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Abstract: Non-terrestrial networks (NTNs) have recently attracted elevated levels of interest in large-
scale and ever-growing wireless communication networks through the utilization of flying objects,
e.g., satellites and unmanned aerial vehicles/drones (UAVs). Interestingly, the applications of UAV-
assisted networks are rapidly becoming an integral part of future communication services. This paper
first overviews the key components of NTN while highlighting the significance of emerging UAV
networks where for example, a group of UAVs can be used as nodes to exchange data packets and form
a flying ad hoc network (FANET). In addition, both existing and emerging applications of the FANET
are explored. Next, it provides key recent findings and the state-of-the-art of FANETs while examining
various routing protocols based on cross-layer modeling. Moreover, a modeling perspective of
FANETs is provided considering delay-tolerant networks (DTN) because of the intermittent nature of
connectivity in low-density FANETs, where each node (or UAV) can perform store-carry-and-forward
(SCF) operations. Indeed, we provide a case study of a UAV network as a DTN, referred to as DTN-
assisted FANET. Furthermore, applications of machine learning (ML) in FANET are discussed. This
paper ultimately foresees future research paths and problems for allowing FANET in forthcoming
wireless communication networks.

Keywords: flying ad hoc networks (FANET); non-terrestrial networks (NTN); terrestrial networks;
unmanned aerial vehicles (UAV)

1. Introduction

Non-terrestrial networks (NTN) are to provide wireless connectivity from flying
objects above ground usually from space and the stratosphere. In a nutshell, NTNs in-
volve non-terrestrial flying objects such as satellites and unmanned aerial vehicles/drones
(UAVs). Figure 1 illustrates the concept of NTN. Rapid development of non-terrestrial
networks (NTN) in the last decade has envisioned emerging concepts of “integrated space-
terrestrial network (ISTN)” [1–3] and the “Internet of space things (IoST)” [4–6], which
have the potential to leverage current mobile communication networks to deliver advanced
communication services for the 6th generation (6G) in the future. A notable example is
mega-constellation satellite networks such as Starlink [7] and OneWeb [8], spurred by the
recent advances in NTNs. By turning these networks into the IoST one can connect the
unconnected in rural, rugged, and ocean environments. In addition, by integrating NTNs
with terrestrial communications, one can form ISTN provisioning connectivity not only on
the ground but also in the air and space.

1.1. Why NTN?

It is difficult for current fifth-generation (5G) wireless technologies based on the
ground to provide adequate coverage in extremely remote areas while also meeting the
stringent quality-of-service (QoS) standards expected of terrestrial networks. Since flying
nodes are able to function at significantly greater heights in comparison to ground-based
surveying methods, the NTN with flying nodes can complement terrestrial networks by
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providing widespread communication for mariners, farmers, and travelers in the air and
on the ground [9].

GEOs
>36,000 km

LEOs

>180 km

UAVs

>200 m

IoT

Services

MEOs
> 2000 km

Figure 1. Illustration of non-terrestrial and terrestrial networks (List of abbreviations is provided at
the end of the article). Although satellites are historically the first components of the NTNs, UAVs
are becoming a more appealing emerging technology for integrating NTNs and terrestrial networks,
e.g., in ISTN, because of their flexible flying capability at lower altitudes.

To provide fully global wireless communications everywhere and at any time, 6G
wireless networks should seamlessly combine NTNs with terrestrial networks [2]. Fur-
thermore, unlike terrestrial communications, which may experience service disruptions
due to natural catastrophes or adversaries, NTNs guarantee uptime for really essential,
mission-critical applications [10]. Overall, according to predictions, NTNs will boost 6G’s
functionality in terms of coverage, user bandwidth, system capacity, service reliability,
availability, energy consumption, and connection density.

1.2. The Path from Satellites to UAVs

Among different types of NTN components, in this study, the UAVs are paid more
attention rather than satellites. In the following, we justify why UAVs such as drones are
going to become the dominant technology in NTNs and play a crucial role in many future
5G/6G and the Internet of things (IoT) applications although satellites are historically the
first components of the NTNs.

There are some reasons why the market decided to take out the UAV technologies
instead of only relying on satellites for future communication applications and achieving
the full potential of ISTNs. For instance, the mobility of satellites in space is unidirectional
and uncontrollable. Meanwhile, both terrestrial infrastructure and mobile users on the
ground are relatively considered to be fixed given the very high altitudes of satellites.
Given this time-varying topology, ground-to-space channels with either free space optical
(FSO) or millimeter-wave (mmWave) signals are often line-of-sight (LoS) sensitive [11],
so immediate transmissions may incur significant path loss. As opposed to terrestrial
communications, opportunistic transmissions are not an effective solution due to the long
satellite orbiting period. Handing over to other neighboring satellites is also costly due to
the wireless nature of inter-satellite data backhaul links under limited energy and onboard
computing resources [12].

To cope with such unfavorable topology and channel characteristics, UAVs can play a
crucial role as controllable relays. In contrast to satellites and ground users, UAVs can move
in any direction at an intermediate altitude. Given the long-distance attenuation, a slight
change in communication paths via UAVs can lead to a significant gain in communication
efficiency. UAVs can also provide flying buffers to ISTNs for opportunistic communications
and handover operations. Indeed, recent experiments have shown that even a couple of
ground or UAV relays can significantly improve the end-to-end throughput and latency
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of an ISTN [13]. Furthermore, UAVs are more appealing for broadband applications since
they operate at a much lower altitude than satellites, resulting in better signal reception
power and lower latency. In addition, UAVs can provide images of higher resolution as
compared to satellites. Besides, having a continuous communication opportunity between
satellites is often impractical due to their lack of flying flexibility. It also means that most
satellites spend a considerable amount of their time above oceans, deserts, or other largely
unpopulated areas, where their bandwidth may be wasted. This leads to a lower area
spectral efficiency (ASE) compared to the ASE of UAVs.

Overall, in NTNs and different from satellites, UAVs provide more freedom in network
design while benefiting from flexible flying capability, which leads to greater performance
in future communication services. With the aforementioned motivation, the overarching
goal of this article is to identify the potential and challenges in UAV-based communications
where UAVs can be dynamically linked together as nodes for communication purposes
to create a so-called flying ad hoc network (FANET) [14,15]. Note that UAVs may also be
known by other terms like unmanned aircraft systems (UAS) [16]. The key benefits of such
networks are their flexibility, scalability, and robustness. In this respect, we revisit and aim
to give a fresh look at FANETs in the context of NTNs. In the following, we explore the
background of FANET in more detail.

1.3. Background of FANET

FANET is a sub-type of mobile ad hoc network (MANET) or vehicular ad hoc network
(VANET) [17–20] as shown in Figure 2. However, while both MANET and VANET are
mainly explored for ground-based devices on a 2-dimensional (2D) basis, aerial nodes
may move freely and flexibly with a higher speed and a lower density in three dimensions
(3D), posing new issues for network administration and operation. Besides, clear LoS
propagation and environment-resilient communication are key enablers to establish highly
efficient network topologies in FANETs [21]. We note that there are two main kinds of
UAVs: fixed-wing drones and rotator-wing drones (either single- or multi-rotor) capable of
vertical takeoff and landing [22]. The rotator-wing UAVs are more advantageous in terms
of their high stability and flexible movements. In [23], a comprehensive characterization of
distinctive UAVs was given in more detail.

MANET

-Low node mobility

-Low density

-Slow topology change

-Random mobility

-Limited computational power

VANET

-High node mobility

-High density

-Fast topology change

-Regular mobility

-High computational power

FANET

-Very high node mobility

-Very low density

-Fast topology change

-Customised mobility/trajectory

-High computational power

Figure 2. MANET, VANET, and FANET relationships. A detailed comparison can be found in [17,18,23].

It is noteworthy that the greater mobility of UAVs allows the network topology in
FANET to quickly form a kind of fast time-varying networks [24]. Therefore, node mobility
is one of the most critical challenges in designing FANETs, which is important for UAVs
cooperation and collaboration [25]. Some mobility models have a predefined flight path
and the map is updated after each modification [24,26], whilst others have no specific
pattern [22,27,28]. Furthermore, when compared to MANET and VANET, the mobility of
UAVs plays a vital role since their mobility, direction, and speed can change in considerably
shorter time intervals, which might generate communication issues amongst UAVs [29].
This is perhaps FANET’s most defining feature, enabling it to be suitable for trajectory
control and optimization. Besides, power consumption [30,31], localization [32,33] and
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radio propagation models [34,35] have been found as other critical factors with a huge
impact on the performance of FANETs.

Data packet routing in such intermittent connected networks is another important
topic where a huge corpus of research in FANETs is devoted to it. In [36–38], different
routing protocols for FANETs are discussed and evaluated. Each protocol has distinct
strengths and disadvantages, as well as suitability for specific situations, which makes it
impossible to find one ideal routing protocol for all scenarios [39]. Hence, [19] classified
the routing protocols in FANETs into five main categories as follows: (i) topology-based,
(ii) position-based, (iii) clustering/hierarchical, (iv) swarm-based, and (v) delay tolerant
networks (DTN).

The first four categories, i.e., (i) to (iv), function well when the deployment area is
not too large and most of the UAVs are in an LoS transmission range with each other,
and the density of the UAVs is also relatively high. Within such a high density of nodes,
communication from one UAV to another is reliable. However, we note that the sparsity of
UAVs in FANETs is another intrinsic feature that has been identified for the intermittent
connectivity problem. Therefore, the true issue arises when there is intermittent connections
in a low density of UAVs. Indeed, [40] showed that in a social environment, such as a large
urban region where various sites are separated by enormous geographical distances, there
is a trade-off between UAV density and the cumulative energy consumption of the FANET.
Therefore, [22] showed the first four categories of (i) to (iv) are relatively compromised.
Moreover, [41,42] also explained that the the rise in the total number of UAVs in the
network would be disadvantageous in terms of cost, message overhead, buffer overflow,
and cumulative energy consumption. It was shown that in low UAV densities, DTN
routing protocols are the only models that can send data packets with good performance
like a high delivery ratio, despite the fact that the network is only sometimes linked [22].
Therefore, in our study, we mainly focus on the design criteria and architecture of DTN
protocols in FANETs and call it DTN-assisted FANET.

1.4. Scope and Contributions

The primary purpose of this article is to deliver a discussion on NTN structure and
its key components while narrowing the topic down from a satellite perspective into
UAV-based NTN, i.e., FANET. After that, a thorough literature study on the most recent
advances in FANET technology is presented. In this study, we aim to provide a high-level
overview of the FANET and its most recent discoveries, which will include its benefits
and drawbacks, as well as new research prospects for both current and future applications
in 5G and 6G. We also detail the various specifications needed for FANETs and the key
limitations that prevent its widespread deployment. Furthermore, we design a framework
for a DTN-assisted FANET, while simultaneously covering well-known routing approaches
in FANET. Applications of artificial intelligence (AI), machine learning (ML), and deep
learning (DL) tools, in FANET are also discussed. With this as our main goal, the five
important contributions that we made to this work are as follows:

• This paper presents detailed NTN with UAVs, i.e., FANET, including features, existing
and emerging applications, and its constraints. It sheds light on the distinctions that
exist between the NTN components and gives a comprehensive survey of 218 FANET-
related papers.

• The holistic overview of most recent advancements in relation to the emerging FANET
technology is provided in terms of communication standards, physical layer, UAV
role management, trajectory optimization, and routing protocols.

• DTN-routing protocols are taken into specific consideration for FANET due to its
nature of intermittent connectivity and a DTN-assisted FANET framework is described
and evaluated.

• The applications of AI/ML/DL techniques in FANET are thoroughly discussed.
• Finally, we take into account FANET’s potential and investigate its unique character-

istics and advantages over existing approaches for dealing with challenging FANET
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problems. We use this knowledge to foresee the paths future research will go and the
obstacles that will need to be overcome to enable FANET in wireless networks.

We also emphasize the advantages of our survey while summarizing the characteris-
tics of other important surveys of FANET in Table 1 to further elucidate the importance of
this study. We highlight that, despite the previous important studies, our study primarily
focuses on providing and bringing together a broad overview of NTN components, applica-
tions, communication standardization process, physical layer issues, network management,
trajectory optimization, routing protocols, DTN-assisted FANET, and applications of ML
in FANET.

Table 1. Summary of most recent Key Survey Papers in NTNs with UAVs, i.e., FANET.

Ref. Main Focus
NTN

Compo-
nents

App. Commun. Physical
Layer

UAV Role
Management
& Trajectory

Routing

DTN-
FANET
Frame-
work

AI/ML/DL

This
Sur-
vey

FANET in NTN, state-of-the-art
FANET, features of FANET,

DTN-FANET perspective, UAVs
trajectory/mobility

X X X X X X X X

[17]
Difference between

FANET/VANET/MANET,
design criteria

x X X X x X x x

[18] Various routing protocols in
FANET, features of FANET x X X x x X x x

[23] FANET architecture, mobility
models, routing protocols x X X x x X x x

[24] Communication issues, routing,
mobility, security x X x x X X x x

[36] Different routing protocols for
FANET, architecture x x X x x X x x

[37]
Routing requirements of FANET,

evaluation of existing routing
protocols, UAV classification

x X X x x X x x

[39] Existing routing protocols x x x x x X x x

[43]
Power efficient protocols across
physical, data link and network

layers in FANET
x x X X x X x x

[44] Routing demands, UAV
functionalities, energy efficiency x x x x X X x x

[45] Various cooperative approaches
for FANET x X X x x x x x

[46] Cluster-based routing protocols
and their characteristics x x x x x X x x

[38] Mobility models and
routing protocols X x X x X X x x

[47]
Joint trajectory and

communication design
for FANET

x x X x X x x x

[48] AI-based trajectory and routing
protocols for FANET x x x x X X x X

1.5. Organization

In Figure 3, we see the overall outline of the article. Section II provides an overview
of the preliminaries of NTNs while highlighting the significance of UAVs and FANETs.
Moreover, the applications and use cases of FANETs are described in Section III. Next,
Section IV presents an overview of the state-of-the-art FANET in terms of standards,
physical layer advancements, network management, and routing protocols, with the major
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focus on DTN routing protocols due to the nature of intermittent connections in FANET.
Then, a DTN-assisted FANET framework is explained and evaluated in Section V. After that,
Section VI explores the applications of AI/ML/DL in FANET. Section VII elaborates on the
challenges and future research directions. Finally, Section VIII concludes the paper.

I. Introduction

II. Structure of NTN and its Key Components

III. Applications and Use Cases of FANETs

IV. State-of-the-Art FANET

V. Case Study: A DTN-assisted FANET Framework

VI. Applications of Machine Learning in FANETs

VII. Challenges and Future Research Directions

VIII. Conclusions

Figure 3. Organization of the paper.

2. Structure of NTN and its Key Components

This section introduces the key components of NTN along with its structure. It
also explains the significance of UAV networks, i.e., FANET, in comparison with other
NTN components.

In conjunction with terrestrial networks (such as cellular networks), a structure of NTN
is illustrated in Figure 4 with geosynchronous Equatorial orbit (GEO), medium Earth orbit
(MEO), and low Earth orbit (LEO) satellites. Furthermore, there are high altitude platforms
(HAP) easing the communication in lower layers close to where airplanes fly. In the altitudes
closer to the Earth, UAVs are supposed to be dominant flying objects facilitating real-time
communication in both non-terrestrial and terrestrial networks. In Table 2, the technical
specifications of these key NTN components are summarized while they are discussed in
the following.

Cloud

Ground Services

Earth 

station
Cellular 

BS
Internet

GEOMEO
LEO

HAP

FANET

T
errestrial N

etw
o
rk

N
o
n
-T

errestrial N
etw

o
rk

TrafficCrop
Cattle

IndustryMilitary
Monitoring

High altitude

Low  altitude

Aerial Services

Figure 4. Structure of NTN and its key components. UAVs play a vital role to facilitate real-time and
reliable communication in both non-terrestrial and terrestrial networks. These flying networks have a
great potential to leverage current mobile communication networks to deliver advanced IoT services
in the future.
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Table 2. Key NTN components and their characteristics. UAVs are the lowest altitude platforms in the
NTN that are advantageous in terms of cost, quick deployment, and flexibility in flight manoeuvres
compared to other NTN components. RTT: Round trip time, BB: Boradband

Type Altitude
[km]

Speed
[km/s] Uses RTT [ms] Coverage

Ranking

GEO
Sat.

35–800
[×103] ∼3 Relay, BB ∼500 1

MEO
Sat.

2–35
[×103] ∼4.2 Navigation, relay,

backhauling ∼200 2

LEO
Sat. 180–2000 ∼8 High speed BB,

imaging, backhauling ∼40 3

HAP ∼ 20 <0.3 Fixed/mobile BB,
Short/midterm backhauling. 0.13–0.33 4

UAVs <0.5 <0.07 Communication, sensing,
relay, high resolution imaging ∼1 5

1. GEO Satellites: GEO satellites are launched to orbit at an angular speed that is
equivalent to that of Earth. Moreover, they are assigned to orbit along a route parallel
to Earth’s rotation (also referred to as geostationary or stabilized satellites because
they appear stationary to the user on the ground), thus mostly delivering coverage to a
defined and fixed area [49]. Deploying GEOs is typically very expensive mainly due to
their launching costs. This is because they are allocated to orbit at altitudes higher than
35,000 km [50] (common altitude: 35,786 km). GEO satellites are mainly used for TV
broadcasts and in some cases to relay communications between spacecrafts, including
the space shuttle, the Hubble space telescope, and Earth-based control centers.

2. MEO Satellites: MEOs, also referred to as intermediate circular orbit (ICO), are
satellites that orbit Earth between altitudes of 2000 km and 35,780 km (common
altitude: 20,000 km). MEOs orbit Earth at faster angular speeds than GEO satellites due
to their proximity to Earth. Indeed, as satellites are closer to Earth, the gravitational
attraction becomes greater, and the satellites move faster [51]. Usually, it takes 2 to
24 h for one MEO satellite to complete a full orbit around Earth. They are mostly used
for navigation systems, such as global positioning systems (GPS) [52].

3. LEO Satellites: LEO satellites are designed to orbit Earth at much lower altitudes,
usually between 200 km and 2000 km. This enables LEO satellites to provide satellite
services at relatively low delays, but at the expense of deploying more satellites [53].
However, since they are closer to Earth, they orbit much faster, i.e., (>25,000 km/h,
and their orbit period varies over a range of 40–120 min. This means that each LEO
experiences at least 12 and up to 36 morning and night periods in only 24 h [54]. Hence,
a constellation of LEO satellites is proposed to compensate for and offer continuous,
worldwide coverage for high-speed broadband communication as well as imaging
and communication backhaul [53,55].

4. HAPs: Contrary to satellites and at lower altitudes of 17 to 50 km (stratospheric layer),
HAPs (Additionally, known as high altitude aeronautical platforms (HAAPs))can be
used to provide broadband communication services as well as broadcasting services by
either unmanned airships, e.g., balloons, or airplanes [56]. HAP-based communication
is suitable for large geographical areas where HAPs can move more freely and flexibly
compared to satellites [57]. They are mainly powered by solar technology and non-
polluting fuel cells.

5. UAVs: The use of UAVs is anticipated to be essential in 6G and beyond, thanks to their
widespread and rising use in a variety of applications [58]. UAVs have a substantial
advantage over other NTN components because of the free and flexible mobility of
drones and their remarkable adaptability. In addition, they have several applications,
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including expanding cellular coverage, agriculture, civil, military, industry, search
and rescue, and fire monitoring, among others [19].

With the increasing adoption of the UAVs (The global commercial market of UAVs
in 2020 was valued at USD 13.44 billion [59] mainly in industries such as media and
entertainment, delivery and logistics, energy, agriculture, real estate, and construction,
security and law enforcement, and so on. Because corporate use cases for UAVs have
grown significantly in recent years, industry participants, such as UAV manufacturers and
telecommunication industry partners, are continually inventing, testing, and enhancing
solutions for UAVs network markets. From 2021 to 2028, the UAVs share market is expected
to expand at a compound annual growth rate (CAGR) of 57.5% [59]. Therefore, based
on what has been elaborated above and the significant growth expected in the future of
FANETs, in the following, we narrow down the focus of this work to UAV networks and
FANETs while the detailed investigation of other NTN components is deferred to our
future work), their role in NTNs is becoming more vital since they are flying closer to the
Earth compared to satellites in higher orbits, e.g., LEOs, MEOs, and GEOs or even HAPs.
Therefore, they can provide shorter delays and reduce the round-trip-time (RTT) of NTN
communications. Furthermore, UAVs can provide better spatial, temporal, or spectral
resolution than satellites by providing complementary dimensions [60]. Moreover, UAVs
have better ASE than other NTN components because other NTN components cover larger
areas with a restricted finite bandwidth, limiting their use to largely unpopulated areas.
In addition, since satellites are constantly moving, and the pathloss of signals is significantly
high, communication and synchronization between satellites are far more challenging than
in UAVs.

Overall, UAVs may outperform all other NTN components in some NTN use cases
determined by 3rd generation partnership project (3GPP) such as (i) service reliability
and (ii) ubiquity to provide NTN connectivity in the event of terrestrial network failure;
and (iii) capacity to scale up service to meet peak demand for traffic from terrestrial
networks [10,61]. Furthermore, the UAV networks can support services proposed by
the international telecommunication union (ITU), which are enhanced mobile broadband
(eMBB), massive machine type communications (mMTC), and ultra-reliable and low latency
communications (URLLC) [10,61–63]. For these use cases, the actual value of UAVs is in the
payloads they can carry and their ability to effectively establish networks of flying nodes,
i.e., FANETs.

3. Applications and Use Cases of FANETs

There are various applications of FANETs including environmental monitoring and
emergency communications, and UAV services as shown in Figure 5. In this section, we
highlight four common real-life 5G/6G business use cases and the applications of FANET.

X

Disaster 
management

Farm
monitoring

Delivery

Events

Data 
collection Remote areas

Backhauling

Figure 5. Applications and use cases of FANET.
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3.1. Smart Farming

In order to increase production, smart farming aims to utilize IoT connectivity tech-
nologies. UAV-based IoT connectivity should enable farmers to remotely manage their
crops using a variety of networked sensors and equipment in smart farming [64,65]. For ex-
ample, a UAV can approach a passive sensor, like RFID sensors [66], on a farm and collect
its data. Such integrated UAV-based data gathering of sensors is anticipated to significantly
enhance smart farming in a number of ways. Data gathering in agriculture is fundamentally
focused on enhancing and speeding up agricultural operations. The classification of UAV
deployment in agriculture yields distinct applications of effective water management; crop
monitoring; cattle and pest control; chemical level monitoring and management; etc. [67].

3.2. Emergency Situations

A possible application of a FANET is in disaster-struck areas (e.g., bush fire affected or
flooded areas) where a swarm of unmanned UAVs is deployed to video capture and search
the area for survival, or to inspect the damaged condition of the area, or form an NTN for
use by survivors for a certain period. The area could be spread over tens or even hundreds
of kilometers, and camera-equipped automated drones can capture footage of particular
areas and stream (in almost real-time) the video to ground stations or to human rescuers in
a helicopter, which can respond quickly as needed. Hence, the source of the video data is
the drones themselves, and the video can be streamed from UAV to UAV (via the NTN)
to reach a manned helicopter or ground stations. The NTN can also be used by survivors
on the ground, who can connect to nearby UAVs (and so use the NTN) to send messages
back to human rescuers, and even for survivors to be temporarily connected (to each other)
where required. Moreover, more UAVs can be deployed if needed, and the NTN can be
spread out further, reshaped, and resized accordingly as needed, providing flexible and
dynamic on-demand customization of a network. Due to the limited battery power on each
UAV, new UAVs can replace existing UAVs (nodes) in the NTN to maintain the NTN in
certain configurations for the required time.

The general concept of deployment here is that an NTN (with particular functions
(e.g., normal, thermal, or other specialized cameras) and characteristics such as certain lev-
els of reliability, bandwidth, etc) can be spawned ad hoc as needed for a fixed period of time
in order to serve particular areas, in contrast to satellite networks with (relatively expensive
and limited bandwidth applications). Hence, such dynamic FANETs can complement
satellite-based networks, where available.

Edge computing can be employed in such an application at different levels, from lim-
ited on-board (on-UAV) processing of some of the videos captured to processing in some
more powerful UAVs or sending to nearby large helicopters (or airships) with more power-
ful computers (and more energy) for processing, and ground stations, before the processed
video is sent to the cloud.

The above NTN using camera-equipped automated UAVs can also be used for non-
disaster settings, e.g., an inspection of large-scale infrastructures such as power lines,
pipelines, and roads to check their conditions, for security in large gatherings or events;
and so on, where an ad hoc transient network that is flexible and reconfigurable would be
useful. Such an NTN can be deployed for military purposes and for outdoor expeditions as
well, to support operations and explorations in difficult-to-reach areas for a certain period
of time. Note that an NTN can be made secured forming a private network for use over an
area for a fixed period of time, e.g., the police or fire brigade can deploy and use such an
NTN to support operations on an ad hoc basis.

3.3. FANETs for Events

We have seen several fascinating deployments of a fleet of UAVs in events to create
drone light shows and provide 3D imagery (e.g., each drone as a “pixel”) at important
events. (For example, see https://skymagic.show/ and https://agb.events/drone-skysh
ow/ [last accessed on 15 July 2022]) However, this is only one way that a fleet of drones can

https://skymagic.show/
https://agb.events/drone-skyshow/
https://agb.events/drone-skyshow/
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support events. The ability to deploy or spawn a FANET over a large event, e.g., during
Olympics events, a large festival in a regional area, or a large rally such as a New Year’s
Celebration event, opens up new possibilities for improving people’s experiences of such
events, and possibly new commercial event-drone services.

For example, a FANET could support connectivity services for people on the ground in
an event over areas under-served by 4G/5G networks (e.g., in a regional town). Expensive
infrastructure or base stations cannot be deployed overnight for an event that would just
take place over several hours, or even over a few days or weeks - instead, a FANET can be
used to provide connectivity for the period of the event according to requirements. A higher
density of more powerful UAVs could provide higher bandwidth and higher reliability
connectivity if this is needed (e.g., high-quality video captures, 4K to 12K ultra HD) but
an event that does not need it might only use a smaller fleet of UAVs that can support
lower connectivity. Maintenance of such connectivity may involve UAVs replacing current
UAVs to maintain the FANET connectivity services. UAVs can even be multi-functional,
providing a light show at certain times and connectivity at others, or both at the same
time, if their energy capacity allows. Such UAVs can complement any other network
connectivity made available (e.g., WiFi stations on the ground). Such a FANET can also
provide on-demand ad hoc fly-in and fly-out edge computing services, with powerful
drones acting as servers [68].

3.4. Cooperative Actions and UAV Air Traffic Management

Not only to provide network connectivity services to people or user devices but a
fleet of UAVs might also be used for “physically connecting a region” in a way that is
optimized and cooperative. The FANET in this case might be used by the UAVs themselves
to cooperate while performing their tasks, e.g., maintaining a physical delivery network
(e.g., delivering supplies and goods) among disparate sites over a region, or to cooperate in
optimizing their flight routes, or cooperate in coping with unforeseen events and accidents,
or even to avoid UAV-to-UAV collisions. For example, UAVs can cooperate in path planning
and with mesh-like connectivity to allow UAV-to-UAV connectivity over ranges beyond
the limits of direct UAV-to-UAV transmission to provide advanced anticipative collision
warning/avoidance and dynamic evasive maneuvers and re-routing well ahead of time.
In future air spaces, we can envision UAVs of different sizes, uses, and capacities (e.g., small
UAVs with cameras for surveillance and hobbyists UAVs, small to medium-sized UAVs for
goods delivery or logistics, and larger UAVs for people transport) occupying the same or
similar air space at higher densities, e.g., over urban areas [69] (where we have the notion
of invisible urban “highways in the sky” (For example, see the upcoming project on creating
highways for drones in the UK: https://www.youtube.com/watch?v=57o7JmarqTs [last
accessed on 25 July 2022])), where UAV-to-UAV connectivity can help avoid UAV-to-UAV
collisions (in a way similar to, but more complex, than the “2D” ground vehicle-to-vehicle
communications being used to help avoid vehicle-to-vehicle collisions and facilitate vehicle-
to-vehicle cooperation on a large scale).

4. State-of-the-Art FANET

In this section, we provide the state-of-the-art and key latest findings of FANETs in
terms of (i) communications standards, (ii) physical layer aspects, (iii) role-based connectiv-
ity and trajectory management, and (iv) routing protocols.

4.1. Standards for FANETs

In the last decade, there has been an extensive effort to envision the FANET and indus-
trialize it. As a result of the benefits provided by FANET and to take economic advantage
of it, 3GPP approved to support FANET integration into the 5G ecosystem [61,70]. In
Release 16 [62], 3GPP accepted the first study item on NR to support FANET. The goal was
to investigate channel models (propagation conditions and mobility), establish deployment
scenarios and related system parameters, and identify any important effect areas that may

https://www.youtube.com/watch?v=57o7JmarqTs
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require more research. Similarly, the Institute of Electrical and Electronics Engineers (IEEE)
and ITU have made some efforts towards FANET standardization. In IEEE P1936.1 [71],
IEEE proposed a standard framework for FANET applications. In IEEE P1939.1 [72],
structuring of UAV operations in FANET was standardized. In IEEE P1920.1 [73], com-
munications and networking standards were clarified. ITU also shed light on the FANET
architectural standardization in ITU-T Y.UAV.arch [74] and ITU-T F.749.10 [75] and provided
communication requirements for UAV-based services.

Following these standardization pathways, in [36], communication protocols were
considered a general issue of FANETs. In [15], adaptive communication protocols were
proposed based on position-prediction and reinforcement self-learning routing techniques.
The beauty of this work was the capability of developing communications with respect to
the modifications happening in the FANET topology. In [76], a joint sensing and commu-
nication protocol [77] was proposed that enables the FANET to be integrated within the
cellular networks. It was also proposed to use non-orthogonal multiple access (NOMA)
where several UAVs/nodes can access radio resources non-orthogonally to reduce the
latency and improve the spectral efficiency. Moreover, [58] indicated three main aspects
of FANETs to support UAVs operations in different applications. They were: (i) depend-
able 3D wireless access with integrated cellular networks and FANETs, (ii) AI at the edge
UAVs for signal/image processing and smart decision makings, and (iii) effective con-
trol and inter-UAV communications for cooperative activities. In addition, an integration
between FANET and the cellular networks was proposed to provide strong connection,
dependability, security, and safety to UAVs by using their sophisticated features and UAS
traffic management (UTM) (UTM’s goal is to provide the reliable transportation of prod-
ucts and services through UAS/FANET [78]) supports. On the other hand, the studies
in [21,67,79,80] proposed aeronautical channel models for air-to-air (A2A), air-to-ground
(A2G) and ground-to-air (G2A) communications in cellular FANETs, as shown in Figure 6.
Aly and Vuk in [81] further investigated communication standards for FANETs in terms
of remote identification of UAVs, command and control communications, radio access
network (RAN) support, and various solutions to the issue of RF interference during
cellular UAVs integration. They also discussed FANET node registration and wireless
service requirements.

Relay
Carrier
Forwarder
Master 

A2G

A2A

A2G
Communications 

standards

Role 
management

Relay
Carrier

Routing
Master

Forwarder

PHY layer signal 
characterization

Doppler, ISI, CSI, collision, etc.

Figure 6. Advancements of FANET are mainly in communication standards, physical layer char-
acterization of data transfers, role & trajectory management of UAVs, and data packet routing.
Communications can be classified into three classes of A2A, A2G, and G2A. Based on the network
design, each UAV may have four main roles of relay, carrier, forwarder, master. The Master UAV is
responsible for the network management as a core.

To conclude, although a wide variety of short- and long-range technologies, given
in [61,62,71–75,82], can be helpful in FANETs for specific applications, the communication
framework standardization of FANETs is an ongoing direction with an essential need
for significant experimentation platforms to bridge the gap between basic research, stan-
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dardization, optimization, and deployment as well as existing and future use cases and
research difficulties.

In the following, we further elaborate on the physical layer advancements of FANETs,
highlighting their significance in the network performance.

4.2. Physical Layer Advancements in FANETs

Full optimization and deployment of a UAV-based communication network would not
be accomplished without the profound investigation of suitable physical layer protocols.
At the physical layer where the nodes perform the data transmissions in different forms
of waveforms and numerology designs [83], the selection of an appropriate interface, like
those explained in [82], affects data rate, coverage range, reliability, throughput, and other
system requirements. Nevertheless, the investigation of the physical layer in FANETs
includes various topics such as channel state information (CSI), Doppler effect, inter-symbol
interference, packet collisions, etc.

Herein, a hierarchical model in [35] showed that the physical layer has a significant
impact on the efficiency of FANET networks. It detailed signal propagation of different
bands, including sub-6GHz and mmWave bands in different levels of the atmosphere;
signal creation and conversion in FANET transceivers; and signal conversion in antennas.
Furthermore, attenuation and inter-symbol interference (ISI) were considered in that model
by the proposal of inertial frequency-dependent links and multipath channels. Besides,
the authors in [84] analyzed the mmWave UAV-assisted networks with the vision of pro-
viding wireless mobile access. Another model in [85] proposed a cross-layer of physical-
and network-layers for anti-jamming routing protocol in FANETS. It used cognitive ra-
dio concept along with taking the physical layer link quality parameters into account for
routing decisions. Indeed, it showed that the use of cognitive radio in FANETs improves
spectrum efficiency while allowing UAVs and ground-based cellular users to cohabit in the
same frequency range. Furthermore, in contrast to conventional networks, UAV networks
are capable of having more transparent mobility models, which enables more precise fore-
casting of time-varying interference. The authors in [86] proposed a technique to predict
the level of interference that is applicable to such UAV networks. In addition, in [87],
a general framework was proposed to forecast the interference behavior via analysis of
the mean value and moment-generating function of the interference prediction. Moreover,
the authors in [88] designed parameters for adaptation of the physical layer for data trans-
mission in self-organizing FANETs. Furthermore, a communication interface manager was
proposed in [89] for improving the performance of heterogeneous FANETs. It dynamically
defined the optimal means of transmitting data based on real-time analysis of the state
of the wireless medium. In [90], the physical layer in 5G new radio (NR) was modified
to piggyback the FANET. It assessed the waveform and a scalable numerology for both
frequency division duplex (FDD) and time division duplex (TDD), and a multi-antenna
transmission and beamforming.

Physical layer security for UAVs in FANETs, like models proposed in [91–93], is
another important topic with great potential to exploit the randomness nature of the
wireless channels for secure communications. Practical UAV channel modeling, posi-
tion acquisition [94], pilot contamination [95], limited buffer size and resources [96,97],
and NOMA [98–100] are other important aspects of the physical layer that affect the system
performance in FANETs significantly. For instance, the study in [84] depicted the perfor-
mance of NOMA on the FANETs in terms of power efficiency, data-rate improvement,
and radio resource allocation.

Overall, within the physical layer realm of FANET, there is still more work to be done
to have a general framework. Having a full framework will further help to enhance the
system modeling, which results in more reliable data processing in higher layers.
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4.3. Role-Based Connectivity and Trajectory Management

Management of the FANET is another crucial task for efficient networking. The general
objective is to minimize the intermittent disconnectivity between the nodes and therefore
reduce the latency. For example, among the nodes in a FANET, some nodes may have a
higher priority to be in the connectivity loop or even a node can move in a way to prevent
the FANET from splitting up into multiple disconnected clusters. This requests precise
role management of the UAVs in the FANET where three management options can be
available as:

(1) a series of ground base-stations to command and control the UAVs,
(2) some of the UAVs work as master UAVs and control others, or
(3) each UAV learns how to deal with the network variations by using edge technologies

such as AI and ML tools.

Depending on a scenario or a specific application, the optimal solution might be a
hybrid model where all these three options become accessible. In this regard, [21] proposed
an agent-based machine for connectivity management of UAVs by introducing four states
for each UAV. Using this agent-based machine, each UAV can manage its role based on the
information it gets from the nearby environment. However, this model is suitable for a
swarm of UAVs when the nodes are somehow connected to each other at all times. In [101],
a modular relay positioning method was proposed to manage the FANET to maintain
the connectivity of the UAVs during missions with the least number of nodes. Likewise,
in [102], a dynamic relay selection and positioning for FANETs was proposed. Moreover,
in [64], a new model of data-aided management of FANET was proposed such that sensing
and communication occur on demand in response to a specific query. The model was
to collect measurements from massive passive sensors while adaptively minimizing the
entropy gap and scheduling UAVs to fly over sensors.

Path planning and management is an important topic for the mobility of FANET
nodes. Although in many literature surveys, the mobility of UAvs treated like nodes in
MANETs or VANETs, the mobility of FANETs must be more deterministic based on the
scenario specifications since, unlike nodes in MANETs/VANETs, the nodes in FANETs can
freely and flexibly fly in a 3D space. Therefore, it demands a kind of application-oriented
trajectory optimization for FANETs. In [103], a model was proposed to manage the radio
resource among UAVs, and to optimize the trajectories of UAVs in the network by utiliz-
ing the tools of reinforcement learning. Hence, [104,105] proposed altitude optimization
models while [47,48,106] focused on general trajectory optimization approaches for UAVs
in FANETs. In general, while UAV trajectory design and route planning are crucial to
improving FANET performance, the specifics of these two factors vary greatly depending
on the needs of each application. As a result, different application-oriented trajectory
optimizations have been proposed in the existing literature, like the models in [107–112].

All in all, efficient role management and trajectory optimization of UAVs is a real-time
task which requires the ability to adapt to network changes and act accordingly. This de-
mands for more application-oriented standardization and scalabel path planning protocols.

4.4. Routing Protocols in FANETs

As shown in Table 1, almost all the recent key surveys discussed the importance of
packet routing protocols [14,19,36,38,67,113–116]. In general, a classification of routing
protocols divides the available protocols into four groups of static, proactive, reactive,
and hybrid [20]. The static models require a fixed/static routing table, and this routing table
is not being updated during the service period. The proactive models periodically update
the routing table. On the other hand, reactive models find routes for communications on
demand, while hybrid models mix proactive and reactive approaches.

On the other hand, another classification model classifies the available routing proto-
cols into seven categories, as shown in Figure 7. This classification is also admitted in [23].
Topology-based models (given in Appendix A) rely on source-to-destination information
recorded in a routing table. The routing table may vary during the time since the position
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of the nodes changes. However, the position-based models (given in Appendix B) do
not require a routing table, and a decision is made at each node taking into account the
current locations of nearby UAVs and intended destinations. The secure-based models
use a security mechanism like network coding strategies [117] to assure the safe transi-
tion of messages through intermediate UAVs. Heterogeneous routing models expand the
packet route via different interfaces used in different nodes [118]. It can facilitate the use
of existing infrastructure in accomplishing specific tasks. The swarm-based model [119]
is a fully connected FANET (like a murmuration of birds), usually used for quick data
collection purposes since it has the ability to collect a huge amount of data in a short time
interval. Clustering protocols [120] usually have a cluster head for each group of UAVs.
The cluster head controls the features of each cluster and manages the routing of packets
from one cluster to another. Eventually, energy-based routing [121] prioritizes the energy
consumption of FANET for routing a packet.

FANET Routing Protocols

Topology-based
Position-based

Secure-based
Heterogeneous

Swarm-based

Delay-tolerant-Networks

Cluster-based

Energy-based

Figure 7. Classification of FANET routing protocols.

The aforementioned protocols mainly consider the high density of UAVs flying in each
other’s range. Indeed, they somehow underestimate the challenges of maintaining steady
and dependable connections between UAVs in lower density scenarios, whose connec-
tivity may not be consistent due to the unstable nature of wireless communications [122].
Moreover, they usually suffer from large message overhead and buffer overflow during the
flooding of messages and network information. The huge cumulative energy consumption
of these protocols is also a drawback for high-density FANET. As a result, and as shown
in Figure 2, the FANETs are supposed to be very low-density networks with a limited
number of UAVs in a large area. Consequently, there will be constant outages, partitions,
and topology changes. Hence, DTN routing protocols, shown in Figure 8, can be used in a
way that store-carry-and-forward (SCF) is used by each UAV to deal with sporadic network
connections. DTN routing protocols have a very low overhead at the expense of latency
increment since no control messages are transmitted. Among the DTN routing protocols
shown in Figure 8, LAROD is the most widespread protocol used in FANETs based on [19].
In the following, a DTN-assisted FANET based on LAROD [123] is fully reviewed and
evaluated with respect to alternative routeing protocols in the DTN.
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descriptions of these models can be found in [123–129].



Drones 2022, 6, 334 15 of 34

5. Case Study: A DTN-assisted FANET Framework

In this section, we profit from the LAROD technique [123] to explain a general DTN-
assisted FANET framework. Below, we explain it in three stages and then compare it with
other DTN routing protocols in a low-density FANET environment.

1. Suppose a downlink scenario, shown in Figure 9, with N nodes where a source node,
e.g., a gNB, broadcasts a packet to other neighbor forwarder nodes, e.g., UAVs, in its
coverage range. The objective is that the best UAV gets selected as the best forwarder
based on its location and re-broadcasts the packet to other forwarder nodes in the
next hops, i.e., UAVs. This process is to continue till the packet travels the hops and
reaches the destination node, i.e., the user.

gNB

𝑥

𝑦

𝑧

…

…

𝑄 sensors
𝑀 − 2 UAVs

∥ 𝐮𝑚 𝑡𝑙 − 𝐱𝑘(𝑙+1;𝑞) ∥

∥ 𝐱𝑘 𝑙+1;𝑞 − 𝐱𝑘 𝑙+1;𝑞+1 ∥
𝑞

𝑞 + 1

Forwarder 

nodes

Location 

Information 

Transfer

2) Custodian 

acceptance 

ACK

GPS
Coordinates

Two different paths

Smart farming in a far remote area User

1) Packet 

Transmitted 

3) Custody of 

the packet at 

gNB ends

UAV carries the packet while flying
Only one copy of packet

continues to be 

forwarded

Duplicated

packet

Figure 9. Proposed DTN-assisted FANET model framework. gNB: ground new base station.

For the purpose of best forwarder selection in each hop, a proactive flooding-based
location service (FLS) is required to enable each UAV to continuously disseminate a
current map of the network’s neighborhood. For this purpose, each UAV has a GPS
module and an inertial measurement unit (IMU) (The IMU calibration using GPS
signal enables quicker delivery of UAV position coordinates) to exchange location
information with other UAVs at rendezvous points. A portion of the buffer in each
UAV is also dedicated to the location information of the whole network. Then,
when two UAVs get together, they share their network’s coordinates, and the most
recent information will be kept while the older one will be discarded. This happens
proactively to have a kind of socially aware network. The issue with this system-
wide dissemination of location information seems to be the use of a lot of system
resources. However, the realistic number of UAVs in current FANET applications
hardly exceeds 20–30 UAVs; because each UAV has a good ASE and flying range
compared to ground nodes, making this number of UAVs enough to cover a wide area
of ground users. Therefore, the buffersize for the coordinates of this limited number
of UAVs is legitimate. On the other hand, because of the intermittent connectivity
between the UAVs, the location data of nearby UAVs is more up-to-date while that
of UAVs further away might be outdated. However, [123] proved that even the
outdated location data of far UAVs can be used for the routing of packets as the
precision of the location information improves as the data packet proceeds towards
the destination node.

2. At stage two, the best forwarder should be selected. Let us assume the broadcasting
node is the current custodian and the next forwarder will be the next custodian. Hence,
all UAVs that received the packet from the current custodian are tentative custodians.
Based on the Bundle protocol, RFC5050 [130], in DTN systems (Bundle protocol is
a custody-based retransmission DTN protocol created for shaky and intermittent
networks. To communicate, it bundles together blocks of data and sends them all
at once, using the SCF method), the tentative custodians activate their delay timers
on the arrival of the packet, and if each custodian’s timer runs out first, it becomes
the next custodian, i.e., the best forwarder. Once its timer delay runs out, it stores
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the packet in its buffer and broadcasts a custody acceptance acknowledgment (ACK).
Then, the current and other tentative custodians that hear this ACK discard the packet.
In this modeling, there would be two scenarios of hidden terminal problems: (1) if
the current custodian does not hear the ACK it repeats the transmission after a fixed
period of time, and (2) if any of the tentative nodes does not hear the ACK, it sends
its own ACK and becomes a parallel custodian for that packet. As a result of both
of these scenarios, there will be a chance of duplicated packet transmission through
multipath directions. It is also possible that the duplicated packet from two separate
paths reaches a single custodian and, from there, only one copy of it continues to be
forwarded. The duplication of a packet increases the load on the network, so to end
this, there is a time-to-live (TTL) period for each packet. After this period, the packet
would be discarded by its custodian.

3. Steps one and two continue between the UAVs hop-by-hop till the packet reaches
the destination node at the application layer. The destination node then broadcasts
an ACK indicating the packet has reached the destination. The UAVs that receive
the ACK store it in their buffer and exchange it with other UAVs carrying the packet
till the packet TTL runs out. As a result, all other custodians carrying the packet are
notified of the delivery and discard the packet from their buffer.

Figures 10 and 11 show performance comparisons between this LAROD-based model
and other DTN-assisted FANET techniques proposed in [22]. Simulation is carried out
using the opportunistic network environment (THE ONE) simulator with simulation
parameters given in Table 3. Random Waypoint mobility is considered. The rest of the
parameters are the same as those in [22] unless otherwise specified. The UAV nodes are
supposed to be small, e.g., DJI mini2 20 × 20 cm2, and their minimum distance cannot
be less than 1 m. We can see that the LAROD-based model slightly outperforms other
DTN-assisted FANET models in terms of delivery ratio. We note that although the MaxProp
model slightly outperforms the LAROD-based model as shown in Figure 10, MaxProp’s
latency is much higher than the LAROD-based approach as shown in Figure 11. Figure 12
shows the average buffer time for each delivered message, and we can see that the MxProp
routing has the most efficient buffer time since it can prioritize the packet queuing with
additional processing at the nodes. On the other hand, the Epidemic routing has the worst
performance in terms of average buffer time since it broadcasts packets to all nodes and
UAVs keep the packets in their buffer.
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Figure 10. Delivery ratio comparison of LAROD-based model with a few well-known DTN routing
protocols. The number of UAVs is set six.
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Figure 11. Latency comparison of LAROD-based model and a few well-known DTN routing protocols.

Table 3. System numerical parameters.

System Parameters Corresponding Value

Number of UAVs 2, 6, 10
Speed of UAVs Varies between 1 m/s to 5 m/s

Speed of mobile user 1 m/s

Interface model Bluetooth (IEEE 802.15.1) and WiFi (IEEE
802.11b/g/n)

Transmit speed 250 kBps
Message size 250 KB

Transmit range Bluetooth: 20 m, WiFi: 100 m
Buffer Size 10 GB

Mobility model Random Waypoint
Message TTL 300 min

Simulation running time 12 h
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Figure 12. Average buffer time of a delivered message ≤ TTL = 300 min.

Figure 13 shows the average number of hops in each protocol. We can see that an
increase in the number of UAVs slightly increases the average number of hops. LAROD-
based model is being more affected by the number of UAVs compared to the other models.
Figure 14 demonstrates the overhead ratio as the difference between relayed and deliv-
ered messages on the basis of delivered messages [18]. We note that the Spray and Wait
protocol has the lowest overhead, while the Epidemic and PROPHET models have the
largest overheads.
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Figure 13. Average number of hops (node exchange) in each protocol.
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Figure 14. Overhead ratio of different protocols.

6. Applications of Machine Learning in FANET

Fundamentally, FANETs are expected to facilitate end-to-end data delivery using
multi-hop (Single-hop transmission is omitted in this study since it is well-addressed in the
literature [131,132]. Hence, they rely on multiple UAVs that are constantly working together
in conjunction with the ability to create a system that is far more powerful than any one
UAV alone.) transmissions. Therefore, each UAV or node functions by relaying information
between nearby drones. When the number of hops increases (and the network becomes
larger), the complexity of the system significantly increases. Accordingly, this leads to
difficulties in network management and operations due to elevated interference levels,
challenging spectrum allocation, demanding trajectory and mobility management, reduced
localization accuracy, and more complex energy and multiple access/routing management.

The utilization of ML techniques has been shown to provide low-complexity solutions
in wireless networks [133–135]. Due to its technology agnostic nature and adaptability,
ML is quite flexible and can be used across the different layers of wireless networks [136].
Most notably, AI and ML have led to significant improvements in (i) the physical layer by
enhancing digital signal detection [137], (ii) the medium access layer through cognitive
radio and spectrum access [138], and (iii) the network layer using network management
and optimization [139]. Hence, AI can potentially provide FANETs with the tools necessary
in order to overcome some of the different challenges.

In particular, reinforcement learning (RL) has emerged as a prominent solution to
tackle some of the different challenges faced in FANETs [140]. Most notably, Q-learning
and deep Q-learning (DQL) are currently the most explored in the literature for FANETs
to address their challenges. Owing to its ability to perceive, interpret, and learn from its
environment, these techniques enable FANETs to adaptively collect data and optimize
network performance. Both Q-learning and DQL rely on states and rewards to understand
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and learn the environment and enhance their actions through weighted trial-and-error to
optimize the network’s overall behavior [140]. Recent works that deploys RL have tackled
many avenues for FANETs. In this section, we focus on three main RL-enabled domains;
(i) routing, (ii) resource allocation, and (iii) network security.

6.1. Routing

RL provides the nodes with the capability to learn from their environment in order to
autonomously and adaptively select the most suited next-hop node in packet routing. This
has motivated researchers to develop routing techniques based on Q-learning. The role of
RL for routing in FANETs was thoroughly investigated in [141] by assessing over 60 routing
protocols that were proposed since the 1990s. It recommended RL as the best solution
with reasonable overhead in terms of control packets, memory, and computation. In [142],
the authors introduced a routing technique dubbed as QGeo which utilizes Q-learning.
This methodology aims to reduce the routing overhead while maintaining a higher packet
success delivery in comparison to other methods that do not rely on Q-learning. Moreover,
the authors in [143] proposed a modified version of QGeo, where they enabled the system
to learn the reward function of the Q-learning function in real-time through the inverse
RL mechanism. The authors demonstrated an enhancement to the shortcomings of QGeo
through real-time learning.

Another significant Q-learning-based routing technique that deploys the multi-objective
optimization routing protocol, dubbed as QMR was introduced in [144]. QMR enables
the adaptive learning of the network to its dynamic environment. In [145], the authors
proposed a routing scheme called Q-FANET which uses a specialized version of the Q-
Learning algorithm designed to cut down on delivery times in highly mobile networks.
The authors also demonstrated enhanced performance in terms of packet success ratio,
delay, and jitter when compared to the other RL-assisted routing techniques.

There are other algorithms that incorporate RL with other tools that have also been
explored for FANETs. The authors in [146] proposed a routing protocol using fuzzy logic
and Q-learning to enable routing path selection based on reducing the number of total
hops and minimizing the delivery time. In this case, Q-learning is used to support the
output obtained from fuzzy logic through a point system for evaluating potential routes.
In addition, the authors in [15] relied on the use of Markov decision processes to propose
an adaptive hybrid communication protocol based on RL.

While the current mechanisms have been shown to provide a major enhancement
in the network routing performance, the complexity of the system becomes very high
with more inputs. The primary reason for this is the centralized nature of the proposed
techniques, where all the data is communicated back to the server, which is responsible
for the training, rewarding, and action-taking. Distributed learning could provide merit
in large networks, which can enable the different nodes to adjust their parameters in
real-time [147,148].

6.2. Resource Allocation

In order to achieve seamless service while maintaining costs and energy consumption
constraints, FANETs require real-time, autonomous, and dynamic resource allocation
techniques. This is even more crucial in FANETs in comparison to static terrestrial links
since each UAV requires the selection of a flight trajectory, which ensures that the UAV is
maintaining its coverage, energy consumption, and avoiding obstacles (Obstacles could
be static, such as high-rise buildings in urban environments, or even dynamic, such as
other UAVs or departing/landing airplanes that are at the same altitude). Other issues
include the allocation of UAVs to certain geographical regions or the redirection of some
UAVs to cover for others that might require charging. Traditionally, logistic regression and
support vector machine (SVM) have been commonly applied to UAV resource allocation
problems [149]. In recent years, neural network-based and deep RL-assisted methods have
become more popular to cope with the complex and dynamic nature of FANETs [140].
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In [150], a ML algorithm was proposed focusing on the integration of UAVs into terrestrial
networks to find efficient resource allocation along with the optimized 3D locations of
UAVs to maximize the sum logarithmic rate of the users.

In [151], the authors suggested a model for optimizing the power transmission, trajec-
tory design, and user association for a multi-UAV setting. In this setting, a central UAVs
or a base station chooses an action for every time slot following the Q-learning method.
In order to attain the required, the battery state, the state of the channel, and maximum
transmission state were considered. Further, the researchers suggested that simple use
of Q-learning is not advisable due to the high dimensionality problem that it presents.
To further elaborate, due to the dynamic nature of UAVs, it is possible that thousands of
states exist. Then if the values are stored in the Q-matrix table, there would be very large
and insufficient samples to traverse every state of the UAV, often leading to the algorithm
failing. As a result, the authors suggested combining Q-learning and Deep Neural Network
(DNN). Instead of calculating the Q-value for each state, Deep Q-Network (DQN) can be
used to estimate the value function for Q-learning.

In [152], resource management was studied in UAV-enabled long-term evolution (LTE)
settings over licensed and unlicensed bands. The major aim was to optimize users’ QoS
while fulfilling each user’s latency requirement. Instead of using conventional echo state
networks (ESNs) for this, the authors suggested using ESN with leaky integrator neurons.
This was driven by the algorithm’s capability to dynamically update the ESN’s status for
users and achieve the optimal user QoS. Through simulation, it was shown that this method
outperformed Q-learning with LTE-U and Q-learning with LTE in terms of performance.

Due to UAV privacy concerns and their computational limitations, distributed comput-
ing has recently gained attention. One such method for networked computing is federated
learning (FL), which was developed by Google [153] in 2016. In FL, users do not exchange
data, and models are locally trained. The base station conducts an aggregation function
on the model parameters and generates a global model, which is then delivered back to
the users, using the local models as input. In [154], the authors presented an asynchronous
FL framework for resource management. Furthermore, an asynchronous advantage actor-
critic (A3C) algorithm was implemented for device selection, UAV placement, and efficient
resource management. The authors emphasized the usage of deep RL algorithms, such as
DQN, which utilize experience replay for effective learning. However, leveraging experi-
ence replay necessitates having enough memory and processing capability to ensure more
accurate learning. As a result, using the A3C algorithm circumvents these restrictions and
may be deemed “better” in scenarios where memory size and computational resources are
limited, which is frequently the case. Simulating this scenario concluded that this frame-
work outperformed the existing solutions for resource management in terms of efficiency
and learning accuracy.

In addition, the application of FL for power allocation and scheduling policy over a
swarm of UAVs was suggested in [155] using the derived knowledge from transmission
delay and antenna angle variations on convergence. The simulation results showed that FL
convergence was more effective than a baseline architecture.

6.3. Network Security

The security of each node is paramount to ensure the security of the network. As a re-
sult, as the number of nodes in any wireless network increases, it becomes more vulnerable
to jamming, and network breaches, among many other threats. Moreover, it becomes more
challenging to monitor and protect each node individually due to the centralized nature of
the operation. Therefore, network security is another important domain in FANETs where
AI techniques, specifically distributed and/or FL, can be employed to protect the network.

The FL has shown great potential in FANETs to detect and combat jamming by
demonstrating its capability as the number of nodes increases. For instance, the authors
in [156] proposed an FL architecture to detect jamming with a prioritization technique,
laying the foundation for FL in jamming detection. In addition, they developed an adaptive
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anti-jamming methodology that is based on federated Q-learning in [157]. Another work
also proposed the use of federated Q-learning networks to achieve a frequency hopping
strategy to combat periodic jamming [158].

In addition, FL is capable of incorporating many algorithms that can better secure the
communication channel between the different nodes and the cloud [159], which can be
deployed in FANETs to combat eavesdropping attacks, while AI-enabled solutions for secu-
rity purposes have demonstrated potential in wireless systems, there are still few solutions
that are suitable for networks such as FANETs, thus they require more investigation.

7. Challenges and Future Research Directions

In this section, we discuss challenges and future research directions of FANETs
with UAVs.

7.1. Infrastructure-Aided Control Plane

A FANET without terrestrial infrastructure needs to maintain itself in a decentralized
manner as conventional ad hoc networks. On the other hand, when a FANET is to be
operated with terrestrial networks, it can take advantage of terrestrial infrastructure. To this
end, gNBs can help. For example, as an extreme case, the coverage of gNBs can be extended
to support all UAVs in a FANET to exchange information in the control plane, as shown in
Figure 15, which might be possible as the data rate for the control plane can be relatively low.
In this case, any UAV directly communicates with a gNB to exchange control information
at a low rate in the control plane that uses a different network from the FANET for the data
plane, where data packets are transmitted through UAVs.

FANET

gNB 2gNB 1

Coverage of 
CP of gNB 2

Coverage of 
CP of gNB 1

Figure 15. Coverage of control plane of gNBs to support a FANET.

The terrestrial infrastructure-aided control plane can provide a number of advantages,
including mobility control of UAVs by gNBs so that topology control and routing can be
done in a centralized manner. However, the coverage of gNBs may not be sufficient to
communicate with all the UAVs when the density of gNBs is low. In addition, if there are a
large number of UAVs, the bandwidth allocated to the control plane should increase, which
is often undesirable due to the limited bandwidth. As a result, the terrestrial infrastructure-
aided control plane should adapt to given conditions, e.g., the number of UAVs, coverage
limit, bandwidth allocation, etc.

7.2. Mobility Management

Having a realistic mobility model for UAVs in FANETs is a crucial task. It represents
the position, acceleration, and speed of UAVs in different time instances [24,25,160]. Al-
though there are some mobility models defined for MANETs and VANETs which may
be applicable to FANETs as well, the difference between FANETs and MANETs/VANETs
should be further taken into account to have more FANET-oriented models. These dif-
ferences include but are not limited to 3D moving area, power supply, safety, freedom in
speed and directions, and so on.

7.3. Radio Resource Management

There are limited radio resources (e.g., bandwidth, power, storage, etc) for UAVs to
operate efficiently when the number of users increases. It results in a need for radio resource
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management and optimization to efficiently utilize available resources and provide services
to the network’s edge [161]. In addition, when UAVs are used to create flying hotspots,
the radio resources should be carefully divided and allocated for communications between
UAVs and ground users as well as communications between UAVs. This resource allocation
to links between UAVs has to be considered with the routing of FANET itself and traffic
from/to ground users in each UAV.

Furthermore, since the source of power in UAVs is mostly limited, i.e., UAVs are
mainly powered by batteries, power efficiency through efficient resource management is
especially important when UAVs are utilized in public safety applications [43]. Hence,
having application-based resource optimization scenarios is a crucial research direction in
future FANETs. This may be done according to different criteria to decrease the mission
completion time, decrease total cost, increase scalability and survivability of the network.

7.4. Reconfigurable Intelligent Surfaces

Reconfigurable intelligent surface (RIS) is an emerging technology that can manipulate
impinging electromagnetic waves to benefit wireless users [162,163]. One of the benefits
of RIS is to scale up signal power and to reflect signals in the desired path by applying
particular phase shifts [164]. A FANET equipped by RISs has the potential to be used
for simultaneous wireless information and power transfer (SWIPT) [165]. Furthermore,
in ultra-dense urban areas where many obstacles block the signal propagation in terrestrial
networks, a FANET of RISs can enable the intelligent reflection from the sky to have a LoS
transmission between terrestrial transceivers as shown in Figure 16. Hence, more research
and development are required in the domain of RIS-assisted FANETs in the future.

RIS

RIS

Figure 16. FANET can be equipped with RIS for reducing the number of backhaulings and/or
overcoming the blockage in dense urban areas.

7.5. Advanced Antenna Technologies

The deployment of single omnidirectional antennas in UAVs is not an optimal case,
especially in terms of power management. A directional antenna, on the other hand,
may meet this problem with greater power efficiency by beamforming a signal solely
towards a conic zone range rather than across all-around areas. It results in a significant
reduction in power consumption up to (2πΦ − 1) times, where Ψ ≤ π is the half-power
beamwidth [166]. However, since there is high mobility in a FANET topology, real-time and
high-performing beam switching is a crucial task to make sure the data traffic is exchanged
between mobile nodes effectively. Directional beamforming and beam switching are appli-
cable by technologies such as MIMO [167–169] or steerable antennas [170]. Furthermore,
the location information of the network should be accessible by the intended UAVs. This
requires further research and studies to use narrow beam operations’ beam sweeping
characteristics to increase coverage and capacity while decreasing interference [58].
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7.6. Feedback Based Retransmissions

Conventional feedback-based LTE retransmission techniques like automatic repeat
request (ARQ) or hybrid ARQ (HARQ) might not be efficient in FANET since the channel
conditions are mostly hostile and poor due to rapid variations in the network topology [171].
Indeed, these techniques are applicable when the channel variation is slow [172]. Likewise,
the performance of traditional modulation schemes such as M-QAM begins to decay as
the channel variation increases in FANET which affects the data transmission rates. Hence,
having a type of adaptive modulation and coding (AMC) scheme for different channel
conditions is profitable. Indeed, AMC can be considered a solution to the performance
degradation of the system in poor channel conditions. Furthermore, compared to the
conventional feedback-based approaches of ARQ/HARQ, AMC can help as an alternative
to estimate the CSI and send feedback to the transmitter. This can also be a great help
for power control on the transmitter side, since power management is an important issue
in FANETs.

7.7. Time/Frequency/Space Dimensions

In FANETs, there are still serious challenges in the time, frequency, and space domains
that should be addressed carefully. For instance, the time delay propagation of FANETs can
vary from 1 ms to several milliseconds according to their altitudes. Therefore, transceivers
should be able to dynamically adjust the uplink time advance parameters within a large
range [3]. The time delay also impacts the HARQ-ACK process [173], although the HARQ-
ACK can be disabled in specific scenarios at the cost of reliability. In the frequency domain,
because of the fast and variable speed of a large number of UAVs, large Doppler frequency
shifts may require complex frequency pre-compensation techniques at the receivers [83].
Moreover, there is a need for multiplexing and dynamic spectrum sharing to control the
interference in highly varying network topologies. Likewise, in the space domain, frequent
handover, location prediction, and trajectory optimization are challenging issues that
require further research with respect to the specific application requirements.

7.8. Network Coding

Apart from feedback-based retransmission techniques in Section VII.F, the develop-
ment of network coding strategies [117,174] for FANETs where conventional channel coding
schemes, e.g., cyclic redundancy check (CRC), are constrained, can be beneficial. Network
coding is an alternative to feedback-based reliable transmission techniques like HARQ.
Indeed, a feedback-based approach can be problematic in FANETs since UAVs can move
far from terrestrial and non-terrestrial nodes and re-transmissions in ARQ/HARQ impose
large latency into the system due to long RTT [90]; thus, precluding agile development.
Therefore, network coding can be applied over the data packets for packet-level coding
and is expected to have a better performance in terms of throughput than conventional
repetition-based coding. Hence, network coding is the potential solution that the system
can leverage on the benefits of non-redundant packet re-submissions due to FANET chal-
lenging fading environments and long RTT. Indeed, a proposal of network coding strategies
for packet-level coding can leverage existing UAVs for cost-effective FANETs and reliable
connectivity while enhancing the system throughput, reducing delays, and constructing a
more robust network.

8. Conclusions

Towards reaching the full potential of NTNs, in this article we have focused on the role
of UAV networks, i.e., FANETs, catalyzing the integration between terrestrial and flying
networks while provisioning various UAV-aided applications in 5G and beyond. In partic-
ular, we have identified that DTN-based routing methods and ML-assisted techniques are
promising to further improve the connectivity and resource efficiency of FANETs, as partly
evidenced by our LAROD-based FANET routing case study. Meanwhile, we have also
discussed that there still remain a variety of research questions on mobility management,
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privacy, advanced transmission techniques, and so forth. Based on this, investigating how
to make DTN and ML-assisted FANETs compatible with other NTN components while
jointly optimizing the integrated network resources could be an interesting avenue for
future research.
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3GPP 3rd Generation Partnership Project
A2A Air-to-Air
A2G Air-to-Ground
ACK Acknowledgment
AI Artificial Intelligence
ARQ Automatic Repeat Request
CAGR Compound Annual Growth Rate
CRC Cyclic Redundancy Check
CSI Channel State Information
DL Deep Learning
DNN Deep Neural Network
DQL Deep Q-learning
DQN Deep Q-Network
DTN Delay Tolerant Network
eMBB Enhanced Mobile Broadband
ESN Echo State Networks
FANET Flying Ad-hoc Network
FDD Frequency Division Duplex
FL Federated Learning
FLS Flooding-based Location Service
G2A Ground-to-Air
GEO Geosynchronous/Geostationary Equatorial Orbit
gNB Ground New Base Station
GPS Global Positioning Systems
HAAP High Altitude Aeronautical Platforms
HAP High Altitude Platforms
HARQ Hybrid Automatic Repeat Request
ICO Intermediate Circular Orbit
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial Measurement Unit
ISI Inter-Symbol Interference
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LEO Low Earth Orbit
LTE Long-Term Evolution
MANET Mobile Ad-hoc Network
MEO Medium Earth Orbit
ML Machine Learning
mMTC massive Machine Type Communications
mmWave Millimeter-Wave
NOMA Non-Orthogonal Multiple Access
NR New Radio
RAN Radio Access Network
RL Reinforcement Learning
RTT Round Trip Time
SCF Store-Carry-and-Forward
SVM Support Vector Machine
TDD Time Division Duplex
TTL Time To Live
UAS Unmanned Aircraft Systems
URLLC Ultra-Reliable and Low Latency Communications
UTM UAS Traffic Management
VANET Vehicular Ad-hoc Network

Appendix A. Topology-Based Routing Protocols

Below is the list of conventional topology-based routing protocols for FANETs [19,36,39]
with respect to their proposed time.

1994 Destination Sequence Distance Vector (DSDV) [175]
1996 Dynamic Source Routing (DSR) [176]
1998 Zone Routing Protocol (ZRP) [177]
1998 Temporally Ordered Routing Algorithm (TORA) [178]
1999 Ad hoc on Demand Vector (AODV) [179]
1999 Hybrid Routing Protocol (HRP) [180]
2000 Fisheye-State Routing (FSR) [181]
2000 Multicast Ad hoc on Demand Vector (MAODV) [182]
2001 Optimised Link State Routing (OLSR) [183]
2002 Data-Centric Routing (DCR) [184]
2003 Sharp Hybrid Adaptive Routing Protocol (SHARP) [185]
2004 Topology Broadcast based on Reverse-Path Forwarding (TBRPF) [186]
2007 Load, Carry and Delivery (LCAD) [131]
2007 Time Slotted Ad hoc on Demand Vector (TS-AODV) (TS-AODV) [187]
2008 Better Approach to Mobile Ad Hoc Network (BATMAN)[188]
2008 Modified Optimised Link State Routing (MOLSR) [189]
2008 Hybrid Routing based on Clustering (HRC) [190]
2010 Directional Optimised Link State Routing (DOLSR) [191]
2011 Cartography-Enhanced Optimised Link State Routing (CE-OLSR) [192]
2011 Better Approach to Mobile Ad Hoc Network-Advanced (BATMAN-ADV) [193]
2011 BABEL [194]
2012 Contention Based Optimised Link State Routing (COLSR) [195]
2012 Ad hoc on Demand Vector Security (AODVSEC) [196]
2012 Mobility Prediction Clustering Algorithm (MPCA) [197]
2013 Predictive Optimised Link State Routing (POLSR) [198]
2013 Hybrid Wireless Mesh Protocol (HWMP) [199]
2013 Rapid-reestablish Temporally Ordered Routing Algorithm (RTORA) [200]
2014 Mobility and Load aware Optimised Link State Routing (ML-OLSR) [201]
2014 Multi-Level Hierarchical Routing (MLHR) [20]
2017 UAV-assisted routing (UVAR) [202].
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Appendix B. Position-Based Routing Protocols

Below is the list of conventional position-based routing protocols for FANETs [19,36,39]
with respect to their proposed time.

2006 Ad Hoc Routing Protocol for Aeronautical Mobile Ad Hoc Networks (ARPAM) [203]
2008 Greedy-Random-Greedy (GRG) [204]
2009 Geographic Greedy Perimeter Stateless Routing (GPSR) [205]
2009 UAV Search Mission Protocol (USMP) [205]
2009 Greedy-Hull-Greedy (GHG) [206]
2010 Multipath Doppler Routing (MUDOR) [207]
2010 Greedy Distributed Spanning Tree Routing 3D (GDSTR-3D) [208]
2011 Reactive-Greedy-Reactive (RGR) [209]
2011 Greedy Geographic Forwarding (GGF) [210]
2011 Geographic Load-Share Routing (GLSR) [211]
2012 Geographic Position Mobility-Oriented Routing (GPMOR) [212]
2012 Mobility Prediction-Based Geographic Routing (MPGR)[213]
2014 Recovery Strategy for the Greedy Forwarding Failure (RSGFF) [214]
2014 Cross-Layer Link Quality and Geographical-Aware Beaconless [215]
2015 Connectivity-Based Traffic-Density Aware Routing Using UAVs for VANETs (CRUV) [118]
2016 UAV-Assisted VANET Routing Protocol (UVAR) [216]
2016 Position-Aware Secure and Efficient Routing Approach (PASER) [217]
2016 Secure UAV Ad Hoc Routing Protocol (SUAP) [218].

References
1. Yao, H.; Wang, L.; Wang, X.; Lu, Z.; Liu, Y. The Space-Terrestrial Integrated Network: An Overview. IEEE Commun. Mag. 2018,

56, 178–185. [CrossRef]
2. Huang, X.; Zhang, J.A.; Liu, R.P.; Guo, Y.J.; Hanzo, L. Airplane-Aided Integrated Networking for 6G Wireless: Will It Work? IEEE

Veh. Technol. Mag. 2019, 14, 84–91. [CrossRef]
3. Liu, J.; Peng, S.; Jiang, Z.; She, X.; Chen, P. Operation and Key Technologies in Space-Air-Ground Integrated Network.

In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia,
30 May–3 June 2022; pp. 1311–1316. [CrossRef]

4. Akyildiz, I.F.; Kak, A. The Internet of Space Things/CubeSats. IEEE Netw. 2019, 33, 212–218. [CrossRef]
5. Priyadarshini, I.; Bhola, B.; Kumar, R.; So-In, C. A Novel Cloud Architecture for Internet of Space Things (IoST). IEEE Access 2022,

10, 15118–15134. [CrossRef]
6. Kak, A.; Akyildiz, I.F. Designing Large-Scale Constellations for the Internet of Space Things With CubeSats. IEEE Internet Things

J. 2021, 8, 1749–1768. [CrossRef]
7. Tao, H.; Zhu, Q.; Che, X.; Li, X.; Man, W.; Zhang, Z.; Zhang, G. Impact of Mega Constellations on Geospace Safety. Aerospace

2022, 9, 402. [CrossRef]
8. Zhu, Q.; Tao, H.; Cao, Y.; Li, X. Laser Inter-Satellite Link Visibility and Topology Optimization for Mega Constellation. Electronics

2022, 11, 2232. [CrossRef]
9. Rajatheva, N.; Atzeni, I.; Bjornson, E.; Bourdoux, A.; Buzzi, S.; Dore, J.B.; Erkucuk, S.; Fuentes, M.; Guan, K.; Hu, Y.; et al. White

paper on broadband connectivity in 6G. arXiv 2020, arXiv:2004.14247.
10. Rinaldi, F.; Maattanen, H.L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-Terrestrial Networks in

5G & Beyond: A Survey. IEEE Access 2020, 8, 165178–165200. [CrossRef]
11. González, T.N.; Salamanca, J.L.; Sánchez, S.M.; Meza, C.A.; Céspedes, S. Analysis of Channel Models for LoRa-based Direct-to-

Satellite IoT Networks Served by LEO Nanosatellites. In Proceedings of the 2021 IEEE International Conference on Communica-
tions Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.

12. Motzigemba, M.; Zech, H.; Biller, P. Optical inter satellite links for broadband networks. In Proceedings of the 2019 9th
International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkiye, 11–14 June 2019; pp. 509–512.

13. Valiulahi, I.; Masouros, C. Multi-UAV deployment for throughput maximization in the presence of co-channel interference. IEEE
Internet Things J. 2020, 8, 3605–3618. [CrossRef]

14. Khan, M.A.; Safi, A.; Qureshi, I.M.; Khan, I.U. Flying ad hoc networks (FANETs): A review of communication architectures,
and routing protocols. In Proceedings of the 2017 First International Conference on Latest trends in Electrical Engineering and
Computing Technologies (INTELLECT), Karachi, Pakistan, 15–16 November 2017; pp. 1–9. [CrossRef]

15. Zheng, Z.; Sangaiah, A.K.; Wang, T. Adaptive Communication Protocols in Flying Ad Hoc Network. IEEE Commun. Mag. 2018,
56, 136–142. [CrossRef]

http://doi.org/10.1109/MCOM.2018.1700038
http://dx.doi.org/10.1109/MVT.2019.2921244
http://dx.doi.org/10.1109/IWCMC55113.2022.9825014
http://dx.doi.org/10.1109/MNET.2019.1800445
http://dx.doi.org/10.1109/ACCESS.2022.3144137
http://dx.doi.org/10.1109/JIOT.2020.3016889
http://dx.doi.org/10.3390/aerospace9080402
http://dx.doi.org/10.3390/electronics11142232
http://dx.doi.org/10.1109/ACCESS.2020.3022981
http://dx.doi.org/10.1109/JIOT.2020.3023010
http://dx.doi.org/10.1109/INTELLECT.2017.8277614
http://dx.doi.org/10.1109/MCOM.2017.1700323


Drones 2022, 6, 334 27 of 34

16. Swinney, C.J.; Woods, J.C. A Review of Security Incidents and Defence Techniques Relating to the Malicious Use of Small
Unmanned Aerial Systems. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 14–28. [CrossRef]
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113. Oubbati, O.S.; Lakas, A.; Zhou, F.; Güneş, M.; Yagoubi, M.B. A survey on position-based routing protocols for Flying Ad hoc
Networks (FANETs). Veh. Commun. 2017, 10, 29–56. [CrossRef]

114. Yang, H.; Liu, Z. An optimization routing protocol for FANETs. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–8. [CrossRef]
115. AlKhatieb, A.; Felemban, E.; Naseer, A. Performance evaluation of ad hoc routing protocols in (FANETs). In Proceedings of the

2020 IEEE wireless communications and networking conference workshops (WCNCW), Seoul, Korea, 25–28 May 2020; pp. 1–6.
116. Tareque, M.H.; Hossain, M.S.; Atiquzzaman, M. On the routing in flying ad hoc networks. In Proceedings of the 2015 federated

conference on computer science and information systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 1–9.
117. Ghanem, S.A.; Gharsellaoui, A.E.; Tarchi, D.; Vanelli Coralli, A. Physical layer aware adaptive network coding schemes for

satellite communications. Int. J. Satell. Commun. Netw. 2017, 35, 537–549. [CrossRef]
118. Oubbati, O.S.; Lakas, A.; Lagraa, N.; Yagoubi, M.B. CRUV: Connectivity-based traffic density aware routing using UAVs for

VANets. In Proceedings of the 2015 International Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China,
19–23 October 2015; pp. 68–73. [CrossRef]

119. Fabra, F.; Zamora, W.; Reyes, P.; Sanguesa, J.A.; Calafate, C.T.; Cano, J.C.; Manzoni, P. MUSCOP: Mission-Based UAV Swarm
Coordination Protocol. IEEE Access 2020, 8, 72498–72511. [CrossRef]

120. Ammad Uddin, M.; Mansour, A.; Le Jeune, D.; Ayaz, M.; Aggoune, E.H.M. UAV-assisted dynamic clustering of wireless sensor
networks for crop health monitoring. Sensors 2018, 18, 555. [CrossRef] [PubMed]

121. Li, K.; Ni, W.; Wang, X.; Liu, R.P.; Kanhere, S.S.; Jha, S. Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE
Trans. Mob. Comput. 2015, 15, 1377–1386. [CrossRef]

122. Sanchez-Aguero, V.; Gonzalez, L.F.; Valera, F.; Vidal, I.; López da Silva, R.A. Cellular and virtualization technologies for uavs: An
experimental perspective. Sensors 2021, 21, 3093. [CrossRef]

123. Kuiper, E.; Nadjm-Tehrani, S. Geographical Routing With Location Service in Intermittently Connected MANETs. IEEE Trans.
Veh. Technol. 2011, 60, 592–604. [CrossRef]

124. Lindgren, A.; Doria, A.; Schelén, O. Probabilistic Routing in Intermittently Connected Networks. SIGMOBILE Mob. Comput.
Commun. Rev. 2003, 7, 19–20. [CrossRef]

125. Spyropoulos, T.; Psounis, K.; Raghavendra, C.S. Spray and Wait: An Efficient Routing Scheme for Intermittently Connected
Mobile Networks. In Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking; Association for Computing
Machinery: New York, NY, USA, 2005; WDTN ’05, pp. 252–259. [CrossRef]

126. Burgess, J.; Gallagher, B.; Jensen, D.; Levine, B.N. MaxProp: Routing for Vehicle-Based Disruption-Tolerant Networks. In
Proceedings of the IEEE INFOCOM 2006, 25th IEEE International Conference on Computer Communications, Barcelona, Spain,
23–29 April 2006; pp. 1–11. [CrossRef]

127. Jabbar, A.; Sterbenz, J.P.G. AeroRP: A Geolocation Assisted Aeronautical Routing Protocol for Highly Dynamic Telemetry
Environments In Proceedings of the International Telemetering Conference, Las Vegas, NV, USA, 21–24 October 2009, pp. 1–10.

http://dx.doi.org/10.1016/j.adhoc.2022.102800
http://dx.doi.org/10.1109/LNET.2021.3080403
http://dx.doi.org/10.1016/j.comnet.2020.107478
http://dx.doi.org/10.23919/JCC.2022.01.009
http://dx.doi.org/10.48129/kjs.v49i1.10654
http://dx.doi.org/10.1109/TWC.2017.2688328
http://dx.doi.org/10.1109/JIOT.2022.3189214
http://dx.doi.org/10.1109/TVT.2022.3189024
http://dx.doi.org/10.1016/j.vehcom.2017.10.003
http://dx.doi.org/10.1155/2019/3912784
http://dx.doi.org/10.1002/sat.1222
http://dx.doi.org/10.1109/ICCVE.2015.54
http://dx.doi.org/10.1109/ACCESS.2020.2987983
http://dx.doi.org/10.3390/s18020555
http://www.ncbi.nlm.nih.gov/pubmed/29439496
http://dx.doi.org/10.1109/TMC.2015.2467381
http://dx.doi.org/10.3390/s21093093
http://dx.doi.org/10.1109/TVT.2010.2091658
http://dx.doi.org/10.1145/961268.961272
http://dx.doi.org/10.1145/1080139.1080143
http://dx.doi.org/10.1109/INFOCOM.2006.228


Drones 2022, 6, 334 31 of 34

128. Whitbeck, J.; Conan, V. HYMAD: Hybrid DTN-MANET routing for dense and highly dynamic wireless networks. Comput.
Commun. 2010, 33, 1483–1492.: 10.1016/j.comcom.2010.03.005. [CrossRef]

129. Khawaja, W.; Guvenc, I.; Matolak, D.W.; Fiebig, U.C.; Schneckenburger, N. A Survey of Air-to-Ground Propagation Channel Modeling
for Unmanned Aerial Vehicles. IEEE Commun. Surv. Tutorials 2019, 21, 2361–2391. [CrossRef]

130. Scott, K.; Burleigh, S. Bundle Protocol Specification. Technical Report. RFC 5050. November 2007. Available online: https://www.rfc-
editor.org/rfc/rfc5050 (accessed on 28 June 2022).

131. Cheng, C.M.; Hsiao, P.H.; Kung, H.T.; Vlah, D. Maximizing Throughput of UAV-Relaying Networks with the Load-Carry-and-
Deliver Paradigm. In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China,
11–15 March 2007; pp. 4417–4424. [CrossRef]

132. Fu, Y.; Ding, M.; Zhou, C.; Hu, H. Route Planning for Unmanned Aerial Vehicle (UAV) on the Sea Using Hybrid Differential
Evolution and Quantum-Behaved Particle Swarm Optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2013, 43, 1451–1465.
[CrossRef]

133. Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–
134030. [CrossRef]

134. Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K. Artificial-Intelligence-Enabled Intelligent 6G Networks. IEEE Netw.
2020, 34, 272–280. [CrossRef]

135. Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutorials
2019, 21, 2224–2287. [CrossRef]

136. Homssi, B.A.; Dakic, K.; Wang, K.; Alpcan, T.; Allen, B.; Kandeepan, S.; Al-Hourani, A.; Saad, W. Artificial Intelligence Techniques
for Next-Generation Mega Satellite Networks. arXiv 2022, arXiv.2207.00414.

137. O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575.
[CrossRef]

138. Bkassiny, M.; Li, Y.; Jayaweera, S.K. A Survey on Machine-Learning Techniques in Cognitive Radios. IEEE Commun. Surv.
Tutorials 2013, 15, 1136–1159. [CrossRef]

139. Zorzi, M.; Zanella, A.; Testolin, A.; De Filippo De Grazia, M.; Zorzi, M. Cognition-Based Networks: A New Perspective on
Network Optimization Using Learning and Distributed Intelligence. IEEE Access 2015, 3, 1512–1530. [CrossRef]

140. Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for
UAV-Based Communications. Sensors 2019, 19, 5170. [CrossRef]

141. Mammeri, Z. Reinforcement Learning Based Routing in Networks: Review and Classification of Approaches. IEEE Access 2019,
7, 55916–55950. [CrossRef]

142. Jung, W.S.; Yim, J.; Ko, Y.B. QGeo: Q-Learning-Based Geographic Ad Hoc Routing Protocol for Unmanned Robotic Networks.
IEEE Commun. Lett. 2017, 21, 2258–2261. [CrossRef]

143. Jin, W.; Gu, R.; Ji, Y. Reward Function Learning for Q-learning-Based Geographic Routing Protocol. IEEE Commun. Lett. 2019,
23, 1236–1239. [CrossRef]

144. Liu, J.; Wang, Q.; He, C.; Jaffrès-Runser, K.; Xu, Y.; Li, Z.; Xu, Y. QMR:Q-learning based Multi-objective optimization Routing
protocol for Flying Ad Hoc Networks. Comput. Commun. 2020, 150, 304–316. [CrossRef]

145. da Costa, L.A.L.; Kunst, R.; Pignaton de Freitas, E. Q-FANET: Improved Q-learning based routing protocol for FANETs. Comput.
Netw. 2021, 198, 108379. [CrossRef]

146. He, C.; Liu, S.; Han, S. A Fuzzy Logic Reinforcement Learning-Based Routing Algorithm For Flying Ad Hoc Networks. In
Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA,
17–20 February 2020; pp. 987–991. [CrossRef]

147. Ong, H.Y.; Chavez, K.; Hong, A. Distributed Deep Q-Learning. arXiv 2015, arXiv.1508.04186.
148. Liu, B.; Ding, Z. A distributed deep reinforcement learning method for traffic light control. Neurocomputing 2022, 490, 390–399.

[CrossRef]
149. Park, J.; Kim, Y.; Seok, J. Prediction of information propagation in a drone network by using machine learning. In Proceedings

of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea,
19–21 October 2016; pp. 147–149.

150. Kalantari, E.; Bor-Yaliniz, I.; Yongacoglu, A.; Yanikomeroglu, H. User association and bandwidth allocation for terrestrial and
aerial base stations with backhaul considerations. In Proceedings of the 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6.

151. Wang, L.; Wang, K.; Pan, C.; Chen, X.; Aslam, N. Deep Q-network based dynamic trajectory design for UAV-aided emergency
communications. J. Commun. Inf. Networks 2020, 5, 393–402. [CrossRef]

152. Chen, M.; Saad, W.; Yin, C. Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks.
In Proceedings of the 2018 IEEE International Conference on Communications (ICC),Kansas City, MO, USA, 20–24 May 2018;
pp. 1–6.
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