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1 Introduction

By their very design, many robot control programs are non-terminating. To give a simple example - one

we shall use in this paper - an office coffee-delivery robot might be implemented as an infinite loop in

which the robot responds to exogenous requests for coffee that are maintained on a queue. Since a future

coffee request is always possible, the program never terminates.

As is the case for more conventional programs, we want some reliability assurances for robot con

trollers. This paper describes the approach being taken by our Cognitive Robotics Group to expressing

and proving properties of non-terminating programs expressed in GOLOG, a high level logic program

ming language for modeling and implementing dynamical systems. The kinds of properties we have in

mind are traditional in computer science: liveness, fairness, etc. We differ from the "classical" approaches

([LS87, Cou90, MP95]) for reasons dictated by the following characteristics of GOLOG:

1. To write a GOLOG program, the programmer first axiomatizes the primitive actions of the appli

cation domain, using first order logic. These actions may also include exogenous events.

2. Next, she describes, in GOLOG, the complex behaviors her robot is to exhibit in this domain. This

GOLOG program is interpreted by means of a formula, this time in second order logic.

3. Finally, a suitable theorem-prover executes the program.

Because these features are all represented in classical (second order) logic, it is natural to express and

prove properties of GOLOG programs, including non-terminating ones, in the very same logic. This

approach to program proofs has the advantage of logical uniformity and the availability of classical proof

theory. It also provides a very rich language with which to express program properties, as we shall see in

this paper. Moreover, it provides for proofs of programs with incomplete initial state, the normal situation

in robotics where the agent does not have complete information about the world it inhabits. Finally, this

approach gracefully accommodates exogenous event occurrences, and proofs of program properties in

their presence.

2 Formal Preliminaries

2.1 The Situation Calculus

The situation calculus is a second order language specifically designed for representing dynamically chang

ing worlds. All changes to the world are the result of named actions. A possible world history, which

is simply a sequence of actions, is represented by a first order term called a situation. The constant

So is used to denote the initial situation, namely the empty history. There is a distinguished binary

function symbol do; do( 0:, s) denotes the successor situation to s resulting from performing the action 0:.

Actions may be parameterized. For example, put(x, y) might stand for the action of putting object x on

object y, in which case do(put(A,B),s) denotes that situation resulting from placing A on B when the

history is s. Notice that in the situation calculus, actions are denoted by first order terms, and situations

(world histories) are also first order terms. For example, do(putdown(A) , do(walk(L), do(pickup(A) , So)))
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is a situation denoting the world history consisting of the sequence of actions [pickup(A), walk(L), put

down(A)]. Notice that the sequence of actions in a history, in the order in which they occur, is obtained

from a situation term by reading off the actions from right to left. The situation calculus has a distin

guished predicate symbol Poss; the intended meaning of Poss(a, s) is that it is possible to perform the

action a in situation s.

Relations (functions) whose truth values (function values) vary from situation to situation are called
relational (functional) ftuents. They are denoted by predicate (function) symbols taking a situation term

as their last argument. For example, hasCojjee(p, s) is a relational fluent whose intended meaning is that

person p has coffee in situation s; robotLocation(s) is a functional fluent denoting the robot's location in
situation s.

When formalizing an application domain, one must specify certain axioms:

• Action precondition axioms, one for each primitive action. These characterize the relation Poss,

and give the preconditions for the performance of an action in a situation. In a robot coffee delivery

setting, such an axiom might be:

Poss(giveCojjee(person) , s) =
holdingCojjee(s) 1\ robotLocation(s) = ojjice(person)

This says that the preconditions for the robot to give coffee to person p are that the robot is carrying

coffee, and the robot's location is p's office.

• Successor state axioms, one for each fluent. These capture the causal laws of the domain, together
with a solution to the frame problem [Rei91]. For our coffee delivery robot, the following is an

example:

Poss(a, s) :J [holdingCojjee(do(a, s)) =
a = pickupCojjee V

holdingCojjee(s) 1\ -{3person)a = giveCojjee(person)].

In other words, provided the action a is possible, the robot will be holding a cup of coffee after

action a is performed iff a is the action of the robot picking up the coffee, or the robot is already

holding coffee and a is not the action of the robot giving that coffee to someone.

• Unique names axioms for the primitive actions, stating that different names for actions denote

different actions.

• Axioms describing the initial situation - what is true initially, before any actions have occurred.

This is any finite set of sentences which mention no situation term, or only the situation term So.

Examples of axioms for the initial situation for our coffee delivery example are:

-{3p)hasCojjee(p, So), robotLocation(So) = CM.

These have the intended reading that initially, no one has coffee, and the robot is located at the

coffee machine (CM).

See [LRL+97] for a full description.

2.2 GOLOG

GOLOG [LRL+97] is a situation calculus-based logic programming language that allows for defining

complex actions using a repertoire of user specified primitive actions. GOLOG provides the usual kinds

of imperative programming language control structures as well as various forms of nondeterminism.

Briefly, GOLOG programs are formed by using the following constructs:

1. Primitive actions: a. Do action a in the current situation. Actually a is a pseudo-action obtained

from an action by suppressing the situation argument in each functional fluent. The function a[s]

that given a pseudo-action a and a situation s returns the original action (see [LRL+97]).

2. Test actions: ¢J? Test the truth value of expression ¢J in the current situation. As for primitive

actions, ¢J is a pseudo-formula obtained from a situation calculus formula by suppressing all situation

arguments. The function ¢J[s] that given a pseudo-formula ¢J and a situation s returns the original

formula.

3. Sequence: <51 ; <52 . Execute program <51 , followed by program <52 .
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4. Nondeterministic action choice: <h I b2 · Execute b1 or b2 ·

5. Nondeterministic choice of arguments: (1rZ )b. Nondeterministically pick a value for z, and for that

value of z, execute program b.

6. Nondeterministic repetition: b*. Execute b a nondeterministic number of times.

7. While loops: while ¢ do b endWhile, which is expressed as (¢?; b)*; -,¢?).

8. Conditionals: if ¢ then b1 else b2 , which is expressed as (¢?;bd I (-,¢?;b2 ).

9. Procedures, including recursion: proc ProcName(iJ) bProcName endProc.

3 Single step semantics for GOLOG

In [LRL+97], GOLOG programs are interpreted by means of a special relation Do(b, s, s') that given

a (generally nondeterministic) program b and a situation s returns a possible situation s', resulting by

executing b starting from s. Actually in [LRL+97] the relation Do is not denoted by a predicate, but

instead it is defined implicitly by using macros expansion rules such as:

Do(b1 ; b2 , s, s,)d;j (3s")Do(b1 , s, s") A Do(b2 , s", s')

Do(b1 Ib2 , s,s,)d;jDo(b1 , s,s') V Do(b2 ,s,s')

Do(b*, s, s,)d;j (VP)[ .. . :J P(s, s')]

where ... stands for the conjunction of:

(Vs, s)P(s, s)
(Vs, s", s')P(s, s") A Do(b, s", s') :J P(s, s')

one for each construct in the language. By using such macro expansions rules the relation Do(b, s, s') for

the particular program b is defined by a (generally second order) formula <J> ~ (s, s') not mentioning b at

all. This is very convenient, since it completely avoids the introduction of programs into the language

(they are used only during the macro expansion process to get the formulas < J > ~ ( s , s') corresponding to

Do(b, s, s')). Observe however that in this way programs cannot be quantified over, because they are not

terms of the language of the situation calculus.

The kind of semantics Do associates to programs, which is based on the complete evaluation of

the program, is sometimes called evaluation semantics [Hen90]. Such a semantics is not well suited to

interpret non-terminating programs, like infinite loops, since for such programs the evaluation can never

be completed and a final situation can never be reached.

For non-terminating programs one needs to rely on a semantics that allows for interpreting segments

of program executions. So we adopt a kind of semantics called computational semantics [Hen90], which is

based on "single steps" of computation, or transitions1
. A step here is either a primitive or a test action.

We begin by introducing two special relations, Final and Trans. Final(b) is intended to say that program

b is in a final state, i.e. it may legally terminate in the current situation. Trans(b, s, b', s') is intended to

say that program b in situation s may legally execute one step, ending in situation s' with program b'
remaining.

To follow this approach it is necessary to quantify over programs and so, unlike in [LRL+97], we need

to encode GOLOG programs as first-order terms, including introducing constants denoting variables, and

so on. This is laborious but quite straightforward [Lei94j2. We omit all such details here and simply use

programs within formulas as if they were already first-order terms.

Final and Trans are denoted by predicates defined inductively on the structure of the first argument.

It is convenient to include a special "empty" program c, denoting that nothing of the program remains

to be performed.

1 Both types of semantics belong to the family of structural operational semantics introduced in [Plo81].

2We assume that the predicates introduced in this section, including Final and Trans, cannot occur in tests, hence
disallowing self-reference.
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The definition of Final is as follows:

(V6)Final(6) == (VF)[... :J F(6)]
where ... stands for the conjunction of the universal closure of the following clauses:

F(c)
F(61) 1\ F(62) :J F(61;62)

F(6d V F(62) :J F(61 I 62 )

F(6) :J F((1l"z)6))
F(6*)

F(6ProcName) :J F(ProcName(x))

Observe that being final is a syntactic property of programs: programs of a certain form are considered

to be in a final state. Moreover being final does not depend on the objects the program deals with, indeed

Final((1l"z)6) and Final(ProcName(x)) depend only on 6 and 6ProcName and not on the particular values
of z and x respectively. Observe that from the above definition we get that primitive and test actions

are never final: for all actions a Final(a) == False and for all tests ¢J? Final(¢J?) == False.

The definition of Trans is as follows: 3

(V6,s,6',s')Trans(6,s,6',s') == (VT)[ ... :J T(6,s,6',s')]
where ... stands for the conjunction of the universal closure of the following clauses:

Poss(a[s], s) :J T(a, s,c, do(a[s], s))

¢J[s] :J T(¢J?, s, c, s)

T(61, S, 6 ~ , s') :J T(61;62 , s, 6~; 62 , s')
Final(6d 1\ T(62, S, 6 ~ , s') :J T(61;62 , S, 6 ~ , s')

T ( 6 1 , s , 6 ~ , s ' ) : J T(61 162,s,6~,s')

T(62,s,6~,s'):J T(61 162,s,6~,s')

(3y)T(6~,s,6',s'):J T((1l"z)6(x),s,6',s')

T(6 s 6' s') :J T(6* s 6" 6* s'), , , , , , ,

T((6ProcName)~, S, 6', s') :J T(ProcName(x), s, 6', s')

The clauses defining Trans characterize when a configuration (6, s) can evolve (in a single step) to a

configuration (6', s'). Intuitively they can be read as follows:

• (a,s) evolves to (c,do(o:[s],s)), provided a[s] is possible in s. Observe that after having performed

a, nothing remains to be performed.

• (¢J?, s) evolves to (c, s), provided that ¢J[s] holds. Otherwise it cannot proceed. Observe that in any
case the situation remains unchanged.

• (61 ; 62 , s) can evolve to ( 6 ~ ; 62 , s'), provided that (61 , s) can evolve to ( 6 ~ , s'). Moreover it can evolve

to (6Ls'), provided that 61 is final and (62,s) can evolve to (6Ls').

• (61 1152 ,s) can evolve to (6',s'), provided that either (61,s) or (62,s) can do so.

• ((1l"z)6, s) can evolve to (is', s'), provided that there exists a y such that ( 6 ~ , s) can evolve to (is', s')
- z is bound by 1l" in (1l"z)6 and is typically free in 6.

• (6*, s) can evolve to (6'; 6, s') provided that (6, s) can evolve to (6', s'). Observe that (6*, s) can also
not evolve at all, since 6* is final.

• (ProcName(x), s) can evolve to (6', s'), provided that the body 6ProcName of the procedure ProcName,
with the actual parameters x substituted for the formal parameters V, can do so.

The possible configurations that can be reached by a program 6 starting in a situation s are those

obtained by repeatly following the transition relation denoted by Trans starting from (6, s), i.e. those in

3Here, < 5 ~ is the usual notion of substitution, in which the nondeterministic choice operator 7r is treated like a quantifier.

4



the reflexive transitive closure of the transition relation. Such a relation is denoted by the "reflexive

transitive closure" of Trans, Trans* defined as:

(Vb, s, b', s') Trans*(b, s, b', s') == VU[... => U(b, s, b', s')]

where ... stands for the conjunction of the universal closure of the following clauses:

U(b,s,b,s)

U(b s b' s') 1\ Trans(b' s' b" s") , U(b S b" s")
, , , , " -I '"

Using Trans* and Final we may denote the relation Do as follows:

Do(b, s, s,)d;j (:3b') Trans*(b, s, b', s') 1\ Final(b')

In other words, Do(b, s, s') holds if it is possible to repeatedly single-step the program b, obtaining a

program b' and a situation s' such that b' can legally terminate in s'. Note that this formulation of Do

is equivalent to the one in [LRL+97] (d. [Hen90]).

4 Exogenous actions

Exogenous action are primitive actions that are not under the control of the program. They are executed

by other agents in an asynchronous way wrt the program. Trans can be easily modified to take into

account exogenous actions as well. It suffice to add to the above definition a clause having, as a first

approximation, the form:

Exo(exo) 1\ Poss(exo, s) => T(b, s, b, do(exo, s))

which says that any configuration (b, s) can evolve, due to the occurrence of an exogenous action exo, to

(b, do(exo, s)), where the situation has changed but the program hasn't.

The above clause enables the occurrence of an exogenous action exo every time the action preconditions

for exo, and hence Poss(exo, s), are true. However it is of interest, to restrict further the actual occurrence

of exo along a sequence of transitions, establishing some sort of dynamics for exogenous actions. Such a

dynamics has a role similar to that of programs for normal primitive actions although typically it is not

strict enough to extract a program that implements it. Rather the dynamics of exogenous actions has to

be specified by means of suitable axioms.

A possible way to follow such a strategy is to introduce a special fluent DynaPoss(exo, s) and modify

Trans by introducing the following refinement of the above clause:

Exo(exo) 1\ Poss(exo, s) 1\ DynaPoss(exo, s) => T(b, s, b, do(exo, s)).

Then one uses special axioms expressing the dynamics of exogenous actions by specifying in which situa

tions s along a sequence of transitions DynaPoss(exo, s) holds. Such axioms may express sophisticated

temporal/dynamic laws and typically they are going to be second order. Observe that exo can actually

occur only if both Poss(exo, s) and DynaPoss(exo, s) hold in s.

5 Logical representation of inductive definitions and fixpoints

The relations Trans and Final are defined inductively. Inductive definitions [Acz77, Mos74] are broadly

used in mathematical logic for defining sets. For the past several years they became popular in computer

science [CC92]. A rule-based inductive definition is a set R of rules of the form ~ , where P is the set of
premises and c is the conclusion, together with a closure condition: a set Z is R-closed if each rule in

R whose premises are in Z also has its conclusion in Z. A set H, inductively defined by R, is given by

H = n{Z I Z is R-closed} or by H = U{Z I Z is R-closed}. The former is called a positive inductive

definition of H, the latter is called a negative inductive or coinductive definition of H. Let U be a set.

An operator induced by an inductive definition is a total mapping r : Pow(U) f-+ Pow(U), such that

r(Z) = {c E U I :3P ~ Z
P
- E R}
c

That is, r is a mapping taking sets to sets.

Inductive definitions are strongly related to fixpoint properties i.e. properties defined as solutions of

recursive equations. Specifically, positive inductive definitions are related to least fixpoints. i.e. minimal
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solution of the recursive equations, whereas negative inductive definitions are related to greatest fixpoints,

i.e. maximal solutions of the recursive equations. Dynamic properties are typically fixpoint properties,

expressed as the least or greatest solutions of certain recursive logical equations (e.g. see [Sti96]).
Every property definable as an extreme fixpoint must have, by definition:

• its own construction principle, a recursive equation a fixpoint of which is our property;

• an appropriate induction or coinduction principle to guarantee the minimality or maximality of the

solution of the recursive equation.

5.1 Construction principle

To define a set Z, here denoted by a predicate Z (x), we need to say what its elements are. The construction

principle tells us how to obtain these elements recursively.

(\lx)Z(x) == <ll(Z, x) (1)

In this case <ll is called a constructor for Z. Any solution of this recursive equation is called a jixpoint of the

operator <ll. The Knaster-Tarski Theorem [Kna28, Tar55] guarantees that if the operator <ll is monotone,

the equation (1) has both a least and a greatest solution. A sufficient condition for monotonicity is that

all occurrence of Z occur within a even number of negations4
. This condition is always satisfied in this

paper.

5.2 Induction principle: Least fixpoints

To guarantee that Z is the smallest solution, we apply the induction principle:5

(\lP, X){[(\lY)<ll(P, iJ) => P(iJ)] => [Z(x) => P(x)]} (2)

i.e., whatever solution P of the recursive specification we take, Z is included in it.

A set Z satisfying construction principle (1) and induction principle (2) is denoted by J.1p,g<ll(P, iJ)(x),
and it is called a least jixpoint of an operator <ll(P, iJ). Note that in J.1p,g<ll(P, iJ)(x) the predicate variable

P and the individual variables iJ are considered bounded by J.1, while the individual variables x are free.

Another view of J.1p,g<ll(P, iJ)(x) is that J.1p,g<ll(P, iJ) is the name of a defined predicate, and x are its
arguments.

We can rewrite the induction principle (2) in the following way

(\lx){Z(x) => [(\lP)[(\lY)<ll(P,iJ) => P(Y)] => P(x)]} (3)

Notice that implication in the opposite direction follows from the construction principle (1). We obtain

(\lx){J.1p,g<ll(P, Y)(x) == [(\lP) [(\lY)<ll(P, iJ) => P(Y)] => P(x)]} (4)

The last sentence is often considered as a formal definition of a least fixpoint. Observe that it has exactly

the form we have used to define Trans and Final (as well as Do(b*, s, s') in [LRL+97]).

5.3 Coinduction principle: Greatest fixpoints

To guarantee that Z is the biggest solution of (1), we apply the coinduction principle:

(\lP, x){[(\lY)P(iJ) => <ll(P, iJ)] => [P(x) => Z(x)]}

i.e., whatever solution P of the recursive specification we take, Z includes it.

We can rewrite the coinduction principle (5) in the following way

(\lx){[(:3P)[(\liJ)P(iJ) => <ll(P, iJ)] t\ P(x)] => Z(x)}

(5)

(6)

An explicit expression for a greatest fixpoint can be obtained in a similar way as was done for a least

fixpoint:

(\lx){vP,g<ll(P, iJ)(x) == [(:3P)[(\lY)P(iJ) => <ll(P, Y)] t\ P(X)]}

The last sentence can be taken as a definition of a greatest fixpoint.

4 Interpreting cf> :J \ji as an abbreviation for ~ c f > V \ji

5The idea of defining a least fixpoint using two principles, construction and induction, is from [Heh93].
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6 Examples of expressible dynamic properties

With Trans and Final in place a wide variety of dynamic properties can be expressed by relying on second

order formulae expressing least and greatest fixpoint properties. In particular properties expressible

by logics of programs, such as dynamic logics [KT90], mu-calculus [Par70, Sti96], and temporal logics

[Eme96], can be rephrased in our setting. Let us present some examples.

1. The formula:

Q1 (60, so) d;;j J.lP,J,s[7P(6, s) V (:36', s') Trans(6, s, 6', s') A P(6', s')] (60, so)

(where 60, So are individual variables) defines a predicate Q1 (60, so) that denotes the smallest set
of configurations C1 such that a configuration (6, s) belongs to this set (the predicate Q1 is true on

(6, s)) if and only if either 7P is true on (6, s) or there exists a configuration (6', s'), reachable in one

step by the relation Trans, which also belongs to the set C1.

In this way the formula expresses that from each configuration (60, so) on which the specified

predicate is true, there exists an execution path that eventually reaches a configuration (6, s) on

which 7P is true.

As a special case, by taking 7P(6, s) d;;j¢(s) A Final(6) one can express that there exists a terminating

execution of program 60 starting from situation So such that ¢ is true in the final situation.

2. The formula:

Q2(60,SO)d;;jJ.lP,J,s{7P(6,s) V [(:36',s') Trans(6,s,6',s')] A (V6',s')Trans(6,s,6',s'):J P(6',s')}(60,so)

defines a predicate Q2(60, so) that denotes the smallest set of configurations C2 such that the

predicate is true on configuration (6, s) if and only if either 7P is true on (6, s) or there exists a

configuration (6', s') reachable in one step by the relation Trans, and on all such configurations the

predicate is still true.

In this way the formula expresses that from each configuration (60, so) on which the specified

predicate is true, all execution paths eventually reach a configuration (6, s) on which 7P is true.

3. The formula:

defines a predicate Q3(60, so) that denotes the greatest set of configurations C3 such that the

predicate is true on configuration (6, s) if and only if both 7P is true on (6, s) and the predicate is

still true on at least one configuration (6', s') reachable in one step by the relation Trans.

In this way the formula expresses that from each configuration (60, so) on which the specified

predicate is true, there exists a non-terminating execution path along which 7P is always true.

As a special case, by 7P(6, s) d;;jTrue, one can express that there exists a non-terminating execution

path.

4. The formula:

defines a predicate that denotes the greatest set of configurations C4 such that the predicate is true

on configuration (6, s) if and only if both 7P is true on (6, s) and the predicate is still true on each
configuration (6', s') reachable in one step by the relation Trans.

In this way the formula expresses that from each configuration (60, so) on which the specified

predicate is true, along all execution paths 7P is always true.

As a special case, by 7P(6, s) d;;j-,Final(6)A(:36', s') Trans(6, s, 6', s'), one can express that all execution

paths are non-terminating and no final state is ever reached.
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7 Example: A Coffee Delivery Robot

Here, we describe a robot whose task is to deliver coffee in an office environment. The robot can carry

just one cup of coffee at a time, and there is a central coffee machine from which it gets the coffee. The

robot receives asynchronous requests for coffee from employees. These requests are put in a queue. The

robot continuously takes the first request from the queue and serves coffee to the specified person. The

use of the queue guarantees that all requests will in fact be served (implementing a fair serving policy).

7.1 Representation of the queue

As usual, to define an abstract data type we need to specify the domain of its values, and its functions

and predicates.

The domain of values for queues is constructed inductively from the constant nil and the functor

cons(-, .) as follows: 6

(Vq)IsQueue(q) == (VQ)[... :J Q(q)]

where ... stands for the conjunction of:

Q(nil)

(Vf, r)Q(r) :J Q(cons(f, r))

The functions and predicates for queues are the usual firstC), dequeueC) , enqueue(-,·) and isEmptyC).

They are defined in our setting as follows:

(Vf, r)first(cons(f, r)) = f (unspecified for nil)

(Vf, r)dequeue(cons(f, r)) = r (unspecified for nil)

(Vp)enqueue(nil,p) = cons(p, nil)

(Vp, f, r)enqueue(cons(f, r),p) = cons(f, enqueue(r,p))

(Vq)isEmpty(q) == (q = nil)

To these we add the function length(·) that returns the length of the queue, and the predicate isFull (.)

since we are going to need queues of a bounded length.

length(nil) = 0

(Vf, r)length(cons(f, r)) = 1 + length(r)

(Vq)isFull(q) == (length(q) = 100)

We enforce unique name assumption for terms built from nil and cons(·, '), but obviously not for those

built with the functions dequeueC), enqueue(-,·) and length(}

7.2 Formalization of the Example

Primitive Actions:

• requestCoffee(person). A request for coffee is received from the employee person. This action is
an exogenous one, i.e. an action not under the control of the robot. (Vp)Exo(requestCoffee(p))

holds.

• selectRequest(person). The first request in the queue is selected, and the employee person that
made that request will be served.

• pickupCoffee. The robot picks up a cup of coffee from the coffee machine.

• giveCoffee(person). The robot gives a cup of coffee to person.

• startGo(10cl,10c2)' The robot starts to go from location 10Cl to 10c2.

• endGo(10C1, 10c2)' The robot ends its process of going from location 10Cl to 10c2.

6Equivalently, (Vqo)I sQueue(qo) == tlQ,q [q = nil V (OJ!, r)q = consU, r) II Q(r)](qo).
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Fluents:

• queue(s). A functional fluent denoting the queue of requests in situation s.

• robotLocation(s). A functional fluent denoting the robot's location in situation s.

• hasCoffee(person, s). person has coffee in s.

• going(locI,loC2,S). In situation s, the robot is going from lOCI to lOC2.

• holdingCoffee(s). In situation s, the robot is holding a cup of coffee.

Situation Independent Predicates and Functions:

• office(person). Denotes the office of person.

• C M. Constant denoting coffee machine's location.

• Sue, Mary, Bill, Joe. Constants denoting people.

Primitive Action Preconditions:

Poss(requestCoffee(p) , s) == -,isFull(queue(s))

Poss(selectRequest(p) , s) == -,isEmpty(queue(s)) A P = first(queue(s))

Poss(pickupCoffee, s) == -,holdingCoffee(s) A robotLocation(s) = CM

Poss(giveCoffee(person) , s) == holdingCoffee(s) A robotLocation(s) = office(person)

Poss(startGo(loCI' lOC2), s) == -,(3l, l')going(l, l', s) A lOCI -::f-lOC2 A robotLocation(s) = lOCI

Poss(endGo(loCI' lOC2), s) == going(locI' lOC2, s).

Successor State Axioms:

Poss(a, s) :J [queue(do(a, s)) = q ==
(3p)a = requestCoffee(p) A q = enqueue(queue(s),p) V

(3p)a = selectRequest(p) A q = dequeue(queue(s),p) V

(Vp)a -::f- requestCoffee(p) A a -::f- selectRequest(p) A q = queue(s)]

Poss(a, s) :J [hasCof fee (person, do(a, s)) ==
a = giveCoffee(person) V hasCoffee(person, s)]

Poss(a, s) :J [robotLocation(do(a, s)) = lac ==
(3loc')a = endGo(loc', lac) V

robotLocation(s) = lac A -,(3loc',loc")a = endGo(loc', lac")]

Poss(a, s) :J [going(l, l', do(a, s)) ==
a = startGo(l, l') V

going(l, l', s) A a -::f- endGo(l, l')]

Poss(a, s) :J [holdingCoffee(do(a, s)) ==
a = pickupCoffee V

holdingCoffee(s) A -,(3person)a = giveCoffee(person)].

Additional Axioms: 7

(Vs)IsQueue(queue(s)) (the values of queueC) are queues)

Unique names axioms stating that the following terms, together with those formed from nil and cons(·,·)
(see above), are pairwise unequal:

Sue, Mary, Bill, Joe, CM, office(Sue) ,
office(Mary) , office(Bill) , office(Joe).

7The first axiom is not strictly necessary, we add it for sake of clarity.
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Initial Situation:

robotLocation(So) = CM 1\ -,holdingCoffee(So) 1\ -,(3l, l')going(l, l', So) 1\

-,(3p)hasCoffee(p, So) 1\ queue(So) = nil

Robot's GOLOG Program: The robot execute the program DeliverCoffee defined as follows (note

the suppressed situation argument in primitive and test actions):

proc DeliverCoffee

while True do

if -,isEmpty(queue)
then (;rp)selectRequest(p); ServeCoffee(p)

else True? (skip)

endWhile

endProc

proc ServeCoffee(p)

Goto(CM);
pickupCoffee;
Goto(office(p) );
giveCoffee(p)

endProc

proc Goto(loc)
startGo(robotLocation, loc);

endGo(robotLocation, loc)
endProc

Dynamics of Exogenous Actions: Along all possible evolutions of any program <50 , starting from So,
into any configuration, in a finite number of transitions, a situation s is reached where somebody may

request coffee (DynaPoss holds) (provided that it is possible to request coffee, i.e. that also Poss holds):

(\1<50 , <5, s) Trans*(<5o, So, <5, s) :J ExoLaws(<5, s)

( )
de!

ExoLaws <51 , s1 =

J.1E,o,s{[(3p)DynaPoss(requestCoffee(p) , s)] V [(\1<5', s')Trans(<5, s, <5', s') :J E(<5', s')]} (<51 , sd

7.3 Reasoning

Next we show some dynamic properties of the overall system (the program plus the exogenous actions).

First it is easy to see, from its structure, that the program DeliverCoffee will never reach a final

configuration:

(\1<5, s) Trans*(DeliverCoffee, So, <5, s) :J -,Final(<5).

A more complex property that is possible to show is the following: every request for coffee sooner or later

will be served. Formally, the fairness property Fair(DeliverCoffee, So) holds, where:

Fair (<50 , so)d;j

(\lp, <5, s)Trans*(<5o, So, <5, do(requestCoffee(p) , s)) :J EventuallyServed(p, <5, do(requestCoffee(p) , s))

and
de!

EventuallyServed(p, <51 , sd =

J.1p,o,s{[(3s")s = do(selectRequest(p) , S")] V

[((3<5'.s')Trans(<5,s,<5',s')) 1\ (\I<5',s')Trans(<5,s,<5',s'):J P(<5',s')]}(<51,sd

It is also possible to show that there exists an (infinite) execution path where no coffee is ever served:

PossiblyAlwaysIdle(DeliverCoffee, So)

where

PossiblyAlwaysIdle( <50 , so) d;j

VA,o,s{[(\lp, S")(S -::j:. do(selectRequest(p) , S")] 1\ [(3<5', s')Trans(<5, s, <5', s') 1\ A(<5', s')]} (<50 , so).

However, by the fairness property above, this means that no requests for coffee were made along that

execution path.
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8 Conclusion and further work

In this paper we have given an account of non-terminating programs in the Situation Calculus. The

framework obtained is quite powerful. It allows the specification of the dynamic system by modeling one

agent with a program, and external events by suitable dynamic laws (extensions to multiple agents are

also possible, see [DGLL97] for hints). Observe that although related this framework is more general than

that typically considered in program verification, where exogenous actions that are specified by dynamic

laws (axioms) are not allowed. There are many directions for further research. Among these we mention

the development of systematic techniques for verification, such as suitable induction principles.
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