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Collisionless and weakly collisional plasmas often exhibit non-thermal quasi-equilibria.
Among these quasi-equilibria, distributions with power-law tails are ubiquitous. It is
shown that the statistical-mechanical approach originally suggested by Lynden-Bell
(1967) can easily recover such power-law tails. Moreover, we show that, despite the
apparent diversity of Lynden-Bell equilibria, a generic form of the equilibrium distribution
at high energies is a ‘hard’ power-law tail ∝ ε−2, where ε is the particle energy. The shape
of the ‘core’ of the distribution, located at low energies, retains some dependence on the
initial condition but it is the tail (or ‘halo’) that contains most of the energy. Thus, a
degree of universality exists in collisionless plasmas.

1. Introduction
It is well known that the ultimate fate of a homogeneous collisional plasma is to become

a Maxwellian. This result was first inferred for neutral particles by Maxwell (1860) on
statistical grounds and given solid dynamical foundation by Boltzmann (1896) with his
collision integral. Plasma physics was to wait for Landau (1936) and later Balescu (1960)
and Lenard (1960) to be equipped with its own collision integral, and the resulting
universality. Nevertheless, distributions with power-law tails, a far cry from Maxwellian
equilibria, are observed in a myriad of plasma systems including cosmic rays (Becker
Tjus & Merten 2020; Amato & Casanova 2021), the solar corona and solar flares (Dudík
et al. 2017; Oka et al. 2018), the solar wind (Gloeckler et al. 2008; Fisk & Gloeckler 2014;
Livadiotis et al. 2018; Moncuquet et al. 2020), the Earth’s magnetosheath (Birn et al.
2012; Ergun et al. 2020), and laser plasmas (Cruz et al. 2018; Hartouni et al. 2022).

That such non-Maxwellian distributions emerge should perhaps come as no surprise.
In a plasma, the timescale of relaxation to Maxwellian equilibrium is associated with
two-body Coulomb collisions, but, due to the long-range nature of the forces involved,
the plasma may evolve, exchanging energy between fields and particles, on much shorter
timescales. Indeed, in the absolute absence of collisions, the Vlasov equation has an
infinite set of nonlinearly stable equilibria: all distributions that are monotonically
decreasing functions of particle energy are certainly stable (Gardner 1963). However, the
set of all monotonically decreasing functions of energy is very large, and is certainly not
exhausted by the Maxwellian equilibrium, which depends on only two parameters. It is,
therefore, an outstanding challenge to determine whether any of these stable collisionless
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equilibria are naturally favoured by the dynamics of the system in a way that is not
sensitive to initial conditions, i.e., whether a degree of universality exists in collisionless
plasmas. It is certainly the case that nature appears to prefer distributions with power-law
tails, and direct numerical simulations have indicated that power-law tails are the natural
result of a number of dynamical processes including relativistic and non-relativistic shocks
(Sironi & Spitkovsky 2010; Caprioli & Spitkovsky 2014; Crumley et al. 2019), magnetic
reconnection (Sironi & Spitkovsky 2014; Werner & Uzdensky 2021; Uzdensky 2022), and
various types of plasma turbulence (Kunz et al. 2016; Comisso & Sironi 2018, 2022;
Zhdankin et al. 2017, 2019; Zhdankin 2021, 2022b).

In addition to suggesting dynamical paths towards distributions with power-law tails,
there have been multiple attempts to justify the ubiquity of such distributions from a ther-
modynamic point of view. This is, however, entangled with the question of whether the
standard Gibbs–Shannon entropy is applicable to systems with long-range interactions
and, if not, then what entropy should be used. Naturally, many entropies have emerged to
fill this niche. A popular contender is the Tsallis (1988) entropy (or α-structural entropy:
see Havrda & Charvát 1967). The Tsallis entropy was designed to be a non-additive
version of the Gibbs–Shannon entropy as a way to model systems with correlations that
therefore should be non-extensive (see, e.g., Livadiotis & McComas 2009; Pierrard &
Lazar 2010 and references therein). While this model produces good fits to observed
distributions, it has a free parameter that is needed to quantify the degree of the non-
extensivity and cannot be determined without fitting data, or additional input of physics
currently lacking (note some recent progress suggesting that this additional physics might
be deducible from free-energy considerations: Zhdankin 2022a,b).

An early attempt to tackle the question of entropy in collisionless systems was made by
Lynden-Bell (1967). Let us consider a system of N particles with canonical positions ri
and momenta pi that evolve subject to a Hamiltonian H(ri,pi). Such a system can
be said to be ‘collisionless’ if the evolution equation for the single-particle distribution
function f(r,p) is well approximated by an effective Hamiltonian Heff(r,p) acting on a
single particle (i.e., if the mean-field dynamics are a sufficiently good approximation to
the true dynamics), viz.,

∂f

∂t
+

∂Heff

∂p
· ∂f
∂r

− ∂Heff

∂r
· ∂f
∂p

= 0. (1.1)

In his original treatment, Lynden-Bell focused on relaxation of stellar systems, but the
spirit of his statistical mechanics is the same for all collisionless systems, including plas-
mas. While keeping the calculations as general as possible, one can think of (1.1) as the
collisionless Vlasov equation for a plasma, which could be electrostatic or electromagnetic
in a non-relativistic or relativistic regime. The collisionless dynamics described by (1.1)
conserve an infinite number of invariants, equivalent to conserving the volume of level
sets of the distribution function f(r,p) in phase space. Thus, the dynamics can be viewed
as an extremely complicated rearranging of the elements of phase space, which, however
much they are distorted and stirred, will keep the same level sets (often referred to as
‘waterbags’, in analogy with parcels of incompressible fluid). Lynden-Bell posited that,
after a short time, the exact phase-space density f(r,p) would become so chaotic that
it could be treated as a random field and that any measurement of it—in practice, of a
coarse-grained version of it—was in fact a measurement of the mean phase-space density.
This allowed the construction of a statistical mechanics, with an entropy closely related
to the Gibbs–Shannon entropy, that encoded an infinite number of invariants and thus
predicted the steady states from a given initial condition. These steady states are the
Lynden-Bell equilibria.
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Since its genesis, Lynden-Bell’s theory (often referred to as the theory of ‘violent relax-
ation’) has received continued attention both thermodynamically (Chavanis et al. 1996;
Arad & Johansson 2005; Chavanis 2006b,a; Levin et al. 2008, 2014) and dynamically,
viz., effective ‘collisionless collision integrals’ have been proposed that recovered Lynden-
Bell equilibria as their fixed points (Kadomtsev & Pogutse 1970; Severne & Luwel 1980;
Chavanis 2004, 2022; Ewart et al. 2022). However, the main strength of the theory is
also its weakness. Unlike in the non-extensive entropy formulations, there is no ad-hoc
parameter in the Lynden-Bell theory: equilibria are uniquely determined by the ‘waterbag
content’ of the initial conditions. However, this necessarily means that the equilibria
depend (seemingly, in a complicated way) on an infinite family of invariants (sometimes
referred to as ‘Casimirs’). This has limited any actual calculations with Lynden-Bell
equilibria to simplified situations with only a small number of level sets (in practice,
between one and three, e.g., Assllani et al. 2012). At any rate, the intricate dependence
on an infinite family of invariants might not appear to be a step towards general power-
law tails or any other meaningful form of universality.

To see just how non-universal Lynden-Bell equilibria can be, one only needs to consider
the relation between the Lynden-Bell equilibria and the aforementioned Gardner distri-
butions. Should the initial distribution be a monotonically decreasing function of particle
energy, then it is a Gardner distribution and there are no possible rearrangements of the
phase volume that do not increase energy. Hence the only state available via collisionless
dynamics is this Gardner distribution, which must therefore be its own Lynden-Bell
equilibrium†. But since any monotonically decreasing function of energy is a Gardner
distribution, these minimum-energy states are clearly highly non-universal. However,
this is only a good intuition for systems where the number of level sets is small or where
phase-volume conservation conspires with energy conservation to render much of the
phase space inaccessible to the system (as is the case for Gardner distributions). In this
paper, by solving for the full Lynden-Bell equilibria numerically (as well as analytically,
in a tractable limit), we will show that most Lynden-Bell equilibria are much more
generic. Namely, we will show that, in the limit of a continuum of level sets, and for
energies sufficiently greater than the ground-state energy (the energy of the corresponding
Gardner distribution), the Lynden-Bell equilibria exhibit power-law tails at high energies,
typically with a scaling of ε−2, where ε is the particle energy.

The physical argument for these power-law tails is as follows. Phase-volume conserva-
tion effectively makes the particles occupying each waterbag (level set of the distribution)
behave as if they were members of a separate species, which can communicate with the
other waterbags only via the equilibration of some effective ‘temperature’ subject to
competition for the same volumes of phase space. In essence, this turns the system
into a ensemble of many different fermionic species, all of which exclude each other.
When the system is in its minimum-energy (ground) state, the Gardner distribution,
the competition for phase volume is the overpowering factor, giving the distribution a
highly non-universal shape. However, when the energy of the system is increased, more of
the phase space becomes accessible, so, as in Fermi–Dirac statistics, the competition for
the same phase volume becomes weaker. For sufficiently large energies, the competition
for any volume of phase space is minuscule. In this limit, each waterbag will form its
own Maxwellian distribution, in thermal equilibrium with all other waterbags. However,
despite these Maxwellian equilibria having the same effective temperature, they will
have different thermal spreads because waterbags of larger phase-space density ‘cost’
more energy to be placed at a given momentum p in phase space. The true distribution

† This takes a surprising amount of work to show formally: see Appendix A.
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function is recovered by summing up (in the limit of many waterbags, integrating) the
contributions from each of these Maxwellians to the mean phase-space density. This
procedure naturally gives rise to a power-law tail that depends on the relative weighting
for each Maxwellian (this is qualitatively similar to the formalism of ‘superstatistics’; cf.
Beck & Cohen 2003; Chavanis 2006a; Davis et al. 2023). This weighting turns out to
depend only weakly on the level sets of the initial condition. For a wide class of initial
conditions, the resulting Lynden-Bell equilibria turn out to have the same universal
power-law tail, ε−2‡.

The rest of this paper is organised as follows. In Section 2, we will review briefly
the Lynden-Bell formalism, to state the problem and establish notation. We will then
proceed to perform a systematic exploration of the nature of the Lynden-Bell equilibria.
In Section 3.1, we will argue that to each initial condition, one can uniquely assign
a Gardner distribution function with the same Casimir invariants (waterbag content).
All Lynden-Bell equilibria can thus be viewed as the result of adding some amount of
energy to a Gardner distribution with the same waterbag content and letting it reach a
maximum-entropy state (one can think of this approach as describing how adding energy
to a population of collisionless particles causes them to form a ‘non-thermal’ distribution
with a tail). In Section 3.2, we will show that the function describing the waterbag
content of a large class of Gardner distributions has a relatively generic form, which will
contribute to the universality of the resulting equilibria. In Section 3.3, we will solve for
the Lynden-Bell equilibria in the limit where the energy of the system far exceeds the
energy of the corresponding Gardner distribution. This will ensure that competition for
volumes of phase space can be neglected. This makes the problem analytically tractable,
and the resulting analytical solution will exhibit the universal power-law tail ∝ ε−2 at
high energies. In Section 4, by solving for the Lynden-Bell equilibria numerically, we will
show that the qualitative features of this analytical solution are retained even for energies
that are of the same order as the energy of the Gardner distribution. Therefore, a large
class of Lynden-Bell equilibria display a universal power-law tail. This tail contains much
of the distribution’s energy, whereas the low-energy ‘core’ retains some dependence on the
initial conditions. In Section 5, we summarise our findings and discuss their implications
for real (observed) plasmas.

2. Lynden-Bell’s statistical mechanics
In this section, we present a brief re-derivation of Lynden-Bell’s equilibria as applied

to a homogeneous system. We begin with the collisionless Vlasov equation (1.1) evolving
a single species of particles. As well as particle number, momentum, and total energy
(i.e., of fields and particles), (1.1) conserves an infinite number of ‘Casimir’ invariants,
e.g., the volume of phase space where the exact phase-space density is greater than a
given value η:

Γ(η) =

∫∫
dr dpH(f(r,p)− η) = const, (2.1)

where H(x) is the Heaviside function (unity for x > 0 and zero otherwise). As discussed
above, despite the existence of these invariants, the system’s evolution can still be highly
chaotic, which prompted Lynden-Bell to consider the exact phase-space density f(r,p)
as a random field. Therefore, one may introduce the probability density P (r,p, η) for
the exact phase-space density f(r,p) to take the value η at position (r,p) (Robert &

‡ This is similar to how Zipf’s law arises in systems where one marginalises over a ‘hidden
variable’ (cf. Mora & Bialek 2011; Schwab et al. 2014; Aitchison et al. 2016).
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Sommeria 1991; Chavanis et al. 1996). The distinct values of η will be referred to as
‘waterbags’ since this term conjures up the correct mental image: parcels of phase space
of a certain density that can be distorted and moved, but not rarefied, compressed, or
superimposed. The mean phase-space density is then

⟨f⟩(p) =
∫

dη ηP (p, η). (2.2)

Here, we have applied the intuition that the steady-state distribution function P (p, η)
will be homogeneous in space (this contrasts with Lynden-Bell’s original treatment,
which focused on gravitationally bound, and therefore inhomogeneous, systems). Lynden-
Bell’s statistical mechanics amounts to positing that, before the onset of ‘true’ colli-
sions, P (p, η) will maximise the Gibbs–Shannon entropy

S = −
∫∫

dp dη P (p, η) lnP (p, η). (2.3)

Note that the integral in η must run over all the possible values, including η = 0 (the
empty waterbag).

Equipped with an entropy ripe for maximisation, we must decide upon a set of rea-
sonable constraints under which to maximise it. Naturally, since P (p, η) is a probability-
density function in η at a given p, its integral in η at any p must equal unity:∫

dη P (p, η) = 1. (2.4)

As well as this, we fix the energy density of the system:∫∫
dpdη ε(p)ηP (p, η) = E = const, (2.5)

where ε(p) is the energy of a particle as a function of its momentum p. Note that,
within this formalism, one could include the interaction energy of particles with fields
(electromagnetic, gravitational, etc.), so that in its most general form ε would be a
function of both position and momentum, which could need to be solved self-consistently
with P . Here, we will neglect this rich complexity, assuming instead that, in the relaxed
state, the energy of the fields has decayed to a negligible fraction of the total energy and,
in the process of decaying, has mediated the relaxation of the distribution function.

Next, we enforce the conservation of the Casimir invariants (2.1) by requiring that the
volume-integrated probability of each waterbag stays constant, viz.,∫

dpP (p, η) = ρ(η) = const. (2.6)

The function ρ(η) will be referred to as the ‘waterbag content’ and is determined by initial
conditions. The waterbag content of the initial condition can be read off by integrating
over all portions of phase space where the initial exact phase-space density is equal to a
particular value, viz.,

ρ(η) =
1

V

∫∫
dr dp δ

(
η − f(r,p, t = 0)

)
= − 1

V

dΓ

dη
, (2.7)

where V is the system’s spatial volume. A priori, in Lynden-Bell’s statistical mechanics,
the degree of universality of the equilibrium distribution is determined by ρ(η): all initial
conditions with the same waterbag content and energy lead to the same equilibrium.

Maximising the entropy (2.3) subject to the constraints (2.4), (2.5), and (2.6)† is

† We note that, while we have endowed the invariants (2.4), (2.5), and (2.6) with special
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equivalent to maximising, unconditionally, the functional

S[P (p, η)]−
∫

dpλ(p)

[∫
dη P (p, η)− 1

]
− β

[∫∫
dpdη ε(p)ηP (p, η)− E

]
+ β

∫
dη ηµ(η)

[∫
dpP (p, η)− ρ(η)

]
, (2.8)

where λ(p), β and −βηµ(η) are Lagrange multipliers. By analogy with textbook statis-
tical mechanics, we will sometimes refer to µ(η) as the ‘chemical potential’ (which it is,
being the Lagrange multiplier that fixes the number of particles in waterbag η). Doing
so, we find the Lynden-Bell equilibria

P (p, η) =
e−βη[ε(p)−µ(η)]∫

dη′ e−βη′[ε(p)−µ(η′)]
, (2.9)

where λ(p) has been computed explicitly to arrange for the correct normalisation (2.4),
whereas β and µ(η) must be chosen in such a way as to satisfy the constraints (2.5)
and (2.6). We note that, despite (2.6), the mean phase-space density ⟨f⟩, given by (2.2),
will, in general, not have the same level sets (2.1) as the exact one f (since ⟨f⟩ is
an averaged quantity). The equilibria (2.9) are both homogeneous and isotropic: an
inevitable consequence of the system having no preferred position or direction.

The similarity between the Lynden-Bell equilibria (2.9) and the Fermi–Dirac distribu-
tion is immediately apparent†. This should come as no surprise, because phase-volume
conservation functions analogously to Pauli’s exclusion principle: pieces of the same
waterbag, or different waterbags, cannot cohabit in phase space. The equilibria, therefore,
have degeneracy effects incorporated within them.

The prescription for computing Lynden-Bell equilibria is now clear: given an initial
condition, with the initial energy density E and waterbag content ρ(η) (determined
by (2.7)), solve two coupled integral equations (2.5) and (2.6) with P (p, η) given by (2.9),
determine β and µ(η), and substitute back into (2.9). Before considering the numerical
solutions of this problem in section 4, we will first seek to understand the system
analytically.

3. Theory: degenerate and non-degenerate equilibria
3.1. Lynden-Bell equilibria as excited Gardner distributions

Just as it is only meaningful to consider a Maxwellian with a positive energy, it is
only meaningful to solve the Lynden-Bell equilibria (2.9) subject to reasonable choices of
the constraints (2.5) and (2.6). It is therefore instructive to understand the properties of
the waterbag-content function (2.6). To get a feel for waterbag contents of typical initial
conditions, one could compute the integral (2.7) for a range of examples (this is relatively
simple due to the presence of the delta function). One quickly discovers that many
different initial conditions have similar waterbag contents, just as many different initial

significance as constraints, there may be situations where additional invariants are necessary.
For instance, in strongly magnetised plasmas, relaxation may occur before the conservation of
particles’ magnetic moments are broken. In such cases, further invariants would be necessary and
would alter the character of the solution (cf. Helander 2017). Here we shall consider only systems
where the fields driving the relaxation may be arbitrary, but the only quantities conserved on
the relaxation timescale are (2.4), (2.5), and (2.6).

† Indeed, the Fermi–Dirac distribution can be thought of as the special case of a two-level-set
system, which further reduces to the Maxwell–Boltzmann distribution when degeneracy is
neglected (see, e.g., Chavanis 2006a; Ewart et al. 2022 for details).
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Figure 1: A cartoon contour plot in phase space of three possible distribution functions,
all of which possess identical waterbag contents. Panel (a) shows the Gardner distribution
function corresponding to this waterbag content. Panels (b) and (c) show distributions, at
different (higher) energies, which can be reduced to the Gardner distribution by deforming
and splicing the phase space incompressibly. A small patch of phase space is highlighted
in red between plots to show the effect of the deformation.

conditions can have the same energy. To see this, we note that, from (2.7), any volume-
preserving transformation of the coordinates (r,p), including those transformations that
‘splice’ the phase space discontinuously, will leave the waterbag content unchanged. This
is unsurprising because the true, incompressible, flow of probability in phase space is
precisely one such volume-preserving transformation. It is this freedom that implies that
vastly different initial conditions can possess identical, or similar, waterbag contents. A
cartoon illustrating this is given in Figure 1, showing how seemingly complex distributions
have the same waterbag content as very simple distributions. There will be families of
initial conditions that have the same waterbag content, but different energies.

For every family of initial conditions possessing the same waterbag content, there will
be a unique distribution function that has that waterbag content but is a monotonically
decreasing function of energy and, therefore, has the minimum possible energy associated
with that waterbag content. Such a distribution function, for which the exact phase-space
density satisfies f(r,p) = fG(ε(p)), is known as the Gardner distribution (Gardner
1963; Helander 2017). The sequence of deformations of the distribution function to
map an initial condition to its Gardner distribution function is often referred to as a
‘restacking’, as it amounts to a reordering of phase-space elements into their minimum-
energy configuration (Dodin & Fisch 2005; Kolmes et al. 2020; Kolmes & Fisch 2020).
Gardner distributions can be viewed as ‘ground states’ associated with a given waterbag
content (e.g., Helander 2017), since no more energy can be extracted from such a
distribution without violating phase-volume conservation. This fact intuitively guarantees
that any initial condition that is a Gardner distribution is its own Lynden-Bell equilibrium
since no other states are available to the system. Indeed, one can show that any Gardner
distribution can be reconstructed from (2.9) for a particular choice of β and µ(η),
although the proof is technical and left to Appendix A.

A generic initial condition can then be viewed as equivalent to taking some Gardner
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distribution and driving it out of equilibrium by the injection of some energy without
changing the waterbag content. The Lynden-Bell equilibria are then simply the colli-
sionless, phase-volume preserving, entropy-maximising equilibria of these higher-energy
states, making them the natural excited states of Gardner distributions. Therefore, to
capture the set of all possible waterbag contents, we need only study the set of all these
‘ground states’, to which we would then add energy—the first step in the direction of
universal outcomes. Physically, this approach is equivalent to asking to what distribution
a population of collisionless particles will relax once a certain amount of energy is injected
into it—in a manner of speaking, a ‘thermodynamical’ approach to ‘non-thermal’ particle
acceleration.

3.2. Waterbag content of Gardner distributions
Having stated the problem in this way, we now consider the waterbag content associated

with Gardner distributions. In what follows, we will consider Gardner distribution func-
tions that are truncated at some minimum phase-space density ηmin. This mathematical
convenience will turn out to be a physical necessity. Thankfully, while it is mathematically
and physically important that the cutoff ηmin be finite, it will only appear logarithmically
in the outcomes of our calculations, making them highly insensitive to its actual value—
yet another theory where the need for a cutoff is unavoidable but non-lethal.

As a prototypical example, we compute ρ(η) for a particular Gardner distribution: a
truncated Maxwellian, viz.,

fG(p) =


ηmaxe

−ε(p)/ε0 for ε(p) < ε0 ln
ηmax

ηmin
,

0 for ε(p) > ε0 ln
ηmax

ηmin
.

(3.1)

Besides ηmin, the parameters of this distribution are the energy scale ε0 and the maximum
phase-space density ηmax. The latter is straightforwardly related to the particle’s spatial
density, e.g., n0 = ηmax(2πmε0)

3/2 in the limit ηmin/ηmax → 0 for a 3D, non-relativistic
plasma, where ε(p) = p2/2m. The waterbag content of the Gardner distribution for such
a plasma is then, from (2.7),

ρ(η) = Γfreeδ(η) +


2n0√
πηmaxη

(
ln

ηmax

η

)1/2

for ηmin < η < ηmax,

0 otherwise,

(3.2)

where Γfree is the total volume of the momentum space that is unoccupied (i.e., where the
exact phase-space density is zero). Of course, in reality, momentum space is unbounded
and so Γfree is infinite. Formally, we are solving for the waterbag content and Lynden-Bell
equilibrium in a momentum space of large, but finite, volume and will take this volume
to infinity at the end of the calculation—of course, nothing physical will depend on Γfree

as it becomes large.
The presence of a δ(η) term in the expression for ρ(η) is a generic feature, not restricted

to the specific example (3.2). When it comes to solving (2.6) with P (p, η) given by (2.9),
in order to find µ(η), this delta function can be accommodated by writing the chemical
potential as

eβηµ(η) = ηrefδ(η) +

{
ηrefF (η) for ηmin < η < ηmax,

0 otherwise,
(3.3)

where ηref is some reference constant that must have dimensions of phase-space density.
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Figure 2: (a) Three example Gardner distribution functions (the phase-space density
here is plotted as a function of energy) and (b) their corresponding waterbag contents.
All three distributions were chosen to have the same particle density n0 and energy
density EG. The maximum phase-space density ηmax of the distribution sets the upper
cutoff of the waterbag content in η, shown by the dashed vertical lines in (b). The lower
cutoff ηmin is justified in Section 3.5. We see that large differences at low ε only change
the behaviour of ρ(η) significantly at η ∼ ηmax. For η ≪ ηmax, all three waterbag contents
asymptote to a universal η−1 scaling.

Its value is unimportant because eβηµ(η) can always be rescaled by a constant without
changing the Lynden-Bell equilibrium (2.9)—in essence, ηref is a gauge choice for the
function µ(η). By analogy to textbook statistical mechanics, the function F (η) will be
referred to as the ‘fugacity’ of the distribution. The form (3.3) results in the following
expression for the Lynden-Bell equilibrium (2.9):

P (p, η) =
δ(η) + e−βηε(p)F (η)

1 +
∫ ηmax

ηmin
dη′ e−βη′ε(p)F (η′)

. (3.4)

In (3.4), the first, δ(η), term in the numerator accounts for the probability density of
finding phase space to be empty at a given location (this part of the phase space is
referred to, aptly, as the ‘vacuum’ by Chavanis 2006a), whereas the second term accounts
for non-empty waterbags. Already Γfree has dropped out of the calculation, as it must,
and it is safe to let Γfree → ∞. Likewise, it is immediately obvious that the reference
phase-space density ηref has cancelled, as it also must. Thus, the Lynden-Bell equilibrium
distribution (3.4) depends only on the Lagrange multiplier β and the fugacity F (η) (which
themselves depend on ρ(η) for η > 0 and the energy density E).

The key feature of the example (3.2) is the η−1 power-law behaviour. While the
specific form of the logarithmic factor in (3.2) was set by our (non-universal) choice of
a Maxwellian Gardner distribution, the η−1 behaviour at small η is relatively universal.
For any exponentially decaying Gardner distribution, i.e., for any distribution that at
large energies can be approximated by ∝ exp [− (ε/ε0)

σ
], for some σ > 0 (or indeed can



10 R. J. Ewart et al.

be bounded between two such functions), one will find a waterbag content with an η−1

asymptotic at η ≪ ηmax.
To see this, we note that, since fG(ε) is monotonically decreasing with energy, it has

a well-defined inverse f−1
G (η). In terms of this inverse, one can explicitly express the

waterbag content (2.7) as

ρ(η) =

∫
dε g(ε)δ (η − fG(ε)) = −g

(
f−1
G (η)

)df−1
G

dη
=⇒ dfG

dε
= − g(ε)

ρ
(
fG(ε)

) , (3.5)

where g(ε) is the density of states in energy, defined by the equation∫
dp (...) =

∫
dε g(ε)(...). (3.6)

The first equality in (3.5) is a straightforward way to calculate the waterbag content of
a given Gardner distribution, while the second is an equation from which the Gardner
distribution can be constructed given knowledge of the system’s waterbag content (cf.
Dodin & Fisch 2005; Helander 2017). It is immediately clear why the η−1 scaling should
arise in ρ(η). For any exponentially decaying fG(ε), the inverse function will be some
logarithmic function of η, which, after differentiation in (3.5), will give an η−1 asymptotic
multiplied by some logarithmic function of η. To illustrate this, in Figure 2, we give three
examples of starkly different Gardner distributions that, despite their differences, all
possess waterbag contents which scale as η−1 at low η.

To convince a doubtful reader, we consider an alternative argument in support of
the η−1 scaling of ρ(η). First, let us imagine a system in which we are allowed to
vary ηmin freely while leaving the exact phase-space density f(v) otherwise unchanged, as
if there were some true distribution that had ηmin = 0 and we were examining successive
approximations to it (e.g., the difference between a truncated Maxwellian (3.1) and a
true Maxwellian). Let us consider the following integrals of such distribution functions
(similar to the Casimir invariants considered by Zhdankin 2022a):

1

V

∫∫
f(r,p)>ηmin

dr dp [f(r,p)]
γ
=

∫ ηmax

ηmin

dη ηγρ(η), (3.7)

where we have used (2.7), and the phase-space integral is taken over the volumes
where η > ηmin. We have also used the property that the process of varying ηmin while
otherwise leaving f(r,p) unchanged only changes the integration limits of ρ(η), without
changing ρ(η) itself. The idea now is to vary the values of ηmin and γ and use what
we know about f(r,p) to deduce the form of ρ(η). Clearly, for γ = 1, (3.7) is the
particle density of the truncated f(r,p), which must be finite. This tells us that ρ(η)
must integrate to a finite value when multiplied by η. Furthermore, should f be any
exponentially decaying function, then there would be a characteristic momentum scale
above which the distribution is suppressed. This means that, as ηmin is taken to zero,
both sides of (3.7) must converge for γ = 1. This is effectively a statement that the
amount of probability contained beyond a few standard deviations is small. However, for
an exponentially decaying phase-space density f and any positive power γ > 0, fγ is
also exponentially decaying, so the same argument applies. Therefore, for exponentially
decaying phase-space densities, ρ(η) must be such that, when multiplied by any positive
power of η, it integrates to some finite value and is largely independent of the choice
of lower cutoff ηmin of the integral. However, for γ = 0, (3.7) becomes the (spatially
averaged) momentum-space volume occupied by the truncated distribution: its support.
For exponentially decaying distributions, which do not have compact support without
truncation, this quantity will continue to grow without bound as ηmin is decreased.
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Therefore, ρ(η) integrated with no powers of η must diverge as ηmin → 0. It is obvious
that η−1 is a function that has all these properties, but, more generally, ρ(η) could be
any function of the form

ρ(η) =
n0

ηmaxη
G

(
η

ηmax

)
for ηmin < η < ηmax, (3.8)

where G(x) is a dimensionless function whose dependence on x is weaker than any power
law, viz.,

lim
x→0

xγ−1G(x) =

{
0 if γ > 1,

∞ if γ < 1.
(3.9)

Note that the exact limit at γ = 1 cannot be determined by this argument; it is, in fact,
dependent on the exact details of the exponential decay, but we will not require it for any
calculations. This concludes the argument that Gardner distributions with exponential
tails have waterbag contents with a universal low-η asymptotic.

It is a straightforward extension of this argument to work out what the waterbag
content will be for Gardner distributions with non-exponential tails at high energies
(low η). Suppose that, instead of being exponentially decaying, the Gardner distribution
behaves as a power law at large momenta. Then there is a choice of γ > 0 for which fγ ,
multiplied by the density of states in |p|, decays slower than |p|−1, implying that the
integral (3.7) will diverge as ηmin is decreased. This means that ρ(η) multiplied by ηγ for
some γ > 0 must still have a divergent integral, so it must take the form

ρ(η) =
n0

η2−δ
maxηδ

G

(
η

ηmax

)
for ηmin < η < ηmax, (3.10)

with some δ > 1. It turns out that (3.10) also holds, but with δ < 1, for phase-
space densities that go to zero algebraically even when ηmin = 0†. This is because the
integral (3.7) will be over a finite momentum-space volume even as ηmin is taken to zero,
so, while γ < 0 will make fγ diverge is this finite domain, that divergence will still be
integrable if γ is chosen sufficiently small and negative.

The explicit value of δ can be found from (3.5). To enable an explicit calculation, we
will assume henceforth that the density of states g(ε) is related to energy by a simple
power law, viz.,

g(ε) = Aεa, (3.11)
where A is an appropriate constant with dimensions [n0/ηmaxε

1+a], and a is a real num-
ber. The assumption (3.11) is not too restrictive as it can capture both non-relativistic
and ultra-relativistic systems of any dimensionality. With the assumption (3.11), we
may now use (3.5) to link the value of δ to the high-energy asymptotic of the Gardner
distribution. If the Gardner distribution has the power-law tail fG(p) ∝ ε(p)−(χ+a) at
high energies, then, via (3.5), one finds δ = 1+ (a+ 1)/(a+ χ). If, instead, the Gardner
distribution goes to zero at some finite energy εmax so that fG(p) ∝ [εmax − ε(p)]

χ

near ε = εmax, then δ = 1− 1/χ.
Having catalogued the possible Gardner distributions and their corresponding ρ(η),

an important open question is now what Gardner distributions are the most common.
Within the domain of numerical experiments, this is clearly decided by the whims of the
numerical experimenter. However, it would seem reasonable to conjecture that in nature,

† To apply this argument more generally to functions that have compact support in
momentum space but do not go to zero algebraically (e.g., step or bump functions), one can
represent them as the limit of a sequence of functions that do go to zero algebraically.
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the most common Gardner distributions should be ones with exponential tails. The reason
for this is that the only processes that can change the Gardner distribution are, by
definition, collisional, and collisional processes naturally relax the system to a Maxwell–
Boltzmann distribution. More concretely, one often thinks of the sources of energy for
violent relaxation as being large-scale inhomogeneities (e.g., counter-propagating flows,
collapsing distributions of matter, etc.) of a system that is locally collisionally relaxed,
and, therefore, has an exponential Gardner distribution.

We are now safe in the knowledge that the exponentially decaying Gardner distribu-
tions have ρ(η) ∝ η−1, or, in more exotic cases, ρ(η) ∝ η−δ. We may now return to the
task of solving (2.5) and (2.6) in light of these facts.

3.3. Non-degenerate Lynden-Bell equilibria
Taking inspiration from the similarity between Fermi–Dirac and Lynden-Bell statistics,

we may expect that there are two analytically tractable limits: degenerate (‘cold’) and
non-degenerate (‘hot’). In this section, we will explore the latter limit, which will turn
out to be far more useful than the former (which is, nevertheless, also treated, for
completeness, in Appendix A).

We define the non-degenerate limit as one in which the probability of finding the exact
phase-space density to be non-zero is small, viz.,

D(ε) =

∫ ηmax

ηmin

dη e−βηεF (η) ≪ 1. (3.12)

We shall call D(ε) the ‘degeneracy parameter’ since, from (3.4), the probability that
a position in phase space with a given energy is non-empty is given by the quo-
tient D(ε)/ [1 +D(ε)]. In the limit (3.12), the distribution function (3.4) can be ap-
proximated by

P (p, η) ≃ δ(η)
[
1−D

(
ε(p)

)]
+ e−βηε(p)F (η). (3.13)

The effect of this simplification is that the competition for any particular sub-volume of
phase space is so weak that the waterbags are free to arrange themselves as Maxwellians η
by η. The waterbags with lower η cost less energy to be placed at larger momenta—
therefore, they have a larger thermal spread. In the non-relativistic limit, this is equivalent
to the intuition that particles belonging to the waterbags with higher phase-space
densities behave as though they have larger masses.

The approximate form (3.13) of the Lynden-Bell distribution makes computing the
momentum-space integral in (2.6) and determining the fugacity F (η) a simple matter.
Substituting (3.13) into (2.6) and using the explicit form (3.11) of the density of states,
we find the fugacity in the non-degenerate limit to be

F (η) =
(βη)1+a

AΓ (a+ 1)
ρ(η), ηmin ⩽ η ⩽ ηmax, (3.14)

where Γ (a+1) is the gamma function. Substituting (3.14) back into (3.13) and using (2.2)
finally gives us an expression for the mean phase-space density (although still in terms
of the as yet unspecified parameter β):

⟨f⟩(p) = β1+a

AΓ (a+ 1)

∫ ηmax

ηmin

dη η2+aρ(η)e−βηε(p). (3.15)

From (3.15), it might seem as though, by diverse choices of ρ(η), a wide variety
of distribution functions ⟨f⟩ can be obtained. However, as we showed in section 3.2,
a diversity of choices of waterbag contents is exactly what we do not have. Instead,
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fairly generic Gardner distributions with any form of exponential tails possess waterbag
contents that are highly universal at low η. Using (3.8), we can make a convenient change
of variables in (3.15), x = βηε(p), to find

⟨f⟩(p) = n0

AβΓ (a+ 1)ηmaxε(p)2+a

∫ βηmaxε(p)

βηminε(p)

dxx1+aG

(
x

βηmaxε(p)

)
e−x. (3.16)

This form exposes the fact that there is a natural power-law behaviour at energies such
that

1

βηmax
≪ ε(p) ≪ 1

βηmin
. (3.17)

This corresponds to the range of energies that are well within the thermal spread of
the least dense waterbags, but far outside the thermal spread of the densest ones.
At ε(p) ≫ 1/βηmin, the lower limit of the integral in (3.16) imposes an exponential
cutoff on ⟨f⟩. The distribution function N(ε) of particle energies corresponding to (3.16)
is obtained by multiplying the mean phase-space density ⟨f⟩(p) by the density of states:

N(ε) = g(ε)⟨f⟩(p) = n0

βΓ (a+ 1)ηmaxε2

∫ βηmaxε

βηminε

dxx1+aG

(
x

βηmaxε

)
e−x. (3.18)

This shows that the non-degenerate Lynden-Bell equilibria express a natural power-law
tail and, furthermore, that this power law is independent of the type of plasma system
under consideration. Note that the origin of the ε−2 scaling found here is entirely different
than the ε−2 arising from particle acceleration in shocks (Bell 1978).

Consider now what happens if the Gardner distribution does not have an exponential
tail. Then ρ(η) can be written as (3.10). Following all the same steps as before from (3.15)
onwards, but using (3.10) in place of (3.8), one arrives at

N(ε) =
n0

β2−δΓ (a+ 1)η2−δ
maxε3−δ

∫ βηmaxε

βηminε

dxx2+a−δG

(
x

βηmaxε

)
e−x. (3.19)

Thus, the resulting Lynden-Bell equilibrium again displays a power-law tail. The power
law’s exponent is set by the particular value of δ in (3.10), which is related to the
Gardner distribution of that Lynden-Bell equilibrium via (3.5), as explained at the end
of Section 3.2. For Gardner distributions that already have power-law tails, the resulting
Lynden-Bell equilibria have shallower (ultra-‘hard’) power-law tails that strongly diverge
in energy, giving the cutoff ηmin pivotal importance. For Gardner distributions that decay
faster than any exponential, the Lynden-Bell equilibria have ‘soft’ power-law tails, with
total energy depending only very weakly on the cutoff†.

Presently, however, we shall return to the Lynden-Bell equilibria (3.18) arising from
exponential Gardner distributions, for which we complete the calculation.

3.4. Calculation of β and inevitability of partial degeneracy
Both (3.17) and (3.18) still depend on the as yet unknown parameter β, which, as

well as fixing the energy, will determine the accuracy of the non-degeneracy approxima-
tion (3.12). To find β, we must compute the energy of our Lynden-Bell equilibrium (3.13)

† The fact that certain choices of fugacity F (η) give rise to Lynden-Bell equilibria that have
power laws with various exponents was first noted, in connection to superstatistics, by Chavanis
(2006a).
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according to (2.5). Equivalently, from (3.15),

E =

∫
dp ε(p)⟨f⟩(p) = a+ 1

β

∫ ηmax

ηmin

dη ρ(η). (3.20)

Therefore, in the non-degenerate limit,

β =
a+ 1

E

∫ ηmax

ηmin

dη ρ(η). (3.21)

We see that β decreases with increasing total energy of the distribution function; this is
natural if β is viewed as an inverse thermodynamic temperature.

To see how this affects the underlying assumption (3.12) of non-degeneracy, we eval-
uate D(ε) at ε → 0, where the degeneracy effect is strongest, since D(ε) ⩽ D(0).
Requiring D(0) ≪ 1 gives the following condition on the total energy of the distribution,
via (3.12), (3.14) and (3.21):

E ≫ (a+ 1)

[∫ ηmax

ηmin

dη
ηa+1ρ(η)

AΓ (a+ 1)

]1/(a+1) ∫ ηmax

ηmin

dη ρ(η). (3.22)

Since ρ(η) is a function only of the Gardner distribution, the right-hand side of (3.22)
must scale with the energy density EG of the Gardner distribution that has the same
waterbag content ρ(η), but will always have EG ⩽ E. For example, for the Gardner
distribution (3.1), the right-hand side of (3.22) should be proportional to n0ε0. Thus,
just like in Fermi–Dirac statistics, the non-degeneracy approximation becomes more
accurate as the distribution’s energy density E begins to dwarf the energy density EG

of the ground state. Note, however, that (3.22) contains an integral of the waterbag
content ρ(η) with no weighting by η, which, by (2.4) and (2.6), is the total phase volume
occupied by non-empty waterbags. Since ρ(η) ∝ η−1 at small η, this will be large,
depending, albeit logarithmically, on the minimum waterbag density ηmin. Indeed, for
our example (3.1), (3.22) becomes

E ≫ 4

3
√
π
n0ε0

(
ln

ηmax

ηmin

)3/2 [
1 +O

(
ηmin

ηmax

)]
. (3.23)

This means that the condition (3.22) requires the energy of the distribution to be much
greater not just than the energy of the corresponding Gardner distribution, but than the
Gardner energy multiplied by a polylogarithmic function of ηmin. This is a manifestation
of the fact that, as ηmin is taken to zero, more of the phase space is pervaded by low-
density waterbags, making true non-degeneracy harder to achieve. It is thus impossible
to achieve a non-degenerate limit unless ηmin is kept finite.

This is not the only place where the finiteness of the cutoff ηmin has raged against
the dying of the light. The same effect is manifest in the power law of ε−2 appearing
in (3.18), which would have led to a logarithmically divergent mean particle energy were
it not for the exponential cutoff at ε ∼ 1/βηmin. This is obvious in (3.20), where the
integral of ρ(η) has the same logarithmic divergence with ηmin → 0 as it did in the right-
hand side of (3.22). This then makes its way into the expression (3.21) for β, so, formally
in the limit ηmin → 0, β → ∞ always!

Since we must keep ηmin finite, it is of substantial importance to understand the
physical significance of it and the extent to which one should be prepared to accept
one’s equilibrium’s dependence on its value.
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3.5. Physical meaning of minimum waterbag density
A Lynden-Bell equilibrium is essentially the thermal equilibrium of a collection of

correlated blobs in phase space. This is to say that, inherent to the idea of computing
the mean phase-space density, we have assumed that an exact phase-space density, i.e., a
finite value of η, is a meaningful concept. But, of course, an exact phase-space density is a
fiction, since a plasma is composed of many discrete particles, and a phase-space density is
only an average occupation number of particles’ positions in phase space. The only sense
in which an exact, continuous, phase-space density can be meaningful in a collisionless
plasma then is if, within a small enough phase-space volume ∆Γ, many particles can be
considered to move as a collective entity: a waterbag. Then, on the scale of ∆Γ, the system
is composed of many waterbags with some ‘exact’ phase-space density, whereas on scales
much larger than ∆Γ, the system can attain a mean phase-space density. This ‘correlation
volume’ provides a natural way to introduce the minimum non-zero phase-space density:
clearly that should correspond to a single particle sitting in ∆Γ, giving ηmin = ∆Γ−1.

Determining the value of ∆Γ, is, however, a non-trivial challenge (see, e.g., discussions
in Kadomtsev & Pogutse 1970; Chavanis 2022; Ewart et al. 2022). Ewart et al. (2022)
argued, on the grounds that any meaningful collisionless-relaxation rate must be smaller
than the plasma frequency but larger than the rate at which collisions break phase-volume
conservation, that a reasonable constraint to place on the correlation volume is

∆Γ ∼ 1

ηeff

(
n0λ

3
D

)α
,

2

3
< α < 1, (3.24)

where ηeff is some typical phase-space density, which we can here estimate by ηmax,
and λD is the Debye length. This gives us an estimate for the minimum waterbag density:

ηmin = ∆Γ−1 ∼ ηmax

(
n0λ

3
D

)−α
. (3.25)

Since the typical number of particles in a Debye sphere can be as large as 106 to 108

in collisionless plasma environments (such as the solar wind or interstellar gas: see, e.g.,
Verscharen et al. 2019 and Ferrière 2019), the estimate (3.25) might seem damningly
small. It is, in fact, ideal. The existence of a broad power-law tail in (3.18) required a scale
separation between ηmax and ηmin. The estimate (3.25) certainly provides this separation,
tied to the plasma parameter. As for the breakdown of the non-degenerate approximation
and the marginal divergence of the mean particle energy of a distribution with an ε−2

power law, we are saved by the fact that only the logarithm of the ratio ηmax/ηmin will
appear, which, while large, can only ever be in the range of 10 − 30. This is somewhat
reminiscent of the situations in the conventional theory of Coulomb collisions in plasmas,
where forcible introduction of a phase-space cutoff into the collision integral results in
only a weak dependence on the value of this cutoff, via the so-called Coulomb logarithm
(see, e.g., Helander & Sigmar 2005).

Nevertheless, the presence of the logarithmic divergence with ηmin in the expression
for β, signposted at the end of section 3.4, will make it difficult to satisfy the non-
degeneracy approximation†. There is good reason to suppose, however, that its break-
down may only be partial. We note that evaluating (3.12) at ε = 0 is tantamount to
requesting non-degeneracy everywhere in the distribution. Since the degeneracy param-
eter D(ε) decreases with increasing energy, it is reasonable to expect (and indeed we
will see) some degeneracy at low energies, which gives way to non-degeneracy at higher
energies, where our power-law tails will be recovered. As ever, the true solution lies

† Although, notably, the fully non-degenerate limit can be naturally recovered by numerical
noise in particle-in-cell (PIC) codes: see appendix C.
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on the cusp of asymptotic theory, and to go any further we must resort to numerical
computation.

4. Numerical results: partially degenerate equilibria
In this section, we shall recover the analytically predicted power-law tail in (3.18)

by solving the constraint equations (2.5) and (2.6) for the Lynden-Bell equilibria (3.4).
The numerical scheme for this is documented in detail in Appendix B, amounting to
an iterative method coupled to a 1D root finder. For these numerical results, we have
restricted ourselves to a 3D, non-relativistic plasma with ε(p) = p2/2m, although we
anticipate from Section 3 that these results extend, qualitatively, to general regimes.

To capture a broad range of initial conditions, we consider a family of waterbag contents
defined by

ρ(η) =
4πp3th,σ
ση

(
ln

ηmax,σ

η

)(3−σ)/σ

, ηmin < η < ηmax,σ, (4.1)

with σ > 0. This defines the family of Gardner distributions

fG,σ(p) =


ηmax,σe

−(p/pth,σ)
σ

for p < pth,σ

(
ln

ηmax,σ

ηmin

)1/σ

,

0 for p > pth,σ

(
ln

ηmax,σ

ηmin

)1/σ

,

(4.2)

which, in the limit of ηmin/ηmax,σ → 0, have particle densities n0 and energy densities EG

that satisfy

n0 =
4π

σ
Γ

(
3

σ

)
p3th,σηmax,σ, EG =

Γ (5/σ)

Γ (3/σ)
n0

p2th,σ
2m

. (4.3)

Since these Gardner distributions represent minimum-energy states, we will be able
to scan in the energy density of the system for all E ⩾ EG, imagining some initial
distribution of particles, with waterbag content ρ(η) and energy density EG, being
accelerated to the energy density E, and then seeking a maximum-entropy state (see
Section 3.1). We can also vary σ in order to see the effects of the shape of the underlying
Gardner distribution on the resulting Lynden-Bell equilibria.

4.1. Degrees of degeneracy
Let us first scan in ηmax,σ/ηmin in order to show that we can indeed recover the

fully non-degenerate limit solved in Section 3. Figure 3 shows the result of such a
scan for σ = 2 and E = 10EG. By comparing the exact (numerically calculated)
fugacity to the theoretical prediction (3.14) obtained in the absence of phase-space
degeneracy, we see that the agreement is nearly perfect when ηmax is close to ηmin,
e.g., when ηmax/ηmin = 10. This is as expected, since the non-degenerate limit is valid
when (3.22) holds, which it does, as can be confirmed from the solid red colour in panel
(b), showing the probability D(ε)/ [1 +D(ε)] (with D(ε) defined in (3.12)) that a region
of phase space is occupied. However, at ηmax/ηmin = 10, there is an insufficient range
of waterbag levels to achieve the scale separation (3.17) necessary to resolve a power-
law tail in energies. To see a power-law tail, one must increase ηmax/ηmin to higher
values, but this comes at the price of increasing the degeneracy of the system and,
hence, undermining the asymptotic regime in which the tail was derived in the first
place. For the values of ηmax/ηmin that we argued in Section 3.5 to be realistic, the
system becomes strongly degenerate at low energies, which can again be seen from
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Figure 3: Numerically computed Lynden-Bell equilibria for a range of ηmax,σ/ηmin and
with ρ(η) given by (4.1) with σ = 2. The energy density is equal to 10EG in all
cases. (a) The numerically computed fugacity F (η) (solid lines) compared with the
analytical solution (3.14) obtained in the non-degenerate limit (dashed lines). (b) The
resulting distributions N(ε) of particle energies, with the universal power law ∝ ε−2

shown for reference, cf. (3.18). Overplotted in solid colour (with the value range shown
on the right) is the level of degeneracy D(ε)/ [1 +D(ε)] (the probability that a given
energy is occupied by a non-empty waterbag) as a function of energy; D(ε) is defined
in (3.12).

the solid colours in panel (b). In spite of this, at high energies, the degeneracy falls
away, and, correspondingly, F (η) at low η still agrees well with the non-degenerate
approximation (3.14). All this conspires to ensure that, even formally outside the non-
degenerate limit, the power-law tail N(ε) ∝ ε−2 is still manifestly present.

4.2. Energisation of particles and power-law tails
Let us now scan in the energies densities E of the distribution and again look for

power-law tails and assess the effect of degeneracy. Figure 4 shows the results of such a
scan, again with ρ(η) specified by (4.1) with σ = 2. Plotted underneath the mean phase-
space densities are the contributions from a number of finite ranges of exact phase-space
density defined by

⟨f⟩η1<η<η2(p) =

∫ η2

η1

dη ηP (p, η). (4.4)

As one would anticipate, when E is only slightly larger than EG, the effects of phase-
space degeneracy are most prominent: the densest portions of the phase space clog up the
lowest energies, forcing less dense portions to higher energies. As the total energy density
is increased, we see that the contribution from each range of waterbags spreads out. This
is because the increased energy allows dense portions of phase space to be promoted to
larger energies, making room at lower energies for less dense portions of phase space to
fill.
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Figure 4: Numerically computed Lynden-Bell equilibria for a range of energy densities E
(in multiples of the energy density EG of the underlying Gardner distribution) with ρ(η)
given by (4.1) with σ = 2 and ηmax/ηmin = 106. In each plot, the dashed line is the
mean phase-space density, while the underplotted solid lines are the contributions from
four distinct ranges of exact phase-space density as functions of energy. Note that, while
the exact phase-space densities have been grouped into four, this is not the same as
solving for a four-waterbag Lynden-Bell equilibrium, as each grouping is still composed
of a continuum of waterbags.

While the solutions plotted in Figure 4 might appear qualitatively similar to the
Lynden-Bell equilibria obtained in numerical experiments with a small discrete number
of level sets (see, e.g., Assllani et al. 2012 and Ewart et al. 2022), this hides key universal
features of systems with a continuum of level sets. To showcase this universality, in
Figure 5, we plot the Lynden-Bell equilibria for two different waterbag contents, σ = 2
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Figure 5: Numerically computed Lynden-Bell equilibria with waterbag content given by
the σ = 2 (top) and σ = 8 (bottom) cases of (4.1), ηmax,σ/ηmin = 106. (a) The phase-space
densities shown in linear scale, (b) the corresponding distributions of particle energies in
logarithmic scale, for a range of ratios of E/EG. The small deviations from the ε−2 tail
can be attributed to the logarithmic corrections arising from the x integral in (3.18).

and σ = 8 in (4.1), and a range of energy densities E. The ε−2 power-law tails of these
equilibria are immediately apparent, as predicted in (3.18).

Figure 5 shows how these power-law tails become more prominent as one adds more
energy to the Gardner distribution. At E = EG, one has a highly non-universal Gardner
equilibrium. As a small amount of energy E−EG ≪ EG is added to EG, the mean phase-
space density at low energies is largely unaffected, while the power-law tail grows from
the lowest-density waterbags. Thus, for energies close to the energy of the underlying
Gardner distribution, the Lynden-Bell equilibria have a ‘core-halo’ structure: the ‘core’,
which has energy density ∼ EG, is comprised of dense waterbags, which the system does
not have sufficient energy to excite, whereas the ‘halo’ is the tail comprised of those
less dense waterbags that are capable of sampling a larger portion of phase space and
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thus arrange themselves into a universal ε−2 power law, containing the excess energy
density ∼ E−EG. As the energy of the distribution is further increased, more waterbags
have sufficient energy to sample a larger range of phase space, the halo continues to
eat into the core, but both thermally broaden. At E ≫ EG, the asymptotically non-
degenerate solution (3.18) with a power law in the energy range (3.17) suggests that the
system strives for a state in which the halo has much more energy than the core. In this
limit, one expects the transition between the core and halo to occur at ε ∼ 1/βηmax.
Since the halo should be exponentially suppressed at ε ≳ 1/βηmin, one can compute
the ratio of the core energy to the halo energy. Owing to the ε−2 tail, this ratio will
be proportional to ln(ηmax/ηmin) raised to some power, which depends on the specific
functional form of the Gardner distribution. Whatever this power is, the vast majority of
the total energy will be contained in the universal power-law tail for any system whose
energy is much larger than that of its Gardner state.

5. Conclusion
5.1. Summary

The Lynden-Bell (1967) equilibria are the natural maximum-entropy states for systems,
such as a plasma described by the collisionless Vlasov equation (1.1), which conserve not
only density, momentum, and energy, but also an infinite family of further invariants (2.1).
These additional invariants are due to the conservation of phase volume, encoded by
the ‘waterbag content’ function ρ(η) given by (2.7) (equivalent to the Casimir invari-
ants (3.7)), which measures the amount of phase volume where the exact phase-space
density takes the value η (a ‘waterbag’), per unit η. Maximising entropy subject to all
these conservation laws then gives the mean phase-space density (2.2) in the form of the
Lynden-Bell equilibrium (2.9) coupled with the constraints (2.5) and (2.6). In this paper,
we have solved these constraint equations numerically in the general case, as well as
analytically in a tractable limit (which turned out to be the practically relevant one). We
have been able to show that, despite their apparent dependence on non-universal initial
conditions, Lynden-Bell equilibria generically exhibit power-law tails, and, in particular,
that a broad class of initial conditions will give rise to the distribution of particles’
energies scaling as ε−2 at high ε.

To study the Lynden-Bell equilibria systematically, we first considered what values the
invariants of the system, the energy density E and waterbag content ρ(η), could take.
This led us to the concept of a Gardner distribution function, which is any monotonically
decreasing function of the particle’s energy. In Section 3.1, we argued that to each
possible initial condition one could assign a unique Gardner distribution, with the same
waterbag content (and, therefore, the same Casimir invariants) as the initial condition,
but a different energy, the Gardner distribution having, by definition, the lowest possible
energy of all distributions with a given waterbag content ρ(η). The Lynden-Bell equilibria
at higher energies and the same ρ(η) can, therefore, be thought of as excited states
of this Gardner distribution. In Section 3.2, we argued that the typical ρ(η) would
have a fairly generic power-law form at low η, and, in particular, that it would scale
as η−1 for a wide class of initial conditions (see (3.8)). In Section 3.3, we were able
to find the Lynden-Bell equilibria analytically provided the energy of the system was
sufficiently large for the competition of waterbags for phase space to be ignorable. In this
‘non-degenerate’ limit, particles belonging to each waterbag arrange themselves into a
separate Maxwellian equilibrium with an effective ‘temperature’ inversely proportional to
the phase-space density of that waterbag: denser portions of phase space are energetically
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costlier to move to higher energies. The resulting mean phase-space density (3.15) was
found by integrating the contributions of all waterbags, each with their own Maxwellian
distribution weighted by the amount of phase space which that waterbag occupied. Since
the amount of each waterbag had a universal form (3.8), this gave rise to a universal
power-law tail (3.18) scaling as ε−2 at high particle energies.

However, the non-degenerate limit required the system’s energy to be asymptotically
larger than the energy of the corresponding Gardner distribution. Formally, this turned
out to be a very stringent limitation, and indeed one that could hardly ever be strictly
fulfilled. Our analytical results were rescued by the argument, confirmed by the numerical
solutions presented in Section 4, that the effects of phase-space degeneracy were confined
to the low-energy part of the distribution. The universal ε−2 tail was numerically
confirmed to be a robust feature of the generic Lynden-Bell equilibria. As well as
ascertaining that a range of different initial conditions (4.1) gave rise to the same
power-law tail, the numerical solution also showed how this power-law tail formed. We
found (Figure 5) that at energies comparable to the Gardner energy, the Lynden-Bell
equilibria had a ‘core-halo’ structure. The halo, consisting of the ε−2 tail, was formed
from low-density waterbags, which had sufficient energy to explore large portions of
phase space, while the non-universal core was made up of denser waterbags, which did
not have sufficient energies to be excited. As the energy of the Lynden-Bell equilibrium
was increased, the halo ate its way into the core, making the distribution less and less
degenerate and more universal in its shape. This behaviour is perhaps reminiscent of
the measurements of the ‘non-thermal fraction’ of particles in the solar wind (see, e.g.,
Pierrard & Lazar 2010; Oka et al. 2015).

5.2. Limitations and applications
The Lynden-Bell statistical mechanics presents an attractive scenario for the universal

generation of power-law tails, which could perhaps offer insight into the distribution
of particles in such astrophysical systems as cosmic rays and the solar wind. Indeed, a
power law of ε−2 in energy is roughly consistent with the observed power laws typical
in the quiet-time solar wind (e.g., Gloeckler et al. 2008; Fisk & Gloeckler 2014; Yang
et al. 2020) and close to, but distinct from, the inferred value for cosmic-ray sources
(e.g., Ormes & Freier 1978; Reichherzer et al. 2021). However, the universality of this
predicted power law fails to capture the wide range of power laws seen both in numerical
simulations (e.g., Sironi & Spitkovsky 2014; Zhdankin et al. 2017; Werner & Uzdensky
2017) and observationally nearer to the Sun (see Oka et al. 2018 and references therein).
Such systems are usually turbulent, possibly inhomogeneous, and invariably magnetised.
In contrast, the theory that we have proposed for a universal power-law tail assumes a
homogeneous system, in which all the fluctuating field’s energy has decayed to a negligible
fraction of the total energy. It is therefore an intriguing question whether our theory can
be adjusted to apply to these cases. It is this question that we will address in this section,
speculatively.

One common limitation in the applicability of Lynden-Bell’s theory is that the fluctu-
ating fields may decay away faster than the equilibrium state is reached—this is a well
understood feature in galactic dynamics, where it is referred to as ‘incomplete relaxation’
(see Chavanis 2006b and references therein). Here we have ignored such a possibility,
assuming effectively that there will always be a sufficient amount of fluctuations to see
the plasma through to its maximum-entropy state.

Perhaps an even more pressing concern is the possible reliance of the theory on
precise phase-volume conservation. The validity of the Lynden-Bell statistics rests on
the assumption that such an equilibrium can be reached long before the conservation
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of phase volume is broken. Conventional (linear) estimates for the timescale on which
it would be broken, scaling as an inverse fractional power of the true Coulomb-collision
frequency (Su & Oberman 1968), indicate that such a relaxation should be possible.
However, recent progress (Beraldo e Silva et al. 2017; Zhdankin 2022a; Nastac et al.
2023) has shown that in turbulent systems, the conservation of phase volume may be
broken on fast, collision-frequency-independent timescales. While it is possible that this
is damning evidence against the existence (or persistence) of Lynden-Bell equilibria, it is
also possible that it points to interesting interplay between the Lynden-Bell relaxation
and collisional effects. For instance, one can imagine the possibility that the effect of
collisions is to evolve ρ(η) without immediately pinning the system to a Maxwellian
equilibrium. This can happen if collisions are already acting to erase small-scale phase-
space structure of the exact phase-space density f but not yet to change its mean ⟨f⟩
directly. In such a situation, one’s aim would be to compute the evolution of ρ(η) or,
equivalently, of the underlying Gardner ground state fG(ε). In particular, one can imagine
a regime in which the underlying Gardner distribution evolves slower than the Lynden-
Bell equilibrium is reached, causing the distribution to go through a sequence of Lynden-
Bell equilibria. If the effect of collisions is to smooth the fluctuations f − ⟨f⟩ diffusively,
it is clear that this can only cause the energy EG of the Gardner distribution to increase
or remain constant (cf. Kolmes & Fisch 2020). One would therefore expect that, as the
system evolves through a sequence of Lynden-Bell equilibria, it will steadily become more
degenerate as EG approaches the system’s energy E, with the core of the Lynden-Bell
distribution eating into its tail (halo; see Section 4.2). This partially collisionless evolution
would finally freeze once all fluctuations are diffused away, leaving a degenerate Lynden-
Bell equilibrium doomed to further gradual erosion by weak Coulomb collisions on ⟨f⟩.
Since we have argued that an ε−2 tail is generic for any Lynden-Bell equilibrium whose
underlying Gardner distribution has an exponential tail, this scenario suggests that the
universal power-law tail could persist as long as EG < E, despite the breaking of phase-
volume conservation due to weak collisionality.

Finally, there is the question of whether any of this formalism can be ported smoothly
to magnetised equilibria. Here, the most obvious straw to grasp at is that there is no
guarantee that the invariants (2.5) and (2.6) are the only invariants respected on the
relaxation timescale. As previously mentioned, in drift-kinetic plasmas, each particle
conserves its magnetic moment µb. This implies a new conserved function

2π

V

∫
dr

∫
dv∥ B(r)δ

(
η − f(r, v∥, µb)

)
= ρ(η, µb), (5.1)

which would supersede the conservation of the now mundane ρ(η). While some Gardner
distributions have been studied for such systems (see Helander 2020; Mackenbach et al.
2022), the Lynden-Bell equilibria in them are unexplored and may contain a wealth of
interesting physics. This said, in turbulent systems, the conservation law (5.1) may be
just as fragile as the conservation of phase volume. Indeed it has been suggested that
the breaking of adiabatic invariance may be essential to understanding the transport
properties of non-thermal particles (see Ruszkowski & Pfrommer 2023 and references
therein).

From the previous discussion it becomes clear that perhaps the most relevant lim-
itation of Lynden-Bell’s statistical mechanics—or indeed of any equilibrium statistical
mechanics—in application to observed plasma phenomena is that much of real plasma
dynamics are out of equilibrium in a physically essential way: any local relaxation
processes, collisional or collisionless, tend to have to be taken into account alongside
various ‘sources’ and ‘sinks’ of particles and/or energy, e.g., the energisation and escape
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of cosmic rays (Schlickeiser 1989; Chandran 2000; Becker Tjus & Merten 2020; Hopkins
et al. 2022; Kempski & Quataert 2022), the turbulent heating and radiative cooling of the
intracluster medium (e.g., Zhuravleva et al. 2014 and references therein) or accretion-disc
plasmas (e.g., Lesur 2021; Kawazura et al. 2022 and references therein), a veritable zoo
of such processes in the solar wind (e.g., Verscharen et al. 2019; Chen et al. 2020) and
the Earth’s magnetosphere (e.g., Lucek et al. 2005), the birth of energetic α-particles in
fusion reactions and their subsequent slowing down and escape from confined plasmas
(e.g., Helander & Sigmar 2005; Mailloux et al. 2022), etc. In plasmas where Coulomb
collisions can be assumed to relax the particle distribution quickly to a local Maxwellian,
we have a robust analytical framework for handling all these non-equilibrium processes
in terms of the evolution of the density, momentum and temperature of that Maxwellian
and a separation of the dynamics into that evolution plus the turbulence of small
fluctuations around the local equilibrium (e.g., Schekochihin et al. 2009; Abel et al. 2013).
In collisionless plasmas, such a framework is lacking as both the turbulence and the nature
of the underlying equilibrium are mysterious and indeed it is not even guaranteed that
they can be understood without detailed reference to each system’s particular initial
circumstances. If Lynden-Bell’s statistical mechanics proves to be a viable collisionless
substitute for Maxwell’s, a path could be charted towards a theory of the dynamics and
thermodynamics of collisionless plasmas possessing a modicum of universality.
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Appendix A. The degenerate limit of Lynden-Bell’s statistics
In the main text, we have made use of the claim that, given the waterbag content ρ(η),

the Gardner distribution with the same waterbag content represents the ground state
of all possible Lynden-Bell equilibria given by (3.4) that have this waterbag content.
This is intuitive: should the initial condition of the system be a Gardner distribution,
then that is, by definition, the only state available to the system, so it must also be the
maximum-entropy state for that choice of ρ(η). However, for completeness, and as a test
of the Lynden-Bell formalism, it is prudent to check that the Gardner distribution can
be recovered for some choice of the fugacity F (η) and β. This is the aim of this appendix:
to solve explicitly for β and F (η) in (3.4) when E = EG, where EG is the energy of a
given Gardner distribution fG, and to show that the mean phase-space density obtained
by maximising Lynden-Bell’s entropy is ⟨f⟩ = fG.

To understand how the Gardner distribution will be recovered, we appeal to the familiar
Fermi–Dirac distribution

fFD(ε) =
ηmaxe

−β(ε−µ)

1 + e−β(ε−µ)
. (A 1)
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To work out what this is in the degenerate limit, every textbook notes that, when β
is very large, the numerator (and second term in the denominator) is either very small
for ε > µ, making the expression approximately zero, or very large for ε < µ, making
the exponentials in the numerator and denominator approximately cancel to give ηmax.
Borrowing this intuition, we anticipate that our solution should have β → ∞. It is clear
what kind of solution one must search for: the degeneracy parameter D(ε) defined by
(3.12) must be large wherever fG(ε) ̸= 0 and zero wherever fG(ε) = 0. Furthermore, the
dominant contribution to D(ε) in the integral (3.12) must come from η = fG(ε). This
is the Lynden-Bell version of the statement that the phase space is completely filled up
below the Fermi energy.

To see how this works in practice, let us posit the fugacity in the form

F (η) =
1

η̄
exp

[
β

∫ η

ηmin

dη′ f−1
G (η′)

]
(A 2)

and prove that, via (3.4) and (2.6), it recovers the Gardner distribution with the correct
waterbag content ρ(η) when β → ∞, for a suitable choice of the dimensional constant η̄.

In the denominator of (3.4), we must evaluate the integral

D(ε) =
1

η̄

∫ ηmax

ηmin

dη e−βηε+ln η̄F (η). (A 3)

Since we are working in the limit of large β, this integral will be dominated by the
contribution near the maximum (in η at fixed ε) of the exponent and thus can be
evaluated by the method of steepest descent (Bender & Orszag 1978). The location
of the maximum of the exponent, which we denote by ηstat(ε), is given by the solution
to

β
d

dη

[
ηε−

∫ η

ηmin

f−1
G (η′)dη′

]
= 0 =⇒ ηstat(ε) = fG(ε), (A 4)

as we anticipated above. We may now expand the exponent of the integrand in (A 4)
around this maximum to approximate the integral by

D(ε) ≃
∫ ∞

−∞
dη exp

{
−βfG(ε)ε+

β

2

df−1
G

dη

∣∣∣∣
η=fG(ε)

[η − fG(ε)]
2

}
F (fG(ε))

= e−βfG(ε)εF (fG(ε))

√
2π

β

[
−

df−1
G

dη

∣∣∣∣
η=fG(ε)

]−1/2

.

(A 5)

As is customary, we have neglected the contributions from higher derivatives of the
exponent in the knowledge that they will contribute terms that are smaller by O(1/β).
We have also replaced the upper and lower limits of integration by ±∞, assuming that
the exponential decays sufficiently fast for the presence of integration limits not to be
noticed by the integral. This will not be accurate near ε = 0 and ε = f−1

G (ηmin), where the
dominant contribution comes precisely from the limit of integration. This is, however, fine
for β → ∞ because the intervals in ε where this approximation is bad shrink as O

(
β−1/2

)
.

If we further demand that the constant η̄ in (A 2) is chosen so that

1

η̄
e−βηminf

−1
G (ηmin)

√
2π

β

[
−

df−1
G

dη

∣∣∣∣
η=ηmin

]−1/2

= 1, (A 6)
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then, neglecting terms of O(1/β), D(ε) satisfies

1 +D(ε) ≃

{
D(ε) for ε < f−1

G (ηmin),

1 for ε > f−1
G (ηmin).

(A 7)

Calculating the mean phase-space density ⟨f⟩(p) from (2.2) and (3.4), we find

⟨f⟩(ε) ≃


1

η̄D(ε(p))

∫ ηmax

ηmin

dη ηe−βηε+ln η̄F (η) for ε < f−1
G (ηmin),

0 for ε > f−1
G (ηmin).

(A 8)

Let us prove that ⟨f⟩(p) = fG(ε(p)). The integral in (A 8) can again be computed by
the method of steepest descent. The exponent is the same as in (A 3) and so will have
the same maximum, at ηstat = fG(ε) (up to a small O(1/β) correction due to the factor
of η in (A 8)). Expanding the integral around this maximum and neglecting all terms
that are O(1/β) causes the factor of η in the integral to be replaced by ηstat(ε). After
this, the remainder of the integral has the same form as (A 5), which cancels with the
denominator of (A 8), leaving only the factor of ηstat = fG(ε). Q.E.D.

Thus, the fugacity (A 2) correctly recovers the Gardner distribution fG(ε) in the limit
of β → ∞. However, it is possible, in principle, to have accidentally chosen a fugacity
which, while recovering the correct distribution, has an incorrect waterbag content. To
complete the proof, we compute the waterbag content (2.6) for the fugacity (A 2), to
show that it is the same waterbag content as that of fG:

ρ(η) ≃
∫ ∞

0

dε g(ε) exp

{
−βε [η − fG(ε)] + β

∫ η

fG(ε)

f−1
G (η)dη

}

·
√

β

2π

[
−

df−1
G

dη

∣∣∣∣
η=fG(ε)

]1/2

.

(A 9)

Again using the method of steepest descent, we observe that the exponent has its
stationary point, this time in ε at fixed η, at ε = f−1

G (η), just as we should expect.
We can again expand the exponent around this stationary point and neglect O(1/β)
terms, giving us

ρ(η) ≃
∫ ∞

−∞
dε g(f−1

G (η)) exp

{
β

2

dfG
dε

∣∣∣∣
ε=f−1

G (η)

[
ε− f−1

G (η)
]2}√

β

2π

[
−
df−1

G

dη

]1/2
=− g

(
f−1
G (η)

)df−1
G

dη
.

(A 10)

This is exactly the expression (3.5) that we desire. This completes the proof that
any Gardner distribution can be written as the β → ∞ limit of the Lynden-Bell
statistics, implying that one could, in principle, have discovered Gardner restacking just
by analysing the Lynden-Bell equilibria at β → ∞.

By retaining terms that are small in O(1/β), it is possible to analyse the Lynden-Bell
equilibria analytically for energies very close but slightly above EG. However, in analogy
to Fermi–Dirac statistics, this should just amount to broadening the ‘step’ in the Gardner
distribution around ε = f−1

G (ηmin), which limits the validity of this expansion to a very
small range of energies, and thus makes such an expansion an exercise of infinitesimal
utility.
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Appendix B. Numerical method for solving for Lynden-Bell equilibria
In this appendix, we detail the numerical method by which we solve for the Lynden-

Bell equilibria. To reiterate, the objective is, for a given waterbag content ρ(η) and
energy density E, to compute the function F (η) and the parameter β such that, with
the waterbag distribution given by (3.4), the constraints (2.5) and (2.6) are satisfied to
sufficient accuracy. For the numerical solutions given in Section 4, the numerical method
was tailored to a 3D, non-relativistic, system where ε = p2/2m, but the method can be
easily extended to any systems with a specified density of states.

The formula (3.4) for the distribution function can be rewritten in such a way as to
lend itself naturally to an iterative scheme. Namely, if one denotes the fugacity and the
thermodynamic beta at the nth iteration by F (n) and β(n), respectively, then the natural
iteration for the fugacity is

F (n+1)(η) = ρ(η)

[
2π (2m)

3/2
∫ ∞

0

dε ε1/2
e−β(n)ηε

1 +
∫ ηmax

ηmin
dη′ e−β(n)η′εF (n)(η′)

]−1

. (B 1)

Ignoring for a moment how one iterates β(n), we note that if the iteration (B 1) converges,
then by definition (2.6) is satisfied. This means that a solution with the correct waterbag
content has been found, but it may have an incorrect energy, since it does not necessarily
satisfy (2.5). However, by converging to a correct fugacity for a given β(n), the problem
is essentially reduced to a one-dimensional root-finding problem: finding β such that the
energy takes the desired value, for which numerous numerical methods exist. This is the
basis for our numerical algorithm, of which we will now give the specific details.

The η domain is discretised into Nη = 10000 points in preparation for future inte-
gration. To ensure that the lowest-density waterbags are well resolved without wasting
resolution on the highest-density ones, a non-uniform discretisation in η is used: the jth

grid point is given by

ηj = ηmin +

(
j

Nη

)q

(ηmax − ηmin) , (B 2)

where the number q > 1 is chosen depending on the waterbag content: for (4.1), q = 3
was used for σ ⩽ 3 and q = 2 for σ > 3, to compromise on the resolution near η = ηmax.

An initial guess is chosen for the fugacity and thermodynamic beta, denoted F (0)(ηj)
and β(0), respectively. For the numerical solutions shown in Section 4, the initial guess
was set to the analytical solutions (3.14) and (3.21) obtained in the non-degenerate limit;
other arbitrary choices were tested, all of which converged, albeit usually taking more
iterations to do so.

At each further iteration, the fugacity is updated according to (B 1). The η′ integral
in (B 1) is computed by a second-order midpoint method, interpolating the fugacity
linearly between the neighbouring grid points. To compute the ε integral, a preliminary
scan is first conducted to find the energy εupper at which the degeneracy parameter (3.12)
becomes smaller than 10−5. This allows the energy integral in (B 1) to be split into two
parts. The first of them, over energies below εupper, must be computed numerically, while
the second, over energies above εupper, can be approximated by an analytically calculable
function of εupper and η. In the region where the integral must be computed numerically,
the integration is carried out assuming the denominator to be piecewise linear on a
momentum grid (rather than an energy grid, although this distinction is unimportant)
linearly spaced with a spacing of 10−3 in units such that the EG = 1. The fugacity can
thus be iterated at fixed thermodynamic beta.

Once the integrated root-mean-square relative change in the fugacity over a single
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iteration is

ϵF =

 1

ηmax − ηmin

∑
ηj

(ηj+1 − ηj)

(
F (n+1)

F (n)
− 1

)2
1/2

< 10−3, (B 3)

the energy of the resulting mean distribution can be computed. The root-finding method
that we then use to determine β is an extremely primitive one: interval halving. The
energy of the mean phase-space density with the fugacity resulting from above is com-
puted, and β(n+1) is then increased or decreased depending on whether the computed
energy is too high or too low, respectively. The initial step size in β is β(0)/2. If the
iteration in β passes over the root (i.e., in going from the nth iteration to the (n+ 1)st,
the energy goes from above the correct energy to below it, or vice versa), then the step
size in β is halved, so that it eventually homes in on the root correctly. The step size
is also halved if the step would otherwise result in a negative value for β(n+1). If the
computed energy is within a tolerance of 10−3 in units where EG = 1, then the iteration
in fugacity is allowed to proceed until ϵF finally falls below 10−5, at which point the
solution is considered converged.

Appendix C. Lynden-Bell equilibria and PIC plasmas
While we have shown numerically that the non-degenerate approximation of Lynden-

Bell equilibria taken in section (3.3) is qualitatively accurate even in systems that are
nowhere near complete non-degeneracy, there is one (admittedly contrived) case where
it is not just approximately true but represents an exact result. In this appendix, we
show that non-degenerate Lynden-Bell equilibria are the natural long-time equilibria of
a plasma which is evolved using the PIC algorithm (PIC plasma) in which any given
true species is represented by PIC particles with multiple different weights. The intuitive
reason for this is that PIC particles behave in a manner analogous to the ‘waterbags’
central to the idea of Lynden-Bell relaxation. Waterbags are parcels of phase space,
therefore containing some inherent number of true particles that move as a collective
entity. PIC particles are hard-wired to represent such collections of true particles. To
make this comparison more concrete, we will map a ‘collisionless collision operator’, that
describes the relaxation of a system to a Lynden-Bell equilibrium (Ewart et al. 2022)
onto a numerical collision operator describing relaxation in a PIC plasma (Touati et al.
2022)—by mapping the physical picture of waterbags onto that of PIC particles.

The collisionless collision operator relaxes the probability density Pα(v, η) of species α
as follows:

∂Pα

∂t
=

∑
α′

q2αq
2
α′

mα

∂

∂v
·
∫

dv′ Q(v,v′) ·
∫

dη′ η′{
∆Γα′

mα

[
η′ − fα′(v′)

]
Pα′(v′, η′)

∂Pα

∂v

∣∣∣∣
η

− ∆Γα

mα′

[
η − fα(v)

]
Pα(v, η)

∂Pα′

∂v′

∣∣∣∣
η′

}
, (C 1)

where ∆Γα is the typical volume over which a fluctuation in phase space is correlated
(for details, see the discussion in section 3.5 or in Ewart et al. 2022) and Q(v,v′) is a
tensor containing information about the interaction potential, whose explicit form we will
not need here. The derivation of collision operators such as (C 1) is, naturally, subject to
a number of approximations and caveats. Chief amongst these is the assumption of an
electrostatic, quasilinear system in which phase volume is conserved. A full derivation



28 R. J. Ewart et al.

and discussion of such collision operators can be found in, e.g., Chavanis (2022) or Ewart
et al. (2022).

In a PIC simulation, a given true species of particle may be represented by a number
of different macroparticles that have different ‘weights’—what this means quantitatively
in our language, we shall explain shortly. To describe such a system, we set the distribu-
tion Pα to be discrete in η, the latter taking values ηα,a corresponding to macroparticle
‘species’ a:

Pα(v, η) =
∑
a

Pα,a(v)δ(η − ηα,a). (C 2)

The collision operator (C 1) then becomes

∂Pα,a

∂t
=

∑
α′

q2αq
2
α′

mα

∂

∂v
·
∫

dv′ Q(v,v′) ·
∑
a′{

∆Γα′ηα′,a′

mα

[
ηα′,a′−fα′(v′)

]
Pα′,a′(v′)

∂Pα,a

∂v
−∆Γαηα′,a′

mα′

[
ηα,a−fα(v)

]
Pα,a(v)

∂Pα′,a′

∂v′

}
.

(C 3)

Here, to reiterate, fα(v) is the mean phase-space density of particles of species α,
which can be written as the sum of the mean phase-space densities fα,a(v) of different
macroparticle ‘species’:

fα(v) =
∑
a

fα,a(v) =
∑
a

ηα,aPα,a(v). (C 4)

Next, one must note that PIC particles, like classical particles, occupy zero phase volume.
Therefore, if all PIC particles are assumed decorrelated, ∆Γα = 0. However, the phase-
space densities ηα,a are then infinite. Mathematically, this corresponds to taking the limit
of ηα,a → ∞ and ∆Γα → 0 in (C 3) and (C 4) while holding the product ∆Γαηα,a—the
number of particles in a correlated volume—fixed to the number of ‘true’ particles δNα,a

contained in a macroparticle of species (α, a); the quantity δNα,a is what is usually called
the ‘weight’ of the macroparticle in the PIC terminology.

Clearly, as ηα,a is taken to infinity, it is the mean phase-space density fα,a = ηα,aPα,a

that remains finite. Making all these substitutions and taking the appropriate limit, one
finds from (C3) that it relaxes according to

∂fα,a
∂t

=
∑
α′,a′

q2αq
2
α′

mα

∂

∂v
·
∫

dv′ Q(v,v′)·
(
δNα′a′

mα
fα′,a′

∂fα,a
∂v

− δNα,a

mα′
fα,a

∂fα′,a′

∂v′

)
. (C 5)

Modulo the details of the tensor Q (due to the discrete nature of PIC codes), this is the
effective collision operator due to numerical noise inherent in the PIC algorithm (Boris
& Shanny 1972; Birdsall & Langdon 1985; Touati et al. 2022). It is easy to show that,
provided the tensor Q(v,v′) is positive definite and symmetric in (v,v′), the collision
operator (C 5) has an H-theorem with the entropy

S = −
∑
α,a

1

δNα,a

∫
dv fα,a(v) ln fα,a(v), (C 6)

maximised by the equilibria

fα,a = Nα,ae
−βδNα,aε(v), (C 7)

where Nα,a is a normalisation constant set by the number of macroparticles of each weight



Universal Lynden-Bell equilibria 29

(the fugacity of these marcoparticles). The resulting distribution function of particles of
true species α is simply a superposition of Maxwellians:

fα(v) =
∑
a

fα,a(v) =
∑
a

Nα,ae
−βδNα,aε(v), (C 8)

which is manifestly the discrete form of the non-degenerate Lynden-Bell equilib-
rium (3.15).

Thus, non-degenerate Lynden-Bell equilibria could emerge organically in PIC simula-
tions where multiple macroparticle weights represent the same true particle species. Of
course, this is more a numerical artefact than a physical result. The equilibrium towards
which such a system is pushed by the numerical noise is effectively hard-coded by the
choice of macroparticle weights. We note finally that the effects of a numerical collision
operator such as (C 5) actually extend further than spurious consequences for the steady
state. It was shown by Ewart et al. (2022) that such collision operators could give rise
to an anomalous interspecies drag, which again here would be a defect of the numerical
method (cf. May et al. 2014).
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