
Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 188

Non-strict Evaluation of the FFT Algorithm in
Distributed Memory Systems*

Alfredo Cristóbal-Salas1, Andrei Tchernykh2, Jean-Luc Gaudiot3

1 School of Chemistry Sciences and Engineering, University of Baja California,
Tijuana, B.C. Mexico 22390, cristobal@uabc.mx

2 Computer Science Department, CICESE Research Center
Ensenada, BC, Mexico 22830, chernykh@cicese.mx

3 Electrical Engineering and Computer Science, University of California, Irvine, USA,
gaudiot@uci.edu

Abstract. This paper focuses on the partial evaluation of local and remote
memory accesses of distributed applications, not only to remove much of the
excess overhead of message passing implementations, but also to reduce the
number of messages, when some information about the input data set is known.
The use of split-phase memory operations, the exploitation of spatial data
locality, and non-strict information processing are described. Through a
detailed performance analysis, we establish conditions under which the
technique is beneficial. We show that by incorporating non-strict information
processing to FFT MPI, a significant reduction of the number of messages can
be archievd, and the overall system performance can be improved.

1 Introduction

Parallelization of scientific and engineering applications has become essential in
modern computer systems. The variety of parallel paradigms, languages, runtime
systems, and architectures makes optimization of parallel programs as equally
demanding as the design of the parallel algorithm itself. High performance of the Fast
Fourier Transform (FFT) is a key issue in many application [20]. There have been
several attempts to parallelize FFT. For example, an algorithm suitable for 64-
processor nCUBE 3200 hypercube multicomputer was presented in [17] where a
speedup of up to 16 with 64 processors was demonstrated. In [10], the binary
exchange algorithm for the parallel implementation of FFT was presented. Also, FFT
for hypercube multicomputers and vector multiprocessors was discussed in [19]. The
implementation of a parallel FFT algorithm on a 64-processor Intel iPSC was

* This work is partly supported by CONACYT (Consejo Nacional de Ciencia y Tecnología de

México) under grant #32989-Aand by the National Science Foundation under Grants No.
CSA-0073527 and INT-9815742. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views neither of the National Science Foundation nor of CONACYT.

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 189

described in [3]. Finally, in [2], two FFT implementations (recursive and iterative),
written in Id, were presented.

Nevertheless, in spite of its reduction in complexity and time, FFT remains
expensive mainly in distributed memory parallel computers where network latency
significantly affects the performance of the algorithm. In most cases, the speedup
which can be gained by parallelization is limited due to inter-process communication.
Because of this, programming for distributed architectures has been somewhat
restricted to regular, coarse-grained, and computation-intensive applications. FFT
exploits fine grain parallelism, which means that an improvement at the
communication level plays an extremely important role. Ideas for improvements
include optimization by pipelining of communications such as considered in [6]
where a simple communication mechanism named Active Messages was proposed.
Under Active Messages, the network is viewed as a pipeline operating at a rate
determined by the communication overhead and with a latency which is directly
related to the message length and the network depth.

Another approach to speeding up applications is based on Partial Evaluation (PE)
[13]. PE [11] is an automatic program transformation technique which allows the
partial execution of a program when only some of its input data are available, and it
also “specializes” the program with respect to partial knowledge of the data. In [9],
PE is incorporated in a library of general-purpose mathematical algorithms in order to
allow the automatic generation of fast, special-purpose programs from generic
algorithms. The results for the FFT show speedup factors between 1.83 and 5.05 if the
size N of the input is available, where N ranges from 16 and 512. Good speedup for
larger N is achieved despite the growth in code size which reaches O(N log2 N).

In this paper, we present a 1D-FFT for distributed memory systems with an
optimization at the communication level which reduces the number of messages by
exploiting data locality and by applying a partial evaluation technique. We describe
implementations based on multi-assignment and single-assignment data structures in
distributed environments. Finally, we also discuss a caching mechanism for single-
assignment data structures.

In the next section, we present several approaches to FFT parallelization.
Description of our benchmark programs are made in section 3. In section 4, we
discuss our experimental results. Lastly, conclusions are presented.

2 FFT Optimization

MPI provides many benefits for scalable parallel computations. However, one of its
drawbacks is that it allows unrestricted access to data. The performance of MPI
implementations is bounded by the performance of the underlying communication
interface. However, an efficient interface does not necessarily guarantee a high
performance implementation. One possible way to increase performance is to
eliminate synchronization issues by non-strict data access and fully asynchronous
operations, and to reduce the number of messages. We use single-assignment I-
Structures [1] (ISs) to facilitate asynchronous access when structure production and
consumption can be allowed to proceed with a looser synchronization than

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 190

conventionally understood. In our implementation, ISs are managed by our
Distributed I-Structure (DIS) memory system. We also use a mechanism to cache ISs
memory requests; we call it Distributed I-Structures Software Cache (DISSC) to
reduce number of messages by spatial and temporal locality exploitation, and by
partial evaluation [4,21].

2.1 Non-strict Data Access and Software Caching

Our DIS [14] is a linked list of ISs where multiple updates of a data element are not
permitted. In DIS, each element maintains a presence bit which has three possible
states: full, empty, or deferred, indicating whether a valid data has been stored in the
element. Split-phase operations are used to enable the tolerance of request latencies
by decoupling initiators from receivers of communication/synchronization
transactions. DISs facilitate the exploitation of parallelism while timing sequences
and determinacy issues would otherwise complicate its detection, regain flexibility
without losing determinacy, and avoid the cache coherence problem [16]. However,
the overhead of DIS management becomes its major drawback [14]. In order to solve
this problem, we use a caching mechanism, the Distributed I-Structure Software
Cache (DISSC). Several efforts related to the optimization of IS memory systems
using a caching mechanism have been presented in [5, 8, 12]. Our DISSC is a further
development of the ISSC system designed for non-blocking multithreaded
architectures and tested for the EARTH [14]. DISSC provides a software caching
mechanism under a distributed address space. It takes advantage of spatial and
temporal localities without hardware support. DISSC works as an interface between
user applications and network and is implemented as an extension of the MPI library.
It makes the cache system portable and provides non-blocking communication
facilities. Accesses to DIS elements are naturally mapped to the split-phase
transactions of MPI.

In DISSC, due to the long latency and unpredictable characteristics of a network, a
second remote access to the data elements in the same data block (cache line) may be
issued while the first request is still traveling. Hence, spatial data locality can be
exploited. Temporal data exploitation refers to the reuse of data which is already in
the cache. Because of the inherent cache coherence feature of DISs, no cache
coherence problem exists. This significantly reduces the overhead of the cache
system.

2.2 Partial Evaluation

In this section, an optimization technique based on partial evaluation is described. It
enables the construction of general highly parameterized software systems without
sacrificing efficiency. “Specialization” turns a general system into an efficient one,
optimized for a specific parameter setting. It is similar in concept to, but in several
ways stronger than, a highly optimizing compiler. Specialization can be done
automatically or with human intervention. Partial evaluation may be considered a
generalization of the conventional evaluation [7]. The use of partial evaluation for

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 191

distributed applications has been considered in the recent past. For instance, in [18], a
distributed partial evaluation model that considers distributing the work of creating
the specializations to computational agents called specialization servers is presented.
Also in [15], the OMPI (Optimizing MPI) system that removes much of the excess
overhead by employing partial evaluation and exploiting static information of MPI
calls is considered.

The question now becomes, would it be possible to use partial evaluation, not only
to remove much of the excess overhead of a program, but also to reduce the number
of messages? The answer is effectively yes. The problem is to assess how to partially
evaluate of split-phase memory operations under a distributed address space.

In this paper, we focus on non-strict information processing of split-phase memory
operations to demonstrate the possibility to optimize distributed applications at the
communication level when some program inputs are known. The splitting of data
requests on split-phase transactions such as send-a-request, receive-a-request, send-a-
value and receive-a-value, together with the ability of ISs to defer reads, when the
values are not available, allow evaluating MPI programs partially without losing
determinacy. To completely evaluate a send-a-request transaction, the element being
requested and the process that owns the element have to be specified. For the FFT, the
size N of the input vector determines the control and data structures of the program.
Hence, if N is available, an MPI_Send instruction can be executed. The receive-a-
request transaction can also be completely evaluated. The owner of the element
executes the MPI_Receive instruction, checks the status of the element, and, if it is
available, sends a value back to the requester by the MPI_Send instruction. Otherwise,
it stores the request as a deferred read to this element. Later, when the element is
produced and written, the owner of the element finds the list of pending reads
(continuation vectors) and sends a value to the requestors by executing MPI_Send
instructions. A receive-a-value transaction executes an MPI_Receive instruction and
writes the value to the local memory of a requester.

Distributed programs where parallel control structure is completely determined by
the size of the problem (data-independent programs) can be partially evaluated even if
the data bindings of the input vector are not performed. Residual programs only
include send-a-value and received-a-value transactions. More details about non-strict
evaluation and partial evaluation of DIS and DISSC can be found in [4].

3 Experimental Results

In this section, we discuss the performance evaluation of the 1-D FFT algorithm with
2048 double precision complex data on an SGI ORIGIN2000 with 8 MIPS R10000
processors running at 195MHz, with 1280MB of main memory, and a network
bandwidth of 800MBs/sec. Six different MPI implementations have been compared:

1. FFT is the basic implementation with MPI.
2. FFT-Residual. This program differs from FFT in that all send-a-request and

receive-a-request transactions are performed at the partial evaluation step. Hence,
they are not included in the residual program. Each element of input vector has a

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 192

vector of deferred reads. The residual program only binds elements, completes
pending requests, and executes send-a-value and receive-a-value transactions.

3. FFT-DIS. Remote requests are managed by the DIS memory system.
4. FFT-DIS-Residual. A residual program differs from the original FFT-DIS program

in that all requests for IS data items, local or remote, and receive-a-request
operations are performed during the partial evaluation step.

5. FFT-DISSC. The DISSC system is used.
6. FFT-DISSC-Residual. Each element of the input vector has a vector of deferred

reads. The residual program only binds elements, completes pending requests, and
executes send-a-value and receive-a-value transactions. To support a cache line
mechanism, the vector has one extra element which counts how many elements in
a requested cache block have been produced.

3.1 Message Reduction by Caching Remote Memory Requests and Partial
Evaluation

Table I shows the number of messages with a varying numbers of processors. DISSC
does not reduce the number of messages when caching a single IS data item (CB=1).
With caching 4 and 8 IS data items, the reduction of messages obtained by DISSC is
respectively 4 and 8. This demonstrates that the FFT algorithm has no significant
temporal data locality and re-use of data, and that only spatial locality is exploited. In
the residual programs, the number of messages is reduced by a factor of two as
compared to the original ones, irrespective of the number of PEs. Table 1 also shows
how the DISSC contributes to the messages reduction. Increasing the size of the cache
block proportionally decreases the number of messages, for example, the total
reduction in the FFT-DISSC–Residual (CB=8) is 16 times comparing with the FFT.

It is important to note that a reduction in the number of messages not only
diminishes the execution time of the program, but also improve the system behavior
by reducing the saturation of the communication system.

Table I. Number of messages varying the number of processors.

MPI programs 2 PEs 4 PEs 8 PEs
FFT 16,384 40,960 81,920
FFT-Residual 8,192 20,480 40,960
FFT-DIS 16,384 40,960 81,920
FFT-DIS Residual 8,192 20,480 40,960
FFT-DISSC 16,384 40,960 81,920
FFT-DISSC-Residual CB=1 8,192 20,480 40,960
FFT-DISSC 4,096 10,240 20,480
FFT-DISSC-Residual CB=4 2,048 5,120 10,240
FFT-DISSC 2,048 5,120 10,240
FFT-DISSC-Residual CB=8 1,024 2,560 5,120

3.2 Time Reduction by Caching Remote Memory Requests

Figure 1 shows the speedup for varying numbers of PEs. FFT-DIS has a lower
speedup than FFT because of the DISs management overhead. FFT-DISSC with

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 193

CB=1 has a lower speedup than FFT-DIS because of the overhead and the lack of
temporal data locality. Nevertheless, the spatial data locality exploited by the DISSC
mechanism contributes to the acceleration of the FFT program. For instance, for eight
PEs, the speedup varies from 1.19 to 4.39, varying CB from 1 to 8.

Figure 2 presents the relative time reduction of FFT-DIS and FFT-DISSC, with
different cache block sizes over the original FFT program, varying the number of
PEs. FFT-DIS and FFT-DISSC with CB=1 are not faster than FFT. The speedup is
increased when CB=4, 8. For PEs=8, FFT-DISSC has a relative time reduction of
1.46 and 2.01, respectively. The time reduction is higher than the overhead of DISs
and DISSC.

3.3 Time Optimization by Partial Evaluation

The degree of parallelizability of residual programs is presented in Figure 3. It shows
speedups of residual programs with varying number of PEs. It shows that the speedup
of FFT-Residual, FFT-DIS-Residual is relatively small, between 2 and 3 for 8 PEs.
For the same number of PEs, the speedup of FFT-DISSC-Residual is increased from
2.1 to 5.35 varying CB from 1 to 8. To evaluate the impact of partial evaluation on the
performance, a time optimization coefficient So

p = To /Tr is calculated. So
p is the ratio

of the execution time To taken by the original program over the time Tr taken by the
residual one. Figure 4 shows the So

p for benchmark programs with and without cache
system versus the number of processors.

FFT-Residual is 20-50% faster (depending number of PEs) than FFT, FFT-DIS-
Residual is about 70% faster than the original FFT-DIS program. The time reduction
for FFT-DISSC-Residual program is slightly larger. It is about 90% when CB=1 and
46% for CB=8. Increasing the CB reduces the number of messages and, hence, fewer
messages are removed by partial evaluation.

0

1

2

3

4

5

1 PE 2 PEs 4 PEs 8 PEs

Sp
ee

du
p

FFT FFT-DIS
FFT-DISSC (CB=1) FFT-DISSC (CB=4)
FFT-DISSC (CB=8)

Fig. 1. Speedup of FFT, FFT-DIS and FFT-

DISSC (with different cache block sizes 1, 4
and 8) varying number of Pes.

0

0.5

1

1.5

2

2.5

1 PE 2 PEs 4 PEs 8 PEs

Ti
m

e
R

ed
uc

tio
n

 .

FFT-DIS FFT-DISSC (CB=1)
FFT-DISSC (CB=4) FFT-DISSC (CB=8)

Fig. 2. Time reduction of FFT-DIS and

FFT-DISSC (with different cache block sizes 1,
4 and 8) programs over FFT, when varying the

number of PEs.

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 194

0

1

2

3

4

5

6

1 PE 2 PEs 4 PEs 8 PEs

Sp
ee

du
p

FFT-Res FFT-DIS-Res
FFT-DISSC-Res (CB=1) FFT-DISSC-Res (CB=4)
FFT-DISSC-Res (CB=8)

Fig. 3. Speedup of FFT-Residual, FFT-DIS-
Residual, and FFT-DISSC-Residual (with cache

block sizes equal 1, 4 and 8) programs with
different number of PEs.

0

0.5

1

1.5

2

2.5

3

1 PE 2 PEs 4 PEs 8 PEs

So
p

FFT FFT-DIS
FFT-DISSC (CB=1) FFT-DISSC (CB=4)
FFT-DISSC (CB=8)

Fig. 4. Sop for benchmark programs with and

without cache system versus the number of
processors.

4. Conclusions

Many non-strict structures are known and have been experimentally evaluated for a
variety of multithreaded shared memory systems. The problem is to assess how suited
they are for the exploitation of parallelism in distributed memory systems which use
the latency tolerance properties of MPI. In this paper, the design and experimental
evaluation of parallel implementations of the FFT algorithm in MPI with DISs and
DISSC have been presented. We have shown that the split-phase memory access
scheme of MPI and DISs allows not only an overlap of long communication latencies
with useful computations, but also lifts the main restriction which conventional (and
sequential) information processing usually implies: complete production of data
before its consumption. It makes the concept of partial evaluation of distributed
programs on the communication level feasible. Partial evaluation allows a reduction
in the number of messages in data-independent applications. It can also be applied to
program optimization by constant propagation, loop unrolling, and polyvariant
specialization in order to get fully advantage of the static information available.

We have shown that MPI programs using DIS and DISSC can take advantage of
data locality and can allow complete asynchronous memory accesses. Although the
management of D-IS has a cost, the DISSC overcomes this cost and improves the
program performance by eliminating messages. Although ISs help with the
synchronization issues, there are some algorithms where re-assignment is a key issue.
In this paper, we have also presented experimental results which show the gain of
partial evaluation of MPI programs without ISs.

We have shown that DISSC and partial evaluation are a good programming
mechanism which optimize both distributed programs and the use of the parallel
systems by avoiding the saturation of the interconnection network, thereby leaving the
resources free for other applications. Experiments have shown that if one were to take
the total number of messages in the original MPI program as 100%, then introducing
DISSC, it would reduce up to 88% of messages. The number of messages that are left
(12%) can be reduced twice by partial evaluation, which means that only 6% of the
original messages are left. Comparing the execution time of all benchmark programs
versus the execution time of an FFT program running in a single process, the total

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 195

execution time can then be reduced by a factor of 1.68, when CB=4, PEs=2; 2.38
when CB=8, PEs=4; and 3.37 when CB=8, PEs=8; with DISSC and partial evaluation
together.

References

1. Arvind, Nikhil R.S., Pingali, K-K.: I-Structures: Data Structures for Parallel
Computing. ACM Transaction on Programming Languages and Systems, Vol. 11
No. 4 (1989) 598-632

2. Böhm, A-P-W., Hiromoto, R-E.: The Data Flow Parallelism of FFT in Gao, G-
R., Bic, L., Gaudiot, J-L.: Advanced topics in dataflow computing and
multithreading ISBN: 0-8186-6542-4 (1995) 393-404

3. Chamberlain, R-M.: Gray codes, Fast Fourier Transforms and hypercubes.
Parallel computing, vol. 6, (1988) 225-233

4. Cristobal A., Tchernykh A., Gaudiot J-L., Lin WY. Non-Strict Execution in Parallel and
Distributed Computing, International Journal of Parallel Programming, Kluwer
Academic Publishers, New York, U.S.A., vol. 31, 2, p. 77-105, 2003

5. Dennis, J-B., Gao, G-R.: On memory models and cache management for shared-
memory multiprocessors. CSG MEMO 363, CSL, MIT. (1995)

6. Eicken, T., Culler, D-E., Goldstein, S-C., Schauser, K-E.: Active Messages: a
Mechnisim for Integrated Communication and Computation. In Proceedings of
the 19th International Symposium on Computer Architecture, 1992, 256-266

7. Ershov, A.P.: Mixed computation: potential applications and problems for study.
Theoretical Computer Science, vol. 18 (1982)

8. Govindarajan R., Nemawarkar S, LeNir P: Design and performance evaluation of
a multithreaded architecture. In proceedings of the 1st international symposium
on High-Performance Computer Architecture, Raliegh, 1995, 298-307

9. Gluck R., Nakashige R., Zochling R.: Binding-time analysis applied to
mathematical algorithms. In Dolezal J., Fidler, J. (eds.) 17th IFIP Conference on
System Modelling and Optimization; Prague, Czech Republic. (1995)

10. Gupta S-A,: A typed approach to layered programming language design. Thesis
proposal, Laboratory of computer science, Department of EE&CS, MIT (1993)

11. Jones, N-D.: An introduction to Partial Evaluation. ACM computing surveys, Vol
28, No 3 (1996)

12. Kavi, K-M., Hurson, A-R., Patadia P., Abraham E., Shanmugam, P.: Design of
cache memories for multithreaded dataflow architecture. In ISCA 1995, 253-264

13. Lawall, J-L.: Faster Fourier Transforms via automatic program specialization.
IRISA research reports 1998; 28 pp.

14. Lin, W-Y., Gaudiot, J-L.: I-Structure Software Cache – A split-Phase Transaction
runtime cache system. In: Proceedings of PACT ’96 Boston, MA, 1996, 20-23

15. Ogawa, H., Matsuoka, S.: OMPI: Optimizing MPI programs using Partial
Evaluation. In Proceedings IEEE/ACM Supercomputing Conference (1996)

16. Osamu, T., Yuetsu, K., Santoshi, S., Yoshinori, Y.: Highly efficient
implementation of MPI point-to-point communication using remote memory
operations. In: Proceedings of 12th ACM ICS98, Melbourne, Australia. (1998)
267-273

Recent Advances in Parallel Virtual Machine and Message Passing Interface. J.
Dongarra, D. Laforenza, S. Orlando (eds.), Lectures Notes in Computer Science,
Springer-Verlag, Berlin, vol. 2840, pp. 188-195, 2003 196

17. Quinn, M-J.: Parallel computing theory and practice. McGraw-Hill Inc. (1994)
18. Sperber, M., Klaeren, H., Thiemann P.: Distributed partial evaluation. In:

Kaltofen, Erich (ed.): PASCO'97, Maui, Hawaii. (1997) 80-87
19. Swarztrauber, P-N.: Multiprocessor FFTs. Parallel computing, vol. 5. (1987) 197-

210.
20. E. Oran Brigham. Fast Fourier Transform and Its Applications, Prentice-Hall,

1988
21. J.N. Amaral, W-Y. Lin, J-L. Gaudiot, and G.R. Gao, “Exploiting Locality in

Single Assignment Data Structures Updated Through Split-Phase Transactions,”
International Journal of Cluster Computing, Special Issue on Internet
Scalability: Advances in Parallel, Distributed, and Mobile Systems, Vol. 4, Issue
4, 2001.

