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Abstract. The study of digital covering transformation groups (or automorphism groups, discrete deck
transformation groups) plays an important role in the classification of digital spaces (or digital images). In
particular, the research into transitive or nontransitive actions of automorphism groups of digital covering
spaces is one of the most important issues in digital covering and digital homotopy theory. The paper deals
with the problem: Is there a digital covering space which is not ultra regular and has an automorphism
group which is not trivial? To solve the problem, let us consider a digital wedge of two simple closed
ki-curves with a compatible adjacency, i ∈ {1, 2}, denoted by (X, k). Since the digital wedge (X, k) has both
infinite or finite fold digital covering spaces, in the present paper some of these infinite fold digital covering
spaces were found not to be ultra regular and further, their automorphism groups are not trivial, which
answers the problem posed above. These findings can be substantially used in classifying digital covering
spaces and digital images so that the paper improves on the research in Section 4 of [3] (compare Figure 2
of the present paper with Figure 2 of [3]), which corrects an error that appears in the Boxer and Karaca’s
paper [3] (see the points (0, 0), (0, 8), (6,−1) and (6, 7) in Figure 2 of [3]).

1. Introduction

The study of covering spaces plays an important role in many areas of mathematics such as algebraic
topology, Riemannian geometry, harmonic analysis, differential topology and so forth. Research into
covering transformation groups (or automorphism groups) of covering spaces is also very important in
covering and homotopy theory. In particular, given a covering (X̃, p,X) we can consider a transitive or a
nontransitive action of the automorphism group (briefly, Aut(X̃, p)) on the fiber p−1(x0) [27]. This approach
is often used for classifying covering spaces over (X, x0). For instance, let (X̃, p) be a covering space of X.
The automorphism group Aut(X̃, p) operates transitively on p−1(x), x ∈ X if and only if (X̃, p) is a regular
covering space of X [27].
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Let us consider a graph on the nD lattice space such as Zn, where Z is the set of integers. Then we can
call the graph a digital graph (or digital image). In the classification of digital images, we often use methods
involving a digital fundamental group [1, 24, 26], a digital covering transformation group (or a discrete
deck transformation group) [12] and so forth [3, 8, 13–15, 23]. The calculation of both an automorphism
group and a digital fundamental group of a digital space is one of the most important issues in digital
covering and digital homotopy theory. Thus the paper [5] (see also [4, 17, 18]) establishes the notion of
digital covering space, studies a digital wedge of simple closed k-curves (see also [2]) and calculates its
digital fundamental group. The paper [12] develops the notion of a digital covering transformation group.
The paper [11] introduces the action of Aut(X̃, p) on the fiber p−1(x0) (see also (3.2) and Definition 3.11 in the
present paper). In relation to the study of a transitive action of an automorphism group of a digital covering
space, the recent paper [17] develops the notion of an ultra regular covering space (see Definition 3.14 of
the present paper) and proposes several kinds of digital covering spaces over a digital wedge. Further, the
papers [3, 17] study a nontransitive action of an automorphism of a digital covering over a digital wedge
that satisfies a radius 2 local isomorphism. More precisely, the paper [3] treats a nontransitive action of
Aut(X̃, p) on the fiber p−1(x0), where (X̃, k′) is an infinite fold digital covering space over a digital wedge
of two simple closed 8-curves. Indeed, the authors of [3] use an unusual adjacency of X̃ ⊂ Z2 which is
not a standard adjacency relations from (2.1). Instead of the approach, the present paper uses a traditional
approach so that the paper improves on the research in [3] (see Sections 4 and 5).

We may raise the problem: Is there a digital covering (E, p,B) which is not ultra regular and has an
automorphism group Aut(E | p) that is not trivial?

In relation to the study of this problem, the present paper deals with three associated problems below.
Let (X, k) be a digital wedge of two simple closed ki-curves with a compatible k-adjacency (see Definition
3.6), i ∈ {1, 2}, where each simple closed ki-curve need not be ki-contractible.

(Q1) How many digital covering spaces are there over (X, k)?
(Q2) Assume that p : (X̃, k′)→ (X, k) is a (k′, k)-covering map. In relation to the study of a transitive or a

nontransitive action of Aut(X̃, p) on the fiber p−1(x0), what types of digital covering spaces (X̃, k′) exist?
(Q3) What are the automorphism groups of the digital covering spaces (X̃, k′) over (X, k)?
Given a digital wedge (X, k), the present paper proves that it has countably many and infinite fold digital

covering spaces (X̃, k′). Some of them are not ultra regular and the others are ultra regular. Further, their
automorphism groups are not trivial. This research improves on the results in [3] and answers the problem
posed earlier in this paper.

The paper has main results in Sections 4 and 5 and is organized as follows: Section 2 provides some basic
notions which underpin our work. Section 3 reviews some properties of digital covering spaces and their
automorphism groups. Section 4 shows that the digital space (X, k) of Questions 1-3 above has countably
many and infinite fold digital covering spaces (X̃, k′) which are not necessarily ultra regular spaces and
further, proves that their associated automorphism groups are not trivial. Section 5 proposes an infinite fold
digital covering space (E, k′) over a digital wedge of (X, k) of Questions 1-3 above whose digital covering
transformation group is transitive on the fiber and calculates its automorphism group. Section 6 concludes
the paper with a summary.
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2. Preliminaries

Let N denote the sets of natural numbers. Let Zn denote the set of points in the Euclidean nD space
with integer coordinates. Useful tools from algebraic topology and geometric topology for studying the
digital topological properties of a (binary) digital space include a digital covering space [4, 5], a (digital)
k-fundamental group [1], a digital k-surface [8, 9] and so forth [6, 7, 10, 12, 14, 15].

To study a multidimensional space X ⊂ Zn (or a digital space), let us now recall the k-adjacency relations
of Zn as well as some essential terminology such as a digital isomorphism [1, 6, 19], a digital homotopy [1],
a strong k-deformation retract [10] and so forth. As a generalization of the k-adjacency relations of 2D and
3D digital spaces [25, 28], the k-adjacency relations of Zn were established in [4] (see also [5, 14, 16]):
For a natural number m where 1 ≤ m ≤ n, two distinct points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn

are called k(m,n)- (briefly, k-) adjacent if
• there are at most m indices i such that | pi − qi | = 1 and
• for all other indices i such that | pi − qi | , 1, pi = qi.
Concretely, according to the two numbers m,n ∈ N, the k(m,n) (or k)-adjacency relations of Zn were
represented in [5], as follows (for more details, see also [14, 16]):

k := k(m,n) =
n−1∑

i=n−m

2n−iCn
i ,where Cn

i =
n!

(n − i)! i!
. (2.1)

For {a, b} ⊂ Z with a � b, [a, b]Z = {a ≤ n ≤ b |n ∈ Z} is considered with 2-adjacency [1]. In this paper we
are not concerned with k̄-adjacency between two points in Zn \ X.

We say that two subsets (A, k) and (B, k) of (X, k) are k-adjacent to each other if A ∩ B = ∅ and there are
points a ∈ A and b ∈ B such that a and b are k-adjacent to each other [25]. We say that a set X ⊂ Zn is
k-connected if it is not a union of two disjoint non-empty sets which are not k-adjacent to each other [25].
For an adjacency relation k of Zn, a simple k-path with l + 1 elements in Zn is assumed to be an injective
sequence (xi)i∈[0,l]Z ⊂ Zn such that xi and x j are k-adjacent if and only if either j = i + 1 or i = j + 1 [25]. If
x0 = x and xl = y, then we say that the length of the simple k-path, denoted by lk(x, y), is the number l. A
simple closed k-curve with l elements in Zn, denoted by SCn,l

k [5], is the simple k-path (xi)i∈[0,l−1]Z , where xi
and x j are k-adjacent if and only if j = i + 1(mod l) or i = j + 1(mod l) [25].

In the study of digital continuity and the various properties of a digital space [5], we have often used
the following digital k-neighborhood of a point x ∈ X with radius ε ∈ N [4] (see also [5]): For a digital space
(X, k) in Zn, the digital k-neighborhood of x0 ∈ X with radius ε is defined in X to be the following subset of
X:

Nk(x0, ε) = {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (2.2)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
To map every k0-connected subset of (X, k0) into a k0-connected subset of (Y, k1), the papers [1, 28]

established the notion of digital continuity. Motivated from both the digital continuity in [28] and the
(k0, k1)-continuity in [1], we present the digital continuity of maps between digital spaces, which can be
widely used for studying digital spaces in Zn,n ∈ N, as follows:

Proposition 2.1. ([13]) Let (X, k0) and (Y, k1) be digital spaces in Zn0 and Zn1 , respectively. A function
f : X→ Y is (k0, k1)-continuous if and only if for every x ∈ X f (Nk0 (x, 1)) ⊂ Nk1 ( f (x), 1).

In Proposition 2.1 if n0 = n1 and k0 = k1, then we can call it a k0-continuous.
Since the digital space (X, k) can be considered to be a digital k-graph, we use the term a (k0, k1)-

isomorphism as in [6, 19] rather than a (k0, k1)-homeomorphism as in [1], as follows:

Definition 2.2. ([6] see also [1, 13, 19]) For two digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X→ Y
is called a (k0, k1)-isomorphism if h is a (k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-
continuous. Then we use the notation X ≈(k0,k1) Y. If n0 = n1 and k0 = k1, then we speak out a k0-isomorphism
and use the notation X ≈k0 Y.
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For a digital space (X, k) and A ⊂ X, (X,A) is called a digital space pair with a k-adjacency [7]. Further-
more, if A is a singleton set {x0}, then (X, x0) is called a pointed digital space [25]. Based on the pointed
digital homotopy in [1], the following notion of k-homotopy relative to a subset A ⊂ X is often used in
studying a k-homotopic thinning and a strong k-deformation retract of a digital space (X, k) in Zn [9, 14].

Definition 2.3. ([7] see also [8, 10]) Let ((X,A), k0) and (Y, k1) be a digital space pair and a digital space,
respectively. Let f , 1 : X → Y be (k0, k1)-continuous functions. Suppose there exist m ∈ N and a function
F : X × [0,m]Z → Y such that
• for all x ∈ X,F(x, 0) = f (x) and F(x,m) = 1(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y given by
Fx(t) = F(x, t) for all t ∈ [0,m]Z is (2, k1)-continuous;
• for all t ∈ [0,m]Z, the induced function Ft : X→ Y given by Ft(x) = F(x, t) for all x ∈ X is (k0, k1)-continuous.
Then we say that F is a (k0, k1)-homotopy between f and 1 [1].
• Furthermore, for all t ∈ [0,m]Z, assume that the induced map Ft on A is a constant which follows the
prescribed function from A to Y. In other words, Ft(x) = f (x) = 1(x) for all x ∈ A and for all t ∈ [0,m]Z.
Then we call F a (k0, k1)-homotopy relative to A between f and 1, and we say that f and 1 are (k0, k1)-
homotopic relative to A in Y, f ≃(k0,k1)relA 1 in symbols.

In Definition 2.3, if A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-homotopy at {x0} [1]. When f
and 1 are pointed (k0, k1)-homotopic in Y, we use the notation that f ≃(k0,k1) 1. In addition, if k0 = k1 and
n0 = n1, then we say that f and 1 are pointed k0-homotopic in Y and we use the notation that f ≃k0 1 and
f ∈ [1] which denotes the k0-homotopy class of 1. If, for some x0 ∈ X, 1X is k-homotopic to the constant map
in the space x0 relative to {x0}, then we say that (X, x0) is pointed k-contractible [1].

Definition 2.4. ([8] see also [10]) For a digital space pair ((X,A), k), we say that A is a strong k-deformation
retract of X if there is a digital k-continuous map r from X onto A such that F : i ◦ r ≃k·rel.A 1X and r ◦ i = 1A.
Then a point x ∈ X \ A is called strong k-deformation retractable.

Since the Khalimsky operation [22] is essentially used in establishing a digital fundamental group, we
need to recall it as follows: assume Fk(X, x0) = { f | f is a k-loop based at x0}. For members f : [0,m f ]Z → X
and 1 : [0,m1]Z → X of Fk(X, x0), in [22] the map

f ∗ 1 : [0,m f +m1]Z → X

is given by

f ∗ 1(t) =
{

f (t) if 0 ≤ t ≤ m f ;
1(t −m f ) if m f ≤ t ≤ m f +m1.

Further, using the trivial extension [1] and the Khalimsky operation [22], the paper[1] establishes the
following k-fundamental group: For a digital space (X, k), consider a k-loop f with a base point x0, we
denote [ f ]X (briefly, [ f ]) as the k-homotopy class of f in X. Then for a k-loop f1 with the same base point
x0 ∈ X, f0 ∈ [ f ] means that the two k-loops f and f0 have trivial extensions that can be joined by a k-
homotopy keeping the base point fixed [1]. Furthermore, if f1, f2, 11, 12 ∈ Fk(X, x0), f1 ∈ [ f2], and 11 ∈ [12],
then f1 ∗ 11 ∈ [ f2 ∗ 12], i.e. [ f1 ∗ 11] = [ f2 ∗ 12] [1, 22]. Then we use the notation πk(X, x0) = {[ f ] | f ∈ Fk(X, x0)}
which is a group [1] with the operation [ f ] · [1] = [ f ∗ 1] and called the (digital) k-fundamental group of
(X, x0) [1], where the base point is assumed to be a point which cannot be deleted by a strong deformation
retract [12] if the given space (X, k) is not k-contractible. If X is pointed k-contractible, then πk(X, x0) is trivial
[1].

Let ((X,A), k) be a digital space pair with k-adjacency. A map f : ((X,A), k0) → ((Y,B), k1) is called
(k0, k1)-continuous if f is (k0, k1)-continuous and f (A) ⊂ B [7]. If A = {a}, B = {b}, we write (X,A) = (X, a),
(Y,B) = (Y, b), and we say that f is a pointed (k0, k1)-continuous map [25]. A (k0, k1)-continuous map
f : ((X, x0), k0)→ ((Y, y0), k1) induces a group homomorphism [1]

f∗ : πk0 (X, x0)→ πk1 (Y, y0) given by f∗([α]) = [ f ◦ α]. (2.3)
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The following notion of “simply k-connected” in [5] has been often used in digital k-homotopy and digital
covering theory: A pointed k-connected digital space (X, x0) is called simply k-connected if πk(X, x0) is a trivial
group.

Since the k-contractibility requires a digital space (X, k) to shrink k-continuously to a point over a finite
time interval, we cannot say that Zn is 2n-contractible, n ∈ N. However, using the simply 2-connectedness
of Z [5], we can show that (Zn, 0n) is simply k-connected, where the k-adjacency is assumed to be anyone of
the k-adjacency relations of Zn.

Using the non-8-contractibility of SC2,6
8 [5], the paper [5] (see also [8, 10]) proved that πk(SCn,l

k ) is an
infinite cyclic group, where SCn,l

k is not k-contractible. More precisely, we obtain the following:

Theorem 2.5. ([5] see also, [8, 10]) πk(SCn,l
k , x0) ≃ (lZ,+), where SCn,l

k is not k-contractible, “ ≃” means a
group isomorphism and x0 ∈ SCn,l

k . In addition, πk(SCn,4
k ) is trivial if k = 3n − 1,n ∈ N − {1}.

3. Some Properties of Digital Covering Spaces

Let (X, k) be a digital space in Zn. In relation to the calculation of πk(X, x0) and the classification of
digital spaces in terms of a digital k-homotopy, we have often used some properties of digital coverings
[2–5, 14, 15]. In digital covering theory each digital space (X, k) is assumed to be k-connected. Therefore, in
the rest of this paper every (X, k) is assumed to be k-connected, unless stated otherwise. In this section we
review some properties of regular covering spaces and ultra regular covering spaces. Let us now recall the
typical axioms of a digital covering space.

Definition 3.1. ([5] see also [13]) Let (E, k0) and (B, k1) be digital spaces in Zn0 and Zn1 , respectively. Let
p : E→ B be a (k0, k1)-continuous surjection. Suppose, for any b ∈ B there exists ε ∈ N such that
(1) for some index set M, p−1(Nk1 (b, ε)) = ∪i∈MNk0 (ei, ε) with ei ∈ p−1(b);
(2) if i, j ∈M and i , j, then Nk0 (ei, ε) ∩Nk0 (e j, ε) is an empty set; and
(3) the restriction map p on Nk0 (ei, ε) is a (k0, k1)-isomorphism for all i ∈M.
Then the map p is called a (k0, k1)-covering map, (E, p,B) is said to be a (k0, k1)-covering and (E, k0) is called
a digital (k0, k1)-covering space over (B, k1).

The k1-neighborhood Nk1 (b, ε) of Definition 3.1 is called an elementary k1-neighborhood of b with some
radius ε. While in Definition 3.1 we may take ε = 1 [2, 8], the paper [17] established a simpler form of the
axioms of a digital covering space, as follows:

Proposition 3.2. ([17]) For the (k0, k1)-covering of Definition 3.1 we can replace “(k0, k1)-continuous surjec-
tion” by “surjection”.

Definition 3.3. ([8] see also [13]) We say that a (k0, k1)-covering map p : (E, e0) → (B, b0) is an m-fold
(k0, k1)-covering map if the cardinality of the index set M is m.

Definition 3.3 can be restated as follows: For a (k0, k1)-covering map p : (E, e0)→ (B, b0), if the set p−1(b0)
has n elements (or the number n can also be called the sheets of the digital covering (see [27]), then the
map p is called an m-fold (k0, k1)-covering map because any points b1, b2 ∈ B satisfy the following identity in
terms of the digital version of the corresponding properties of a covering in [27]: #{p−1(b1)} = #{p−1(b2)} = m,
where “#” means the cardinality of the given set.

For pointed digital spaces ((E, e0), k0) and ((B, b0), k1), if p : (E, e0)→ (B, b0) is a (k0, k1)-covering map such
that p(e0) = b0, then p is called a pointed (k0, k1)-covering map [5]. Hereafter, we assume that each digital
covering map is a pointed one, unless stated otherwise.

Definition 3.4. ([4]) For n ∈ N, a (k0, k1)-covering (E, p,B) is a radius n local isomorphism if the restriction
map p|Nk0 (ei,n) : Nk0 (ei, n)→ Nk1 (b,n) is a (k0, k1)-isomorphism for all i, where ei ∈ p−1(b).
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According to Definition 3.4, we can say that a (k0, k1)-covering (E, p,B) is a radius n-(k0, k1)-covering if
ε ≥ n, where the number ε is the same as the ε of Definition 3.1 [4] (see also [13]).

In view of Definitions 3.1 and 3.4, we observe that a (k0, k1)-covering which satisfies a radius n local
isomorphism is equivalent to a radius n-(k0, k1)-covering [8].

Let us recall the notion of a digital covering transformation group. For three digital spaces (B, k), (E1, k1)
and (E2, k2), let (E1, p1,B) and (E2, p2,B) be (k1, k)- and (k2, k)-coverings, respectively. Then we say that
a (k1, k2)-continuous map ϕ : E1 → E2 such that p2 ◦ ϕ = p1 is a (k1, k2)-covering homomorphism from
(E1, p1,B) into (E2, p2,B) [10], where “ ◦ ” means composition. As a special case of this (k1, k2)-covering
homomorphism, we obtain the digital version of a covering transformation group of a covering space in
algebraic topology [29], as follows:

Definition 3.5. ([12]) Consider a (k0, k1)-covering map p : (E, e0) → (B, b0). A self k0-isomorphism of the
(k0, k1)-covering map p, denoted by h : (E, k0) → (E, k0), is called a digital k0-covering transformation or an
automorphism of a digital covering map p if p = p ◦ h, where “ ◦ ” means composition.

Note that the set of the automorphisms of a digital covering map under composition is a group which
is denoted by Aut(E |B) (or Aut(E, p)) [12].

Since a digital wedge has often been used in the study of an automorphism groups of digital coverings,
let us now recall the digital wedge in [5] (see also [2]). For digital spaces (Xi, ki) in Zni , i ∈ {0, 1} the notion
of digital wedge of (Xi, ki) was introduced in [5]. Using the version of a digital wedge developed in [5], we
construct a notion of compatible k-adjacency of the digital wedge, as follows:

Definition 3.6. ([17]) For pointed digital spaces ((X, x0), k0) in Zn0 and ((Y, y0), k1) in Zn1 , the wedge of (X, k0)
and (Y, k1), written (X ∨ Y, (x0, y0)), is the digital space in Zn

{(x, y) ∈ X × Y | x = x0 or y = y0} (3.1)

with the following compatible k(m,n)(or k)-adjacency relative to both (X, k0) and (Y, k1), and the only one
point (x0, y0) in common such that

(W1) the k(m,n) (or k)-adjacency is determined by the numbers m and n with n = n0 + n1, m = m0 + m1
which satisfies (W1 − 1) below, where the numbers mi are taken from the ki(or k(mi,ni))-adjacency relations
of the given digital spaces ((X, x0), k0) and ((Y, y0), k1), i ∈ {0, 1}.

(W 1-1) In view of (3.1), we can consider the projection maps from X ∨ Y onto X and Y, respectively
denoted by

WX : (X ∨ Y, (x0, y0))→ (X, x0) and WY : (X ∨ Y, (x0, y0))→ (Y, y0),

where WX(x, y) = x and WY(x, y) = y.
In relation to the establishment of a compatible k-adjacency of the digital wedge (X ∨ Y, (x0, y0)), the

following restriction maps of WX and WY on (X × {y0}, (x0, y0)) ⊂ (X ∨ Y, (x0, y0)) and ({x0} × Y, (x0, y0)) ⊂
(X ∨ Y, (x0, y0)) satisfy the following properties, respectively:{

(1) WX |X×{y0} : (X × {y0}, k)→ (X, k0) is a (k, k0)-isomorphism; and
(2) WY |{x0}×Y : ({x0} × Y, k)→ (Y, k1) is a (k, k1)-isomorphism.

(W2) Any two distinct elements (x, y0) ∈ X × {y0} and (x0, y) ∈ {x0} ×Y of X ∨Y, such that x , x0 and y , y0,
are not k(m,n) (or k)-adjacent to each other.

Remark 3.7. In relation to the choice of a compatible k := k(m,n)-adjacency of the digital wedge X ∨ Y in
(W1) of Definition 3.6, we referred to n = n0 + n1 and m = m0 + m1. However, the wedge X ∨ Y ⊂ Zn with
the k := k(m,n)-adjacency can be always (k, k′)-isomorphically transformed into Zn′ with k′ := k′(m′,n′)-
adjacency [3, 5], where m′ = max{m0,m1} and n′ = max{n0, n1} satisfy the property (W1) and (W2) above.
For instance, see the digital wedges in Figures 1, 2, and 3 of the present paper, i.e. SC2,6

8 ∨ SC2,6
8 ⊂ Z2

with an 8 adjacency of Z2 instead of Z4. Thus for convenience, when studying a digital wedge, we may
consider the digital wedge X ∨ Y in definition 3.6 with k := k(m′,n′)-adjacency, where m′ = max {m0,m1}
and n′ = max {n0,n1}.
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The following notion has often been used for calculating the k-fundamental group of a digital space
(X, k) and classifying digital spaces [11, 12].

Definition 3.8. ([8])(see also [12]) A (k0, k1)-covering ((E, e0), p, (B, b0)) is called regular if p∗πk0 (E, e0) is a
normal subgroup of πk1 (B, b0), where p∗ : πk0 (E, e0)→ πk1 (B, b0) is a group homomorphism of (2.3).

Using Massey’s program of an automorphism group [27], we obtain a connection between Aut(E |B) and
the action of πk1 (B, b0) on p−1(b0) which represents digital topological versions of Proposition 7.1, Theorem
7.2 and Corollary 7.3 in [27], as follows: Let ((E, e0), p, (B, b0))) be a radius 2-(k0, k1)-covering. For any
automorphism ϕ ∈ Aut(E |B), any point ẽ ∈ p−1(b0) and any α ∈ πk1 (B, b0), we obtain that [11]

ϕ(ẽ · α) = (ϕẽ) · α, (3.2)

where the operation “·” in (3.2) is easily induced from [11] as follows: Take α = [ f ] ∈ πk1 (B, b0), where
f : [0,m f ]Z → (B, b0) represents α. Consider the digital lifting f̃ of f [5, 18] and ϕ f̃ : [0,m f ]Z → E such that
ϕ f̃ (0) = ϕ(ẽ), ϕ f̃ (m f ) = ϕ(ẽ · α) and pϕ f̃ = p f̃ = f . Thus ϕ f̃ is a digital lifting of f . Therefore, we obtain
ϕ(ẽ) · α = ϕ f̃ (m f ) = ϕ(ẽ · α).
In other words, each element ϕ ∈ Aut(E |B) induces an automorphism of the set p−1(b0) which is considered
as a right πk1 (B, b0)-space [12] (see also [15]). Further, we can state the following:

Theorem 3.9. ([15]) Let ((E, e0), p, (B, b0)) be a radius 2-(k0, k1)-covering. Then, Aut(E |B) is isomorphic to the
group of automorphisms of the set p−1(b0), which is considered as a right πk1 (B, b0)-space.

In relation to the study of an automorphism group of a digital covering space, this kind of approach used
in Theorem 3.9 has some limitations because Theorem 3.9 are only valid under the hypothesis regarding
the radius 2-(k0, k1)-covering. However, if a (k0, k1)-covering does not satisfy a radius 2 local isomorphism,
then we have an obstacle to the study of the digital homotopic properties of a digital covering as well
as its automorphism group (see [2–4, 8]) because we cannot use the developed digital homotopic tools
(more precisely, the digital homotopy lifting theorem in [4]). For instance, let us now consider the map
p1 : E1 → SC2,4

8 ∨ SC2,6
8 in Figure 1(a) given by

p1(x) = vi if x is labeled i, for all x ∈ E1 and i ∈ [0, 8]Z. (3.3)

Then it is an (8, 8)-covering map that cannot satisfy a radius 2 local isomorphism.
Meanwhile, consider the map p2 : E2 → SC2,4

8 ∨ SC2,6
8 in Figure 1(b) given by

p2(y) = v j if y is labeled j, for all y ∈ E2 and j ∈ [0, 8]Z. (3.4)

The map p2 is an (8, 8)-covering map satisfying a radius 2 local isomorphism condition. Using the same
method as that shown with the map p1 of (3.3), we observe that the digital covering (E3, p3,SC2,4

8 ∨ SC2,6
8 )

in Figure 1(c) cannot satisfy a radius 2 local isomorphism either. Thus Theorem 3.9 cannot support the
derivation of both Aut(E1 |SC2,4

8 ∨ SC2,6
8 ) and Aut(E3 |SC2,4

8 ∨ SC2,6
8 ). However, we can clearly obtain the

following:

Remark 3.10. In view of (3.3) and (3.4), for the space B := SC2,4
8 ∨ SC2,6

8 we observe that Aut(E1 |B) is trivial,
and both Aut(E2 |B) and Aut(E3 |B) are isomorphic to the infinite cyclic group (Z,+).

Motivated from the transitive action of an automorphism of a covering space on the fiber of the covering
map p [27], we can define the following:

Definition 3.11. ([17]) For a (k0, k1)-covering ((E, e0), p, (B, b0)) we say that Aut(E |B) acts transitively on
p−1(b0) if for any two distinct points e0 and e1 in p−1(b0) there is ϕ ∈ Aut(E |B) such that ϕ(e0) = e1.

In general, for a (k0, k1)-covering ((E, e0), p, (B, b0)) Aut(E |B) need not act transitively on p−1(b0) (see the
digital covering space in Example 3.12), we can show this as follows:
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Example 3.12. Consider the (8, 8)-covering (E1, p1,SC2,4
8 ∨ SC2,6

8 ) with the map of (3.3) as given in Figure
1(a). Then Aut(E1 |SC2,4

8 ∨ SC2,6
8 ) cannot act transitively on p−1

1 (v0) for the point v0 ∈ SC2,4
8 ∨ SC2,6

8 [17].
More precisely, for two distinct points ei and e j in p−1

1 (v0)(e.g. the points (0, 0), (6,−1) in p−1
1 (v0)) there is no

ϕ ∈ Aut(E1 |SC2,4
8 ∨ SC2,6

8 ) such that ϕ(ei) = e j.
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Figure 1: (a) Portion of an infinite fold (8, 8)-covering (E1, p1,SC2,4
8 ∨SC2,6

8 ) [5] which does not allow an automorphism which performs
a transitive action on the fiber p−1

1 (b), b ∈ SC2,4
8 ∨ SC2,6

8 , E1 ⊂ Z2; (b) Portion of an infinite fold (8, 8)-covering (E2, p2,SC2,4
8 ∨ SC2,6

8 ) from
[2] which is both regular and ultra regular, E2 ⊂ Z2; (c) Portion of an infinite fold (8, 8)-covering (E3, p3, SC2,4

8 ∨ SC2,6
8 ) from [2] which

is ultra regular, E3 ⊂ Z2.

Unlike in Example 3.12, we obtain the following:

Lemma 3.13. ([17]) If a radius 2-(k0, k1)-covering map p : (E, e0) → (B, b0) is regular, then Aut(E |B) acts
transitively on p−1(b0).

In view of Remark 3.10, for a (k0, k1)-covering map p : (E, e0)→ (B, b0) which does not satisfy a radius 2
local isomorphism, we observe that Aut(E |B) depends on the situation. In order to deal with this problem,
we need to establish the following notion which is different from the notion of a regular (k0, k1)-covering.

Definition 3.14. ([17]) A (k0, k1)-covering ((E, e0), p, (B, b0)) is called an ultra regular (briefly, UR-) (k0, k1)-
covering if Aut(E |B) acts transitively on p−1(b0).

Let us now recall the following property of a UR-(k0, k1)-covering which characterizes a UR-(k0, k1)-
covering.

Theorem 3.15. ([17]) The following are equivalent.
(1) A (k′, k)-covering ((E, e0), p, (B, b0)) is ultra regular.
(2) For a (k′, k)-covering ((E, e0), p, (B, b0)) we assume a closed k-curve α : [0,m]Z → (B, k) with α(0) = b0 ∈

B. Either each of all the liftings of α on (E, k′) is a k′-closed curve or none of them is a k′-closed curve.

Due to Theorem 3.15, hereafter, regardless of the requirement of a radius 2 local isomorphism of a (k′, k)-
covering, we now have a very convenient method of determining if a digital covering is UR-(k′, k)-regular
and further, we can study Aut(E |B) without using the digital homotopic tools of a digital covering (E, p,B).



Sang-Eon Han / Filomat 27:7 (2013), 1205–1218 1213

We now pose the following question: For a digital space (X, k1) how can we describe a difference
between a UR-(k0, k1)-covering and a regular (k0, k1)-covering over (X, k1)? In the light of Theorem 3.15, we
can mention some merits of a UR-(k0, k1)-covering (for more details, see [17]). Namely, a UR-(k0, k1)-covering
need not require a radius 2 local isomorphism. In view of this difference, a UR-(k0, k1)-covering has strong
merits when used in the classification of digital covering spaces. Comparing an ultra regular covering
space with a regular covering space, we obtain the following:

Theorem 3.16. ([17]) (1) A regular (k0, k1)-covering space does not imply a UR-(k0, k1)-covering space.
(2) For a digital space (X, k1) let R2(X) denote the set of all radius 2-(k0, k1)-coverings over (X, k1). Then

we obtain the following: In R2(X) a UR-(k0, k1)-covering is equivalent to a regular (k0, k1)-covering (see also
Corollary 4.13 of [3]).

In view of Theorem 3.16, if a (k0, k1)-covering is not a radius 2-(k0, k1)-covering, then whether a compar-
ison can be made between an ultra regular covering space and a regular covering space depends on the
situation.

4. Existence of Non-Ultra Regular Digital Covering Spaces with Nontrivial Automorphism Groups

In relation to the solution of the three questions posed in Section 1, recently the paper [3] studied a
nontransitive action of an automorphism group of a digital covering space over SC2,8

8 ∨SC2,6
8 . To be specific,

the authors of [3] use an extraordinary digital covering space (E, k′) in Z2 which is not ultra regular (see
Figure 2 of [3]) and further, the k′-adjacency of E ⊂ Z2 is not the usual adjacency relation of Z2 in [20, 28],
i.e. k′ < {4, 6, 8}.

Instead of the approach, to improve on the results in [3](see the points (0, 0), (0, 8), (6,−1) and (6, 7) in
Figure 2 of [3] which cannot be a (k, 8)-covering space, where k ∈ {4, 8}) and to address the three problems
of Section 1, this section proposes that a digital wedge of two simple closed ki-curves with a compatible
k-adjacency, i ∈ {1, 2} has countably many and infinite fold digital covering spaces with the usual adjacency
relations of Zn as in (2.1). Further, we prove that some of them are not ultra regular, while the others are
ultra regular, and their automorphism groups are not trivial.

In this section, in particular, we prove that (SC2,6
8 ∨ SC2,6

8 , 8) (see Remark 3.7) has countably many and
infinite fold (k, 8)-covering spaces (Di, k) in Zn, n ≥ 2, i ∈ N (see Theorem 4.1), where the k-(or k(m,n)-
)adjacency is one of the usual adjacency relations of Zn of (2.1) and m = 2. Further, we prove that for each
i ∈ N Aut(Di | SC2,6

8 ∨ SC2,6
8 ) is isomorphic to the infinite cyclic group (Z,+) (see Corollary 4.2). Similarly,

we can prove that the digital wedge (SC2,4
8 ∨ SC2,6

8 , 8) has countably many and infinite fold (k, 8)-covering
spaces in Zn,n ≥ 3 which are not ultra regular, where the k-adjacency is equal to the k(2,n)-adjacency of
(2.1).
In general, let us consider the digital wedge (SCn1,l1

k1
∨ SCn2,l2

k2
, k) with a compatible k-adjacency, where

n = max {n1,n2} (see Remark 3.7) and SCni,li
ki

need not be ki-contractible, i ∈ {1, 2}. Then we can prove that
it also has countably many and infinite fold digital covering spaces which are not ultra regular and their
automorphism groups are not trivial. This answers the open problem in Section 1.

Theorem 4.1. The digital wedge (SC2,6
8 ∨SC2,6

8 , 8) has countably many and infinite fold (8, 8)-covering spaces
(Dn, 8) which are not ultra regular, where Dn ⊂ Z2 and n ∈ N.

Proof. (Case 1) Let X := SC2,6
8 ∨ SC2,6

8 = {vi}i∈[0,10]Z ⊂ Z2, where v0 = (0, 0), v1 = (1,−1), v2 = (1,−2), v3 =
(0,−3), v4 = (−1,−2), v5 = (−1,−1), v6 = (1, 1), v7 = (1, 2), v8 = (0, 3), v9 = (−1, 2), v10 = (−1, 1). Then (X, 8) is a
digital wedge with compatible 8-adjacency (see Remark 3.7).
Note that X = UX6 ∪LX6, where UX6 = {v0} ∪ {vi}i∈[6,10]Z , LX6 = {vi}i∈[0,5]Z (see Figure 2) and each of UX6 and
LX6 is 8-isomorphic to SC2,6

8 .
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Let D1 ⊂ Z2 be the infinite set partially described in Figure 2(a). More precisely, for j ∈ Z let h j : Z2 → Z2

be the translation defined by h j(x, y) = (x, y + j). Assume that the space (D1, 8) contains the set∪
j∈Z

h6 j(UX6) := T1

consisting of countably many simple closed 8-curves of which each of them is 8-isomorphic to SC2,6
8 := UX6

and are indexed by the numbers i ∈ {0}∪ [6, 10]Z (see Figure 2(a)), i.e. for each j ∈ Z h6 j(UX6) is 8-isomorphic
to SC2,6

8 := UX6. Further, the space (D1, 8) also has countably many points that are indexed by the numbers
i ∈ [0, 10]Z and is partially described in Figure 2(a).
Let d0 = (0, 0) ∈ D1. Let q1 : (D1, d0)→ (X, v0) be the map given by

q1(x) = vi if x is labeled i, for all x ∈ D1 and i ∈ [0, 10]Z. (4.1)

Namely, the map q1 wraps the points in D1 around X. To be specific,

q1(T1) = UX6 ⊂ X

and the other countable set of points in D1 \ T1 is mapped onto X according to the map in (4.1), i.e.{
q1(x) = LX6, x is labeled i, for all x ∈ D1 \ T1 and i ∈ [0, 5]Z;
q1(x) = UX6, x is labeled i, for all x ∈ D1 \ T1 and i ∈ {0} ∪ [6, 10]Z.

Then, by (4.1), q1 is clearly an infinite fold (8, 8)-covering map.
(Case 2) Consider the digital space (X, 8) of Case 1. Let D2 ⊂ Z2 be the infinite set partially described in

Figure 2(b). More precisely, for each i ∈ Z let si : Z2 → Z2 be the translation defined by si(x, y) = (x + i, y).
Now assume that the space (D2, 8) contains the infinite set

(
∪
j∈Z

h6 j(UX6)) ∪ (
∪
j∈Z

h6 j(s6(UX6))) := T2

consisting of countably many simple closed 8-curves that are 8-isomorphic to SC2,6
8 := UX6, i.e. for each

j ∈ Z each of h6 j(UX6)) and h6 j(s6(UX6) is 8-isomorphic to SC2,6
8 . Further, the space (D2, 8) also has countably

many points indexed by the numbers i ∈ [0, 10]Z and is partially described in Figure 2(b).
Note that d0 = (0, 0) ∈ D2. Let q2 : (D2, d0)→ (X, v0) be the map given by

q2(y) = vi if y is labeled i, for all y ∈ D2 and i ∈ [0, 10]Z. (4.2)

Namely, the map q2 wraps the points in D2 around X. To be specific,

q2(T2) = UX6

and further, the other countable set of points in D2 \ T2 is indexed by the numbers i ∈ [0, 10]Z in D2 and are
mapped onto X according to the map of (4.2), i.e.{

q2(y) = LX6, y is labeled i, for all y ∈ D2 \ T2 and i ∈ [0, 5]Z;
q2(y) = UX6, y is labeled i, for all y ∈ D2 \ T2 and i ∈ {0} ∪ [6, 10]Z.

Then, by (4.2), q2 is clearly an infinite fold (8, 8)-covering map.
Here, we need to point out that the two digital covering spaces (D1, 8) and (D2, 8) are not 8-isomorphic to
each other, as follows: Note that if f : (X, k0) → (Y, k1) is a (k0, k1)-isomorphism then for any nonempty set
(X′, k0) ⊂ (X, k0) the restriction map f |X′ : X′ → f (X′) is also a (k0, k1)-isomorphism [7]. Let us now suppose
that (D1, 8) and (D2, 8) are 8-isomorphic to each other with the 8-isomorphism f . Further, put the sets X′ ⊂ D1
and Y′ ⊂ D2 described with bands in Figure 2. Besides, in view of the construction of D1 and D2 we can see
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that the two digital images D1\X′ and D2\Y′ are 8-isomorphic to each other. Thus, reminding the restriction
property of an digital isomorphism above mentioned, let us consider the following restriction map on the
set X′, f |X′ : X′ → Y′ given by f |X′ (x) = x ∈ Y′, x is labeled i, for all x ∈ X′, x ∈ Y′ and i ∈ {0} ∪ [6, 10]Z.
Then, while f |X′ is a bijection, it cannot be an 8-isomorphism, which contradict the hypothesis that (D1, 8)
and (D2, 8) are 8-isomorphic to each other.

(Case 3) In general, using the same method as that shown in the establishment of (D1, 8) and (D2, 8) in
Cases 1 and 2, for n ∈ N, let us consider∪

j∈Z

h6 j([∪i∈[0,n−1]Z s6i(UX6)]) := Tn, (4.3)

with 8-adjacency. Assume that the space (Dn, 8) contains the set Tn in (4.3), and the other countable set of
points which is established by the methods similar to those used with D1 \ T1 and D2 \ T2 is indexed by the
numbers i ∈ [0, 10]Z.
Assume a map qn : (Dn, 8)→ (X, 8) to be the generalization of the maps of (4.1) and (4.2), as follows:

qn(Tn) = UX6

and further, the other countable set of points in Dn \ Tn is mapped onto X in such a way:{
qn(z) = LX6, z is labeled i, for all z ∈ Dn \ Tn and i ∈ [0, 5]Z;
qn(z) = UX6, z is labeled i, for all z ∈ Dn \ Tn and i ∈ {0} ∪ [6, 10]Z.

Consequently, (Dn, 8) is an infinite fold (8, 8)-covering space over the digital wedge (X, 8).
Using the same method as that shown in the comparison between (D1, 8) and (D2, 8) above, we observe that
each pair (Di, 8) and (D j, 8) are not 8-isomorphic to each other if i , j, where i, j ∈ N.
Therefore, we conclude that the digital wedge (X, 8) has countably many and infinite fold (8, 8)-covering
spaces (Dn, 8),n ∈ N.

In view of the establishment of (Dn, 8),n ∈ N above and Theorem 3.15, each (Dn, 8) is not ultra regular
covering space over the digital wedge (X, 8). For instance, let us show that (D1, q1,SC2,6

8 ∨ SC2,6
8 ) is not an

ultra regular (8, 8)-covering. Consider the two distinct points d0 := (0, 0), d1 := (6,−1) in q−1
1 (v0) ⊂ D1. Then

there is no ϕ ∈ Aut(D1 |SC2,6
8 ∨ SC2,6

8 ) such that ϕ(d0) = d1, which means that (D1, q1, SC2,6
8 ∨ SC2,6

8 ) is not an
ultra regular (8, 8)-covering.
Similarly, for each n ∈ N (Dn, qn,SC2,6

8 ∨ SC2,6
8 ) is proven not to be an ultra regular (8, 8)-covering.

While the digital coverings (Di, qi,SC2,6
8 ∨ SC2,6

8 ), i ∈ N in Theorem 4.1 are not ultra regular, their auto-
morphism groups are not trivial, as follows:

Corollary 4.2. For each of the (8, 8)-covering spaces (Di, qi,SC2,6
8 ∨ SC2,6

8 ), i ∈ N in Theorem 4.1, Aut(Di, qi) is
isomorphic to the infinite cyclic group (Z,+).

Proof. It is easily seen that Aut(Di, qi) =
∪

j∈Z{h6 j}. The assertion follows.

5. Existence of an Infinite Fold Ultra Regular Covering Space over a Digital Wedge whose Automorphism
Group is not Trivial

Unlike the study of nontransitive action of an automorphism group of a digital covering space over a
digital wedge, to solve the problems mentioned in Section 1, this section studies a transitive action of an
automorphism group of a digital covering space over the digital wedge (SCn1,l1

k1
∨SCn2,l2

k2
, k) with a compatible

k-adjacency. In particular, we prove that (SC2,6
8 ∨SC2,6

8 , 8) has an infinite fold and ultra regular (k, 8)-covering
space (E, k) in Zn,n ≥ 2, i ∈ N (see Theorem 5.1 and Corollary 5.2), where the k-(or k(m,n)-)adjacency is the
adjacency relations of Zn in (2.1) and m = 2. Further, we prove that Aut(E | SC2,6

8 ∨SC2,6
8 ) is isomorphic to the
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Figure 2: (a) Portion of an infinite fold (8, 8)-covering (D1, q1,SC2,6
8 ∨ SC2,6

8 ) which is not UR-regular, D1 ⊂ Z2;
(b) Portion of an infinite fold (8, 8)-covering (D2, q2,SC2,6

8 ∨ SC2,6
8 ) which is not UR-regular and (D1, 8) is not 8-isomorphic to (D2, 8),

D2 ⊂ Z2.

infinite group (Z × Z,+) (see Corollary 5.2). In general, let us consider the digital wedge (SCn1,l1
k1
∨ SCn2,l2

k2
, k)

with a compatible k-adjacency, denoted by (X, k), where n = max {n1,n2} and SCki need not be ki-contractible.
Then this section proves that the digital wedge (X, k) has an infinite fold (k, k)-covering space in Zn which is
ultra regular (see Theorem 5.3). Further, we prove that its automorphism group is not trivial. This approach
answers the open problem posed in Section 1. Reminding Remark 3.7, we obtain the following:

Theorem 5.1. SC2,6
8 ∨ SC2,6

8 has an infinite fold and ultra regular (8, 8)-covering space in Z2.

Proof. Let X := SC2,6
8 ∨ SC2,6

8 = {vi}i∈[0,10]Z ⊂ Z2 be the set in Theorem 4.1 which is a digital wedge with a
compatible 8-adjacency.
Note X = UX6 ∪ LX6, where UX6 = {v0} ∪ {vi}i∈[6,10]Z , LX6 = {vi}i∈[0,5]Z (see Figure 3) and each of UX6 and LX6

is 8-isomorphic to SC2,6
8 .

Let E4 ⊂ Z2 be the infinite set, partially described in Figure 3, which is (8, 4)-isomorphic to 6Z × 6Z ⊂ Z2

(see Figure 3). More precisely, (E4, 8) contains countably many points indexed by the numbers i ∈ [0, 10]Z.
Let e0 = (0, 0) ∈ E4. Let p4 : (E4, e0)→ (X, v0) be the map given by

p4(x) = vi if x is labeled i, for all x ∈ E4 and i ∈ [0, 10]Z. (5.1)

Then the map p4 wraps the points in E4 around X. To be specific,
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{
p4(x) = LX6, x is labeled i, for all x ∈ E4 and i ∈ [0, 5]Z;
p4(x) = UX6, x is labeled i, for all x ∈ E4 and i ∈ {0} ∪ [6, 10]Z.

Then p4 is an infinite fold (8, 8)-covering map.
In view of the establishment of (E4, 8) above and Theorem 3.15, it is an ultra regular (8, 8)-covering space

over the digital wedge (X, 8). To be specific, for the (8, 8)-covering (E4, p4,X) consider any two points ei, e j
in p−1

4 (v0) ⊂ E4. Then there is a ϕ ∈ Aut(E4 |X) such that ϕ(ei) = e j, which means that (E4, p4,X) is an ultra
regular (8, 8)-covering.
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Figure 3: Portion of an infinite fold (8, 8)-covering (E4, p4,SC2,6
8 ∨ SC2,6

8 ), E4 ⊂ Z2 that is ultra regular.

For the digital covering in Theorem 5.1, we obtain the following:

Corollary 5.2. Aut(E4, p4) is an infinite group that is isomorphic to (6Z × 6Z,+).

Proof. We observe that p−1
4 (v0) is the set 6Z × 6Z. Further, using vertical parallel and horizontal parallel

transformations of (E4, 8), we prove this assertion.

By analogy to Theorem 5.1 and Corollary 5.2, we obtain the following:

Theorem 5.3. Consider (SCn1,l1
k1
∨ SCn2,l2

k2
, k) := (X, k) in Zn,n = max{n1,n2} with a compatible k-adjacency.

Then there is an infinite fold and ultra regular covering space (E, 8) up to 8-isomorphism, where E ⊂ Z2.
Aut(E |X) is an infinite group that is isomorphic to (l1Z × l2Z,+).
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6. Concluding Remark

In relation to the study of an automorphism group of a digital covering and the classification of digital
spaces, this paper has addressed the following issues:
We answered the problem of whether there is a digital covering (E, p,B) which is not ultra regular but its
automorphism group Aut(E | p) is not trivial, we found the following: Let (X, k) be a digital wedge of two
simple closed ki-curves with a compatible k-adjacency (see Definition 3.6), i ∈ {1, 2}, where each simple
closed ki-curve need not be ki-contractible. Then we have proved that the digital space (X, k) has countably
many and infinite fold digital covering spaces (X̃, k′) up to k′-isomorphism. Some of them are not ultra
regular and the others are ultra regular and further, their automorphism groups are not trivial. Using
this approach, we can substantially classify digital covering spaces and digital images and further, we can
develop a digital covering space from the viewpoint of CTC in [21].
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