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Non-Thermal Atmospheric Pressure 
Plasma Efficiently Promotes the 
Proliferation of Adipose Tissue-
Derived Stem Cells by Activating 
NO-Response Pathways
Jeongyeon Park1, Hyunyoung Lee2, Hae June Lee2, Gyoo Cheon Kim3, Do Young Kim4, 

Sungbum Han5 & Kiwon Song1

Non-thermal atmospheric pressure plasma (NTAPP) is defined as a partially ionized gas with electrically 
charged particles at atmospheric pressure. Our study showed that exposure to NTAPP generated in a 
helium-based dielectric barrier discharge (DBD) device increased the proliferation of adipose tissue-
derived stem cells (ASCs) by 1.57-fold on an average, compared with untreated cells at 72 h after initial 
NTAPP exposure. NTAPP-exposed ASCs maintained their stemness, capability to differentiate into 
adipocytes but did not show cellular senescence. Therefore, we suggested that NTAPP can be used to 
increase the proliferation of ASCs without affecting their stem cell properties. When ASCs were exposed 
to NTAPP in the presence of a nitric oxide (NO) scavenger, the proliferation-enhancing effect of NTAPP 
was not obvious. Meanwhile, the proliferation of NTAPP-exposed ASCs was not much changed in the 
presence of scavengers for reactive oxygen species (ROS). Also, Akt, ERK1/2, and NF-κB were activated 
in ASCs after NTAPP exposure. These results demonstrated that NO rather than ROS is responsible for 
the enhanced proliferation of ASCs following NTAPP exposure. Taken together, this study suggests that 
NTAPP would be an efficient tool for use in the medical application of ASCs both in vitro and in vivo.

Plasma is described as a quasi-neutral mixture of charged particles and radicals in a partially ionized gas. 
Recently, many studies attempted to take advantage of the low temperature of non-thermal atmospheric pressure 
plasmas (NTAPPs) for biomedical applications owing to the controllability of plasma chemistry and kinetics 
(for reviews, see Fridman et al.1, Kong et al.2, and Lee et al.3). NTAPPs are easily generated in air and can be used 
without causing thermal damage to cells. E�ects of NTAPPs on living tissues include sterilization, wound healing, 
and changes in cell migration (for a review, see Park et al.4). �e di�erent e�ects of plasma depend on plasma 
dosage and their complex chemical compositions. Recently, the clinical applications of NTAPPs have become a 
very active research area.

Previous studies regarding the clinical application of NTAPP with respect to human cells have focused on 
its ability to induce necrosis5 or apoptosis6–8. Several research groups have demonstrated that NTAPP induces 
apoptosis in cancer cells9,10 and reduces tumor size in mouse xenogra� models in vivo11, thereby suggesting 
the use of NTAPP in cancer therapy (for a review, see Song et al.12). Increasing evidence suggests that reactive 
oxygen species (ROS) are the major players in NTAPP-induced apoptosis in vitro13–15. However, there is a dis-
crepancy between the cytotoxic e�ect of non-thermal plasma and ozone, which is a considerable component of 
non-thermal air plasma16,17.
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In our previous study, we showed that NTAPP exposure selectively induces apoptosis in cancer cells by acti-
vating the ROS response system; however, it accelerated the proliferation of normal �broblast IMR 90 cells and 
adipose tissue-derived stem cells (ASCs)18. NTAPP has also been reported to accelerate wound healing processes 
by activating the nuclear factor erythroid-related factor 2 (NRF2) signaling pathway in human keratinocyte HaCa 
T cell line in vitro19, and to promote re-epithelialization and wound closure by activating keratinocytes and �bro-
blasts in Wistar rats’ wound skin20. �ese studies strongly suggested that NTAPP stimulates the proliferation of 
normal and adult stem cells.

ASCs are mesenchymal stem cells (MSC) that have the potential to di�erentiate into various cell types such as 
adipocytes, osteoblasts, chondrocytes, and neurons21. ASCs are also capable for self-renewal, which is an impor-
tant property of stem cells to regenerate damaged tissues22. ASCs are relatively easy to isolate from adipose tis-
sues by liposuction and may provide an accessible source of adult stem cells for use in regenerative medicine 
(for reviews, Bunnell et al.23, and Mizuno et al.24). However, in general, it is di�cult to culture adult stem cells  
in vitro while ensuring that they maintain their stemness; moreover, adult stem cells undergo rapid senescence 
in vitro25–27.

Biomarkers expressed on the cell surface are generally used to identify adult stem cells. For ASCs, CD44 
and CD105 are used as positive markers, while CD45 and FABP4 are used as negative markers. CD44 is a 
well-accepted stem cell marker28–31, while CD105 is mainly expressed in human mesenchymal stem cells includ-
ing ASCs isolated from adipose tissue22,30–32. CD45 is a pan-leukocyte marker that is well-expressed on hemato-
poietic stem cells but not on ASCs29,30,32–35. Fatty acid binding protein 4 (FABP4) is a speci�c maker found on 
ASCs that have di�erentiated into adipocytes36.

In this study, we focused on the e�ect of NTAPP on ASCs and its mechanisms. We showed that NTAPP can 
enhance the proliferation of ASCs in vitro, thereby supporting the potential applications of NTAPP in the �eld of 
regenerative medicine.

Results
Design of a helium-based dielectric barrier discharge (DBD) type NTAPP device. �e schematics 
of the experimental setup are shown in Fig. 1. �e dielectric barrier discharge (DBD)-type atmospheric pressure 
plasma device is connected to an alternating current (AC) voltage supply and a gas feeding system, as shown in 
Fig. 1A. �e DBD device is composed of a grounded cylindrical meshed electrode, a dielectric glass tube with a 
diameter of 6.35 mm, and a concentric electrode rod located inside the glass tube, as shown in Fig. 1B. A Te�on 
body forms a gas �ow tube with an inner diameter of 14 mm. �e device was designed to be fed with two types of 
gas through two inlets; however, only helium (He) gas was applied in the current experiment. �e �ow rate of the 
feeding gases was controlled between 1~10 slm by a mass �ow controller. �e peak-to-peak sinusoidal voltage was 
applied to the central rod from 0 to 12 kV at 20 kHz, while the meshed electrode was grounded. �us, a surface 
discharge was generated between the cylindrical glass and the mesh covering it. �e direction of the electric �eld 
is perpendicular to the direction of gas �ow, and reactive species rather than charged particles are ejected through 
the gas outlet. �is is the main di�erence between this device and a conventional plasma jet37–39 that delivers 
charged particles as well as radicals. �is device generates a large amount of helium atoms in the excited state in 
the discharge region inside the long tube, which is very e�ective for the generation of reactive nitrogen species 
(RNS) and reactive oxygen species (ROS) by the Penning e�ect outside.

NTAPP accelerates the proliferation of ASCs but induces apoptosis in HeLa cells. Our previous 
study demonstrated that NTAPP selectively induces apoptosis in various cancer cells, but increased the prolifera-
tion of normal �broblast IMR90 cells and ASCs18. Here, we examined whether NTAPP could promote the prolif-
eration of ASCs by using helium-based DBD-type NTAPP. To compare the e�ect of NTAPP between adult stem 
cells and cancer cells, we exposed NTAPP to ASCs and HeLa cells for a total of 10 times, for 50 sec each time every 
hour, and further incubated the cells for 72 h a�er the initial NTAPP exposure. Viability of NTAPP-exposed ASCs 
increased 1.57-fold on an average, compared with that observed with the unexposed control cells, as determined 

Figure 1. Helium-based dielectric barrier discharge type device used for non-thermal atmospheric 
pressure plasma (NTAPP) generation. (A) Schematic description of the NTAPP-generating device used in this 
study (photographed by J. Park). (B) Inner components of the device that generate NTAPP (drawn by H. Lee).
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by MTT assays at 72 h (Fig. 2A). However, the viability of NTAPP-exposed HeLa cells was signi�cantly decreased 
compared to that of the unexposed control cells (Fig. 2C).

Because NTAPP induces apoptosis in various cancer cells through DNA damage40, we also tested whether 
NTAPP induces DNA damage and apoptosis in ASCs and HeLa cells. �e expression of γ -H2AX (a marker 
for DNA double strand break), and the cleavage of caspase-3 and PARP (markers of apoptotic cells), were not 
detected in NTAPP-exposed ASCs (Fig. 2B, Supplementary Fig. S1A); however, we observed a time-dependent 
increase in the expression of γ -H2AX, and activation of caspase-3 and PARP by cleavage in HeLa cells exposed to 
NTAPP (Fig. 2D, Supplementary Fig. S1B). �ese results demonstrated that the same exposure of NTAPP accel-
erated the proliferation of ASCs but induced apoptosis in HeLa cells.

In order to further con�rm that NTAPP induces apoptosis in HeLa cells but has no apoptotic e�ect in ASCs, 
we examined the depolarization of the mitochondrial membrane potential in NTAPP-treated ASCs and HeLa 
cells by using JC-1 dye (5′ ,6,6′ -tetrachloro-1,1′ ,3,3′ -tetraethylbenzimidazolylcarbocyanine iodide). It has been 
well documented that mitochondria membrane potential changes in the early stage of apoptosis, in which mito-
chondrial membrane permeability increases, leading to the release of the pro-apoptotic factor cytochrome c6,41. 
JC-1 is a mitochondrial membrane-speci�c �uorescent dye that measures changes in mitochondrial membrane 
potential (for a review, see Cottet-Rousselle et al.42). JC-1 can form J-aggregates (red �uorescence at 585 nm) in 
the mitochondrial inner membrane in normal conditions with the mitochondria membrane intact, but it cannot 
be transported into the mitochondria when mitochondrial membrane potential is destructed and is present as 
monomers (green �uorescence at 530 nm) at the cytoplasm6,8,43,44. JC-1 reversibly changes its �uorescence color 
from green to red as the mitochondria membrane becomes polarized45,46. Also, JC-1 dye-especially J-aggregates 
with red �uorescence- responds linearly to mitochondrial membrane potential changes, and the red/green ratio 
and mitochondrial membrane potential values are highly correlated44,46,47. In normal conditions with usual 
mitochondrial membrane potentials, multiple regions with red and green �uorescence are observed because 
not all mitochondria in the same cell sustain the same mitochondrial membrane potential43,44,48. As a positive 
control for JC-1, we �rst treated HeLa cells with 50 µ M CCCP (carbonyl cyanide 3-chlorophenylhydrazone) 
that has been known to disrupt mitochondrial membrane potential49,50. By CCCP treatment, the ratio of HeLa 
cells with red-negative and green-positive �uorescence increased to 88.0% (Fig. 2E, upper panel). When we 
exposed NTAPP to HeLa cells for 10 times and incubated for a total of 72 h, the ratio of cells with red-negative 
and green-positive �uorescence (apoptotic cells) increased to 78.4%, strongly demonstrating the depolarization 
of mitochondrial membranes in apoptosis by NTAPP treatment. On the other hand, in the NTAPP-unexposed 
control HeLa cells, the ratio of cells with JC-1 red-negative and green-positive �uorescence was 35.4% (Fig. 2E, 
upper panel).

When we applied JC-1 to both NTAPP-treated ASCs and the untreated control, very similar high ratios of 
both red and green-positive �uorescence were detected in both NTAPP-treated and –untreated ASCs (Fig. 2E, 
lower panel), demonstrating that NTAPP did not induce the depolarization of mitochondrial membrane potential 
in ASCs. �ese observations strongly supported that NTAPP- exposed ASCs neither change their mitochondrial 
membrane potential nor undergo apoptosis. �ese results also con�rmed that exposure to NTAPP induces apop-
tosis in HeLa cells but not in ASCs.

NTAPP-exposed ASCs maintain their stemness. In order to use NTAPP to accelerate the proliferation 
of ASCs for di�erent applications, the characteristic of ASCs must be maintained a�er NTAPP exposure. We 
compared the stemness characteristics of NTAPP-exposed and -unexposed ASCs. CD44 and CD105 were used 
as positive markers, CD45 was used as a negative marker, and FABP4 was used as a di�erentiation marker to 
evaluate the characteristics of ASCs30,36. Before NTAPP exposure, we con�rmed the expression of these markers 
in ASCs by using reverse transcription-polymerase chain reaction (RT-PCR). CD44 and CD105 were expressed, 
while CD45 and FABP4 were not detected in ASCs, as shown in Fig. 3A. We then exposed the ASCs to NTAPP 
for a total of 10 times, and incubated the cells for 72 h a�er the �rst exposure. At the indicated time, we monitored 
the expression of the markers and observed that CD44 and CD105 continued to be expressed, while CD45 and 
FABP4 were not expressed, identical to that observed in NTAPP-unexposed ASCs (Fig. 3B).

�e expression of these markers was further con�rmed in NTAPP-exposed ASCs using �ow cytometric anal-
ysis with anti-CD44-phycoerythrin (PE), anti-CD105-allophycocyanin (APC), and anti-CD45-�uorescein iso-
thiocyanate (FITC). As shown in Supplementary Fig. S2A, the NTAPP-treated ASCs at 72 h incubation a�er the 
initial NTAPP exposure showed high expression of both CD44 and CD105 but no expression of CD45, similar to 
that observed in NTAPP-unexposed ASCs. �ese results further support that NTAPP exposure does not change 
the stemness characteristics of ASCs.

It has been reported that most stem cells including human mesenchymal stem cells (hMSCs) are prone to 
genotoxic damages that eventually lead to cellular senescence when cells proliferate in vitro51–53. �us, we mon-
itored whether ASCs showing increased proliferation following NTAPP exposure underwent cellular senes-
cence by using senescence-associated β -galactosidase staining. Cells treated with 100 µ M H2O2 were used as the 
positive control for cell senescence. As shown in Fig. 3C, only 12% of NTAPP-exposed ASCs were positive for 
β -galactosidase staining, similar to that observed with unexposed ASCs (9%), while 57% of H2O2-treated positive 
control cells were positive for β -galactosidase staining. �ese results suggest that NTAPP did not cause cellular 
senescence in ASCs while it promoted the proliferation of ASCs.

ASCs can be di�erentiated into several cell types such as adipocytes, neurons, osteoblasts, and chondro-
cytes (for a review, see Locke et al.54). To con�rm that ASCs showing increased proliferation following NTAPP 
exposure can maintain their capability to di�erentiate into various cell types, we examined the di�erentia-
tion of NTAPP-exposed ASCs into adipocytes. ASCs that were exposed to NTAPP for a total of 10 times for 
50 s each time every hour, were incubated for 72 h, and subsequently incubated in adipogenic di�erentiation 
medium for 28 days. Cells that di�erentiated into adipocytes were analyzed using Oil-red O staining for the 
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Figure 2. Non-thermal atmospheric pressure plasma (NTAPP) accelerates the proliferation of adipose tissue-
derived stem cells (ASCs) but induces apoptosis in HeLa cells. (A–D) ASCs (A,B,E) and HeLa cells (C,D,E) were 
exposed to NTAPP for a total of 10 times, for 50 sec every h, and were further incubated for 72 h from the initial 
exposure. Cell viability was evaluated at each indicated incubation time-point. (A,C) Cell viability was measured 
by MTT assay, and all results were represented as mean ±  SD. N =  4. P <  0.05 (*) indicates signi�cant di�erences 
compared with the control. (B,D) Western blot analysis of ASCs (B) and HeLa cells (D) were performed to 
assess the expression of γ -H2AX and PARP following NTAPP exposure. Actin was used as the loading control. 
Cells exposed to UV were used as the positive control for DNA damage and cell death. (E) �e mitochondrial 
membrane potential was monitored in NTAPP-treated HeLa and ASCs. Cells were stained with 2 µ M JC-1 dye for 
30 min at 37 °C, and both red and green �uorescence emissions were analyzed by �ow cytometry. Cells treated with 
50 µ M carbonyl cyanide 3-chlorophenylhydrazone (CCCP) for 4 h prior to JC-1 staining were used as a positive 
control for mitochondrial membrane disruption.
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Figure 3. Non-thermal atmospheric pressure plasma (NTAPP)-exposed adipose tissue-derived stem cells 
(ASCs) maintain their stem cell properties. (A) Reverse transcription-polymerase chain reaction (RT-PCR) 
was performed by using RNA extracted from ASCs. CD44 and CD105 were used as positive markers and CD45 
was used as a negative marker for the analysis of ASCs. FABP4 was used as a di�erentiation marker of ASCs. 
(B) Expression of the markers of ASCs was analyzed by RT-PCR at 72 h a�er the �rst NTAPP exposure and 
compared to that in unexposed control cells. (C) SA-β Gal assay was performed to evaluate senescence in ASCs 
at 72 h a�er exposure to NTAPP for a total of 10 times. ASCs treated with 100 µ M H2O2 were used as the  
positive control. Scale bar, 100 µ m. Senescent cells were counted, and the values were expressed as percentages.  
(D) Di�erentiation of NTAPP-exposed ASCs into adipocytes was induced by incubation for 28 days in 
adipogenic di�erentiation medium, and the di�erentiation of the ASCs was detected using Oil-red O staining. 
Scale bar, 50 µ m. (E) ASCs were evaluated for the expression of an adipocyte marker, FABP4, by using RT-PCR. 
Random primers were used as negative controls for RT-PCRs.
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visualization of intracellular lipids, and their RNA samples were subjected to RT-PCR to evaluate the expression 
of FABP4. Cells exposed to NTAPP formed intracellular lipids at a level similar to that observed in unexposed 
cells (Fig. 3D). In addition, both unexposed and NTAPP-exposed cells expressed FABP4 a�er di�erentiation 
(Fig. 3E). In order to compare the di�erentiation e�ciency of NTAPP-exposed ASCs with the unexposed con-
trol, we also counted the number of di�erentiated ASCs in NTAPP-exposed and -unexposed cells a�er induc-
tion of di�erentiation into adipocytes. As shown in Supplementary Fig. S2B, the percentage of di�erentiated 
cells in NTAPP-exposed ASCs (73.28%) was similar with that of unexposed control cells (71.40%). �ese results 
demonstrated that NTAPP-exposed ASCs showing increased proliferation continued to maintain their ability to 
di�erentiate. Collectively, these observations strongly suggest that NTAPP accelerates the proliferation of ASCs 
without inducing cell senescence and that NTAPP-exposed ASCs retain their stemness characteristics and their 
ability to di�erentiate.

NO plays a major role in NTAPP-induced proliferation of ASCs. Nitric Oxide (NO) is a well-known 
second messenger and a key modulator in many physiological functions including cell proliferation (for a review, 
see Villalobo et al.55). NTAPP generates ROS and RNS; among these species, plasma can easily generate NO 
from N2 and O2 in the air. Given that NO at a low concentration has been reported to promote cell proliferation 
through the inhibition of cellular apoptosis (for a review, see Napoli et al.56) and NTAPP exposure is known to 
promote proliferation in ASCs, we hypothesized that NO might play a role in enhancing the proliferation of 
ASCs following NTAPP exposure. To examine whether NO generated by NTAPP a�ects the proliferation of 
ASCs, we treated the cells with carboxy-PTIO, a NO scavenger, with or without NTAPP exposure. Viability was 
analyzed a�er the cells were exposed to NTAPP (control cells were not exposed) in the presence or absence of a 
NO scavenger in the medium. �e viability of NTAPP-exposed cells increased by 199% at 72 h a�er NTAPP expo-
sure, compared with that at the beginning of incubation (0 h; considered 100%), while the viability of unexposed 
cells increased only by 148% at 72 h. However, the viability of NTAPP-exposed cells following treatment with 
carboxy-PTIO was reduced to 170% (Fig. 4A). �ese observations revealed that NO is mainly responsible for the 
increased proliferation of NTAPP-exposed ASCs.

We then tested whether NO itself can activate the proliferation of ASCs. ASCs were treated with di�erent 
concentrations (10, 20, and 30 µ M) of an NO donor, DETA-NONOate57,58, and incubated for 9, 24, 48, and 72 h. 
Following treatment with the NO donor, the viability of ASCs increased in a dose-dependent manner to a greater 
extent than that observed with untreated cells. To verify the enhanced proliferation of ASCs by NO, we co-treated 
the ASCs with 30 µ M carboxy-PTIO and the same concentration of the NO donor, and examined whether the 
NO scavenger can compensate for the e�ect of the NO donor. When ASCs were co-treated with both the NO 
scavenger and the NO donor, viability was found to be similar to that of untreated cells (Fig. 4B), suggesting that 
NO, at a particular concentration, promotes the proliferation of ASCs.

To further verify that NO is responsible for the enhanced proliferation of ASCs following NTAPP exposure, we 
investigated the related cellular pathways of NO-induced cell proliferation. NO is known to be produced by acti-
vated nitric oxide synthase (NOS) via the PI-3K/Akt signaling pathway59,60 and to induce the mitogen-activated 
protein kinase (MAPK)/ERK pathway that leads to cell proliferation61,62. Also, it has been well reported that both 
PI-3K/Akt and MAPK/ERK signaling pathways activate the phosphorylation of NF-κ B and allow it to enter 
the nucleus, thereby promoting cell proliferation by NF-κ B-dependent transcription63,64. �us, we examined the 
activation of Akt, ERK1/2, and NF-κ B at 0, 9, and 72 h a�er the exposure of ASCs to NTAPP. �e expression of 
phospho-Akt was increased in ASCs immediately a�er NTAPP exposure, which was administered 10 times, but 
decreased to the normal level at 72 h a�er the initial NTAPP exposure. Phospho-ERK1/2 was elevated at 72 h 
(Fig. 4C). �ese results demonstrated that NTAPP promoted the proliferation of ASCs by activating the Akt and 
ERK signaling pathways at di�erent time-points. We further con�rmed the activation of Akt and ERK signaling 
pathways in the NTAPP-treated ASCs by monitoring the phosphorylation of NF-κ B that is activated by Akt and 
ERK. Compared with the untreated control, NF-κ B phosphorylation was highly increased in NTAPP-treated 
ASCs at 9 h and 72 h a�er the initial NTAPP exposure (Fig. 4D). Taken together, these observations demonstrated 
that NTAPP promotes the proliferation of ASCs via NO by activating Akt, ERK1/2, and their downstream NF-κ B.

ROS are not involved in NTAPP-induced proliferation of ASCs. Many research groups have pro-
posed that the diverse biomedical e�ects of NTAPP rely on the various ROS generated by NTAPP. �us, we 
examined whether the increased proliferation of ASCs following NTAPP exposure is attributed to the ROS gen-
erated by NTAPP. For this purpose, we examined the viability of ASCs with and without NTAPP exposure in the 
presence or absence of anti-oxidants. We used butylated hydroxyanisole (BHA) as a free radical scavenger65 and 
N-acetylcysteine (NAC) as a thiol oxidant66. �e viability of ASCs was signi�cantly increased at 72 h a�er NTAPP 
treatment compared to that of untreated ASCs, as shown in Fig. 2A. If ROS were responsible for the proliferation 
of ASCs by NTAPP treatment, the cell viability would have decreased in the presence of anti-oxidants following 
NTAPP exposure. However, when the ASCs were exposed to NTAPP in the presence of anti-oxidants, viability 
was not reduced (Fig. 5A,B), suggesting that ROS do not play a role in the increased proliferation of ASCs.

We also monitored the level of intracellular ROS in ASCs a�er NTAPP exposure for a total of 10 times (9 h), 
using a �uorogenic marker of ROS, carboxy-H2DCFDA. Cells treated with tert-butyl hydroperoxide (TBHP) 
were used as the positive control for intracellular ROS generation67. ASCs accumulated intracellular ROS when 
exposed to NTAPP for 50 sec every h for a total of 10 times, compared with that observed with the untreated 
cells. In the presence of an anti-oxidant (100 µ M BHA or 5 mM NAC), the intracellular ROS levels were e�-
ciently reduced in NTAPP-exposed ASCs, although their increased proliferation was not a�ected (Fig. 5C). �ese 
results indicated that intracellular ROS generated in ASCs following NTAPP exposure are not responsible for the 
increased proliferation of ASCs following NTAPP exposure.
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Discussion
In recent years, NTAPP has been studied for its clinical applications, especially in cancer therapy and steriliza-
tion38,68,69. While NTAPP has been known to induce apoptosis in various cancer cells70,71, its role in the activa-
tion of proliferation is not well investigated. In this study, we used a helium-based dielectric barrier discharge 
(DBD)-type NTAPP device generating multiple intracellular ROS/RNS but not much ozone18, demonstrating 
that NTAPP promotes the proliferation of ASCs, while maintaining the stem cell characteristics of ASCs. We also 
showed that nitric oxide (NO) generated from NTAPP plays a key role in NTAPP-induced increased proliferation 
of ASCs by activating the Akt and ERK1/2 pathways. Collectively, these results strongly suggest that NTAPP can 
increase the e�ciency of ASC culture in vitro, thereby supporting the potential applications of NTAPP in the �eld 
of regenerative medicine.

NO acts as an intracellular messenger and regulator in biological functions such as immune responses, apop-
tosis, cell proliferation, and angiogenesis (for reviews, see Villalobo et al.55, Bogdan et al.72, Brune et al.73, and 
Morbidelli et al.74). NO has been known to be biosynthesized endogenously by various nitric oxide synthase 
(NOS) enzymes activated through the PI3K-Akt signaling pathway59. NO acts through the stimulation of soluble 
guanylate cyclase (sGC) to form cyclic-GMP (cGMP), which activates protein kinase G (PKG), leading to the 
activation of the ERK signaling pathway for cell proliferation61,75,76. Interestingly, di�erent cell fates depend on 
NO concentrations: low NO concentration promotes cell survival and proliferation in various cells including 
stem cells77, while high NO concentration leads to cell cycle arrest and cell death78. NO is generated by NTAPP. 
Our study showed that NO generated by NTAPP plays an important role in inducing the proliferation of ASCs. 
However, not only NO but also other unknown factors might be involved in the increased proliferation of ASCs 
following NTAPP exposure because the viability of ASCs following combined treatment with NTAPP and NO 
scavenger was not recovered to the level in control cells even though viability was reduced, as shown in Fig. 4A. 
Furthermore, when ASCs were treated with an NO donor, DETA-NONOate, cell proliferation increased but not 

Figure 4. NO plays a key role in non-thermal atmospheric pressure plasma (NTAPP)-induced proliferation 
of adipose tissue-derived stem cells. (A) ASCs pretreated with culture medium alone (as the negative 
control) or 30 µ M carboxy-PTIO were exposed to NTAPP for a total of 10 times. Cells were totally incubated 
for 72 h a�er the initial NTAPP exposure. Cell viability was measured by MTT assays, and the results were 
represented as mean ±  SEM; N =  4. P <  0.05 (*) indicates signi�cant di�erences among samples. (B) Di�erent 
concentrations of DETA-NONOate (untreated, 10, 20, and 30 µ M) were added to the medium containing ASCs. 
carboxy-PTIO (30 µ M) was added to medium containing 30 µ M DETA. Cell viability was evaluated by MTT 
assay, and the results were represented as mean ±  SEM. N =  4. P <  0.05 (*) indicates signi�cant di�erences 
compared with each sample. (C,D) �e expression of (C) Akt, phospho-Akt, ERK1/2, and phospho-ERK1/2, 
and (D) NF-κ B and phospho-NF-κ B in NTAPP-exposed ASCs was analyzed by western blot at 0, 9, and 72 h 
from the initial exposure. Actin was used as the loading control.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:39298 | DOI: 10.1038/srep39298

to the extent observed in NTAPP-exposed ASCs. Further studies would be necessary to understand which other 
components of NTAPP are responsible for the promotion of NTAPP-induced cell proliferation.

As expected from the results in Fig. 4 that show that the increased proliferation of ASCs was mainly attributed 
to NO, we observed the activation of Akt and ERK1/2 in NTAPP-exposed ASCs. However, their time of activa-
tion was di�erent (Fig. 4C). A study of the mechanism underlying the di�erential regulation of the Akt and ERK 
signaling pathways would be necessary to understand the mechanism by which NO controls the proliferation of 
adult stem cells including ASCs.

ROS generated by NTAPP may be responsible for the diverse biomedical e�ects of NTAPP6,15,79. ROS have also 
been reported to induce various biological e�ects and determine cell fate in stem cells and cancer cells, depending 
on their concentrations. At low levels, ROS actively promote cell proliferation, migration, and di�erentiation 
(for a review, see Maraldi et al.80). ROS also help stem cells maintain their stemness (for a review, see Chaudhari 
et al.81). In contrast, high concentrations of ROS induce cell senescence and cell death (for reviews, see Wang  
et al.82, and Liou et al.83). Our results showed that ROS generated by He-based NTAPP was not responsible for the 
increased proliferation of ASCs and they did not induce senescence or apoptosis in ASCs.

�e results of this study show the potential of NTAPP to be used to control the proliferation of ASCs and 
suggest a clue as to why NTAPP activates wound healing in tissues. To develop NTAPP as a reliable tool for use 

Figure 5. Reactive oxygen species (ROS) are not responsible for non-thermal atmospheric pressure plasma 
(NTAPP)-induced proliferation of ASCs. (A,B) ASCs were pretreated with culture medium alone, 100 µ M 
butylated hydroxyl anisole (BHA; A), or 5 mM N-acetylcysteine (NAC; B) and exposed to NTAPP for a total of 
10 times. Cells were further incubated for 72 h from the initial NTAPP exposure. �e percentage of cell viability 
was measured by MTT assay, and the results were represented as mean ±  SD. N =  4. P <  0.05 (*) indicate 
di�erences among each sample. (C) Untreated ASCs and those pretreated with 100 µ M BHA or 5 mM NAC 
were exposed to NTAPP for a total of 10 times, and their intracellular ROS levels were monitored at 9 h from the 
initial exposure. Cells treated with 100 µ M tert-butyl hydroperoxide (TBHP) were used as the positive control 
for ROS generation. Nuclei were stained with Hoechst 33342. Scale bar, 50 µ m.
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in stem cell technology and regeneration, the e�ect of NTAPP on other stem cells needs to be investigated and 
further chemical evaluations of NTAPP will be necessary.

Materials and Methods
Isolation of ASCs from adipose tissue and culture. Adipose tissue was obtained during elective surger-
ies with informed consent of patient, and all experiments involving adipose tissue were performed in accordance 
with the guidelines approved by the Severance Hospital Institutional Review Board (IRB No. 4-2014-0830). ASCs 
were isolated from the tissue as described previously by Ma et al.18. Brie�y, adipose tissue was repeatedly washed 
with PBS, and 0.0075% collagenase (Sigma-Aldrich, MO, USA) was added to the tissue sample at 37 °C with 
shaking for 1 h. �e sample was centrifuged for 10 min at 1000 rpm to remove the top layer of oil, fat, and the layer 
of collagenase solution to obtain the stromal vascular fraction (SVF) pellet. �e pelleted SVF was suspended in 
155 mM NH4Cl to lyse red blood cells at room temperature for 10 min. ASCs were then collected by centrifuga-
tion at 1000 rpm for 10 min.

Human adipose tissue-derived stem cells (ASCs) were maintained in Dulbecco’s modi�ed Eagle’s medium 
(DMEM)/Ham’s F-12 supplemented with 10% (v/v) fetal bovine serum (FBS; Sigma-Aldrich, MO, USA) and 
10 ml/l penicillin-streptomycin (GIBCO, NY, USA). HeLa cells were maintained and grown in DMEM containing 
10% FBS and 10 ml/l penicillin-streptomycin. All cells were maintained at 37 °C in an atmosphere containing 5% 
CO2.

NTAPP exposure and cell viability assay. To expose cells to NTAPP, 3 ×  104 cells seeded in 35-mm 
culture dishes were incubated for 24 h. Cells were exposed to the indicated dose (5 standard liter/min, 20 V) of 
NTAPP for 50 sec every h for a total of 10 times, and the NTAPP-exposed cells were further incubated for 63 h 
(a total of 72 h a�er the �rst NTAPP exposure). �e distance between the device and cells was �xed to 1 cm, and 
1.5 ml of medium was used.

A�er exposure to NTAPP, cell viability was measured by adding 1 ml of 5% 3-(4,5-dimethylthiazol-2-yl)-2,5-d
iphenyltetrazolium bromide (MTT; Amresco Inc., OH, USA) to cells in a dish, which was followed by incubation 
of the cells for 1.5-3 h at 37 °C in an atmosphere containing 5% CO2. �e formazan produced was dissolved in 
1 ml dimethyl sulfoxide (DMSO) and measured using an ELISA reader (So�Max Pro 4.0, Molecular Devices) at 
570 nm84.

Reverse transcription-polymerase chain reaction. ASCs were harvested and their total RNA was 
extracted using the RNeasy Mini kit (Cat. No. 74101, QIAGEN, Germany). Using puri�ed total RNA, cDNA was 
synthesized using the Biotechnology Power cDNA synthesis kit (Cat. No. 25011, iNtRON, Korea), and PCR was 
performed using the synthesized cDNA along with primers speci�c for CD44, CD45, CD105, and FABP4, using 
the i-MAX DNA polymerase kit (Cat. No. 25234, iNtRON, Korea). PCR products were detected by electrophore-
sis on a 2% agarose gel. �e primers used for PCR were shown in the Table 1.

Characterization of ASC membrane antigens by flow cytometry. ASCs were trypsinized at 72 h 
a�er exposure to NTAPP for a total of 10 times, washed, and centrifuged for 10 min at 1000 rpm. Cells were 
incubated with the optimal dilution of �uorescein- conjugated monoclonal antibodies (mAbs) for 30 min on 
ice: anti-CD44-phycoerythrin (PE; eBioscience, CA, USA), anti-CD105-allophycocyanin (APC; eBioscience, 
CA, USA), and anti-CD45-�uorescein isothiocyanate (FITC; eBioscience, CA, USA). 10,000 cells per assay 
were counted using a FACSCalibur �ow cytometer (BD Bioscience, CA, USA) and analyzed by FlowJo so�ware 
(FlowJo LLC, OR, USA).

Analysis of mitochondrial membrane potential (MMP) with JC-1. Cells were harvested at 72 h a�er 
the initial exposure to NTAPP, and stained with 2 µ M JC-1 dye for 30 min at 37 °C by following the instructions 
of MitoProbe JC-1 assay kit (�ermo Fisher Scienti�c, OR, USA). As a positive control of membrane potential 
disruption, cells were also treated with 50 µ M carbonyl cyanide 3-chlorophenylhydrazone (CCCP) for 4 h prior 
to JC-1 staining. Flow cytometry was used to evaluate JC-1 �uorescence in both HeLa cells and ASCs. Data were 
analyzed using FlowJo so�ware (FlowJo LLC, OR, USA).

Cell surface marker Oligonucleotide primer used

CD44
5′ -GATCCACCCCAACTCATCT-3′  (forward)

5′ -AACTGCAAGAATCAAAGCCA-3′  (reverse)

CD105
5′ -TGTCTCACTTCATGCCTCCAGCT-3′  (forward)

5′ -AGGCTGTCCATGTTGAGGCAGT-3′  (reverse)

CD45
5′ -ACCAGGGGTTGAAAAGTTTCAG-3′  (forward)

5′ -GGGATTCCAGGTAATTACTCC-3′  (reverse)

FABP4
5′ -ACTGGGCCAGGAATTTGACG-3′  (forward)

5′ -CTCGTGGAAGTGACGCCTT-3′  (reverse)

Table 1.  �e primers used to detect cell surface markers by PCR.
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Western blot analysis. NTAPP-exposed cells were harvested and lysed as described previously18. 
Histones were extracted with 0.5 N HCl and neutralized with 1 M NaOH. Total protein samples (40 µ g) or his-
tones were separated by SDS-PAGE and detected using the following primary antibodies: anti-poly ADP-ribose 
polymerase (PARP; Cell Signaling Technology, Inc., MA, USA), anti-phospho-H2AX (γ -H2AX; Millipore, 
Germany), anti-caspase-3 (Cell Signaling Technology, Inc., MA, USA), anti-actin (Cell Signaling Technology, 
Inc., MA, USA), anti-ERK1/2 (Cell Signaling Technology, Inc., MA, USA), anti-phospho-ERK1/2 (Cell 
Signaling Technology, Inc., MA, USA), anti-Akt (Cell Signaling Technology, Inc., MA, USA), anti-phospho-Akt 
(Cell Signaling Technology, Inc., MA, USA), anti-NF-κ B (Cell Signaling Technology, Inc., MA, USA), and 
anti-phospho- NF-κ B (Cell Signaling Technology, Inc., MA, USA). An enhanced chemiluminescence system 
(Amersham Biosciences) was used for the blot analysis.

Treatment of ASCs with the NO donor and NO scavenger. Cells were treated with 10, 20, or 30 µM 
DETA-NONOate (Cayman Chemical Company, MI, USA) to generate NO and cell proliferation was monitored  
by the MTT assays. Cells were pretreated with 30 µ M carboxy-PTIO {[(2-(4-carboxyphenyl)-4,4,5,5-tetra
methylimidazoline-1-oxyl-3-oxide)]; Sigma-Aldrich, MO, USA}, a NO scavenger, prior to NTAPP exposure.

Detection of intracellular ROS. Cells were treated with 5 mM NAC (Sigma-Aldrich, MO, USA) and 
100 µM BHA (Sigma-Aldrich, MO, USA), intracellular ROS scavengers, prior to NTAPP exposure. TBHP was 
used to generate intracellular ROS as a positive control. Intracellular ROS were measured using the ROS detection 
kit (Invitrogen, CA, USA), following the manufacturer’s protocol. Cells were observed by �uorescence micros-
copy on an Axioplan2 (Zeiss) under 200×  objective.

Senescence-associated (SA) β-galactosidase activity assay. Cells exposed to NTAPP for a total of 
10 times were incubated for 72 h and further incubated for 4 days a�er replacing the medium. Cells treated with 
100 µ M H2O2 were used as a positive control for senescence. Next, the cells were �xed in 2% formaldehyde and 
0.2% glutaraldehyde for 15 min at room temperature and monitored by senescence-associated β -galactosidase 
(SA-β Gal) staining with X-gal (Sigma-Aldrich, MO, USA), as described previously85. Cells were evaluated using 
an OLYMPUS CKX41 microscope under a 100×  objective.

Differentiation into adipocytes and Oil-red O staining. ASCs were induced to di�erentiate into adi-
pocytes by incubating them in the adipogenic di�erentiation medium (200 µ M indomethacin, 0.5 mM IBMX, 
1 µM dexamethasone, and 10 µ M insulin in DMEM/F12 medium supplemented with 10% fetal bovine serum and 
1% penicillin-streptomycin) for 28 days as reported previously86. To determine lipid accumulation, adipocytes 
were �xed with 4% para-formaldehyde for 10 min and stained with Oil red O solution for 15 min as described 
previously87. Cells were evaluated using the OLYMPUS CKX41 microscope under a 200×  objective.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 6 (GraphPad So�ware, Inc., 
CA, USA). Data are represented with the mean ±  standard deviation (S.D.) (Figs 2A,C and 5A,B) of at least three 
repeated experiments or with the standard error of the mean (S.E.M.) (Fig. 4A,B) of more than three independent 
experiments. We applied non-parametric Mann-Whitney U test to assess statistically signi�cant di�erences88. 
P <  0.05 (*) indicates statistical signi�cance compared with the control.
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