Non-uniform cracks in the concrete: the power of free precomputation

Daniel J. Bernstein ${ }^{1,2}$ and Tanja Lange ${ }^{2}$
1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607-7053, USA
djb@cr.yp.to
2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands tanja@hyperelliptic.org

Abstract

AES-128, the NIST P-256 elliptic curve, DSA-3072, RSA3072, and various higher-level protocols are frequently conjectured to provide a security level of 2^{128}. Extensive cryptanalysis of these primitives appears to have stabilized sufficiently to support such conjectures. In the literature on provable concrete security it is standard to define 2^{b} security as the nonexistence of high-probability attack algorithms taking time $\leq 2^{b}$. However, this paper provides overwhelming evidence for the existence of high-probability attack algorithms against AES-128, NIST P-256, DSA-3072, and RSA-3072 taking time considerably below 2^{128}, contradicting the standard security conjectures. These attack algorithms are not realistic; do not indicate any actual security problem; do not indicate any risk to cryptographic users; and do not indicate any failure in previous cryptanalysis. Any actual use of these attack algorithms would be much more expensive than the conventional 2^{128} attack algorithms. However, this expense is not visible to the standard definitions of security. Consequently the standard definitions of security fail to accurately model actual security. The underlying problem is that the standard set of algorithms, namely the set of algorithms taking time $\leq 2^{b}$, fails to accurately model the set of algorithms that an attacker can carry out. This paper analyzes this failure in detail, and analyzes several ideas for fixing the security definitions.

Keywords: provable security, concrete security, algorithm cost metrics, non-uniform algorithms, non-constructive algorithms

[^0]
1 Introduction

Abstract

The Basic Principles of Modern Cryptography ... Principle 1-Formulation of Exact Definitions One of the key intellectual contributions of modern cryptography has been the realization that formal definitions of security are essential prerequisites for the design, usage, or study of any cryptographic primitive or protocol. -Katz and Lindell [53]

In this paper we will show that CBC MAC construction is secure if the underlying block cipher is secure. To make this statement meaningful we need first to discuss what we mean by security in each case.
-Bellare, Kilian, and Rogaway [12, Section 1.2]
Why do we believe that AES-CBC-MAC is secure? More precisely: Why do we believe that an attacker limited to 2^{100} bit operations, and 2^{50} message blocks, cannot break AES-CBC-MAC with probability more than 2^{-20} ?

The standard answer to this question has three parts. The first part is a concrete definition of what it means for a cipher or a MAC to be secure. We quote from the classic paper [12, Section 1.3] by Bellare, Kilian, and Rogaway: the PRP-"insecurity" of a cipher such as AES (denoted " $\operatorname{Adv}_{\mathrm{AES}}^{\mathrm{prp}}\left(q^{\prime}, t^{\prime}\right)$ ") is defined as the "maximum, over all adversaries restricted to q^{\prime} input-output examples and execution time t ', of the 'advantage' that the adversary has in the game of distinguishing [the cipher for a secret key] from a random permutation." The PRF-insecurity of m-block AES-CBC-MAC (denoted " $\operatorname{Adv}_{\mathrm{CBC}^{m}-\mathrm{AES}}^{\mathrm{prf}}(q, t)$ ") is defined similarly, using a uniform random function rather than a uniform random permutation.

The second part of the answer is a concrete security theorem bounding the insecurity of AES-CBC-MAC in terms of the insecurity of AES, or more generally the insecurity of F-CBC-MAC in terms of the insecurity of F for any ℓ-bit block cipher F. Specifically, here is the main theorem of [12]: "for any integers $q, t, m \geq 1$,

$$
\mathbf{A d v}_{\mathrm{CBC}^{m}-F}^{\mathrm{prf}}(q, t) \leq \mathbf{A d v}_{F}^{\mathrm{prp}}\left(q^{\prime}, t^{\prime}\right)+\frac{q^{2} m^{2}}{2^{l-1}}
$$

where $q^{\prime}=m q$ and $t^{\prime}=t+O(m q l)$." One can object that the O constant is unspecified, making this theorem meaningless as stated for any specific q, t, m values; but it is easy to imagine a truly concrete theorem replacing $O(m q l)$ with the time for $m q l$ specified operations.

The third part of the answer is a concrete conjecture regarding the security of AES. NIST's call for AES submissions [66, Section 4] identified "the extent to which the algorithm output is indistinguishable from [the output of] a [uniform] random permutation" as one of the "most important" factors in evaluating candidates; cryptanalysts have extensively studied AES without finding any worrisome PRP-attacks; it seems reasonable to conjecture that no dramatically better attacks exist. Of course, this part of the story depends on the details of

AES; analogous conjectures regarding, e.g., DES would have to be much weaker. For example, Bellare and Rogaway in [16, Section 3.6] wrote the following:
"For example we might conjecture something like:

$$
\operatorname{Adv}_{\mathrm{DES}}^{\mathrm{prp-cpa}}\left(A_{t, q}\right) \leq c_{1} \cdot \frac{t / T_{\mathrm{DES}}}{2^{55}}+c_{2} \cdot \frac{q}{2^{40}}
$$

... In other words, we are conjecturing that the best attacks are either exhaustive key search or linear cryptanalysis. We might be bolder with regard to AES and conjecture something like

$$
\mathbf{A d v}_{\mathrm{AES}}^{\text {prp-cpa }}\left(B_{t, q}\right) \leq c_{1} \cdot \frac{t / T_{\mathrm{AES}}}{2^{128}}+c_{2} \cdot \frac{q}{2^{128}}
$$

One can again object that the c_{1} and c_{2} are unspecified here, making these conjectures non-concrete and unfalsifiable as stated. A proper concrete conjecture would specify, e.g., $c_{1}=c_{2}=3$. One can also quibble that the T_{DES} and T_{AES} factors do not properly account for inner-loop speedups in exhaustive key search (see, e.g., $[\mathbf{2 7}]$), that $q / 2^{40}$ is a rather crude model of the success probability of linear cryptanalysis, etc., but aside from such minor algorithm-analysis details the conjectures seem quite reasonable.

This AES security conjecture (with small specified c_{1} and c_{2}) says, in particular, that the attacker cannot PRP-break AES with probability more than 2^{-21} after 2^{50} cipher outputs and 2^{100} bit operations. The CBC-MAC security theorem (with small specified O) then says that the same attacker cannot PRF-break AES-CBC-MAC with probability more than 2^{-20}.

Of course, this answer does not prove that AES-CBC-MAC is secure; it relies on a conjecture regarding AES security. Why not simply conjecture that AES-CBC-MAC is secure? The answer is scalability. It is reasonable to ask cryptanalysts to intensively study AES, eventually providing confidence in the security of AES, while it is much less reasonable to ask cryptanalysts to intensively study AES-CBC-MAC, AES-OMAC, AES-CCM, AES-GCM, AES-OCB, and hundreds of other AES-based protocols. Partitioning the AES-CBC-MAC security conjecture into an AES security conjecture and a CBC-MAC security proof drastically simplifies the cryptanalyst's job.

The same three-part pattern has, as illustrated by Appendix L, become completely standard throughout the literature on concrete "provable security". First part: The insecurity of X - where X is a primitive such as AES or RSA, or a higher-level protocol such as AES-CBC-MAC or RSA-PSS - is defined as the maximum, over all algorithms A ("attacks") that cost at most C, of the probability (or advantage in probability) that A succeeds in breaking X. This insecurity is explicitly a function of the cost limit C; typically C is separated into (1) a time limit t and (2) a limit q on the number of oracle queries. Note that this function depends implicitly on how the "cost" of an algorithm is defined.

Often "the (q, t)-insecurity of X is at most ϵ " is abbreviated " X is (q, t, ϵ) secure". Many papers prefer the more concise notation and do not even mention the insecurity function. We emphasize, however, that this is merely a superficial
change in notation, and that both of the quotes in this paragraph refer to exactly the same situation: namely, the nonexistence of algorithms that cost at most (q, t) and that break X with probability more than ϵ.

Second part: Concrete "provable security" theorems state that the insecurity (or security) of a complicated object is bounded in terms of the insecurity (or security) of a simpler object. Often these theorems require restrictions on the types of attacks allowed against the complicated object: for example, Bellare and Rogaway in [14] showed that RSA-OAEP has similar security to RSA against generic-hash attacks (attacks in the "random-oracle model").

Third part: The insecurity of a well-studied primitive such as AES or RSA1024 is conjectured to match the success probability of the best attack known. For example, Bellare and Rogaway, evaluating the concrete security of RSA-FDH and RSA-PSS, hypothesized that "it takes time $C e^{1.923(\log N)^{1 / 3}(\log \log N)^{2 / 3}}$ to invert RSA"; Bellare, evaluating the concrete security of NMAC- h and HMACh, hypothesized that "the best attack against h as a PRF is exhaustive key search". See [15, Section 1.4] and [7, Section 3.2]. These conjectures seem to precisely capture the idea that cryptanalysts will not make significant further progress in attacking these primitives.
1.1. Primary contribution of this paper. Our primary goal in this paper is to convincingly undermine all of the standard security conjectures reviewed above. Specifically, Sections 2, 3, 4, and 5 show - assuming standard, amply tested heuristics - that there exist high-probability attacks against AES, the NIST P-256 elliptic curve, DSA-3072, and RSA-3072 taking considerably less than 2^{128} time. In other words, the insecurity of AES, NIST P-256, DSA-3072, and RSA-3072, according to the standard concrete-security definitions, reaches essentially 100% for a time bound considerably below 2^{128}. The conjectures by Bellare and Rogaway in [15, Section 1.4], [16, Section 3.6], [7, Section 3.2], etc. are false for every reasonable assignment of the unspecified constants.

The same ideas show that there exist high-probability attacks against AES-CBC-MAC, RSA-3072-PSS, RSA-3072-OAEP, and thousands of other "provably secure" protocols, in each case taking considerably less than 2^{128} time. It is not clear that similar attacks exist against every such protocol in the literature, since in some cases the security reductions are unidirectional, but undermining these conjectures also means undermining all of the security arguments that have those conjectures as hypotheses.

We do not claim that this reflects any actual security problem with AES, NIST P-256, DSA-3072, and RSA-3072, or with higher-level protocols built from these primitives. On the contrary! Our constructions of these attacks are very slow; we conjecture that any fast construction of these attacks has negligible probability of success. Users have nothing to worry about.

However, the standard metrics count only the cost of running the attack, not the cost of finding the attack in the first place. This means that there is a very large gap between the actual insecurity of these primitives and their insecurity according to the standard metrics.

This gap is not consistent across primitives. We identify different gaps for different primitives (for example, the asymptotic exponents for high-probability attacks drop by a factor of 1.5 for ECC and a factor of only 1.16 for RSA), and we expect that analyzing more primitives and protocols in the same way will show even more diversity. In principle a single attack is enough to illustrate that the standard definitions of security do not accurately model actual security, but the quantitative variations from one attack to another are helpful in analyzing the merits of ideas for fixing the definitions. It is of course also possible that the gaps for the primitives we discuss will have to be reevaluated in light of even better attacks.
1.2. Secondary contribution of this paper. Our secondary goal in this paper is to propose a rescue strategy: a new way to define security - a definition that restores, to the maximum extent possible, the attractive three-part security arguments described above.

All of the gaps considered in this paper come from errors in quantifying feasibility. Each of the high-probability attacks presented in this paper (1) has a cost t according to the standard definitions, but (2) is obviously infeasible, even for an attacker able to carry out a "reasonable" algorithm that costs t according to the same definitions. The formalization challenge is to say exactly what "reasonable" means. Our core objective here is to give a new definition that accurately captures what is actually feasible for attackers.

This accuracy has two sides. First, the formally defined set of algorithms must be large enough. Security according to the definition does not imply actual security if the definition ignores algorithms that are actually feasible. Second, the formally defined set of algorithms must be small enough. One cannot conjecture security on the basis of cryptanalysis if infeasible attacks ignored by cryptanalysts are misdeclared to be feasible by the security definition.

We actually analyze four different ideas for modifying the notion of feasibility inside existing definitions:

- Appendix B.2: switching the definitions from the RAM metric used in [12] to the NAND metric, an "alternative" mentioned in [12];
- Appendix B.3: switching instead to the AT metric, a standard hardwaredesign metric formally defined by Brent and Kung in [29] in 1981;
- Appendix B.4: adding constructivity to the definitions, by a simple trick that we have not seen before (with a surprising spinoff, namely progress towards formalizing collision resistance); and
- Appendix B.5: adding uniformity (families) to the definitions.

Readers unfamiliar with the RAM, NAND, and $A T$ metrics should see Appendix A for a summary and pointers to the literature.

The general idea of modifying security definitions, to improve the accuracy with which those definitions model actual security, is not new. A notable example is the change from the algorithm cost metric used in [11], the original Crypto '94 version of [12], to a more complicated algorithm cost metric used in subsequent definitions of security; readers unfamiliar with the details should see Appendix A
for a review. The attacks in this paper show that this modification was not enough, so we push the same general idea further, analyzing the merits of the four modifications listed above. It is conceivable that this general idea is not the best approach, so we also analyze the merits of two incompatible approaches: (Appendix B.1) preserving the existing definitions of security; (Appendix B.7) trying to build an alternate form of "provable security" without definitions of security.

Ultimately we recommend the second and third modifications ($A T$ and constructivity) as producing much more accurate models of actual feasibility. We also recommend refactoring theorems (see Appendix B.6) to simplify further changes, whether those changes are for even better accuracy or for other reasons. We recommend against the first and fourth modifications (NAND and uniformity). Full details of our analysis appear in Appendix B; the NAND and $A T$ analyses for individual algorithms appear in Sections $2,3,4$, and 5. Appendix Q is a frequently-asked-questions list, serving a role for this paper comparable to the role that a traditional index serves for a book.

Our recommended modifications have several positive consequences. Incorrect conjectures in the literature regarding the concrete security of primitives such as AES can be replaced by quite plausible conjectures using the new definitions. Our impression is that most of the proof ideas in the literature are compatible with the new definitions, modulo quantitative changes, so most concrete-security theorems in the literature can be replaced by meaningful concrete-security theorems using the new definitions. The conjectures and theorems together will then produce reasonable conclusions regarding the concrete security of protocols such as AES-CBC-MAC.

We do not claim that all proofs can be rescued, and it is even possible that some theorems will have to be abandoned entirely. Some troublesome examples have been pointed out by Koblitz and Menezes in [55] and [56]. Our experience indicates, however, that such examples are unusual. For example, there is nothing troublesome about the CBC-MAC proof or the FDH proof; these proofs simply need to be placed in a proper framework of meaningful definitions, conjectures, and theorem statements.
1.3. Priority dates; credits; new analyses. On 20 March 2012 we publicly announced the trouble with the standard AES conjectures; on 17 April 2012 we publicly announced the trouble with the standard NIST P-256, DSA-3072, and RSA-3072 conjectures. The low-probability case of the AES trouble was observed independently by Koblitz and Menezes and announced earlier in March 2012; further credits to Koblitz and Menezes appear below. We are not aware of previous publications disputing the standard concrete-security conjectures.

Our attacks on AES, NIST P-256, DSA-3072, and RSA-3072 use many standard cryptanalytic techniques cited in Sections 2, 3, 4, and 5. We introduce new cost analyses in all four sections, and new algorithm improvements in Sections 3,4 , and 5 ; our improvements are critical for beating 2^{128} in Section 5. In Sections 2, 3, and 4 the standard techniques were already adequate to (heuristically) disprove the standard 2^{128} concrete-security conjectures, but as far as
we know we were the first to point out these contradictions. We do not think the contradictions were obvious; in many cases the standard techniques were published decades before the conjectures!

This paper was triggered by a 23 February 2012 paper [55], in which Koblitz and Menezes objected to the non-constructive nature of Bellare's security proof [7] for NMAC. Bellare's security theorem states a quantitative relationship between the standard-definition-insecurity of NMAC- h and the standard-definitioninsecurity of h : the existence of a fast attack on NMAC- h implies the existence of a fast attack on h. The objection is that the proof does not reveal a fast method to compute the second attack from the first: the proof left open the possibility that the fastest algorithm that can be found to attack NMAC- h is much faster than the fastest algorithm that can be found to attack h.

An early-March update of [55] added weight to this objection by pointing out the (heuristic) existence of a never-to-be-found fast algorithm to attack any 128bit function h. The success probability of the algorithm was only about 2^{-64}, but this was still enough to disprove Bellare's security conjectures. Koblitz and Menezes commented on "how difficult it is to appreciate all the security implications of assuming that a function has prf-security even against unconstructible adversaries".

Compared to [55], we analyze a much wider range of attacks, including higherprobability PRF attacks and attacks against various public-key systems, showing that the difficulties here go far beyond PRF security. We also show quantitative variations of the difficulties between one algorithm cost metric and another, and we raise the possibility of eliminating the difficulties by carefully selecting a cost metric.

Readers who find these topics interesting may also be interested in the followup paper [56] by Koblitz and Menezes, especially the detailed discussion in [56, Section 2] of "two examples where the non-uniform model led researchers astray". See also Appendices Q.13, Q.14, and Q. 15 of our paper for further comments on the concept of non-uniformity.

2 Breaking AES

This section analyzes the cost of various attacks against AES. All of the attacks readily generalize to other block ciphers; none of the attacks exploit any particular weakness of AES. We focus on AES because of its relevance in practice and to have concrete numbers to illustrate the attacks.

All of the (single-target) attacks here are "PRP" attacks: i.e., attacks that distinguish the cipher outputs for a uniform random key (on attacker-selected inputs) from outputs of a uniform random permutation. Some of the attacks go further, recovering the cipher key, but this is not a requirement for a distinguishing attack.
2.1. Breaking AES with MD5. We begin with an attack that does not use any precomputations. This attack is feasible, and in fact quite efficient; its success
probability is low, but not nearly as low as one might initially expect. This is a warmup for the higher-success-probability attack of Section 2.2.

Let P be a uniform random permutation of the set $\{0,1\}^{128}$; we label elements of this set in little-endian form as integers $0,1,2, \ldots$ without further comment. The pair $(P(0), P(1))$ is nearly a uniform random 256 -bit string: it avoids 2^{128} strings of the form (x, x) but is uniformly distributed among the remaining $2^{256}-2^{128}$ strings.

If k is a uniform random 128 -bit string then the pair $\left(\operatorname{AES}_{k}(0), \operatorname{AES}_{k}(1)\right)$ is a highly nonuniform random 256 -bit string, obviously incapable of covering more than 2^{128} possibilities. One can reasonably guess that an easy way to distinguish this string from $(P(0), P(1))$ is to feed it through MD5 and output the first bit of the result. The success probability p of this attack - the absolute difference between the attack's average output for input $\left(\mathrm{AES}_{k}(0), \mathrm{AES}_{k}(1)\right)$ and the attack's average output for input $(P(0), P(1))$ - is far below 1 , but it is almost certainly above 2^{-80}, and therefore many orders of magnitude above 2^{-128}. See Appendix V for relevant computer experiments.

To understand why p is so large, imagine replacing the first bit of MD5 with a uniform random function from $\{0,1\}^{256}$ to $\{0,1\}$, and assume for simplicity that the 2^{128} keys k produce 2^{128} distinct strings $\left(\operatorname{AES}_{k}(0), \operatorname{AES}_{k}(1)\right)$. Each key k then has a 50% chance of choosing 0 and a 50% chance of choosing 1 , and these choices are independent, so the probability that $2^{127}+\delta$ keys k choose 1 is exactly $\binom{2^{128}}{2^{127}+\delta} / 2^{2^{128}}$; the probability that at least $2^{127}+\delta$ keys k choose 1 is exactly $\sum_{i \geq \delta}\binom{2^{128}}{2^{127}+i} / 2^{2^{128}}$; the probability that at most $2^{127}-\delta$ keys k choose 1 is the same. The other $2^{256}-2^{129}$ possibilities for $(P(0), P(1))$ are practically guaranteed to have far smaller bias. Consequently p is at least $\approx \delta / 2^{128}$ with probability approximately $2 \sum_{i \geq \delta}\left(\begin{array}{c}2^{1228}+i\end{array}\right) / 2^{2^{128}} \approx 1-\operatorname{erf}\left(\delta / \sqrt{2^{127}}\right) \approx \exp \left(-\delta^{2} / 2^{127}\right)$, where erf is the standard error function. For example, p is at least $\approx 2^{-65}$ with probability above 30%, and is at least $\approx 2^{-80}$ with probability above 99.997%.

Of course, MD5 is not actually a uniform random function, but it would be astonishing for MD5 to interact with AES in such a way as to spoil this attack. More likely is that there are some collisions in $k \mapsto\left(\operatorname{AES}_{k}(0), \operatorname{AES}_{k}(1)\right)$; but such collisions are rare unless AES is deeply flawed, and in any event will tend to push δ away from 0 , helping the attack.
2.2. Precomputing larger success probabilities. The same analysis applies to a modified attack D_{s} that appends a short string s to the AES outputs $\left(\operatorname{AES}_{k}(0), \operatorname{AES}_{k}(1)\right)$ before hashing them: with probability $\approx \exp \left(-\delta^{2} / 2^{127}\right)$ the attack D_{s} has success probability at least $\approx \delta / 2^{128}$. If s is long enough to push the hash inputs beyond one block of MD5 input then the iterated structure of MD5 seems likely to spoil the attack, so we define D_{s} using "capacity-1024 Keccak" rather than MD5.

Consider, for example, $\delta=2^{67}$: with probability $\approx 1-\operatorname{erf}\left(2^{3.5}\right) \approx 2^{-189}$ the attack D_{s} has success probability at least $\approx 2^{-61}$. There are 2^{192} choices of 192bit strings s, so presumably at least one of them will have D_{s} having success probability at least $\approx 2^{-61}$. Of course, actually finding such an s would require
inconceivable amounts of computation by the best methods known (searching 2^{189} choices of s, and computing 2^{128} hashes for each choice); but this is not relevant to the definition of insecurity, which considers only the time taken by D_{s}.

More generally, for any $n \in\{0,1,2, \ldots, 64\}$ and any s, with probability \approx $1-\operatorname{erf}\left(2^{n+0.5}\right) \approx \exp \left(-2^{2 n+1}\right)$, the attack D_{s} has success probability at least $\approx 2^{n-64}$. There are $2^{3 \cdot 2^{2 n}}$ choices of $\left(3 \cdot 2^{2 n}\right)$-bit strings s, and $2^{3 \cdot 2^{2 n}}$ is considerably larger than $\exp \left(2^{2 n+1}\right)$, so presumably at least one of these values of s will have D_{s} having success probability at least $\approx 2^{n-64}$.

Similar comments apply to essentially any short-key cipher. There almost certainly exists a $\left(3 \cdot 2^{2 n}\right)$-bit string s such that the following simple attack achieves success probability $\approx 2^{n-K / 2}$, where K is the number of bits in the cipher key: query $2 K$ bits of cipher output, append s, and hash the result to 1 bit. Later we will write p for the success probability; note that the string length is close to $2^{K} p^{2}$.

As n increases, the cost of hashing $3 \cdot 2^{2 n}+2 K$ bits grows almost linearly with $2^{2 n}$ in the RAM metric and the NAND metric. It grows more quickly in the $A T$ metric: storing the $3 \cdot 2^{2 n}$ bits of s uses area at least $3 \cdot 2^{2 n}$, and even a heavily parallelizable hash function will take time proportional to 2^{n} simply to communicate across this area, for a total cost proportional to $2^{3 n}$. In each metric there are also lower-order terms reflecting the cost of hashing per bit; we suppress these lower-order terms since our concern is with much larger gaps.
2.3. Iteration (Hellman etc.). Large success probabilities are more efficiently achieved by a different type of attack that iterates, e.g., the function f_{7} : $\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ defined by $f_{7}(k)=\operatorname{AES}_{k}(0) \oplus 7$.

Choose an attack parameter n. Starting from $f_{7}(k)$, compute the sequence of iterates $f_{7}(k), f_{7}^{2}(k), f_{7}^{3}(k), \ldots, f_{7}^{2^{n}}(k)$. Look up each of these iterates in a table containing the precomputed quantities $f_{7}^{2^{n}}(0), f_{7}^{2^{n}}(1), \ldots, f_{7}^{2^{n}}\left(2^{n}-1\right)$. If $f_{7}^{j}(k)$ matches $f_{7}^{2^{n}}(i)$, recompute $f_{7}^{2^{n}-j}(i)$ as a guess for k, and verify this guess by checking $\mathrm{AES}_{k}(1)$.

This computation finds the target key k if k matches any of the following keys: $0, f_{7}(0), \ldots, f_{7}^{2^{n}-1}(0) ; 1, f_{7}(1), \ldots, f_{7}^{2^{n}-1}(1)$; etc. If n is not too large (see the next paragraph) then there are close to $2^{2 n}$ different keys here. The computation involves $\leq 2^{n}$ initial iterations; 2^{n} table lookups; and, in case of a match, $\leq 2^{n}$ iterations to recompute $f_{7}^{2^{n}-j}(i)$. The precomputation performs many more iterations, but this precomputation is only the cost of finding the algorithm, not the cost of running the algorithm.

This heuristic analysis begins to break down as $3 n$ approaches the key size K. The central problem is that a chain $f_{7}(i), f_{7}^{2}(i), \ldots$ could collide with one of the other $2^{n}-1$ chains; this occurs with probability $\approx 2^{3 n} / 2^{K}$, since there are 2^{n} keys in this chain and almost $2^{2 n}$ keys in the other chains. The colliding chains will then merge, reducing the coverage of keys and at the same time requiring extra iterations to check more than one value of i. This phenomenon loses a small constant factor in the algorithm performance for $n \approx K / 3$ and much more for larger n.

Assume from now on that n is chosen to be close to $K / 3$. The algorithm then has success chance $\approx 2^{-K / 3}$. The algorithm cost is on the scale of $2^{K / 3}$ in both the RAM metric and the NAND metric; for the NAND metric one computes the 2^{n} independent table lookups by sorting and merging.

This attack might not sound better (in the RAM metric) than the earlier attack D_{s}, which achieves success chance $\approx 2^{-K / 3}$ for some string s with $\approx 2^{K / 3}$ bits. The critical feature of this attack is that it recognizes its successes. If the attack fails to find k then one can change 7 to another number and try again, almost doubling the success chance of the algorithm at the expense of doubling its cost; for comparison, doubling the success chance of D_{s} requires quadrupling its cost. Repeating this attack $2^{K / 3}$ times reaches success chance ≈ 1 at cost $2^{2 K / 3}$.

In the $A T$ metric this attack is much more expensive. The table of precomputed quantities $f_{7}^{2^{n}}(0), f_{7}^{2^{n}}(1), \ldots, f_{7}^{2^{n}}\left(2^{n}-1\right)$ uses area on the scale of 2^{n}, and computing $f_{7}^{2^{n}}(k)$ takes time on the scale of 2^{n}, for a total cost on the scale of $2^{2 n}$ for an attack that finds $\approx 2^{2 n}$ keys. One can compute $f_{7}^{2^{n}}(0), f_{7}^{2^{n}}(1), \ldots, f_{7}^{2^{n}}\left(2^{n}-\right.$ $1)$ in parallel within essentially the same bounds on time and area, replacing each precomputed key with a small circuit that computes the key from scratch; precomputation does not change the exponent of the attack. One can, more straightforwardly, compute any reasonable sequence of $2^{2 n}$ guesses for k within essentially the same cost bound. Achieving success probability p costs essentially $2^{K} p$.
2.4. Multiple targets. Iteration becomes more efficient when there are multiple targets: U cipher outputs $\operatorname{AES}_{k_{1}}(0), \operatorname{AES}_{k_{2}}(0), \ldots, \operatorname{AES}_{k_{U}}(0)$ for U independent uniform random keys k_{1}, \ldots, k_{U}. Assume for simplicity that U is much smaller than 2^{K}; the hypothesis $U \leq 2^{K / 4}$ suffices for all heuristics used below.

Compute the iterates $f_{7}\left(k_{1}\right), f_{7}^{2}\left(k_{1}\right), \ldots, f_{7}^{2^{n}}\left(k_{1}\right)$, and similarly for each of k_{2}, \ldots, k_{U}; this takes $2^{n} U$ iterations. Look up each iterate in a table of $2^{n} U$ precomputed keys. Handle any match as above.

In the RAM metric or the NAND metric this attack has cost on the scale of $2^{n} U$, just like applying the previous attack to the U keys separately. The benefit of this attack is that it uses a larger table, producing a larger success probability for each key: the precomputation covers $2^{2 n} U$ keys instead of just $2^{2 n}$ keys. To avoid excessive chain collisions one must limit 2^{n} to $2^{K / 3} U^{-1 / 3}$ so that $2^{3 n} U$ does not grow past 2^{K}; the attack then finds each key with probability $2^{2 n} U / 2^{K}=2^{-K / 3} U^{1 / 3}$, with a cost of $2^{n}=2^{K / 3} U^{-1 / 3}$ per key, a factor of $U^{2 / 3}$ better than handling each key separately. Finding each key with high probability costs $2^{2 K / 3} U^{-2 / 3}$ per key.

As before, the $A T$ metric assigns a much larger cost than the RAM and NAND metrics. The computation of $f_{7}^{2^{n}}\left(k_{1}\right), f_{7}^{2^{n}}\left(k_{2}\right), \ldots, f_{7}^{2^{n}}\left(k_{U}\right)$ is trivially parallelized, taking time on the scale of 2^{n}, but the $2^{n} U$ precomputed keys occupy area $2^{n} U$, for a total cost on the scale of $2^{2 n} U$, i.e., $2^{2 n}$ per key, for success probability $2^{2 n} U / 2^{K}$ per key. Note that one can carry out the precomputation using essentially the same area and time. There is a large benefit from handling U keys
together - finding all U keys costs essentially 2^{K}, i.e., $2^{K} / U$ per key —but this benefit exists whether or not precomputation costs are taken into account.
2.5. Comparison. We summarize the insecurity established by the best attacks presented above. Achieving success probability p against U keys costs

- RAM metric: $\approx 2^{K} p^{2}$ for $p \leq 2^{-K / 3} U^{-2 / 3} ; \approx\left(2^{2 K / 3} U^{-2 / 3}\right) p$ for larger p.
- NAND metric: same.
- AT metric: $\approx 2^{3 K / 2} p^{3}$ for $p \leq 2^{-K / 4} U^{-1 / 2} ; \approx 2^{K} U^{-1} p$ for larger p.

Figure G. 1 graphs these approximations for $U=1$, along with the cost of exhaustive search.
2.6. Previous work. All of the attacks described here have appeared before. In fact, when the conjectures in [16, Section 3.6] and [7, Section 3.2] were made, they were already inconsistent with known attacks.

The iteration idea was introduced by Hellman in [45] for the special case $U=1$. Many subsequent papers (see, e.g., [25] and [49]) have explored variants and refinements of Hellman's attack, including the easy generalization to larger U. Hellman's goal was to attack many keys for a lower RAM cost than attacking each key separately; Hellman advertised a "cost per solution" of $2^{2 K / 3}$ using a precomputed table of size $2^{2 K / 3}$. The generalization to larger U achieves the same goal at lower cost, but the special case $U=1$ remains of interest as a non-uniform single-key attack.

Koblitz and Menezes in [55] recently considered a family of attacks analogous to D_{s}. They explained that there should be a short string s where D_{s} has success probability at least $\approx 2^{-K / 2}$, and analyzed some consequences for provable concrete secret-key security. However, they did not analyze higher levels of insecurity.

Replacing D_{s} with a more structured family of attacks, namely linear cryptanalysis, can be proven to achieve insecurity $2^{-K / 2}$ at low cost. (See, for example, [39, Section 7], which says that this is "well known in complexity theory".) De, Trevisan, and Tulsiani in [36] proved cost $\approx 2^{K} p^{2}$, for both the RAM metric and the NAND metric, for any insecurity level p. A lucid discussion of the gap between these attacks and exhaustive search appears in [36, Section 1], but without any analysis of the resulting trouble for the literature on provable concrete secret-key security, and without any analysis of possible fixes.

Biham, Goren, and Ishai in [23, Section 1.1] pointed out that Hellman's attack causes problems for defining strong one-way functions. The only solution that they proposed was adding uniformity. Note that this solution abandons the goal of giving a definition for, e.g., the strength of AES as a one-way function, or the strength of protocols built on top of AES. We analyze this solution in detail in Appendix B.5.

Our $A T$ analysis appears to be new. In particular, we are not aware of previous literature concluding that switching to the $A T$ metric removes essentially all of the benefit of precomputation for large p, specifically $p>2^{-K / 4} U^{-1 / 2}$.

3 Breaking the NIST P-256 elliptic curve

This section analyzes the cost of an attack against NIST P-256 [67], an elliptic curve of 256 -bit prime order ℓ over a 256 -bit prime field \mathbf{F}_{p}. The attack computes discrete logarithms on this curve, recovering the secret key from the public key and thus completely breaking typical protocols that use NIST P-256.

The attack does not exploit any particular weakness of NIST P-256. Switching from NIST P-256 to another group of the same size (another curve over the same field, a curve over another field, a hyperelliptic curve, a torus, etc.) does not stop the attack. We focus on NIST P-256 for both concreteness and practical relevance, as in the previous section.
3.1. The standard attack without precomputation. Let P be the specified base point on the NIST P-256 curve. The discrete-logarithm problem on this curve is to find, given another point Q on this curve, the unique integer k modulo ℓ such that $Q=k P$. The standard attack against the discrete-logarithm problem is the parallelization by van Oorschot and Wiener [72] of Pollard's rho method [73], described in the following paragraphs.

This attack uses a pseudorandom walk on the curve points. To obtain the $(i+1)$-st point P_{i+1}, apply a hash function $h: \mathbf{F}_{p} \rightarrow I$ to the x-coordinate of P_{i}, select a step $S_{h\left(x\left(P_{i}\right)\right)}$ from a sequence of precomputed steps $S_{j}=r_{j} P$ (with random scalars r_{j} for $j \in I$), and compute $P_{i+1}=P_{i}+S_{h\left(x\left(P_{i}\right)\right)}$. The size of I is chosen large enough to have the walk simulate a uniform random walk; a common choice, recommended in $[87]$, is $|I|=20$. The walk continues until it hits a distinguished point: a point P_{i} where the last t bits of $x\left(P_{i}\right)$ are equal to zero. Here t is an attack parameter.

The starting point of the b th walk is of the form $a P+b Q$ where a is chosen randomly. Each step increases the multiple of P, so the distinguished point has the form $a^{\prime} P+b Q$ for known a^{\prime}, b. The triple ($a^{\prime} P+b Q, a^{\prime}, b$) is stored and a new walk is started from a different starting point. If two walks hit the same distinguished point then $a^{\prime} P+b Q=c^{\prime} P+d Q$ which gives $\left(a^{\prime}-c^{\prime}\right) P=(d-b) Q$; by construction $d \not \equiv b \bmod \ell$, revealing $k \equiv\left(a^{\prime}-c^{\prime}\right) /(d-b) \bmod \ell$.

After $\sqrt{\ell} \approx 2^{128}$ additions (in approximately 2^{128-t} walks, using storage $\left.2^{128-t}\right)$, there is a high chance that the same point has been obtained in two different walks. This collision is recognized from a repeated distinguished point within approximately 2^{t} additional steps.
3.2. Precomputed distinguished points. To use precomputations in this attack, build a database of triples of the form $\left(a^{\prime} P, a^{\prime}, 0\right)$, i.e., starting each walk at a multiple of P. The attack algorithm takes this database and starts a new walk at $a P+b Q$ for random a and b. If this walk ends in a distinguished point present in the database, the DLP is solved. If the walk continues for more than 2^{t+1} steps (perhaps because it is in a cycle) or reaches a distinguished point not present in the database, the attack starts again from a new pair (a, b).

The parameter t is critical for RAM cost here, whereas it did not significantly affect RAM cost in Section 3.1. Choose t as $\left\lceil\left(\log _{2} \ell\right) / 3\right\rceil$. One can see from the following analysis that significantly smaller values of t are much less effective,
and that significantly larger values of t are much more expensive without being much more effective.

Construct the database to have exactly 2^{t} distinct triples, each obtained from a walk of length at least 2^{t}, representing a total of at least $2^{2 t}$ (and almost certainly $O\left(2^{2 t}\right)$) points. Achieving this requires searching for starting points in the precomputation (and optionally also varying the steps S_{j} and the hash function) as follows. A point that enters a cycle without reaching a distinguished point is discarded. A point that reaches a distinguished point in fewer than 2^{t} steps is discarded; each point survives this with probability approximately $\left(1-1 / 2^{t}\right)^{2^{t}} \approx 1 / e$. A point that produces a distinguished point already in the database is discarded; to see that a point survives this with essentially constant probability (independent of ℓ), observe that each new step has chance 2^{-t} of reaching a distinguished point, and chance $O\left(2^{2 t} / \ell\right)=O\left(2^{-t}\right)$ of reaching one of the previous $O\left(2^{2 t}\right)$ points represented by the database. Computer experiments that we reported in [22], as a followup to this paper, show that all the O constants here are reasonably close to 1 .

Now consider a walk starting from $a P+b Q$. This walk has chance approximately $1 / e$ of continuing for at least 2^{t} steps. If this occurs then those 2^{t} steps have chance approximately $1-\left(1-2^{2 t} / \ell\right)^{2^{t}} \approx 1-\exp \left(-2^{3 t} / \ell\right) \geq 1-1 / e$ of reaching one of the $2^{2 t}$ points in the precomputed walks that were within 2^{t} of the distinguished points in the database. If this occurs then the walk is guaranteed to reach a distinguished point in the database within a total of 2^{t+1} steps. The algorithm thus succeeds (in this way) with probability at least ($1-1 / e$) $/ e \approx 0.23$. This is actually an underestimate, since the algorithm can also succeed with an early distinguished point or a late collision.

To summarize, the attack uses a database of approximately $\sqrt[3]{\ell}$ distinguished points; one run of the attack uses approximately $2 \sqrt[3]{\ell}$ curve additions and succeeds with considerable probability. The overall attack cost in the RAM metric is a small constant times $\sqrt[3]{\ell}$. The security of NIST P-256 in this metric has thus dropped to approximately 2^{86}. Note that the precomputation here is on the scale of 2^{170}, much larger than the precomputation in Section 2.3 but much smaller than the precomputation in Section 2.2.

In the NAND metric it is simplest to run each walk for exactly 2^{t+1} steps, keeping track of the first distinguished point found by that walk and then comparing that distinguished point to the 2^{t} points in the database. The overall attack cost is still on the scale of $\sqrt[3]{\ell}$.

In the $A T$ metric the attack cost is proportional to $\sqrt[3]{\ell}^{2}$, larger than the standard $\sqrt{\ell}$. In this metric one does better by running many walks in parallel: if Z points are precomputed, one should run approximately Z walks in parallel with inputs depending on Q. The precomputation then covers $2^{t} Z$ points, and the computations involving Q cover approximately $2^{t} Z$ points, leading to a high probability of success when $2^{t} Z$ reaches $\sqrt{\ell}$. The $A T$ cost is also $2^{t} Z$. This attack has the same cost as the standard Pollard rho method, except for small constants; there is no benefit in the precomputations.
3.3. Comparison. We summarize the insecurity established by the best attacks presented above. Achieving success probability p costs

- RAM metric: $\approx(p \ell)^{1 / 3}$.
- NAND metric: same.
- $A T$ metric: $\approx(p \ell)^{1 / 2}$.

Figure G. 2 graphs these approximations.
3.4. Related work. Kuhn and Struik in [58] and Hitchcock, Montague, Carter, and Dawson in [46] considered the problem of solving multiple DLPs at once. They obtain a speedup of \sqrt{U} per DLP for solving U DLPs at once. Their algorithm reuses the distinguished points found in the attack on Q_{1} to attack Q_{2}, reuses the distinguished points found for Q_{1} and Q_{2} to attack Q_{3}, etc. However, their results do not seem to imply our $\sqrt[3]{\ell}$ result: they do not change the average walk length and distinguished-point probabilities, and they explicitly limit U to $c \sqrt[4]{\ell}$ with $c<1$. See also the recent paper [61] by Lee, Cheon, and Hong, which considered solving DLPs with massive precomputation for trapdoor DL-groups. None of these papers noticed any implications for provable security, and none of them went beyond the RAM metric.

Our followup paper [22] experimentally verified the algorithm stated above, improved it to $1.77 \cdot \sqrt[3]{\ell}$ additions using $\sqrt[3]{\ell}$ distinguished points, extended it to DLPs in intervals (using slightly more additions), and showed constructive applications in various protocols.

4 Breaking DSA-3072

This section briefly analyzes the cost of an attack against the DSA-3072 signature system. The attack computes discrete logarithms in the DSA-3072 group, completely breaking the signature system.

DSA uses the unique order- q subgroup of the multiplicative group \mathbf{F}_{p}^{*}, where p and q are primes with q (and not q^{2}) dividing $p-1$. DSA-3072 uses a 3072-bit prime p and is claimed to achieve 2^{128} security. The standard parameter choices for DSA- 3072 specify a 256 -bit prime q, allowing the 2^{86} attack explained in Section 3, but this section assumes that the user has stopped this attack by increasing q to 384 bits (at a performance penalty).
4.1. The attack. Take $y=2^{110}$, and precompute $\log _{g} x^{(p-1) / q}$ for every prime number $x \leq y$, where g is the specified subgroup generator. There are almost exactly $y / \log y \approx 2^{103.75}$ such primes, and each $\log _{g} x^{(p-1) / q}$ fits into 48 bytes, for a total of $2^{109.33}$ bytes.

To compute $\log _{g} h$, first try to write h as a quotient h_{1} / h_{2} in \mathbf{F}_{p}^{*} with $h_{2} \in$ $\left\{1,2,3, \ldots, 2^{1535}\right\}, h_{1} \in\left\{-2^{1535}, \ldots, 0,1, \ldots, 2^{1535}\right\}$, and $\operatorname{gcd}\left\{h_{1}, h_{2}\right\}=1$; and then try to factor h_{1}, h_{2} into primes $\leq y$. If this succeeds then $\log _{g} h^{(p-1) / q}$ is a known combination of known quantities $\log _{g} x^{(p-1) / q}$, revealing $\log _{g} h$. If this fails, try again with $h g, h g^{2}$, etc.

One can write h as h_{1} / h_{2} with high probability, approximately $\left(6 / \pi^{2}\right) 2^{3071} / p$, since there are approximately $\left(6 / \pi^{2}\right) 2^{3071}$ pairs $\left(h_{1}, h_{2}\right)$ and two distinct such pairs have distinct quotients. Finding the decomposition of h as h_{1} / h_{2} is a very fast extended-Euclid computation.

The probability that h_{1} is y-smooth (i.e., has no prime divisors larger than y) is very close to $u^{-u} \approx 2^{-53.06}$ where $u=1535 / 110$. The same is true for h_{2}; overall the attack requires between $2^{107.85}$ and $2^{108.85}$ iterations, depending on $2^{3071} / p$. Batch trial division, analyzed in detail in Section 5, finds the y-smooth values among many choices of h_{1} at very low cost in both the RAM metric and the NAND metric. This attack is much slower in the $A T$ metric.
4.2. Previous work. Standard attacks against DSA-3072 do not rely on precomputation and cost more than 2^{128} in the RAM metric. These attacks have two stages: the first stage computes discrete logarithms of all primes $\leq y$, and the second stage computes $\log _{g} h$. Normally y is chosen to minimize the cost of the first stage, whereas we replace the first stage by precomputation and choose y to minimize the cost of the second stage.

The simple algorithm reviewed here is not the state-of-the-art algorithm for the second stage; see, e.g., the "special- q descent" algorithms in [51] and [32]. The gap between known algorithms and existing algorithms is thus even larger than indicated in this section. We expect that reoptimizing these algorithms to minimize the cost of the second stage will produce even better results. We emphasize, however, that none of the algorithms perform well in the $A T$ metric.

5 Breaking RSA-3072

This section analyzes the cost of an attack against RSA-3072. The attack completely breaks RSA-3072, factoring any given 3072-bit public key into its prime factors, so it also breaks protocols such as RSA-3072-FDH and RSA-3072-OAEP.

This section begins by stating a generalization of the attack to any RSA key size, and analyzing the asymptotic cost exponents of the generalized attack. It then analyzes the cost more precisely for 3072-bit keys.
5.1. NFS with precomputation. This attack is a variant of NFS, the standard attack against RSA. For simplicity this description omits several NFS optimizations. See [30] for an introduction to NFS.

The attack is determined by four parameters: a "polynomial degree" d; a "radix" m; a "height bound" H; and a "smoothness bound" y. Each of these parameters is a positive integer. The attack also includes a precomputed "factory"

$$
F=\left\{(a, b) \in \mathbf{Z} \times \mathbf{Z}: \begin{array}{l}
-H \leq a \leq H ; 0<b \leq H \\
\operatorname{gcd}\{a, b\}=1 ; \text { and } a-b m \text { is } y \text {-smooth }
\end{array}\right\} .
$$

The standard estimate (see [30]) is that F has $\left(12 / \pi^{2}\right) H^{2} / u^{u}$ elements where $u=(\log H m) / \log y$. This estimate combines three approximations: first, there are about $12 H^{2} / \pi^{2}$ pairs $(a, b) \in \mathbf{Z} \times \mathbf{Z}$ such that $-H \leq a \leq H, 0<b \leq H$, and $\operatorname{gcd}\{a, b\}=1$; second, $a-b m$ has approximately the same smoothness chance as
a uniform random integer in $[1, \mathrm{Hm}]$; third, the latter chance is approximately $1 / u^{u}$.

The integers N factored by the attack will be between m^{d} and m^{d+1}. For example, with parameters $m=2^{256}, d=7, H=2^{55}$, and $y=2^{50}$, the attack factors integers between 2^{1792} and 2^{2048}. Parameter selection is analyzed later in more detail. The following three paragraphs explain how the attack handles N.

Write N in radix m : i.e., find $n_{0}, n_{1}, \ldots, n_{d} \in\{0,1, \ldots, m-1\}$ such that $N=n_{d} m^{d}+n_{d-1} m^{d-1}+\cdots+n_{0}$. Compute the "set of relations"

$$
R=\left\{(a, b) \in F: n_{d} a^{d}+n_{d-1} a^{d-1} b+\cdots+n_{0} b^{d} \text { is } y \text {-smooth }\right\}
$$

using Bernstein's batch trial-division algorithm [19]. The standard estimate is that R has $\left(12 / \pi^{2}\right) H^{2} /\left(u^{u} v^{v}\right)$ elements where $v=\left(\log \left((d+1) H^{d} m\right)\right) / \log y$.

We pause the attack description to emphasize two important ways that this attack differs from conventional NFS: first, conventional NFS chooses m as a function of N, while this attack does not; second, conventional NFS computes R by sieving all pairs (a, b) with $-H \leq a \leq H$ and $0<b \leq H$ to detect smoothness of $a-b m$ and $n_{d} a^{d}+\cdots+n_{0} b^{d}$ simultaneously, while this attack computes R by batch trial division of $n_{d} a^{d}+\cdots+n_{0} b^{d}$ for the limited set of pairs $(a, b) \in F$.

The rest of the attack proceeds in the same way as conventional NFS. There is a standard construction of a sparse vector modulo 2 for each $(a, b) \in R$, and there is a standard way to convert several linear dependencies between the vectors into several congruences of squares modulo N, producing the complete prime factorization of N; see [30] for details. The number of components of each vector is approximately $2 y / \log y$, and standard sparse-matrix techniques find linear dependencies using about $4 y / \log y$ simple operations on dense vectors of length $2 y / \log y$. If the number of elements of R is larger than the number of components of each vector then linear dependencies are guaranteed to exist.
5.2. Asymptotic exponents. Write $L=\exp \left((\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)$. For the RAM metric it is best to choose

$$
\begin{aligned}
d & \in(1.1047 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{-1 / 3}, \\
\log m & \in(0.9051 \ldots+o(1))(\log N)^{2 / 3}(\log \log N)^{1 / 3}, \\
\log y & \in(0.8193 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{2 / 3}=(0.8193 \ldots+o(1)) \log L \\
\log H & \in(1.0034 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{2 / 3}=(1.0034 \ldots+o(1)) \log L
\end{aligned}
$$

so that

$$
\begin{aligned}
u & \in(1.1047 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{-1 / 3}, \\
u \log u & \in(0.3682 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{2 / 3}=(0.3682 \ldots+o(1)) \log L, \\
d \log H & \in(1.1085 \ldots+o(1))(\log N)^{2 / 3}(\log \log N)^{1 / 3}, \\
v & \in(2.4578 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{-1 / 3}, \\
v \log v & \in(0.8193 \ldots+o(1))(\log N)^{1 / 3}(\log \log N)^{2 / 3}=(0.8193 \ldots+o(1)) \log L
\end{aligned}
$$

Out of the $L^{2.0068 \ldots+o(1)}$ pairs (a, b) with $-H \leq a \leq H$ and $0<b \leq H$, there are $L^{1.6385 \ldots+o(1)}$ pairs in the factory F, and $L^{0.8193 \ldots+o(1)}$ relations in R, just enough to produce linear dependencies if the $o(1)$ terms are chosen appropriately. Linear algebra uses $y^{2+o(1)}=L^{1.6385 \ldots+o(1)}$ bit operations.

The total RAM cost of this factorization algorithm is thus $L^{1.6385 \ldots+o(1)}$. For comparison, factorization is normally claimed to cost $L^{1.9018 \ldots+o(1)}$ (in the RAM metric) with state-of-the-art variants of NFS. Similar comments apply to the NAND metric.

This algorithm runs into trouble in the $A T$ metric. The algorithm needs space to store all the elements of F, and can compute R in time $L^{o(1)}$ using a chip of that size (applying ECM to each input in parallel rather than using batch trial division), but even the most heavily parallelized sparse-matrix techniques need much more than $L^{o(1)}$ time, raising the $A T$ cost of the algorithm far above the size of F. A quantitative analysis shows that one obtains a better cost exponent by skipping the precomputation of F and instead computing the elements of F one by one on a smaller circuit, for $A T$ cost $L^{1.9760 \ldots+o(1)}$.
5.3. RAM cost for RSA-3072. This attack breaks RSA-3072 with RAM cost considerably below the 2^{128} security level usually claimed for RSA-3072. Of course, justifying this estimate requires replacing the above $o(1)$ terms with more precise cost analyses.

For concreteness, assume that the RAM supports 128 -bit pointers, unit-cost 256 -bit vector operations, and unit-cost 256 -bit floating-point multiplications. As justification for these assumptions, observe that real computers ten years ago supported 32 -bit pointers, unit-cost 64 -bit vector operations, and unit-cost $64-$ bit floating-point multiplications; that the RAM model requires operations to scale logarithmically with the machine size; and that previous NFS cost analyses implicitly make similar assumptions.

Take $m=2^{384}, d=7, H=2^{62}+2^{61}+2^{57}$, and $y=2^{66}+2^{65}$. There are about $12 H^{2} / \pi^{2} \approx 2^{125.51}$ pairs (a, b) with $-H \leq a \leq H, 0<b \leq H$, and $\operatorname{gcd}\{a, b\}=1$, and the integers $a-b m$ have smoothness chance approximately $u^{-u} \approx 2^{-18.42}$ where $u=(\log H m) / \log y \approx 6.707$, so there are about $2^{107.09}$ pairs in the factory F. Each pair in F is small, easily encoded as just 16 bytes.

The quantities $n_{d} a^{d}+n_{d-1} a^{d-1} b+\cdots+n_{0} b^{d}$ are bounded by $(d+1) m H^{d} \approx$ $2^{825.3}$. If they were uniformly distributed up to this bound then they would have smoothness chance approximately $v^{-v} \approx 2^{-45.01}$ where $v=(\log ((d+$ 1) $\left.\left.m H^{d}\right)\right) / \log y \approx 12.395$, so there would be approximately $\left(12 H^{2} / \pi^{2}\right) u^{-u} v^{-v} \approx$ $2^{62.08}$ relations, safely above $2 y / \log y \approx 2^{62.06}$. The quantities $n_{d} a^{d}+n_{d-1} a^{d-1} b+$ $\cdots+n_{0} b^{d}$ are actually biased towards smaller values and thus have larger smoothness chance, but this refinement is unnecessary here.

Batch trial division checks smoothness of 2^{58} of these quantities simultaneously; here 2^{58} is chosen so that the product of those quantities is larger (about $2^{67.69}$ bits) than the product of all the primes $\leq y$ (about $2^{67.11}$ bits). The main steps in batch trial division are computing a product tree of these quantities and then computing a scaled remainder tree. Bernstein's cost analysis in [20, Section 3] shows that the overall cost of these two steps, for T inputs having a B-bit
product, is approximately $(5 / 6) \log _{2} T$ times the cost of a single multiplication of two ($B / 2$)-bit integers. For us $T=2^{58}$ and $B \approx 2^{67.69}$, and the cost of batch trial division is approximately $2^{5.59}$ times the cost of multiplying two ($B / 2$)-bit integers; the total cost of smoothness detection for all $(a, b) \in F$ is approximately $2^{54.68}$ times the cost of multiplying two $(B / 2)$-bit integers.

It is easiest to follow a standard floating-point multiplication strategy, dividing each ($B / 2$)-bit input into $B /(2 w)$ words for some word size $w \in \Omega\left(\log _{2} B\right)$ and then performing three real floating-point FFTs of length B / w. Each FFT uses approximately $(17 / 9)(B / w) \log _{2}(B / w)$ arithmetic operations (additions, subtractions, and multiplications) on words of slightly more than $2 w$ bits, for a total of $(17 / 3)(B / w) \log _{2}(B / w)$ arithmetic operations. A classic observation of Schönhage [82] is that the RAM metric allows constant-time multiplication of $\Theta\left(\log _{2} B\right)$-bit integers in this context even if the machine model is not assumed to be equipped with a multiplier, since one can afford to build large multiplication tables; but it is simpler to take advantage of the hypothesized 256 -bit multiplier, which comfortably allows $w=69$ and $B / w<2^{61}+2^{60}$, for a total multiplication cost of $2^{70.03}$. Computing R then costs approximately $2^{124.71}$.

Linear algebra involves $2^{63.06}$ simple operations on vectors of length $2^{62.06}$. Each operation produces each output bit by xoring together a small number of input bits, on average fewer than 32 bits. A standard block-Wiedemann computation merges 256 xors of bits into a single 256 -bit xor with negligible overhead, for a total linear-algebra cost of $2^{122.12}$. All other steps in the algorithm have negligible cost, so the final factorization cost is $2^{124.93}$.
5.4. Previous work. There are two frequently quoted cost exponents for NFS without precomputation. Buhler, Lenstra, and Pomerance in [30] obtained RAM cost $L^{1.9229 \ldots+o(1)}$. Coppersmith in [33] introduced a "multiple number fields" tweak and obtained RAM cost $L^{1.9018 \ldots+o(1)}$.

Coppersmith also introduced NFS with precomputation in [33], using ECM for smoothness detection. Coppersmith called his algorithm a "factorization factory", emphasizing the distinction between precomputation time (building the factory) and computation time (running the factory). Coppersmith computed the same RAM exponent $1.6385 \ldots$ shown above for the cost of one factorization using the factory.

We save a subexponential factor in the RAM cost of Coppersmith's algorithm by switching from ECM to batch trial division. This is not visible in the asymptotic exponent $1.6385 \ldots$ but is important for RSA-3072. Our concrete analysis of RSA-3072 security is new, and as far as we know is the first concrete analysis of Coppersmith's algorithm.

Bernstein in [18] obtained $A T$ exponent $1.9760 \ldots$ for NFS without precomputation, and emphasized the gap between this exponent and the RAM exponent $1.9018 \ldots$. Our $A T$ analysis of NFS with precomputation, and in particular our conclusion that this precomputation increases the $A T$ cost of NFS, appears to be new.

References

[1] - (no editor), Proceedings of the 18th annual ACM symposium on theory of computing, Association for Computing Machinery, 1986. ISBN 0-89791-193-8. See [81].
[2] - (no editor), 37th annual symposium on foundations of computer science, FOCS '96, Burlington, Vermont, USA, October 14-16, 1996, Institute of Electrical and Electronics Engineers, 1996. ISBN 0-8186-7594-2. See [8].
[3] - (no editor), 38th annual symposium on coundations of computer science, FOCS '97, Miami Beach, Florida, USA, October 19-22, 1997, Institute of Electrical and Electronics Engineers, 1997. See [10].
[4] Scott Aaronson, Lecture 20: cosmology and complexity (2006). URL: http: //www. scottaaronson.com/democritus/lec20.html. Cited in §Q.10.
[5] Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory, Journal of Computer and System Sciences 77 (2011), 14-40. Cited in §B.4.
[6] Jacob D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems, Physical Review D 23 (1981), 287-298. Cited in §Q.10.
[7] Mihir Bellare, New proofs for NMAC and HMAC: security without collisionresistance, in Crypto 2006 [40] (2006), 602-619. URL: http://cseweb.ucsd.edu/ ${ }^{\sim}$ mihir/papers/hmac-new.html. Cited in §1, §1.1, §1.3, §2.6, §B.1, §Q.19.
[8] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom functions revisited: the cascade construction and its concrete security, in [2] (1996), 514-523; see also newer version [9]. Cited in §B.7.
[9] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom functions revisited: the cascade construction and its concrete security (2005); see also older version [8]. URL: http://www-cse.ucsd.edu/~mihir/papers/cascade.html.
[10] Mihir Bellare, Anand Desai, Eron Jokipii, Phillip Rogaway, A concrete security treatment of symmetric encryption, in [3] (1997), 394-403. URL: http://cseweb. ucsd.edu/~mihir/papers/sym-enc.html. Cited in §Q.20.
[11] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of cipher block chaining, in Crypto 1994 [38] (1994), 341-358; see also newer version [12]. Cited in §1.2, §A.1.
[12] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of the cipher block chaining message authentication code, Journal of Computer and System Sciences 61 (2000), 362-399; see also older version [11]. ISSN 0022-0000. URL: http:// www-cse.ucsd.edu/~~mihir/papers/cbc.html. Cited in $\S 1, \S 1, \S 1, \S 1.2, \S 1.2, \S 1.2$, \S A. $1, \S$ A. $1, \S$ A. $1, \S$ A. $1, ~ §$ A. $2, \S$ B.2, §B.5, §B. $6, \S$ B. 6.
[13] Mihir Bellare, Thomas Ristenpart, Stefano Tessaro, Multi-instance security and its application to password-based cryptography, in Crypto 2012 [79] (2012), 312329. Cited in §L.1, §L.1.
[14] Mihir Bellare, Phillip Rogaway, Optimal asymmetric encryption - how to encrypt with $R S A$, in Eurocrypt 1994 [37] (1995), 92-111. URL: http://cseweb.ucsd. edu/~mihir/papers/oaep.html. Cited in §1.
[15] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with RSA and Rabin, in Eurocrypt 1996 [64] (1996), 399-416. URL: http://www-cse.ucsd.edu/~mihir/papers/exactsigs.html. Cited in §1, §1.1, §B.1, §Q.19.
[16] Mihir Bellare, Phillip Rogaway, Introduction to modern cryptography, 2005. URL: http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html. Cited in §1, §1.1, §2.6, §B.1, §B.7, §Q.19.
[17] Daniel J. Bernstein, How to stretch random functions: the security of protected counter sums, Journal of Cryptology 12 (1999), 185-192. URL: http://cr.yp. to/papers.html\#stretch. Cited in §B.6.
[18] Daniel J. Bernstein, Circuits for integer factorization: a proposal (2001). URL: http://cr.yp.to/papers.html\#nfscircuit. Cited in §5.4, §A.3, §Q.8, §Q.27.
[19] Daniel J. Bernstein, How to find smooth parts of integers (2004). URL: http:// cr.yp.to/papers.html\#smoothparts. Cited in §5.1.
[20] Daniel J. Bernstein, Scaled remainder trees (2004). URL: http://cr.yp.to/ papers.html\#scaledmod. Cited in §5.3.
[21] Daniel J. Bernstein, Proving tight security for Rabin-Williams signatures, in Eurocrypt 2008 [85] (2008), 70-87. URL: http://cr.yp.to/papers.html\#rwtight. Cited in §B.6.
[22] Daniel J. Bernstein, Tanja Lange, Computing small discrete logarithms faster, in Indocrypt 2012 [41] (2012), 317-338. URL: http://eprint.iacr.org/2012/458. Cited in §3.2, §3.4.
[23] Eli Biham, Yaron J. Goren, Yuval Ishai, Basing weak public-key cryptography on strong one-way functions, in TCC 2008 [31] (2008), 55-72. URL: http://www. iacr.org/archive/tcc2008/49480050/49480050.pdf. Cited in $\S 2.6$.
[24] Gianfranco Bilardi, Franco P. Preparata, Horizons of parallel computation, Journal of Parallel and Distributed Computing 27 (1995), 172-182. Cited in §A.3, §Q.6.
[25] Alex Biryukov, Adi Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, in Asiacrypt 2000 [70] (2000), 1-13. Cited in §2.6.
[26] Peter van Emde Boas, Machine models and simulation, in [62] (1990), 1-66. Cited in §A.1.
[27] Andrey Bogdanov, Dmitry Khovratovich, Christian Rechberger, Biclique cryptanalysis of the full AES, in Asiacrypt 2011 [60] (2011), 344-371. URL: http:// eprint.iacr.org/2011/449. Cited in §1.
[28] Raphel Bousso, Positive vacuum energy and the N-bound, Journal of High Energy Physics 11 (2000), 038. URL: http://arxiv.org/abs/hep-th/0010252. Cited in §Q. 10.
[29] Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication, Journal of the ACM 28 (1981), 521-534. URL: http://wwwmaths.anu.edu.au/ ~brent/pub/pub055.html. Cited in §1.2, §A.3, §A.3, §Q.8, §Q.27, §Q.28.
[30] Joe P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with the number field sieve, in [63] (1993), 50-94. Cited in §5.1, §5.1, §5.1, §5.4.
[31] Ran Canetti (editor), Theory of cryptography, fifth theory of cryptography conference, TCC 2008, New York, USA, March 19-21, 2008, Lecture Notes in Computer Science, 4948, Springer, 2008. ISBN 978-3-540-78523-1. See [23].
[32] An Commeine, Igor Semaev, An algorithm to solve the discrete logarithm problem with the number field sieve, in PKC 2006 [91] (2006), 174-190. Cited in §4.2.
[33] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993), 169-180. Cited in §5.4, §5.4.
[34] Don Coppersmith, Finding a small root of a univariate modular equation, in Eurocrypt 1996 [64] (1996), 155-165. MR 97h:94008. Cited in §Q.30.
[35] Anindya De, Luca Trevisan, Madhur Tulsiani, Non-uniform attacks against oneway functions and PRGs, Electronic Colloquium on Computational Complexity 113 (2009); see also newer version [36].
[36] Anindya De, Luca Trevisan, Madhur Tulsiani, Time space tradeoffs for attacks against one-way functions and PRGs, in Crypto 2010 [75] (2010), 649-665; see also older version [35]. Cited in $\S 2.6, \S 2.6$.
[37] Alfredo De Santis (editor), Advances in cryptology-EUROCRYPT '94, workshop on the theory and application of cryptographic techniques, Perugia, Italy, May 9-12, 1994, proceedings, Lecture Notes in Computer Science, 950, Springer, 1995. ISBN 3-540-60176-7. MR 98h:94001. See [14].
[38] Yvo Desmedt (editor), Advances in cryptology - CRYPTO '94, 14th annual international cryptology conference, Santa Barbara, California, USA, August 21-25, 1994, proceedings, Lecture Notes in Computer Science, 839, Springer, 1994. ISBN 3-540-58333-5. See [11].
[39] Yevgeniy Dodis, John Steinberger, Message authentication codes from unpredictable block ciphers, in Crypto 2009 [44] (2009), 267-285. URL: http://cs. nyu.edu/~dodis/ps/tight-mac.pdf. Cited in §2.6.
[40] Cynthia Dwork (editor), Advances in cryptology - CRYPTO 2006, 26th annual international cryptology conference, Santa Barbara, California, USA, August 2024, 2006, proceedings, Lecture Notes in Computer Science, 4117, Springer, 2006. ISBN 3-540-37432-9. See [7].
[41] Steven Galbraith, Mridul Nandi (editors), Progress in cryptology - Indocrypt 2012 - 13th international conference on cryptology in India, Kolkata, India, December 9-12, 2012, proceedings, Lecture Notes in Computer Science, 7668, Springer, 2012. See [22].
[42] Martin Gardner, Mathematical games: the fantastic combinations of John Conway's new solitaire game "life", Scientific American 223 (1970), 120123. URL: http://web.archive.org/web/20090603015231/http://ddi. cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ ConwayScientificAmerican.htm. Cited in §B.4.
[43] Oded Goldreich, $P, N P$, and NP-completeness: the basics of computational complexity, 2009. URL: http://www.wisdom.weizmann.ac.il/~oded/CC/bc-3. ps. Cited in §Q.15.
[44] Shai Halevi (editor), Advances in cryptology - CRYPTO 2009, 29th annual international cryptology conference, Santa Barbara, CA, USA, August 16-20, 2009, proceedings, Lecture Notes in Computer Science, 5677, Springer, 2009. See [39].
[45] Martin E. Hellman, A cryptanalytic time-memory tradeoff, IEEE Transactions on Information Theory 26 (1980), 401-406. Cited in §2.6.
[46] Yvonne Hitchcock, Paul Montague, Gary Carter, Ed Dawson, The efficiency of solving multiple discrete logarithm problems and the implications for the security of fixed elliptic curves, International Journal of Information Security 3 (2004), 86-98. Cited in §3.4.
[47] Viet Tung Hoang, Ben Morris, Phillip Rogaway, An enciphering scheme based on a card shuffle, in Crypto 2012 [79] (2012), 1-13. Cited in §L.1, §L.1.
[48] Dennis Hofheinz, Tibor Jager, Tightly secure signatures and public-key encryption, in Crypto 2012 [79] (2012), 590-607. Cited in §L.1, §L.1.
[49] Jin Hong, Palash Sarkar, New applications of time memory data tradeoffs, in Asiacrypt 2005 [78] (2005), 353-372. Cited in §2.6.
[50] Tibor Jager, Florian Kohlar, Sven Schäge, Jörg Schwenk, On the security of TLSDHE in the standard model, in Crypto 2012 [79] (2012), 273-293. Cited in §L.1, §L.1, §L.1.
[51] Antoine Joux, Reynald Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the Gaussian integer method, Mathematics of Computation 72 (2003), 953-967. Cited in §4.2.
[52] Jonathan Katz, Non-uniform complexity (2011). URL: http://www.cs.umd.edu/ ~jkatz/complexity/f11/lecture11.pdf. Cited in §Q.15.
[53] Jonathan Katz, Yehuda Lindell, Introduction to modern cryptography: principles and protocols, Chapman \& Hall/CRC, 2007. ISBN 978-1-58488-551-1. URL: http://www.cs.umd.edu/~jkatz/imc.html. Cited in §1.
[54] Joe Kilian (editor), Advances in cryptology: CRYPTO 2001, 21st annual international cryptology conference, Santa Barbara, California, USA, August 19-23, 2001, proceedings, Lecture Notes in Computer Science, 2139, Springer, 2001. ISBN 3-540-42456-3. MR 2003d:94002. See [84].
[55] Neal Koblitz, Alfred Menezes, Another look at HMAC (2012). URL: http:// eprint.iacr.org/2012/074. Cited in §1.2, §1.3, §1.3, §1.3, §2.6, §Q.23.
[56] Neal Koblitz, Alfred Menezes, Another look at non-uniformity (2012). URL: http://eprint.iacr.org/2012/359. Cited in §1.2, §1.3, §1.3.
[57] Pascal Koiran, Decision versus evaluation in algebraic complexity (2007). URL: http://perso.ens-lyon.fr/pascal.koiran/Publis/mcu07.pdf. Cited in §Q.15.
[58] Fabian Kuhn, Rene Struik, Random walks revisited: extensions of Pollard's rho algorithm for computing multiple discrete logarithms, in SAC 2001 [89] (2001), 212229. URL: http://www.distcomp.ethz.ch/publications.html. Cited in §3.4.
[59] Will Landecker, Thomas Shrimpton, R. Seth Terashima, Tweakable blockciphers with beyond birthday-bound security, in Crypto 2012 [79] (2012), 14-30. Cited in §L.1, §L.1.
[60] Dong Hoon Lee, Xiaoyun Wang (editors), Advances in cryptology - ASIACRYPT 2011, 1^{7} th international conference on the theory and application of cryptology and information security, Seoul, South Korea, December 4-8, 2011, proceedings, Lecture Notes in Computer Science, 7073, Springer, 2011. ISBN 978-3-642-253843. See [27].
[61] Hyung Tae Lee, Jung Hee Cheon, Jin Hong, Accelerating ID-based encryption based on trapdoor DL using pre-computation, 11 Jan 2012 (2012). URL: http:// eprint.iacr.org/2011/187. Cited in §3.4.
[62] Jan van Leeuwen (editor), Handbook of theoretical computer science, volume A: algorithms and complexity, MIT Press, 1990. ISBN 0-262-22038-5. See [26].
[63] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field sieve, Lecture Notes in Mathematics, 1554, Springer, 1993. ISBN $3-540-57013-6$. MR 96m:11116. See [30].
[64] Ueli M. Maurer (editor), Advances in cryptology-EUROCRYPT '96: proceedings of the fifteenth international conference on the theory and application of cryptographic techniques held in Saragossa, May 12-16, 1996, Lecture Notes in Computer Science, 1070, Springer, 1996. ISBN 3-540-61186-X. MR 97g:94002. See [15], [34].
[65] Alfred Menezes, Edlyn Teske, Annegret Weng, Weak fields for ECC, in CT-RSA 2004 [71] (2004), 366-386. URL: http://eprint.iacr.org/2003/128. Cited in §B.1, §B.1.
[66] National Institute for Standards and Technology, Announcing request for candidate algorithm nominations for the Advanced Encryption Standard (AES) (1997). URL: http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214. pdf. Cited in §1.
[67] National Institute for Standards and Technology, Digital signature standard, Federal Information Processing Standards Publication 186-2 (2000). URL: http:// csrc.nist.gov. Cited in §3.
[68] Phong Q. Nguyen (editor), Progress in cryptology - VIETCRYPT 2006, first international conference on cryptology in Vietnam, Hanoi, Vietnam, September 25-28, 2006, revised selected papers, Lecture Notes in Computer Science, 4341, Springer, 2006. ISBN 3-540-68799-8. See [76].
[69] Chris Nyberg, Mehul Shah, Sort benchmark home page, updated 23 May 2012, accessed 11 February 2013 (2012). URL: http://sortbenchmark.org. Cited in §Q.6.
[70] Tatsuaki Okamoto (editor), Advances in cryptology: ASIACRYPT 2000, 6th international conference on the theory and application of cryptology and information security, Kyoto, Japan, December 3-7, 2000, proceedings, Lecture Notes in Computer Science, 1976, Springer, 2000. ISBN 3-540-41404-5. MR 2002d:94046. See [25].
[71] Tatsuaki Okamoto (editor), Topics in cryptology - CT-RSA 2004, the cryptographers' track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27, 2004, proceedings, Lecture Notes in Computer Science, 2964, Springer, 2004. ISBN 3-540-20996-4. See [65].
[72] Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic applications, Journal of Cryptology 12 (1999), 1-28. ISSN 0933-2790. URL: http://members.rogers.com/paulv/papers/pubs.html. Cited in §3.1.
[73] John M. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computation 32 (1978), 918-924. ISSN 0025-5718. MR 58:10684. URL: http://www.ams.org/journals/mcom/1978-32-143/ S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf. Cited in §3.1.
[74] Franco P. Preparata, Optimal three-dimensional VLSI layouts, Mathematical Systems Theory 16 (1983), 1-8. Cited in §A, §Q.8.
[75] Tal Rabin (editor), Advances in cryptology - CRYPTO 2010, 30th annual cryptology conference, Santa Barbara, CA, USA, August 15-19, 2010, proceedings, Lecture Notes in Computer Science, 6223, Springer, 2010. See [36].
[76] Phillip Rogaway, Formalizing human ignorance, in VIETCRYPT 2006 [68] (2006), 211-228. URL: http://www.cs.ucdavis.edu/~rogaway/papers/. Cited in §B.5, §B.7, §Q.19, §Q.21.
[77] Arnold L. Rosenberg, Three-dimensional VLSI: a case study, Journal of the ACM 30 (1983), 397-416. Cited in §A, §Q.8.
[78] Bimal Roy (editor), Advances in cryptology - ASIACRYPT 2005, 11th international conference on the theory and application of cryptology and information security, Chennai, India, December 4-8, 2005, proceedings, Lecture Notes in Computer Science, 3788, Springer, 2005. See [49].
[79] Reihaneh Safavi-Naini, Ran Canetti (editors), Advances in cryptologyCRYPTO 2012-32nd annual cryptology conference, Santa Barbara, CA, USA, August 19-23, 2012, proceedings, Lecture Notes in Computer Science, 7417, Springer, 2012. ISBN 978-3-642-32008-8. See [13], [47], [48], [50], [59].
[80] Manfred Schimmler, Sorting on a three dimensional cube grid, report 8604, Christian-Albrechts-Universität Kiel, 1986. Cited in §Q.28.
[81] Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh-connected computers, in [1] (1986), 255-261. Cited in §Q.28.
[82] Arnold Schönhage, Storage modification machines, SIAM Journal on Computing 9 (1980), 490-508. Cited in §5.3.
[83] Peter W. Shor, Introduction to quantum algorithms (2001). URL: http://arxiv. org/abs/quant-ph/0005003. Cited in §Q.15.
[84] Victor Shoup, OAEP reconsidered, in Crypto 2001 [54] (2001), 239-259. Cited in §Q.30.
[85] Nigel P. Smart (editor), Advances in cryptology - EUROCRYPT 2008, 27th annual international conference on the theory and applications of cryptographic techniques, Istanbul, Turkey, April 13-17, 2008, proceedings, Lecture Notes in Computer Science, 4965, Springer, 2008. ISBN 978-3-540-78966-6. See [21].
[86] Douglas R. Stinson, Some observations on the theory of cryptographic hash functions (2001). URL: http://eprint.iacr.org/2001/020. Cited in §B.7, §B.7, §B.7, §B.7, §B.7, §Q.21.
[87] Edlyn Teske, On random walks for Pollard's rho method, Mathematics of Computation 70 (2001), 809-825. URL: http://www.ams.org/journals/mcom/ 2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf. Cited in §3.1.
[88] C. D. Thompson, H. T. Kung, Sorting on a mesh-connected parallel computer, Communications of the ACM 20 (1977), 263-271. ISSN 0001-0782. Cited in §Q. 28.
[89] Serge Vaudenay, Amr M. Youssef (editors), Selected areas in cryptography: 8th annual international workshop, SAC 2001, Toronto, Ontario, Canada, August 16-17, 2001, revised papers, Lecture Notes in Computer Science, 2259, Springer, 2001. ISBN 3-540-43066-0. MR 2004k:94066. See [58].
[90] Michael J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptology 17 (2004), 105-124. ISSN 0933-2790. URL: http://sites.google.com/site/ michaeljameswiener/. Cited in §Q.8.
[91] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), 9th international conference on theory and practice in public-key cryptography, New York, NY, USA, April 24-26, 2006, proceedings, Lecture Notes in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [32].

A Appendix: Review of cost metrics for algorithms

Recall from Section 1 that concrete security definitions depend implicitly on how the "cost" of an algorithm is defined. This appendix reviews three cost metrics from the literature: the RAM metric; the NAND metric; and the $A T$ metric. This is not meant to be a comprehensive survey of cost metrics in the literature; it does not include, for example, the volume-time metrics studied by Rosenberg in [77] and by Preparata in [74].
A.1. The RAM metric. Bellare, Kilian, and Rogaway in [12, Section 2.2] fix "some particular Random Access Machine (RAM)" as a model of computation. They define the running time of an algorithm A as " A 's actual execution time plus the length of A 's description".

There are well-known difficulties in giving a reasonable definition of "execution time" for RAM programs. However, standard workarounds (see, e.g., [26]) limit these difficulties to a much smaller scale than the gaps considered in this paper, so we do not review the details. We make an exception in Section 5, where the gap is relatively small.

Bellare, Kilian, and Rogaway say that adding the length of the algorithm "eliminates pathologies caused if one can embed arbitrarily large lookup tables
in A's description". The obvious example is an algorithm that includes a giant sorted table of pairs $\left(\operatorname{AES}_{k}(0), k\right)$ for all 2^{128} AES keys k, and simply looks up $\operatorname{AES}_{k}(0)$ in the table to find k; the RAM metric forces this algorithm to pay for the length of the table, not merely the time taken for the table lookup.

It is interesting to note that [11], the original Crypto '94 version of [12], simply used execution time as a metric. Apparently it was not immediately obvious that the metric would allow exactly these "pathologies", posing huge problems for security definitions, theorems, and conjectures using that metric. The fix used in [12], and in many other papers, was to change the metric.

The more advanced attacks presented in Sections 2, 3, 4, and 5 can be viewed as similar "pathologies" that, contrary to the claim in [12], are not eliminated by merely adding the length of the algorithm. This view raises the question of whether further changes to the cost metric could stop those attacks.
A.2. The NAND metric. Bellare, Kilian, and Rogaway also consider an "alternative" definition of an algorithm as a circuit "over some fixed basis of gates, like 2-input NAND gates". The cost of an algorithm then "simply means the circuit size".

Counting NAND gates is refreshingly precise and easy to define. Readers might wonder why this NAND metric is an "alternative" rather than the standard definition of algorithm cost. The only answer given in [12] is that the NAND metric is "rather less intuitive" than the RAM metric.

We emphasize that the NAND metric often assigns far larger costs to algorithms than the RAM metric does. In some cases an algorithm taking time T in the RAM metric costs more than T^{2} NAND gates. The most important difference is in the cost of random access to a large table, a very fast operation in the RAM metric but a very slow operation in the NAND metric. A batch of n independent random accesses to the same table of size n has similar cost in both metrics (since it can be simulated by sorting), but many algorithms require serial random accesses.

This difference can cause trouble: there are many theorems regarding "time" that are true for the RAM metric but unproven, and presumably false, for the NAND metric. This trouble is described in more detail in Appendix B.2. However, for the same reason, one can hope that any "pathologies" in the RAM metric are fixed by the NAND metric. This hope is analyzed in Sections 2, 3, 4, and 5.
A.3. The $\boldsymbol{A} \boldsymbol{T}$ metric. In hardware design it is common to model computation in a completely different way. Computation is performed by a chip, i.e., a rectangular mesh of transistors connected by wires, with at most a few layers of wires at each point in the mesh. Transistors and wires all operate in parallel. It is not difficult to give a formal definition of this model of computation; see, e.g., [29]. This definition has the virtue of being obviously quite close to the physical reality of how computations are actually performed. See [24] for a detailed evaluation of many models of computation from this perspective.

Our third cost metric for algorithms is the price-performance ratio of a chip: i.e., the product $A T$ of the area A of the chip and the time T taken by the chip.

Hardware designers often consider more general functions of (A, T), but the classic product $A T$ remains the default choice of cost metric in thousands of papers because it preserves the following two forms of linearity: performing n time- T computations in serial on one area- A chip costs n times as much as performing 1 computation; performing n time- T computations in parallel on n area- A chips (formally, one area- $n A$ chip) also costs n times as much as performing 1 computation.

Notice that the energy used by a computation is proportional to $A T$ if the entire chip is active. This energy use (and corresponding heat dissipation) does not pose a scalability problem as the chip area increases: building a corresponding area of solar cells and batteries and heat sinks increases the chip cost by at most a small constant factor. The energy use can be considerably smaller than $A T$ if the chip is mostly inactive - if most of the transistors are, in the words of [18], "simply sitting around, twiddling their thumbs" - but any such chip is obviously highly suboptimal: for essentially the same investment in chip area one can build a much more active chip that stores the same data and that at the same time performs many other useful computations. This trend towards increasing parallelism can easily be observed in mass-market CPUs and GPUs: for example, a 2.27-billion-transistor Intel Xeon E5-4650 has 64 parallel 32-bit adders (8 independent cores, 2 independent vector units in each core, 4 synchronized 32 -bit adders in each vector unit), and a 3.5 -billion-transistor NVIDIA GeForce GTX 680 has 1536 parallel 32 -bit adders.

Brent and Kung showed in [29] that n-bit multiplication costs $n^{1.5+o(1)}$ in the $A T$ metric; for comparison, n-bit multiplication costs only $n^{1+o(1)}$ in the RAM metric and in the NAND metric. Similar comments apply to sorting and to various other high-communication computations. We consider the $A T$ metric in Sections 2, 3, 4, and 5 for the same reason that we consider the NAND metric: it is a source of trouble but also a possible solution to "pathologies".

B Appendix: Trying to salvage the insecurity metric

As a followup to the algorithm analyses in Sections 2, 3, 4, and 5, this appendix analyzes the merits of several possible responses to the gap between standarddefinition insecurity and actual insecurity. None of the responses are completely satisfactory, but some of them are arguably better than others.
B.1. Keeping the definitions and abandoning the conjectures. One possible response is to defend the metric, arguing that the attacks described in Sections 2, 3, 4, and 5 actually should be viewed as assigning security levels below 2^{128} to AES, NIST P-256, DSA-3072, and RSA-3072. In other words, this response is that standard-definition insecurity is actual insecurity, and that taking the cost of precomputation into account would be understating actual insecurity.

This response has the virtue of minimizing the number of changes required to the literature. The other responses considered below require revisiting every proof to see whether the theorem can still be proven in a new metric and to
see exactly what quantitative changes are required; this response preserves the metric. Of course, the security conjectures made in [15, Section 1.4], [16, Section 3.6], [7, Section 3.2], etc. would still have to be withdrawn.

There are, however, several obvious problems with this response. First, realworld attackers have no choice but to pay for precomputation time, contrary to the standard definition. Why should cryptographers be more concerned about a time- 2^{60} attack that takes time 2^{300} to find than about a time- 2^{70} attack requiring no effort to find? Users aiming for the best possible security, subject to performance constraints, should prefer a system where the best attack is of the first type over a system where the best attack is of the second type; underestimating attack cost by ignoring precomputation cost will lead those users to select the wrong system, hurting their own security.

As a concrete example, consider the result of Menezes, Teske, and Weng in [65] that many composite fields are "weak fields for ECC". For example, every curve over $\mathbf{F}_{2^{210}}$ has "a security level of at most 91 bits" rather than the expected "104 bits". Every ECC researcher will agree that it is much safer to use the field $\mathbf{F}_{2^{211}}$. However, the standard definition of insecurity paints a quite different picture. The standard definition says that $\mathbf{F}_{2^{210}}$ has security level only 2^{70}; it ignores the fact that finding this 2^{70} attack costs 2^{140}; it says that the explicit 2^{91} attack of [65] is useless, since $2^{91}>2^{70}$; and it says that $\mathbf{F}_{2^{211}}$ offers only a tiny security benefit.

Furthermore, almost every cryptanalytic paper includes the cost of precomputation, contrary to the standard definition. The standard security conjectures would be perfectly reasonable if the cost of precomputation were included but are false according to the standard definition. In short, there is a perfect alignment between what the conjectures say, what the cryptanalysts are looking at, and what real-world attacks can actually do; what is out of whack with this picture is the standard definition.

The core argument for confidence in security conjectures about (e.g.) RSA3072 is that RSA-3072 has survived extensive cryptanalysis. The standard definition makes this argument untenable. There has not been extensive study of attacks against RSA-3072 that exploit free precomputation. Our new RSA-3072 attack in Section 5.3 is considerably faster than Coppersmith's original attack, and we would not be surprised to see substantial further speedups; any conjecture in this model would be built upon quicksand.
B.1.1. The amortization-eliminates-precomputation fallacy. One might argue that precomputation should be ignored because it can be amortized across many targets. However, this argument confuses two different concepts. Nonuniform attacks and multiple-target attacks (and non-uniform multiple-target attacks) are often quantitatively and qualitatively different: non-uniform attacks often benefit from vastly larger precomputation (as illustrated by the doubly exponential cost $\exp \left(2^{2 n+1}\right)$ to find the attack D_{s} in Section 2.2), while multipletarget attacks often benefit from batching (as illustrated by Section 2.4).

As a concrete example, consider a time- 2^{170} precomputation of a time- 2^{85} attack (such as the ECC attack in Section 3), which is then applied to 2^{40}
targets. The total attack cost is 2^{125} (i.e., 2^{85} per target), but this is completely unnoticeable compared to the precomputation cost of 2^{170} (i.e., 2^{130} per target). Highlighting the 2^{125} rather than the 2^{170} makes no sense. The picture does not change for 2^{60} or even 2^{80} targets. Note that it is easy to imagine realworld attack power growing to 2^{85} curve operations (for comparison, standard technology would carry out 2^{87} bit operations per year using the 65 -megawatt power supply of NSA's reported new Utah data center), while it is far more difficult to imagine how the number of real-world targets could grow to 2^{80}.
B.1.2. The more-conservative-is-better fallacy. One might also argue that ignoring precomputation is "more conservative" than taking precomputation into account, and in general that underestimating the cost of an attack is perfectly safe, since it simply leads users to choose larger parameters.

In fact, "conservative" underestimates can cause users to lose security. There are three important effects ignored in the "more conservative is better" argument: first, users are subject to cost constraints, and cannot simply choose larger parameters; second, users can choose different systems, and in fact take advantage of this flexibility with the goal of maximizing security subject to the cost constraints; third, underestimates in general vary from one system to another, and in particular the gaps considered in this paper vary from one system to another.

The following example illustrates all of these effects. Consider a DSA user who can just barely afford $p \approx 2^{3072}$ and $q \approx 2^{256}$. Both p and q are important for speed: DSA cost is approximately linear in $\log q$ and worse than linear in $\log p$. These parameters are commonly recommended as providing about 2^{128} security, but this recommendation takes precomputation into account, in violation of the standard definition. The standard definition says that the q attack described in Section 3 reduces security to about 2^{85}. A user deceived by this underestimate will increase q to gain security against this attack, but is then forced by cost limitations to reduce p, and at some point the p attack described in Section 4 becomes more worrisome. A detailed analysis suggests that $p \approx 2^{2705}$ and $q \approx$ 2^{330} is optimal, balancing the standard-definition cost of these attacks at about 2^{110}. However, taking precomputation into account shows that the user has now lost several bits of security.

Improvements in either Section 3 or Section 4 would change all the details of this example. For example, moderate improvements in Section 4 might bring 2^{3072} and 2^{256} back into balance, eliminating the security loss, but further improvements in Section 4 would then mislead the user into decreasing q below 2^{256}, again losing security.
B.2. Modification 1: switching to the NAND metric. Another possible response is to change the algorithm cost model from the RAM metric to the NAND metric.

This response would cause trouble for the literature on provable concrete security. (All of the responses below would also cause various levels of trouble.) Proofs would have to be reviewed for RAM-dependent cost analyses, and many theorems would have to change, because many reductions would become much
more expensive. For example, eliminating repeated queries to an oracle is a very common step in security proofs; it is practically free in the RAM metric (add each query into a fast associative array) but much slower in the NAND metric. In other words, even though the NAND metric was mentioned as an "alternative" in [12], the literature did not develop in a way consistent with this alternative.

The motivation for this response, as mentioned in Appendix A, is the hope that this response would fix the "pathologies" in the RAM metric: i.e., that the gap between actual security and the standard definition of insecurity is an artifact of the low-cost random access provided by the RAM metric. However, the analyses in Sections 2, 3, 4, and 5 do not provide any support for this idea. All necessary random accesses appear in large batches, allowing reasonably efficient NAND computations.
B.3. Modification 2: switching to the $\boldsymbol{A T}$ metric. Another possible response, analogous to the previous response but different in one critical detail, is to change algorithm cost model from the RAM metric to the $A T$ metric.

Our cost analyses provide reason to hope that this response does fix essentially all of the pathologies in the RAM metric. There is an exception in one corner case - precomputation appears to help PRP attacks for probabilities below $2^{-K / 4} U^{-1 / 2}$, where K is the key length and U is the number of targets - but one can argue that such low-probability attacks are of no concern for cryptographic users.

This response causes trouble for the literature on provable concrete security, similar to the previous response but even more pervasive: even more theorems would have to change. Like the NAND metric, the $A T$ metric makes serial random access much more expensive than the RAM metric; unlike the NAND metric, the $A T$ metric makes a large batch of table accesses much more expensive than the RAM metric.
B.4. Modification 3: adding constructivity. In provable security (and in complexity theory more broadly) it is standard to formalize "one can find a cost- C algorithm A that breaks X " as "there exists a cost- C algorithm A that breaks X ". This formalization ignores the question of how difficult it is to find A. Another possible response is to switch to another formalization that explicitly quantifies this difficulty.

The obvious way to quantify the hardness of finding A is as the minimum cost required by all algorithms B that print A. The obvious objection is that there is always a cost-approximately- C algorithm to print A : namely, an algorithm that simply includes, and prints, a copy of A. However, one can easily exclude this trivial algorithm by allowing only small algorithms B.

Consider, for example, a large chip containing billions of standard AES keysearch units. This chip breaks AES with $A T$ cost roughly 2^{128}. The chip has a regular structure and area far below 2^{128}, so it is printed at moderate cost by an even smaller chip B. Similar comments apply to the standard chips to attack NIST P-256, DSA-3072, and RSA-3072 at cost roughly 2^{128} : all of them are printed at moderate cost by small chips B.

Consider, as another example, the hard-to-find attack A of Section 2.3, which finds an AES key with high probability using 2^{43} tables, each of size 2^{43}, for a total RAM cost on the scale of 2^{86}. The description of A in Section 2.3 is a small algorithm B that prints A, but B has RAM cost on the scale of 2^{128}. One can trade some space for time by embedding part of A into B, but as far as we know every algorithm B significantly smaller than A has negligible chance of printing A with RAM cost significantly below 2^{128}.

Consider, as a third example, the hard-to-find chip A of Section 2.2, with $A T$ cost about $2^{3 n}$: area about $2^{2 n}$ and time about 2^{n}. As far as we know, every significantly smaller chip B has negligible chance of printing A in any tolerable amount of time. This example suggests that it is possible to eliminate some corner pathologies that were not eliminated by merely switching to the $A T$ metric.

Note that it is important to limit the cost of B in some reasonable cost metric, not merely the size of B. All of the precomputations considered in this paper can be carried out by rather small RAM algorithms; in other words, the outputs have low Kolmogorov complexity. For the same reason, the NAND metric is useless for measuring the cost of B.

In general, it seems reasonable to redefine the insecurity of X as the maximum, over all size-limited cost-limited algorithms B that print cost-limited algorithms A, of the probability that A succeeds in breaking X. This definition is explicitly parametrized by three numerical limits, and implicitly parametrized by the metrics used to specify those limits. We emphasize that probability here considers not just the randomness in X and in A, but also the randomness in B; otherwise the best choice of B is a tiny algorithm that prints out random bits. If B is required to be a deterministic algorithm then imposing a size limit and cost limit on B is, aside from polynomial factors, equivalent to imposing limits on A under some of the notions of time-bounded/resource-bounded Kolmogorov complexity surveyed in [5]; but polynomial factors are important, and excluding probabilistic algorithms does not seem safe for cryptography.

This response stops all of the precomputations considered in this paper. For example, it allows the feasible low-probability attack considered in Section 2.1 but does not allow the precomputed attacks considered in Section 2.2.

This response, like the previous two responses, causes trouble for the literature on provable concrete security. Each theorem must be restated to track not only the cost of A but also the size and cost of B.
B.4.1. Evaluating the realism of constructivity. Any limitation on the set of attacks considered by security definitions raises the question of whether real attackers are in fact bound by that limitation. Observing that today's state-of-the-art attacks obey the limitation does not resolve the question; perhaps a new attack tomorrow will violate the limitation, and will break a system that was declared to be secure by the limited definition.

One way to argue for the constructivity of real attack algorithms is to observe that real attacks are found by humans; except for minor implementation details, humans are simply chips, and rather small chips by cryptanalytic standards. Of
course, one can imagine humans building larger chips that in turn find algorithms that the humans would not have found directly, and to model this one can consider longer chains such as algorithms that print larger algorithms that in turn print larger algorithms; but it seems reasonable to insist that the chain start with a small algorithm (small enough for humans to find) and to put a cost limit on each algorithm. One can also compress these chains after the second step, replacing a large algorithm that prints A by a large algorithm that simulates A, so there is only a small cost difference between (e.g.) the length-2-chain theory and the length-3-chain theory.

A counterargument is that many humans working together in fact form quite a large chip and have already developed impressively large algorithms, such as the multiple-gigabyte software collection shipped with today's operating systems. Even if all of today's state-of-the-art attack machines are printed by programs considerably smaller than a megabyte, humans are certainly not limited to building such programs.

A different, more fundamental, argument for constructivity is as follows. Consider a chip that simulates a randomly initialized world according to, e.g., Conway's Game of Life [42], or a better approximation of the laws of physics. One can reasonably conjecture that, if the simulated world is large enough, it will contain simulations of some simple life forms that randomly evolve into more complex life forms, eventually reaching the intelligence of the human race, even though this chip is quite simple and is easily printed by a very small algorithm. One can also modify the chip to communicate to the simulated life forms their job of attacking a particular cryptosystem (or carrying out some other algorithmic task), and to record their best results; this communication does not require much extra complication in the algorithm that prints the chip, beyond a description of the cryptosystem being attacked.

There are several ways that such simulators can fail: perhaps the simulated rules are not actually complex enough to impose evolutionary pressures that create intelligence, or perhaps the simulated world is too small to support the intelligence required to find the real attacker's best attack, or this evolution is too slow, or the final simulation of the attack is too slow. However, one can plausibly conjecture reasonably small bounds on each of these obstacles, and continued research into artificial intelligence can be expected to add evidence for such conjectures. We also comment that quantum computation allows analogous simulators and conjectures.

To summarize, the fact that today's state-of-the-art attack machines can be printed at reasonable cost by small algorithms is not merely an accidental feature of those attacks; it follows from the general evolutionary conjecture that an adequate simulation of the world can be printed by a small algorithm.
B.4.2. Formalizing collision resistance. We comment on a surprising consequence of this notion of constructivity: there is an apparently reasonable definition of collision resistance for constructive deterministic hash functions with large output sizes. Specifically, we define the collision insecurity of a hash func-
tion H as the maximum, over all size-limited cost-limited algorithms B that print cost-limited algorithms A, of the probability that A prints a collision in H.

The conventional wisdom is that collision resistance is unformalizable for any specific hash function H small enough to be computed. Specifically, if H has n bit output, then there certainly exists a collision between two ($n+1$)-bit inputs, and therefore there exists an algorithm A that simply prints those two inputs.

However, this algorithm A contains more than $2 n$ bits. One can easily reduce $2 n$ to n, but if n is at least (say) 1024 plus the size limit on B then there is no obvious way for B to print A or any other fast collision-finding algorithm.

We do not claim that this definition is meaningful for hash output sizes as small as (e.g.) 512 bits; formalizing the collision resistance of SHA-512 remains an open problem. However, the definition does appear to be meaningful for hash output sizes larger than the sizes of the simulator-printing algorithms discussed above, say 1 megabyte.

One can try to separate this formalization from an intuitive notion of collision resistance as follows. Assume that a hash algorithm H is collision-resistant according to this definition; generate a "back door" consisting of two distinct gigabyte-long random strings r_{1}, r_{2} and an n-bit random string s; define a new function H^{\prime} that maps both r_{1} and r_{2} to s and that is otherwise identical to H. A collision in H^{\prime}, namely $\left(r_{1}, r_{2}\right)$, is known to the manufacturer of H^{\prime} and to anyone who looks at the most obvious program for H^{\prime}; but clearly no small program B will print a program A that has a noticeable chance of finding this collision.

However, this function H^{\prime} is itself not constructive: there is no size-limited cost-limited algorithm that prints a cost-limited algorithm that computes H^{\prime}. One can try to model collision resistance for such functions by allowing A to take a hash-computing program as an extra input, or one can simply restrict attention to constructive hash functions, where such issues do not seem to arise.
B.5. Modification 4: adding uniformity. The next response we consider is to eliminate non-uniform security definitions: to prevent precomputation by requiring a single attack algorithm to work against many different cryptographic systems.

The classic form of uniformity considered in the computational-complexity literature is size-uniformity. One considers, for example, an attack against the entire RSA family (a single algorithm that takes as input an RSA key of any length), not just RSA-3072. One defines RSA to be (t, ϵ)-secure if every attack taking time at most t has success probability at most ϵ; here both ϵ and t are functions of the length of the RSA modulus.

Observe that this approach abandons the goal of defining, e.g., the insecurity of RSA-3072. Substituting 3072 into ϵ and t does not work: it allows exactly the same precomputations as in Section 5.

An alternative, already used in common definitions of collision resistance, is to consider uniformity across wider families of functions. There is no longer a definition of the security of AES; instead there is a definition of the security of a family of 2^{128} variants of AES. This security depends on the choice of family. One
might try to define a family of functions "similar" to AES, hoping that the uniform security of this family reflects the actual security of AES; but cryptanalysts have little motivation to study the family, so building confidence is difficult. For RSA-3072 the situation is even worse: any reasonable family of 3072-bit functions arguably sharing the security of RSA-3072 seems to be vulnerable to the same precomputations as RSA-3072. For elliptic-curve cryptography the situation is somewhat better, since one can reasonably ask questions about the security of (e.g.) a random curve meeting the IEEE P1363 criteria over a randomly chosen 256 -bit prime field; however, this is of no help in understanding the security of the NIST P-256 curve.

It is clear that insisting on enough uniformity, taking enough steps away from specific cryptographic primitives towards sufficiently diverse families of cryptographic primitives, would eliminate the gap analyzed in this paper. The gap relies on non-uniformity, and we have chosen to highlight non-uniformity in the title of this paper.

The fundamental problem with this response is that it disconnects provable security from cryptographic reality. For almost twenty years the literature on provable concrete security has promised to formally define and study the security of specific cryptographic systems of interest to cryptographic users and cryptanalysts, such as AES and AES-CBC-MAC and RSA-3072. Adding uniformity would abandon this promise. Without these definitions it is unclear how to make meaningful statements comparing the security of two different ciphers, or two different curves, or any two cryptographic protocols that are specific enough to actually be used in practice.

This fundamental problem is already well known for the special case of collision resistance. For example, Rogaway in [76, Section 2] comments that uniformity conditions render collision-resistance definitions inapplicable to specific hash functions such as SHA-256 and in particular "distance the definition from the elegantly simple goal of the cryptanalyst: publish a collision for the (one) function specified by NIST."

A second problem with this response is that it forces syntactic changes to most theorems. For example, instead of proving a theorem comparing the security of a block cipher F to the security of $\mathrm{CBC}^{m}-F$ as in [12], one would have to prove a theorem comparing the security of a family of block ciphers to the security of the corresponding CBC family.
B.6. Recommendations. We believe that accurately modeling reality is more important than minimizing the number of changes required to the literature. We recommend switching to the $A T$ metric (modification 2), capturing real limitations on communication cost that are ignored by the RAM metric and the NAND metric. We also recommend adding constructivity (modification 3), capturing the fact that attackers are limited in precomputation cost. We recommend against adding uniformity (modification 4) ; users are in fact using AES and NIST P-256 and RSA-3072, not large families of variants of AES and NIST P-256 and RSA-3072.

We recommend stating provable-security theorems in a way that minimizes the hassle of switching to a new cost metric. For example, consider again the main theorem of [12], comparing the security of a block cipher F to the security of $\mathrm{CBC}^{m}-F$. To prove this theorem one compares $\operatorname{UseCBC}(A)$ to A in cost and in success probability, where A is any attack against $\mathrm{CBC}^{m}-F$ and UseCBC is a particular reduction producing an attack $\operatorname{UseCBC}(A)$ against F. The comparison of success probability is independent of the cost metric, and we recommend stating it as a separate theorem that can be reused for different cost metrics. The following theorem from [21] illustrates how simple such statements can be:
"Theorem 3.1. PrFactor $(\operatorname{RandSquare}(A)) \geq(1 / 2) \operatorname{PrInvBlind}(A)$."
The reduction RandSquare is defined before the theorem, and PrFactor and $\operatorname{PrInvBlind~are~two~types~of~success~probabilities.~This~theorem~is~independent~}$ of cost metric, and is easy to reuse in various higher-level theorems that compare the insecurity of the objects attacked by A and $\operatorname{RandSquare}(A)$ in various cost metrics: the proof of a higher-level theorem analyzes the relative costs of A and RandSquare (A) and appeals to this theorem for the relative success probabilities. Similarly, the main security theorem of [12] factors easily into (1) a lower-level theorem stating

Theorem. $\operatorname{AdvPRF}_{\mathrm{CBC}^{m}(F)}(A) \leq \operatorname{AdvPRP}_{F}(\operatorname{UseCBC}(A))+q^{2} m^{2} / 2^{l-1}$
and (2) a cost comparison of $\operatorname{UseCBC}(A)$ with A. Changing the cost metric (for example, to switch to the $A T$ metric and add constructivity as we recommend, or to make further changes) then requires merely redoing the cost comparison and the main security theorem; the lower-level theorem is unaffected and can simply be reused.

An essential feature of this modularization is that reductions such as UseCBC are defined outside theorems, so that one theorem can analyze the UseCBC success probability while another theorem analyzes the UseCBC cost. This type of modularization of provable-security theorems can be traced back to at least 1999 (see [17, Theorem 4.1]), if not earlier, although at that point it was not claimed to have any particular benefits.

We emphasize that this modularization does not mean abandoning concrete security definitions parametrized by attack cost, and does not mean abandoning cost analyses of reductions. On the contrary: it is obviously desirable to have meaningful " X is secure" statements as conclusions of theorems, and this is impossible without cost analyses and cost-based security definitions. Our proposed modularization factors each concrete-security theorem into two parts: a probability theorem and a higher-level cost-vs.-probability theorem. The work inside the probability theorem is independent of cost metric; cost analysis is isolated inside the higher-level theorem.

Our analyses suggest that constructivity and the $A T$ metric provide two levels of defense against the unrealistic attacks considered in this paper. However, we would not be surprised if further cost-model changes turn out to be desirable for other reasons, and we think that a modular style for provable-security theorems will reduce the effort required to make such changes in the future.
B.7. Eliminating the foundations. In the interest of completeness we also analyze the merits of an unusual response to the difficulties of defining security. This response, in a nutshell, is to stop defining security.

The idea of abandoning definitions of security is obviously a quite radical departure from the quotes given at the beginning of this paper (e.g., "formal definitions of security are essential") and from standard practice in the literature (see the sample in Appendix L). We agree with the mainstream view that definitions of security are important; this is exactly why we have investigated (1) the failures of the current definitions to accurately model actual security and (2) techniques to build more accurate models. We find it obvious that both of these directions of investigation are of wide interest. However, there is a small corner of the literature that can be seen as questioning whether security definitions are actually necessary, and we think that this question deserves analysis.

It might seem nonsensical to talk about "provable security" if there is no definition of the security being proven. However, if one proves that any attack against X can be converted into an attack against Y, then it might seem intuitively clear that X has been proven to be as secure as Y, even without definitions of what it means for X and Y to be secure. This approach turns out to be fraught with difficulties (see below), but it is at least conceivable that one can build a meaningful notion of security proofs without a definition of security.

Before analyzing the difficulties we review the history. The conventional wisdom has always been that there is no way to (accurately!) formalize collision resistance for a specific hash function such as SHA-256. The usual responses are to add uniformity (as in Appendix B.5) or to switch away from protocols that rely on collision resistance. A 2001 paper by Stinson [86] proposed to instead "study reductions among the different problems", and claimed that one can "study reductions without worrying about having to define [security], even if the hash function under consideration is fixed". Stinson's paper did not actually justify this claim (see below), but a 2006 paper "Formalizing human ignorance" by Rogaway [76] explored Stinson's proposal much more carefully and reported a "solution to the foundations-of-hashing dilemma".

Our impression is that most subsequent papers have continued to follow the usual responses, adding uniformity or switching away from collision resistance, rather than following the recommendations in [76]. This might be a reflection of the difficulties analyzed below. However, this might also be explained by the fact that [76] is only seven years old and has not yet had time to be explained in textbooks. A popularity measurement is not the same as an assessment of costs and benefits.

Neither [86] nor [76] suggested that abandoning definitions of security was a desirable course of action. Both papers were exploring what could be done given a lack of definitions of security, in particular for the narrow case of collision resistance. On the other hand, at the time there was also no indication of any problems outside this narrow case, and no motivation to find solutions to those problems. The standard security definitions were widely believed to be accurate
models of actual security-whereas now, after this paper, those definitions are widely understood to be inaccurate and not so easy to fix.

Rogaway, in response to an early version of this paper, pointed out to us the idea of abandoning definitions of security. If the approach of [76] allows proving collision-resistance theorems without a definition of collision resistance then presumably it also allows proving other security theorems without other security definitions. We are aware of two claims of benefits of abandoning a definition: the first is the claim that this allows simpler security theorems; the second is the claim that one no longer has to be concerned with getting the definition right. See below for our analysis of these two claims.

Of course, there are many roles for security definitions in the literature other than allowing formulation of " X is as secure as Y " proofs. Without definitions it is no longer clear how to assign mathematical meaning to, e.g., the conjecture that NIST P-256 is more secure than RSA-1024 (a statement made very frequently as an argument for ECC), or to the Bellare-Rogaway security conjectures about AES in [16, Section 3.6]. However, one can argue that the most important role for security definitions is to allow formulation of proofs.

We now inspect the details of how provable-security theorems might be formulated without security definitions. For concreteness we consider the following example, a special case of [76, Section 6]. Define H as SHA-256, and define E_{k} as Rijndael encryption of a 256 -bit block using a secret key k. The goal is to guarantee that $E_{k}(H(m))$ is a secure authenticator of m, assuming that H is collision-resistant and that E_{k} is a secure block cipher. The problem is that we cannot state a theorem with these hypotheses and this conclusion: we do not have a definition of the collision-resistance of H, and beyond that we do not want to use a definition of the security of E_{k} or a definition of the security of $E_{k} \circ H$.

Here are several attempts to formulate theorems that, without ever actually using definitions of security, guarantee MAC security of $E_{k} \circ H$ assuming PRF security of E_{k} and collision security of H.
Attempt 1: "If there is an attack against $E_{k} \circ H$ then there is an attack against E_{k} or an attack against H."

This theorem statement obviously provides zero assurance of the security of $E_{k} \circ H$: it is still true even if $E_{k} \circ H$ is replaced by something completely insecure, such as $E_{0} \circ H$. In particular, the conclusion "there is an attack against $E_{k} "$ is trivially true. For example, guessing k is an attack against E_{k}; it is a lowprobability attack, but the theorem statement did not require high probabilities. As another example, searching through all possibilities for k is an attack against E_{k}; it is a very slow attack, but the theorem statement did not put any limits on attack cost.

This first attempt might seem frivolous. We include it to emphasize that abandoning security definitions does not eliminate the need to define and analyze the success probability of attacks and the cost of attacks. Abandoning security definitions also does not evade the need for a careful definition of cost: for example,
omitting program length from the RAM metric would cause just as much trouble for these theorems as it causes for security definitions.
Attempt 2: "If there is a (q, t, ϵ) attack against $E_{k} \circ H$ then there is a (q, t, ϵ) attack against E_{k} or a (t, ϵ) attack against H."

This is another useless theorem statement, again providing zero assurance of the security of $E_{k} \circ H$. The most obvious problem is that there is a (t, ϵ) attack against H (for any reasonable (t, ϵ)), namely a short algorithm that simply knows, and prints, a collision in H.

Note that similar (although quantitatively less severe) comments apply to E_{k}. This type of theorem statement fails to rule out precomputations in general, not just precomputations of collisions.

This second attempt might seem almost as frivolous as the first attempt. However, as pointed out by Rogaway in [76], Stinson's theorems in [86] are stated in exactly this way. For example, $[\mathbf{8 6}$, Theorem 3.1] states that "If there exists an (ϵ, q) algorithm" for second preimages in H then "there exists an (ϵ, q) algorithm" for collisions in H. Stinson describes this theorem as a "result" capturing the intuition that second preimages are at least as difficult as collisions; but in fact the same statement can be trivially proven even if second preimages are replaced by something much easier to compute.
Attempt 3: "There exist algorithms B and C such that if A is a (q, t, ϵ) attack against $E_{k} \circ H$ then $B(A)$ is a (q, t, ϵ) attack against E_{k} or $C(A)$ is a (t, ϵ) attack against H." Here $B(A)$ means B using A as an oracle, and $C(A)$ means C using A as an oracle.

Unfortunately, this is yet another useless theorem statement. To prove the theorem, even with $E_{k} \circ H$ replaced by something insecure, simply define C as a fast algorithm that ignores A and prints a collision in H. Such an algorithm certainly exists.
Attempt 4: "There exist algorithms B and C, explicitly given in the proof of this theorem, such that if A is a (q, t, ϵ) attack against $E_{k} \circ H$ then $B(A)$ is a (q, t, ϵ) attack against E_{k} or $C(A)$ is a (t, ϵ) attack against H."

This theorem statement follows all of the rules stated by Rogaway in [76]. In fact, it has only superficial differences from the theorem statement in [76, Section 6]. Rogaway's theorem is stronger, asserting that a single B and C work for all choices of H and E_{k} given oracle access to H and E_{k}; but we emphasize that this is not the same as requiring uniformity, and that substituting particular choices of H and E_{k} produces a theorem about those choices. (We have also slightly oversimplified the t and ϵ portions of the theorem statement: we are ignoring the fact that Rogaway's $B(A)$ and $C(A)$ are slightly slower than A. However, this looseness is orthogonal to the issues analyzed here.)

Unfortunately, there is a severe lack of clarity in this theorem statement, and in the theorem statements in [76]. The critical question is what it means for an algorithm to be "explicitly given". Nowhere in [76] can one find a definition of this phrase, and there is certainly no standard definition in the mathematical literature.

There are two obvious constraints on how "explicitly given" must be defined in order to be useful here. First, the definition must be broad enough to allow typical security proofs; otherwise one cannot credibly propose rewriting the provablesecurity literature in this style. Second, the definition must be narrow enough to rule out trivial proofs that can be carried out for insecure protocols and that therefore provide zero assurance of security. Unfortunately, it is not at all clear that both of these constraints can be satisfied simultaneously.

As an illustration of the first constraint, consider the classic "cascade" (i.e., session-key) security theorem proven by Bellare, Canetti, and Krawczyk in [8]. The proof generates a series of q different intermediate attack algorithms, where q is the number of queries allowed to the original attack. If "explicitly given in the proof" is defined as "substring of the proof" then the Bellare-Canetti-Krawczyk proof is ruled out: the proof is a fixed-length string, independent of q, and q is arbitrarily large, so it is obviously not true that each of these q intermediate algorithms appears as a substring of the proof. All known proofs of this basic theorem work in essentially the same way. Anyone reading the proof would agree that the algorithms are reasonably explicit, not cheating in any way that feels troublesome, but [76] certainly does not give a definition of "explicitly given in the proof" that captures this intuition.

As an illustration of the second constraint, consider again the Attempt 4 theorem stated above, and again assume that "explicitly given in the proof" is defined as "substring of the proof". Here is an alternate proof of the same theorem:

- Case (0,1): If SHA-256 collides on inputs 0 and 1 (encoded as 257-bit strings), define C as the algorithm "print 0 ; print 1 ".
- Case (0,2): If SHA- 256 collides on inputs 0 and 2 , define C as the algorithm "print 0; print 2".
- ...
- Case $\left(2^{256}-1,2^{256}\right)$: If SHA-256 collides on inputs $2^{256}-1$ and 2^{256}, define C as the algorithm "print $2^{256}-1$; print 2^{256} ".
- By the pigeonhole principle SHA-256 collides for some inputs i and j with $0 \leq i<j \leq 2^{256}$, so case (i, j) occurs. In each case C is a (t, ϵ) attack against SHA-256. Also define B as the algorithm that always prints 0 .

This proof works for all reasonable (t, ϵ). It does not need the hypothesis on A : it also works if $E_{k} \circ H$ is replaced by a completely insecure construction. This proof is extremely long, but the word "theorem" does not mean "theorem with a short proof"; it does not even mean "theorem with an efficiently verifiable proof". (Of course, the structure of this particular proof does allow efficient verification; this is an illustration of what is called a "reflection principle" in mathematical logic.) To summarize, the most obvious definition of "explicitly given in the proof" turns out to be a vacuous condition, reducing Attempt 4 to Attempt 3.

Note that this proof is highly non-uniform: the definition of C depends on the details of SHA-256. Adding enough uniformity rules out this proof, and also allows an easy definition of collision resistance. The problem with uniformity (as
in Appendix B.5) is that its definition of collision resistance is only for families of hash functions, whereas what users care about is the collision resistance of a few specific functions such as SHA-256. The goal of [86] and [76] is to state theorems that apply to these specific functions.

This proof, despite its triviality, is a quite serious attack against the model stated in [76]: it shows that one can prove "security" theorems that follow all of the rules in [76] but that apply to trivially breakable cryptographic systems. Again, we are assuming that "explicitly given in the proof" means "substring of the proof", but there is nothing in [76] giving a different definition.
Attempt 5: "There exist algorithms B and C, explicitly given in a first-order proof of this theorem in ZFC set theory having length at most 2^{50}, such that if A is a (q, t, ϵ) attack against $E_{k} \circ H$ then $B(A)$ is a (q, t, ϵ) attack against E_{k} or $C(A)$ is a (t, ϵ) attack against H."

The idea of the length limit is to prohibit the trivial proof stated above. One can imagine that the length limit does not pose a problem for "good" proofs, and one can even imagine that progress in computer verification of proofs will allow this length limit to be formally verified.

However, this theorem has another proof that is short and that does not need the hypothesis on A; consequently this is yet another theorem statement that provides zero security assurance. This short proof appears somewhere in the following long list of short possible proofs:

- Possible proof $(0,1)$: Define C as the algorithm "print 0; print 1 ". Then C is a (t, ϵ) attack against SHA-256. Define B as the algorithm that always prints 0 .
- Possible proof $(0,2)$: Define C as the algorithm "print 0 ; print 2 ". Then C is a (t, ϵ) attack against SHA-256. Define B as the algorithm that always prints 0 .
- ...
- Possible proof $\left(2^{256}-1,2^{256}\right)$: Define C as the algorithm "print $2^{256}-1$; print $2^{256 "}$. Then C is a (t, ϵ) attack against SHA-256. Define B as the algorithm that always prints 0 .

By the pigeonhole principle again, SHA-256 does in fact collide for some (i, j), and it is then easy to verify that possible proof (i, j) is a correct proof of this theorem. Statistical sampling indicates that almost all of the possible proofs listed here are incorrect, but this is irrelevant to the validity of the theorem. Note that this proof strategy also shows that requiring C to be given at a fixed position in the proof, say the beginning, is still insufficient to guarantee security.
Attempt 6: "Define B as the following algorithm: ... Define C as the following algorithm: \ldots If A is a (q, t, ϵ) attack against $E_{k} \circ H$ then $B(A)$ is a (q, t, ϵ) attack against E_{k} or $C(A)$ is a (t, ϵ) attack against H."

The critical change here is that the algorithm is defined as an explicit constant in the theorem itself, not just in some proof of the theorem. A reader faced with a theorem of this shape is no longer faced with a mere existence statement: by communicating the theorem statement one is also communicating the reduction
algorithms B and C. This prohibits precomputation: more precisely, the precomputation that printed the reduction algorithms is included in the computation that printed the statement of the theorem, and the reader seeing the theorem sees that this computation was in fact carried out.

Of course, anyone who knows a short collision in H can prove a theorem having this shape, and similar comments apply to E_{k}; but the user of the theorem is starting from the belief that nobody knows such attacks, and is deducing a similar belief about $E_{k} \circ H$. This theorem statement, unlike the previous theorem statements, does seem to say something meaningful about $E_{k} \circ H$.

There are, however, several obvious difficulties with trying to rewrite the entire literature on provable security within the theorem structure illustrated by Attempt 6. First, with this structure there are no longer any security theorems with simple statements: every security theorem is forced to include the reduction algorithms, no matter how complicated those reductions might be. (Otherwise the theorem user is faced with Attempt 4, which as demonstrated above provides zero security assurance.) For comparison, with our recommended modularization (Appendix B.6), a conversion from a (t, ϵ) attack against X to a (t, ϵ) attack against Y is first stated explicitly as part of a low-level theorem, but is then encapsulated inside a much simpler high-level theorem statement, namely that X is as secure as Y.

Second, the Attempt 6 structure makes composition unnecessarily tedious. It has become increasingly common, as provable security has tackled more and more sophisticated protocols, for a theorem "If Y is secure then X is secure" to be proven by composing one theorem "If Y is secure then Z is secure" with another theorem "If Z is secure then X is secure". Someone who later finds a simpler way to prove one of the components, such as a simpler reduction demonstrating the same quantitative security relationship between Z and X, can simply publish the new proof of exactly the same $Z \Rightarrow X$ theorem, without any need to worry about how the theorem has been used in higher-level theorems. This does not work with the Attempt 6 structure; the structure requires much heavier data flow. The $Y \Rightarrow X$ theorem statement needs to include an explicit definition of a reduction that composes the reductions defined in the $Y \Rightarrow Z$ and $Z \Rightarrow X$ theorems; those reductions need to be either copied from the relevant papers, or referred to through global names that clearly specify those particular reductions. Publishing a simpler reduction from Z to X no longer means giving a simpler proof of a single theorem: it means changing the statement not just of that theorem but also of every higher-level theorem obtained from that theorem by composition.

Third, and most importantly, the Attempt 6 structure is clearly not broad enough to handle the diversity of techniques used in typical security proofs, such as the classic Bellare-Canetti-Krawczyk "cascade" security proof mentioned earlier. Any proof that builds more than a constant number of reduction algorithms is syntactically prohibited. Any proof that makes a data-dependent choice between several reduction algorithms is syntactically prohibited.

One might try to loosen the syntactic structure of Attempt 6 so as to allow the "cascade" security proof and many other important security proofs without allowing the trivial precomputation proofs described above. However, we are not aware of any ideas for how to do this (in [76] or elsewhere), or even any reason to believe that it is possible. The essential feature of the "cascade" security proof is constructivity, and the only approach we have found to defining this (see Appendix B.4) is quantitative: specifically, we quantify the computation required to output the q intermediate reductions considered in the proof. This is an easy algorithm analysis, and one could generalize it to an analysis of all algorithms meeting a specific set of syntactic constraints, but then the next security proof will require yet another set of ad-hoc constraints.
Summary and evaluation. With these examples in mind we return to the two claims mentioned above: first, that abandoning definitions of security allows simpler security theorems; second, that abandoning definitions means that one no longer has to be concerned with getting the definitions right.

Our analysis provides no support for either of these claims. This entire approach still needs probability analyses, still needs cost analyses, and still has trouble with precomputation; these are exactly the fundamental issues that arise in formulating security definitions that accurately model actual security. The theorem statements become much more complicated, adding an ill-defined requirement for explicit algorithms in proofs and obscuring fundamental precomputation problems without actually solving those problems. A sufficiently rigid syntactic structure for theorems does appear to prevent pathologies but also makes theorems much more complicated to state and use; most importantly, this structure is much too rigid to handle typical security proofs.

For comparison, all available evidence is that our recommended security definitions accurately model actual security. Giving security definitions allows simple, well-defined conjectures directly addressing what the user wants to know: namely, X reaches a particular security level. It allows simple, well-defined statements of what an attack accomplishes: namely, X does not reach a particular security level. It allows simple, well-defined theorem statements: the hypothesis is that Y reaches a particular security level, and the conclusion is that X reaches a particular security level. The work required to prove a theorem is the fundamental work required for any meaningful security theorem: quantitative analysis of probability, cost, and precomputation.

G Appendix: Graphs

Success probability

Fig. G.1. Cost summary of PRP attacks against one K-bit key. Horizontal axis: Attack success probability p, from $1 / 2^{K}$ to 1 , on a logarithmic scale. Vertical axis: Attack cost, from 1 to 2^{K}, again on a logarithmic scale. Top curve (green): Cost $2^{K} p$, approximating cost of simple exhaustive search. Bottom curve (red): Cost $2^{K} p^{2}$ for $p \leq 2^{-K / 3}$ and $2^{2 K / 3} p$ for larger p, approximating RAM/NAND cost of best attack known. Middle curve (blue, merging with green): Cost $2^{3 K / 2} p^{3}$ for $p \leq 2^{-K / 4}$ and $2^{K} p$ for larger p, approximating $A T$ cost of best attack known.

Success probability

Fig. G.2. Cost summary of discrete-logarithm attacks for a group of size ℓ. Horizontal axis: Attack success probability p, from $1 / \ell$ to 1 , on a logarithmic scale. Vertical axis: Attack cost, from 1 to $\sqrt{\ell}$, again on a logarithmic scale. Bottom curve (red): Cost $(p \ell)^{1 / 3}$, approximating RAM/NAND cost of best attack known. Top curve (blue): Cost $(p \ell)^{1 / 2}$, approximating $A T$ cost of best attack known.

L Appendix: Literature samples

To collect data regarding standard practice in the literature on provable concrete security, we scanned the proceedings of Crypto 2012, searching for concrete secu-
rity definitions and claims of provable concrete security. This appendix reports the results of this scan.

Most of the "provable security" papers do not prove anything about concrete security. Some use information-theoretic security notions that cannot be broken by any amount of attacker computation; the majority use purely asymptotic security notions such as "every probabilistic polynomial-time adversary has negligible success probability".

There are, however, five provable-concrete-security papers. Each of these five papers explicitly claims to "show" or "prove" or "guarantee" bounds that involve the "security" (or "insecurity" or "Adv") of some cryptographic systems. Proving such bounds obviously requires a quantitative definition of the "security" of a system; the central question here is what definitions the papers are actually using.

Inspection of these papers - see below for details - suggests that it is completely standard to use definitions that express exactly the following situation: there does not exist an algorithm that breaks the system with probability above ϵ while satisfying specified limits on "time", queries, etc. None of the five papers deviate from this standard. Three of the papers explicitly state new definitions that follow this standard. The other two papers use a classic special case, namely PRP "security", without defining it; after many years of papers repeating the same definition of PRP "security" - a settled definition that also follows this standard - the reader is forced to assume that these two papers are also using that definition.
L.1. Details. The five papers are as follows, in the same order that they appear on Springer's web site.

Jager, Kohlar, Schäge, and Schwenk in [50] give a "formal proof that [one version of TLS-DHE] is a secure authenticated key exchange protocol", define "the notion of authenticated and confidential channel establishment", and prove that a particular protocol "forms a secure ACCE protocol". [50, Definition 2] defines an encryption scheme to be (t, ϵ)-"secure" if "all adversaries A running in time at most t " have success probability at most ϵ; similar definitions continue throughout the paper. [50, Theorem 1] assumes that various primitives are (t, ϵ) "secure" and concludes that "any adversary" that $\left(t^{\prime}, \epsilon^{\prime}\right)$-breaks a particular protocol with " $t \approx t^{\prime \prime}$ must have $\epsilon^{\prime} \leq \cdots$. This is trivially equivalent to a conclusion that the protocol is $\left(t^{\prime}, \epsilon^{\prime}\right)$ - "secure" under the definitions in the paper.

Bellare, Ristenpart, and Tessaro in [13, Section 2] define a " $\left(t, q, q_{c}\right)$-adversary" as an algorithm that "runs in time t and makes at most $q[i]$ encryption queries of the form \cdots and makes at most q_{c} corruption queries" and then define $\boldsymbol{A d v}_{\mathrm{SE}, m}^{\mathrm{uku}}\left(t, q, q_{c}\right)$ as the maximum advantage among "all $\left(t, q, q_{c}\right)$-adversaries". [13, Theorem 1] bounds " $\mathbf{A d v}_{\mathrm{SE}, m}^{\mathrm{uku}}\left(t, q, q_{c}\right)$ " relative to another similarly defined insecurity function.

Hoang, Morris, and Rogaway in [47, Section 4] briefly discuss the "complexitytheoretic interpretation" of an information-theoretic result. They do not state a formal theorem but they say that "the PRP-security of E is the PRF-security of F minus [something small]". The paper neither gives nor cites a definition
of "the PRP-security of E ", so (as above) the reader is forced to assume that the paper reuses the definition given in many previous papers, referring to a low success probability of all algorithms subject to specified limits on time and queries. Similar comments apply to [47, Section 5], which asserts that one is "guaranteed" that attacks have a success probability of "less than 10^{-10} " plus the "insecurity" of AES.

Landecker, Shrimpton, and Terashima in [59, page 16] say that "the bulk of the paper is dedicated to showing that" the proposed "CLRW2 TBC" is "a strong tweakable-PRP" under various hypotheses, one hypothesis being that the underlying cipher E "is a secure strong-PRP". The paper neither gives nor cites a definition of "secure strong-PRP", so (as above) the reader is again forced to assume the standard definition. This assumption is consistent with the formulation of the "main technical result" of the paper, [59, Theorem 1], which hypothesizes that A is "an adversary asking a total of q queries to its oracles, these of total length μ, and running in time t ', and concludes that "there exists an adversary B using the same resources" whose success probability has a particular lower bound in terms of the success probability of A. The existence of an algorithm with specified success probability, time, etc. is exactly what is logically required to prove insecurity under the standard definition.

Hofheinz and Jager in [48, Theorem 5] state, under various hypotheses, that a particular system is " (ϵ, t, μ, q)-IND-CCA secure". This means, by [48, Definition 5], that "there exists no adversary" that (ϵ, t)-breaks the (μ, q)-IND-CCA security of the system, i.e., there exists no adversary "that runs in time t and wins with probability $1 / 2+\epsilon$ " using μ public keys and q queries.

Q Appendix: Frequently asked questions

This appendix answers several questions that we have been asked regarding this paper.
Q.1. In the real world, an attack is applied to many targets. Doesn't this make the precomputation effectively free? No, not in general. The fallacy here is addressed in Appendix B.1.1.
Q.2. Aren't we simply making the user safer if we underestimate attack cost by ignoring precomputation? No. The fallacy here is addressed in Appendix B.1.2.
Q.3. Why are you analyzing the cost of precomputation in these attacks? Didn't you just say that this cost is irrelevant to the security definitions? The security definitions are not accurate models of actual security. Seeing the cost of precomputation (e.g., 2^{128} for the AES attack and 2^{170} for the NIST P-256 attack) is critical for understanding this gap. We recommend fixing the security definitions to take this cost into account; see Appendices B. 4 and B.6.
Q.4. I don't understand how MD5 could possibly break AES. Are you sure? Yes. The analysis is easy, using standard heuristics, and is backed by the computer experiments reported in Appendix V.
Q.5. If one special precomputation is enough to completely break AES, isn't that serious enough that the metric should capture it? Of course. Success probability is important, and the number of targets is important. But the difficulty of carrying out the precomputation is also important, and is ignored in the standard security definitions. We propose taking all of these features into account. See Appendix B.6.
Q.6. Sorting costs $n \log _{2} \boldsymbol{n}$. How can you take a metric seriously if it says that sorting costs $n^{1.5}$? The best reported results for the energy consumption of sorting [69] are 43700 items sorted per joule for $10^{10} 100$-byte items, and 9700 items sorted per joule for $10^{12} 100$-byte items. The ratio 43700/9700 is 4.5 , and the chip evolution mentioned in Appendix A. 3 can be expected to improve the small sort by a larger factor than the large sort, pushing the ratio up towards 10 . For comparison, the ratio $\left(\log _{2} 10^{12}\right) /\left(\log _{2} 10^{10}\right)$ is only 1.2 , obviously understating the heavy communication costs of sorting. See [24] for a more detailed analysis of physical constraints upon algorithm performance.
Q.7. I spend time A setting up my area- \boldsymbol{A} hardware, plus time T waiting for the results. Isn't $\boldsymbol{A}+\boldsymbol{T}$ my actual cost? If you have n processing cores, each carrying out a series of n separate computations, then you have carried out n^{2} computations and used energy proportional to n^{2}, but $A+T$ is only linear in n. The RAM metric avoids this pathology by imposing an unrealistic prohibition upon parallel computations, but it falls prey to other pathologies.
Q.8. Isn't your $\boldsymbol{A T}$ metric simply a reinvention of Wiener's full-cost metric? It's not our $A T$ metric. The $A T$ metric has decades of history in algorithm analysis, and more than a decade of history in cryptanalytic algorithm analysis; see, e.g., [29] and [18]. Wiener's 2004 full-cost metric [90] appears to be equivalent to the $V T$ metric analyzed in the 1983 papers [77] and [74]. See Q. 9 for further analysis of $V T$.
Q.9. The world is three-dimensional! Isn't VT a more realistic metric than $\boldsymbol{A T}$? The world is three-dimensional, but power consumption and heat dissipation are two-dimensional. A modern billion-transistor CPU is much more like a 32768×32768 square than a $1024 \times 1024 \times 1024$ cube; "three-dimensional" manufacturing technology is limited to a small number of layers (e.g., a flat $4 \times 16384 \times 16384$ box). Similarly, a "three-dimensional" computer cluster actually provides orders of magnitude faster communication within two-dimensional chips than it does between chips.

At a larger scale, each square meter of the Earth's atmosphere receives at most 1361 watts from the Sun, so one cannot hope to sustain an A-squaremeter computer that consumes more than $1361 A$ watts, no matter what the computer technology is. A three-dimensional $V T$-optimized computer does not
have enough surface area to receive and dissipate the energy it uses, and if one tries to "spread it out" to give room for more energy then one ends up with $V T$ cost matching $A T$ cost. One might argue that it is possible to temporarily violate the $1361 A$ maximum by shifting energy through time, as illustrated by oil drilling, or similarly by shifting energy around the Earth's surface, but this argument ignores the energy cost of the shifting mechanisms.

Furthermore, three-dimensional circuit designs pose severe temperature problems even if enough energy magically becomes available at the surface of the computer. Increasing the size of a $V T$-optimized design, while still providing the energy needed for each bit operation, requires a corresponding increase in the amount of power that passes from the surface through each point of the design. This is incompatible with the temperature limits that are needed for adequate error correction in any physical system for computation. This is true even for limited three-dimensional systems that use only one layer for transistors and the rest for wires: wires require energy proportional to their length.

We have checked that the $A T$ analyses of high-probability attacks in this paper would produce the same results if $A T$ were replaced by $V T$, so the criterion of avoiding these "pathologies" is equally served by $A T$ and by $V T$, but $A T$ is much more accurate in modeling physical reality.
Q.10. Doesn't the physical reality actually say that each computation is $\boldsymbol{O}(\mathbf{1})$? Quite possibly, yes. We recommend Aaronson's exposition in [4] of a physics argument concluding that the "maximum number of bits that could ever be used in a computation in the physical world" is about 10^{122}, inversely proportional to the cosmological constant. The two major steps in the argument are as follows. First, trying to pack information too densely would violate the Bekenstein-Hawking bound (see, e.g., [6]), which states that the entropy inside a spherical region of space is at most $1 / 4$ of the surface area (not volume) of the region measured in Planck units. Second, as observed by Bousso in [28], information located too far away is forced by the nonzero cosmological constant to accelerate away so quickly as to become unobservable.

This bound on the number of bits used by a computation implies that every terminating physical computation has overwhelming probability of terminating within a particular constant number of bit operations. Standard asymptotic complexity classes such as P, BPP, BQP, etc. have no logical connection to such short computations. Aaronson's only suggestions for allowing a physical realization of the standard complexity classes are to switch to an imaginary alternate universe in which the cosmological constant is zero, or a sequence of imaginary alternate universes with cosmological constant converging to zero.

Fortunately, these asymptotic issues also have no logical connection to concrete security questions such as the security of AES-128, NIST P-256, DSA-3072, and RSA-3072. This paper focuses almost exclusively on concrete security questions, with asymptotics appearing only occasionally as inspiration. For example, Section 5.2 briefly analyzes the asymptotics of one algorithm, but this is merely a warmup for the concrete analysis of the same algorithm in Section 5.3.
Q.11. What. . . is the air-speed velocity of an unladen swallow? What do you mean? An African or European swallow?
Q.12. Have you considered effectivity? Yes. Effectivity is another name for constructivity, which is analyzed in Appendix B.4. We recommend a specific strategy (which appears to be new) for incorporating a quantitative form of constructivity into security definitions.
Q.13. When you say that the algorithms are non-uniform, aren't you really trying to say that the algorithms are non-constructive? Almost all of the algorithms we present are non-uniform: for example, the RSA attack requires different precomputations for sufficiently different modulus sizes, and the ECC attack requires different precomputations for different curves. Almost all of the algorithms we present are also non-constructive, i.e., very hard to find; see Appendix B. 4 for a quantitative formalization of this intuition. Nonuniformity and non-constructivity are not the same concept.
Q.14. Isn't "non-uniformity" a purely asymptotic concept? No. Consider, for example, a theorem proving that for each 512-bit string s there is a fast algorithm A that, given a 512-bit string t as input, prints collisions in the 512 -bit-to-128-bit function $x \mapsto \operatorname{MD5}(s, t, x)$. Consider a stronger theorem proving that there is a fast algorithm A that, given 512-bit strings s and t as input, prints collisions in the 512-bit-to-128-bit function $x \mapsto \operatorname{MD5}(s, t, x)$. The difference between these theorems is precisely in the amount of uniformity imposed on A. There are no asymptotics here.
Q.15. My favorite textbook defines "non-uniform" algorithms specifically as families of polynomial-size circuits, one circuit for each input size, and defines "uniform" algorithms specifically as polynomial-time algorithms. Aren't these definitions completely standard? Yes, these are two quite standard uses of the word "uniform", and often the only uses described in introductory textbooks, the same way that many introductory mathematics textbooks define "small" as comparing real numbers in the usual ordering. However, the complexity literature actually uses the name "uniform" for a much wider range of definitions, the same way that the mathematics literature uses "small" for a much wider range of definitions.

Example 1: Consider Goldreich's discussion in [43] of the "amount of nonuniformity" in a circuit family. This is a quantitative metric (the length of an advice string), easily capturing the introductory notions of "uniform" (advice limited to 0) and "non-uniform" (no limit on the advice) but also allowing analysis of intermediate amounts of uniformity.

Example 2: Consider Katz's discussion in [52] of "logspace-uniform" families of circuits. Compared to the introductory polytime-uniform concept, logspaceuniform restricts non-uniformity in another dimension, different from the length of an advice string.

Example 3: Consider Shor's discussion in [83, Section 2] of the "additional uniformity condition" used to define the complexity class BQP: a condition on
families of real numbers used as constants in algorithms, yet another dimension of uniformity.

Example 4: Consider Koiran's comment in [57, Section 6] that the "only difference between VPSPACE ${ }^{0}$ and uniform VPSPACE ${ }^{0}$ is the nonuniformity of the coefficient function; VPSPACE is even more nonuniform since arbitrary constants are allowed".
Q.16.? 42.
Q.17. Isn't the hashing attack in Section 2 outperformed by the linearcryptanalysis approach of De, Trevisan, and Tulsiani? No. The speeds are identical at the level of detail of our analysis. The linear-cryptanalysis approach is cited in Section 2 for the benefit of provability, but the hashing approach is amply tested and has the benefit of simplicity.
Q.18. Why do you allow NIST P-256 precomputations that depend on a particular base point? Don't users choose separate base points on the P-256 curve? The NIST P-256 standard, like other curve standards, specifies a particular base point P; each user computes a separate public key Q as a multiple of the same P. There is negligible security benefit in having a separate (P, Q) pair for each user: the attacker simply chooses his own base point B and computes $\log _{P} Q$ as $\left(\log _{B} Q\right) /\left(\log _{B} P\right)$, allowing any amount of B-specific precomputation for at most a factor of 2 in attack cost.
Q.19. Isn't it already well known that there's a gap between attack algorithms that exist and attack algorithms that can be constructed? For one important problem, the problem of finding hash-function collisions, it is indeed very well known that "the best algorithm that exists" is not a reasonable model of "the best algorithm that can be found". For example, there is a fast algorithm that outputs collisions in SHA-512, but actually finding such an algorithm seems hopeless. (See Appendix B.4.2 for further analysis of this gap.)

However, hash-function collisions seem to be viewed as an exceptional case. The same model is widely viewed as reasonable for AES security, RSA security, etc., as illustrated by the conjectures from [15, Section 1.4], [16, Section 3.6], [7, Section 3.2], etc. Rogaway begins [76] by describing "The Foundations-ofHashing Dilemma" with no indication that the dilemma extends beyond hashing.
Q.20. These AES-128 and NIST P-256 and DSA-3072 and RSA-3072 issues are just quantitative, right? Yes, they're "just" quantitative, but getting the quantitative details right has always been a major theme of the concrete-security literature. This paper is aiming at large gaps that affect wide portions of the literature; for comparison, the gaps in many well-known "tightness" papers are quantitatively smaller and apply to much narrower portions of the literature.
(Note also that the attacks analyzed in this paper place lower bounds on standard-definition insecurity, whereas even a loose theorem places conditional upper bounds on standard-definition insecurity. One can confidently compensate for a lack of tightness by increasing parameters, whereas there is no basis for
confidence in, e.g., a conjecture of 2^{85} standard-definition "security" for AES. It is thus possible that the quantitative problems here are even more severe.)

Bellare, Desai, Jokipii, and Rogaway wrote in [10] that when reductions are loose "one must use a larger security parameter to be safe, reducing efficiency. Thus, in the end, one pays for inefficient reductions in either assurance or running time." Our attacks against AES-128, NIST P-256, et al. show that there is an even larger loss of "either assurance or running time" from a failure in the standard security definitions: specifically, an inaccurate model of the set of algorithms available to the attacker.
Q.21. Doesn't Rogaway's "human ignorance" model already solve these definitional problems? No; it doesn't even try.

Stinson in [86] proposed explicit hash-function reductions as a workaround for the difficulties of defining collision resistance. Rogaway's "Formalizing human ignorance" paper [76] refined this proposal, giving examples of apparently useful theorems involving collision resistance. See Appendix B. 6 and Appendix B. 7 for a detailed review and analysis of these proposals.

The "human ignorance" line of work does not attempt to find security definitions that accurately model actual security. For example, this line of work does not attempt to find a realistic formalization of the statement "SHA-512 is collision-resistant"; it instead attempts to state theorems that say something meaningful about collision resistance despite the lack of definitions of collision resistance. What is being formalized is not actually the human ignorance of collisions in SHA-512, but the implication between human ignorance of collisions in SHA-512 and human ignorance of various other attacks. Similarly, this line of work does nothing to solve the problem of finding a realistic formalization of statements such as "NIST P-256 is secure" - a problem that was incorrectly believed to be solved many years ago and that is shown in this paper to be much more subtle.

Our work is aimed at finding security definitions that do accurately model actual security. Sections $2,3,4$, and 5 analyze inaccuracies in the current definitions; Appendix B analyzes the merits of four proposed modifications to the definitions, and recommends two of the modifications. One of our modifications even makes progress towards defining collision resistance; see Appendix B.4.
Q.22. Are you saying that the $\boldsymbol{A T}$ metric fixes everything? No. Appendix B. 3 evaluates switching to the $A T$ metric; our analyses suggest that this switch fixes essentially all pathologies except in one corner case. Appendix B. 4 evaluates adding constructivity; our analyses suggest that this fixes some corner pathologies. Appendix B. 6 recommends both of these changes, and also recommends modularizing theorems to accommodate further changes.
Q.23. Are you seriously suggesting redoing all the security definitions and proofs in the literature to use constructivity and the $A T$ metric?
Yes. A few theorems are already factored in the way we recommend in Appendix B.6, but the vast majority of definitions and theorems require new work. Some proofs, such as the "coin-fixing" proofs criticized in [55], will not survive
the transition to constructivity. Our impression is that most proofs in the literature are constructive, but tightness will often change dramatically (see, e.g., the comments on repeated queries in Appendix B.2), imposing surprisingly small limits on the number of queries that can be tolerated before a proof becomes vacuous and raising the question of whether there are tighter proof strategies.
Q.24. Why should we rewrite theorems? Why not just make an inventory of the occasional theorems using non-constructive reductions? A partial list of non-constructive reductions provides zero assurance to a reader who wants to know whether another reduction is constructive. Making a complete list of non-constructive reductions requires doing the work of checking every proof in the literature. A positive list of the proofs that have been checked is far less error-prone than a negative list of the bad proofs. Theorem statements are the standard mechanism to say what exactly has been checked, so that users know what security guarantees they are actually being provided.
Q.25. Can't we just assume that $A T$ theorems will look the same as current theorems? No. See Q.23.
Q.26. Can't we just assume that constructive theorems will look the same as current theorems? No, not always. See Q.23.
Q.27. How do you expect authors to learn how to do $A T$ algorithm analyses? The $A T$ metric is used in thousands of papers. We recommend the classic paper [29] for definitions and for illustrative algorithm-analysis examples, and the newer paper [18] for several examples of $A T$ analysis of cryptanalytic algorithms. Much lengthier expositions can be found in hardware-design textbooks.
Q.28. Isn't $A T$ essentially the same as the product of space and time for the normal RAM model of computation, or the product of program size and time? No; it isn't even close.

Consider, for example, sorting n numbers, each having $n^{o(1)}$ bits. The $A T$ cost is $n^{1.5+o(1)}$: specifically, a square chip of area $n^{1+o(1)}$ finishes sorting in time $n^{0.5+o(1)}$ using [88] or [81] or [80]. The same exponents also apply to n-bit multiplication and many other fundamental communication-intensive subroutines; see [29].

The sum of RAM time and space is much smaller, $n^{1+o(1)}$, because RAM time ignores communication cost. The product of RAM time and program size is also $n^{1+o(1)}$. Note that this $n^{1+o(1)}$ is physically unrealistic; see Q.6. The product of RAM time and space is much larger, $n^{2+o(1)}$: this metric pays for space while failing to allow any compensating parallelism. All of these RAM-based metrics are very far from the $A T$ cost.

Analogous gaps appear for the same reasons in Section 5 of this paper, again so large as to be easily visible in asymptotic exponents.
Q.29. $A T$ increases by a factor of 2^{5} if A increases from 2^{10} to 2^{20} while T decreases from 2^{50} to 2^{45}, but isn't this decrease in T much more important than the minor increase in \boldsymbol{A} ? No, it isn't.

Of course, A and T can be evaluated differently, producing different optima on this two-point area-time tradeoff curve, and obviously an arbitrary curve cannot be mathematically captured by a single number. As mentioned in Appendix A, hardware designers often consider more general functions of (A, T).

However, $A T$ is the primary metric in thousands of hardware-design papers, including essentially every serious paper on cryptanalytic hardware. The core reason is parallelism. Even if the $\left(2^{10}, 2^{50}\right)$ chip cannot be parallelized into $\left(2^{20}, 2^{40}\right)$, it can certainly be parallelized into $\left(2^{20}, 2^{50}\right)$ solving 2^{10} problems at once, and more generally $\left(2^{20} M, 2^{50} N\right)$ solving $2^{10} M N$ problems. For comparison, the $\left(2^{20}, 2^{45}\right)$ chip implies $\left(2^{20} M, 2^{50} N\right)$ solving just $2^{5} M N$ problems, which isn't as good. This is perfectly captured by $A T$, and more generally by the standard concept of price-performance ratio.

Of course, if one of the algorithms can be adapted to achieve better than $\left(2^{20}, 2^{50}\right)$ solving 2^{10} problems, there is an obvious benefit to the algorithm user. This benefit is also visible in $A T$.
Q.30. Does anyone actually care about the performance of reduction algorithms? Yes. For example, Shoup's RSA-3-OAEP security proof [84, Section 7.2] needs Coppersmith's LLL-based root-finding algorithm [34], and relies critically on the subtle fact that LLL runs in polynomial time. Concrete security bounds require more detailed LLL analyses.
Q.31. Isn't it inappropriate to switch definitions and start writing papers using the new definitions? There are ample precedents for this. For example, Newtonian physics was replaced when it was discovered to be a poor model of reality. We briefly review a much closer example from mathematics.

In the 19th century, Kronecker questioned the significance of proofs of existence that are not effective, i.e., proofs that do not explain how to find the object that allegedly exists.

The classic example is the Bolzano-Weierstrass theorem, which states that an infinite sequence of real numbers $x_{0}, x_{1}, \ldots \in[0,1]$ has an infinite subsequence that converges. The critical observation in the usual proof is that there must be infinitely many i with $x_{i} \in[0,0.5]$, or infinitely many i with $x_{i} \in[0.5,1]$. Define I_{1} as $[0,0.5]$ if there are infinitely many i with $x_{i} \in[0,0.5]$, otherwise as [0.5, 1]; define I_{2} similarly as the left or right half of I_{1}; etc.; and, finally, take the infinite subsequence indexed by the first i with $x_{i} \in I_{1}$, the first subsequent i with $x_{i} \in I_{2}$, etc. Kronecker objected that this proof gives no way to find the desired subsequence: even if each x_{i} is completely explicit, there is no procedure to decide whether there are infinitely many i with $x_{i} \in[0,0.5]$.

Early 20th-century formalizations of mathematics did not provide any way to express Kronecker's objection. The only formalization of "one can find x such that $p(x)$ " was "it is not true that, for all x, not $p(x)$ "; for many years it was not obvious that any other formalization was possible. However, the introduction of "constructive mathematics" showed that one can formalize mathematics in a way that gives different meanings to these two notions, disallowing the Bolzano-Weierstrass proof (and theorem) while preserving more explicit math-
ematical proofs. This is part of the background for our quantitative approach to constructivity.
Q.32. Have there really been people asking all these questions? Yes, except that the "swallow" and " 42 " questions were not originally directed to us.

V Appendix: Verification that MD5 breaks AES

For each 8-bit string k and each 128-bit string p define $E_{k}(p)=\operatorname{AES}_{k, 0}(p)$, where " $k, 0$ " means k zero-padded to 128 bits. This cipher E is a scaled-down version of AES. The attacker's goal is to distinguish E from a perfect cipher $p \mapsto F(p)$, where F is a uniform random permutation of the set of 128-bit strings.

Consider the following very fast attack, a scaled-down version of the simple attack described in Section 2.1: take 16 bits of cipher output, zero-pad to 128 bits, feed the result through MD5, and take the first bit of the result (specifically, the bottom bit of the first byte of the result). Note that for this attack there is no difference between a uniform random permutation F and a uniform random function F.

This attack outputs 1 for exactly 32949 out of all 6553616 -bit strings: i.e., the average attack output against a uniform random permutation is 32949/65536 \approx 0.502762 . If this attack is applied to the first 16 bits of $E_{k}(0)$ then it outputs 1 for exactly 114 out of the 256 keys k; i.e., the average attack output against E is $114 / 256 \approx 0.445312$. The success probability of the attack against E is, by definition, the absolute value of the difference of these two averages, namely $3765 / 65536 \approx 0.057449$.

Table V. 1 displays the results of similar experiments for K-bit ciphers for a range of values of $K \leq 64$. In each case $2 K$ bits of cipher output are zeropadded to 128 bits and fed through MD5. The table is consistent with the theory that the success probability of the attack drops as roughly $1 / \sqrt{2^{K}}$, and very far from consistent with the naive theory that all very fast attacks have success probability dropping as $1 / 2^{K}$.

The analysis in Section 2.1 states that (if K-bit keys do not produce surprisingly frequent collisions in $2 K$ bits of cipher output) replacing MD5 with a uniform random function would have probability approximately $1-\operatorname{erf}(x \sqrt{2})$ of producing an attack whose success probability is at least $x / \sqrt{2^{K}}$; e.g., probability approximately 0.31731 of producing an attack whose success probability is at least $0.5 / \sqrt{2^{K}}$, and probability approximately 0.98404 of producing an attack whose success probability is at least $0.01 / \sqrt{2^{K}}$. With this replacement, the second average described above (the average attack output against E) is the average of 2^{K} independent uniform random bits and thus has a bell-curve distribution of width roughly $1 / \sqrt{2^{K}}$, while the first average (the average attack output against a uniform random permutation) is the average of $2^{2 K}$ independent uniform random bits and thus has a much narrower bell-curve distribution of width roughly $1 / 2^{K}$, so the difference will almost always be on the scale of $1 / \sqrt{2^{K}}$.

K	uniform		cipher		success	scaled
1	1	0.250000	0	0.000000	0.250000	0.353553
2	7	0.437500	4	1.000000	0.562500	1.125000
3	27	0.421875	4	0.500000	0.078125	0.220971
4	117	0.457031	6	0.375000	0.082031	0.328125
5	491	0.479492	21	0.656250	0.176758	0.999893
6	2038	0.497559	37	0.578125	0.080566	0.644531
7	8195	0.500183	64	0.500000	0.000183	0.002072
8	32949	0.502762	114	0.445312	0.057449	0.919189
9	131279	0.500790	245	0.478516	0.022274	0.504003
10	524921	0.500604	498	0.486328	0.014276	0.456818
11	2098847	0.500404	1029	0.502441	0.002037	0.092197
12	8389411	0.500048	2020	0.493164	0.006884	0.440563
13	33555992	0.500023	4063	0.495972	0.004052	0.366706
14	134215688	0.499992	8070	0.492554	0.007439	0.952152
15	536855969	0.499986	16399	0.500458	0.000472	0.085383
16	2147481189	0.499999	32644	0.498108	0.001892	0.484228
17	$?$	$0.500000 ?$	65347	0.498558	$0.001442 ?$	$0.522044 ?$
18	$?$	$0.500000 ?$	131291	0.500835	$0.000835 ?$	$0.427734 ?$
19	$?$	$0.500000 ?$	261618	0.498997	$0.001003 ?$	$0.726442 ?$
20	$?$	$0.500000 ?$	523667	0.499408	$0.000592 ?$	$0.606445 ?$
21	$?$	$0.500000 ?$	1048417	0.499924	$0.000076 ?$	$0.109795 ?$
22	$?$	$0.500000 ?$	2097213	0.500015	$0.000015 ?$	$0.029785 ?$
23	$?$	$0.500000 ?$	4193272	0.499877	$0.000123 ?$	$0.356316 ?$
24	$?$	$0.500000 ?$	8386407	0.499869	$0.000131 ?$	$0.537354 ?$
25	$?$	$0.500000 ?$	16776146	0.499968	$0.000032 ?$	$0.184718 ?$
26	$?$	$0.500000 ?$	33552224	0.499967	$0.000033 ?$	$0.269531 ?$
27	$?$	$0.500000 ?$	67108562	0.499998	$0.000002 ?$	$0.026068 ?$
28	$?$	$0.500000 ?$	134239208	0.500080	$0.000080 ?$	$1.311035 ?$
29	$?$	$0.500000 ?$	268434302	0.499998	$0.000002 ?$	$0.049805 ?$
30	$?$	$0.500000 ?$	536878982	0.500008	$0.000008 ?$	$0.246277 ?$
31	$?$	$0.500000 ?$	1073756269	0.500007	$0.000007 ?$	$0.311711 ?$
32	$?$	$0.500000 ?$	2147489600	0.500001	$0.000001 ?$	$0.090820 ?$

Table V.1. Success probability of MD5 as an attack against zero-padded K-bit AES keys. "Uniform" is the number of $2 K$-bit strings s such that $\operatorname{bits}_{1} \operatorname{MD} 5(s, 0)=1$, where $s, 0$ means s zero-padded to 128 bits and bits $_{1}$ means the first bit. The subsequent column is "uniform" divided by $2^{2 K}$. "Cipher" is the number of K-bit strings k such that $\operatorname{bits}_{1} \operatorname{MD} 5\left(\operatorname{bits}_{2 K} \operatorname{AES}_{k, 0}(0), 0\right)=1$, where $\operatorname{bits}_{2 K}$ means the first $2 K$ bits. The subsequent column is "cipher" divided by 2^{K}. "Success" is the success probability of the attack: the absolute difference between "uniform" divided by $2^{2 K}$ and "cipher" divided by 2^{K}. "Scaled" is "success" times $\sqrt{2^{K}}$. "?" means that "uniform" was not computed but was estimated to be $2^{2 K} / 2$.

This analysis is consistent with the experimental results. The analysis also covers, e.g., truncating $E_{k}(0), E_{k}(1)$ to $2 K$ bits and zero-padding to 256 bits for $64 \leq K \leq 128$. In this case there is a slight difference between a uniform random function and a uniform random permutation, but only on the scale of $1 / 2^{K}$.

[^0]: This work was supported by the National Science Foundation under grant 1018836, by the Netherlands Organisation for Scientific Research (NWO) under grant 639.073.005, and by the European Commission under Contract ICT-2007-216676 ECRYPT II. Permanent ID of this document: 7e044f2408c599254414615c72b3adbf. Date: 2013.09.14.

