanism have been presented in [5, 8, 12]. Our DISSC is a further 
development of the ISSC system designed for non-blocking multithreaded 
architectures and tested for the EARTH [14]. DISSC provides a software caching 
mechanism under a distributed address space. It takes advantage of spatial and 
temporal localities without hardware support. DISSC works as an interface between 
user applications and network and is implemented as an extension of the MPI library. 
It makes the cache system portable and provides non-blocking communication 
facilities. Accesses to DIS elements are naturally mapped to the split-phase 
transactions of MPI. 

In DISSC, due to the long latency and unpredictable characteristics of a network, a 
second remote access to the data elements in the same data block (cache line) may be 
issued while the first request is still traveling. Hence, spatial data locality can be 
exploited. Temporal data exploitation refers to the reuse of data which is already in 
the cache. Because of the inherent cache coherence feature of DISs, no cache 
coherence problem exists. This significantly reduces the overhead of the cache 
system. 

2.2 Partial Evaluation 

In this section, an optimization technique based on partial evaluation is described. It 
enables the construction of general highly parameterized software systems without 
sacrificing efficiency. “Specialization” turns a general system into an efficient one, 
optimized for a specific parameter setting. It is similar in concept to, but in several 
ways stronger than, a highly optimizing compiler. Specialization can be done 
automatically or with human intervention. Partial evaluation may be considered a 
generalization of the conventional evaluation [7]. The use of partial evaluation for 
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distributed applications has been considered in the recent past. For instance, in [18], a 
distributed partial evaluation model that considers distributing the work of creating 
the specializations to computational agents called specialization servers is presented. 
Also in [15], the OMPI (Optimizing MPI) system that removes much of the excess 
overhead by employing partial evaluation and exploiting static information of MPI 
calls is considered.  

The question now becomes, would it be possible to use partial evaluation, not only 
to remove much of the excess overhead of a program, but also to reduce the number 
of messages? The answer is effectively yes. The problem is to assess how to partially 
evaluate of split-phase memory operations under a distributed address space. 

In this paper, we focus on non-strict information processing of split-phase memory 
operations to demonstrate the possibility to optimize distributed applications at the 
communication level when some program inputs are known. The splitting of data 
requests on split-phase transactions such as send-a-request, receive-a-request, send-a-
value and receive-a-value, together with the ability of ISs to defer reads, when the 
values are not available, allow evaluating MPI programs partially without losing 
determinacy. To completely evaluate a send-a-request transaction, the element being 
requested and the process that owns the element have to be specified. For the FFT, the 
size N of the input vector determines the control and data structures of the program. 
Hence, if N is available, an MPI_Send instruction can be executed. The receive-a-
request transaction can also be completely evaluated. The owner of the element 
executes the MPI_Receive instruction, checks the status of the element, and, if it is 
available, sends a value back to the requester by the MPI_Send instruction. Otherwise, 
it stores the request as a deferred read to this element. Later, when the element is 
produced and written, the owner of the element finds the list of pending reads 
(continuation vectors) and sends a value to the requestors by executing MPI_Send 
instructions. A receive-a-value transaction executes an MPI_Receive instruction and 
writes the value to the local memory of a requester.  

Distributed programs where parallel control structure is completely determined by 
the size of the problem (data-independent programs) can be partially evaluated even if 
the data bindings of the input vector are not performed. Residual programs only 
include send-a-value and received-a-value transactions. More details about non-strict 
evaluation and partial evaluation of DIS and DISSC can be found in [4]. 

3 Experimental Results 

In this section, we discuss the performance evaluation of the 1-D FFT algorithm with 
2048 double precision complex data on an SGI ORIGIN2000 with 8 MIPS R10000 
processors running at 195MHz, with 1280MB of main memory, and a network 
bandwidth of 800MBs/sec. Six different MPI implementations have been compared: 
 
1. FFT is the basic implementation with MPI. 
2. FFT-Residual. This program differs from FFT in that all send-a-request and 

receive-a-request transactions are performed at the partial evaluation step. Hence, 
they are not included in the residual program. Each element of input vector has a 
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vector of deferred reads. The residual program only binds elements, completes 
pending requests, and executes send-a-value and receive-a-value transactions. 

3. FFT-DIS. Remote requests are managed by the DIS memory system. 
4. FFT-DIS-Residual. A residual program differs from the original FFT-DIS program 

in that all requests for IS data items, local or remote, and receive-a-request 
operations are performed during the partial evaluation step. 

5. FFT-DISSC. The DISSC system is used. 
6. FFT-DISSC-Residual. Each element of the input vector has a vector of deferred 

reads. The residual program only binds elements, completes pending requests, and 
executes send-a-value and receive-a-value transactions. To support a cache line 
mechanism, the vector has one extra element which counts how many elements in 
a requested cache block have been produced. 

3.1 Message Reduction by Caching Remote Memory Requests and Partial 
Evaluation 

Table I shows the number of messages with a varying numbers of processors. DISSC 
does not reduce the number of messages when caching a single IS data item (CB=1). 
With caching 4 and 8 IS data items, the reduction of messages obtained by DISSC is 
respectively 4 and 8. This demonstrates that the FFT algorithm has no significant 
temporal data locality and re-use of data, and that only spatial locality is exploited. In 
the residual programs, the number of messages is reduced by a factor of two as 
compared to the original ones, irrespective of the number of PEs. Table 1 also shows 
how the DISSC contributes to the messages reduction. Increasing the size of the cache 
block proportionally decreases the number of messages, for example, the total 
reduction in the FFT-DISSC–Residual (CB=8) is 16 times comparing with the FFT.  

It is important to note that a reduction in the number of messages not only 
diminishes the execution time of the program, but also improve the system behavior 
by reducing the saturation of the communication system. 

Table I. Number of messages varying the number of processors. 

MPI programs  2 PEs 4 PEs 8 PEs 
FFT  16,384 40,960 81,920 
FFT-Residual  8,192 20,480 40,960 
FFT-DIS  16,384 40,960 81,920 
FFT-DIS Residual  8,192 20,480 40,960 
FFT-DISSC 16,384 40,960 81,920 
FFT-DISSC-Residual CB=1  8,192 20,480 40,960 
FFT-DISSC 4,096 10,240 20,480 
FFT-DISSC-Residual CB=4 2,048 5,120 10,240 
FFT-DISSC 2,048 5,120 10,240 
FFT-DISSC-Residual CB=8 1,024 2,560 5,120 

3.2 Time Reduction by Caching Remote Memory Requests 

Figure 1 shows the speedup for varying numbers of PEs. FFT-DIS has a lower 
speedup than FFT because of the DISs management overhead. FFT-DISSC with 
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CB=1 has a lower speedup than FFT-DIS because of the overhead and the lack of 
temporal data locality. Nevertheless, the spatial data locality exploited by the DISSC 
mechanism contributes to the acceleration of the FFT program. For instance, for eight 
PEs, the speedup varies from 1.19 to 4.39, varying CB from 1 to 8. 

Figure 2 presents the relative time reduction of FFT-DIS and FFT-DISSC, with 
different cache block sizes over the original FFT program, varying the number of 
PEs. FFT-DIS and FFT-DISSC with CB=1 are not faster than FFT. The speedup is 
increased when CB=4, 8. For PEs=8, FFT-DISSC has a relative time reduction of 
1.46 and 2.01, respectively. The time reduction is higher than the overhead of DISs 
and DISSC. 

3.3 Time Optimization by Partial Evaluation 

The degree of parallelizability of residual programs is presented in Figure 3. It shows 
speedups of residual programs with varying number of PEs. It shows that the speedup 
of FFT-Residual, FFT-DIS-Residual is relatively small, between 2 and 3 for 8 PEs. 
For the same number of PEs, the speedup of FFT-DISSC-Residual is increased from 
2.1 to 5.35 varying CB from 1 to 8. To evaluate the impact of partial evaluation on the 
performance, a time optimization coefficient So

p = To /Tr is calculated. So
p is the ratio 

of the execution time To taken by the original program over the time Tr taken by the 
residual one. Figure 4 shows the So

p for benchmark programs with and without cache 
system versus the number of processors.  

FFT-Residual is 20-50% faster (depending number of PEs) than FFT, FFT-DIS-
Residual is about 70% faster than the original FFT-DIS program. The time reduction 
for FFT-DISSC-Residual program is slightly larger. It is about 90% when CB=1 and 
46% for CB=8. Increasing the CB reduces the number of messages and, hence, fewer 
messages are removed by partial evaluation. 
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4. Conclusions 

Many non-strict structures are known and have been experimentally evaluated for a 
variety of multithreaded shared memory systems. The problem is to assess how suited 
they are for the exploitation of parallelism in distributed memory systems which use 
the latency tolerance properties of MPI. In this paper, the design and experimental 
evaluation of parallel implementations of the FFT algorithm in MPI with DISs and 
DISSC have been presented. We have shown that the split-phase memory access 
scheme of MPI and DISs allows not only an overlap of long communication latencies 
with useful computations, but also lifts the main restriction which conventional (and 
sequential) information processing usually implies: complete production of data 
before its consumption. It makes the concept of partial evaluation of distributed 
programs on the communication level feasible. Partial evaluation allows a reduction 
in the number of messages in data-independent applications. It can also be applied to 
program optimization by constant propagation, loop unrolling, and polyvariant 
specialization in order to get fully advantage of the static information available. 

We have shown that MPI programs using DIS and DISSC can take advantage of 
data locality and can allow complete asynchronous memory accesses. Although the 
management of D-IS has a cost, the DISSC overcomes this cost and improves the 
program performance by eliminating messages. Although ISs help with the 
synchronization issues, there are some algorithms where re-assignment is a key issue. 
In this paper, we have also presented experimental results which show the gain of 
partial evaluation of MPI programs without ISs.  

We have shown that DISSC and partial evaluation are a good programming 
mechanism which optimize both distributed programs and the use of the parallel 
systems by avoiding the saturation of the interconnection network, thereby leaving the 
resources free for other applications. Experiments have shown that if one were to take 
the total number of messages in the original MPI program as 100%, then introducing 
DISSC, it would reduce up to 88% of messages. The number of messages that are left 
(12%) can be reduced twice by partial evaluation, which means that only 6% of the 
original messages are left. Comparing the execution time of all benchmark programs 
versus the execution time of an FFT program running in a single process, the total 
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execution time can then be reduced by a factor of 1.68, when CB=4, PEs=2; 2.38 
when CB=8, PEs=4; and 3.37 when CB=8, PEs=8; with DISSC and partial evaluation 
together. 
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