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Abstract

In this paper, we propose a novel image enhancement algorithm via anti-degraded model and L1L2-based variational

retinex (AD-L1L2VR) for non-uniform illumination endoscopic images. Firstly, a haze-free endoscopic image is obtained

by an anti-degraded model named dark channel prior (DCP). For getting a more accurate transmission map, it is

refined by using a guided image filtering. Secondly, the haze-free endoscopic image is decomposed into detail and

naturalness components by light filtering. Thirdly, a logarithmic Laplacian-based gamma correction (LLGC) is added to

the naturalness component for preventing color cast and uneven lighting. Fourthly, we assume that the error between

the detail component of the haze-free image and the product of associated reflectance and background illumination

follows Gaussian-Laplacian distribution. So, the associated reflectance component can be obtained by using the

proposed L1L2-based variational retinex (L1L2VR) model. Finally, the recombination of modified naturalness component

and associated reflectance component become the final result. Experimental results demonstrate that the proposed

algorithm reveals more details in the background regions as well as other interesting areas and can mostly prevent the

color cast. It has a better performance on increasing diagnosis and reducing misdiagnosis than other existing

enhancement methods.

Keywords: Non-uniform endoscopic imaging enhancement, Anti-degraded model and L1L2 based variational retinex

(AD-L1L2VR), Dark channel prior (DCP), Logarithmic Laplacian-based gamma correction (LLGC), Gaussian-Laplacian

distribution

1 Introduction

Nowadays, signal processing [1–3] and image processing

[4–6] get more and more attention. Amongst them,

medical image processing has been widely researched.

Diseases of the gastrointestinal tract, such as bleeding,

ulcer, and tumor, are threatening humans’ health. How-

ever, traditional diagnosis methods, such as barium meal

examination, X-ray scanning, and CT, are invasive to the

human body. After the invention of the endoscope, it is

possible to generate color images directly inside the

human body. In 2000, capsule endoscopy (CE) [4] was

introduced, and it has been a useful tool for examining

the entire gastrointestinal tract, especially for the

screening of small-bowel diseases [5, 6]. However, endo-

scopic diagnosis is time consuming due to the great

amount of the video data and low contrast image qual-

ity. Besides, the misdiagnosis rate may increase because

of blurred edges and low contrast of images.

With the purpose of improving diagnostic detection

rate, several techniques or devices have been proposed

to optimize visualization [7]. Add-on devices [8], wide-

angle colonoscopies [9–12], and balloon colonoscope

[13] are the examples of advanced imaging devices

which have been widely used to improve diagnostic

yield. Color enhancement technique at the chip level or

as a post-processing step is another method to increase

the image quality and diagnostic yield [14]. The Fuji

Intelligent Color Enhancement (FICE, Fujinon Inc.)

system [15], narrow-band imaging (NBI) [16], I-scan

[17], and retinex [18] are the examples of post-
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processing color enhancement algorithms which have

been widely used [6, 19].

In order to diagnose disease successfully, we make the

following three major contributions on color image

enhancement technologies. First, preserving naturalness

as much as possible because color is one of the most

important bases for diagnosing pathology. Second, prevent-

ing the scattering caused by mucosa and digestive juice

inside the human body. Third, more and more details

should be displayed for improving the diagnostic rate.

Amongst the various enhancement methods, retinex

has received much attention due to its simplicity and

effectiveness in enhancing non-uniform illumination

images [20]. To simulate the mechanism of HVS, it is an

ill-posed problem that computes illumination or reflect-

ance from a single observed image. In order to get more

accurate results, many modified retinex methods have

been proposed. Path-based retinex [21] methods are the

simplest, but they usually necessitate high computational

complexity. Jobson et al. had proposed the multi-scale

retinex (MSR) [22, 23] algorithm and the color restored

multi-scale retinex (CRMSR) [24] algorithm. Partial

differential equation (PDE) was introduced to the retinex

algorithm in 1974 [25]. However, when solving the

Poisson equations, extra artifacts will be caused by the hard

thresholding operator in PDE-based retinex algorithms. In

2011, a total variational retinex method (TVR) [26] was

proposed. In 2014, a variational Bayesian model for retinex

was proposed by Wang et al. [20].

However, the issue of atmospheric transmission is

important but not considered in existing classical

enhancement methods. In real endoscopic imaging

scenes, images captured by endoscope will be influenced

by the scattering and absorption of mucosa and digestive

juice inside the human body. In order to overcome this

drawback, a novel endoscopic imaging enhancement via

anti-degraded model and L1L2-based variational retinex

(AD-L1L2VR) is proposed in this paper. Before enhan-

cing an observed image, an anti-degraded model named

dark channel prior (DCP) is provided to get haze-free

endoscopic images. Secondly, the haze-free endoscopic

image will be decomposed into detail and naturalness

components by light filtering, and these two parts will

be discussed separately. Then, a logarithmic Laplacian-

based gamma correction (LLGC) is added to the natural-

ness component for preventing color cast and uneven

lighting. In addition, most retinex methods assume that

the estimated error between observed image and the

product of reflectance and background illumination is a

random variable with a Gaussian distribution with zero

mean and variance δ2. The maximum likelihood estima-

tion (MLE) solution of Gaussian distribution is equiva-

lent to the solution of ordinary least squares (OLS).

However, the OLS solution is sensitive to outliers

although it is easy to solve. If the error is Laplacian

distributed, the MLE solution is equivalent to the least

absolute deviation (LAD) solution. Compared with the

OLS method, the LAD method is robust to outliers. So,

we assume that the error between the detail component of

the haze-free image and the product of the associated

reflectance and background illumination follows Gaussian-

Laplacian distribution. So, the associated reflectance com-

ponent will be obtained by using the proposed L1L2-based

variational retinex (L1L2VR) model. Finally, the recombin-

ation of associated reflectance and naturalness component

become the final result.

This paper is organized as follows: the optical model

and the retinex model are described in Section 2. Section

3 gives the details of the proposed algorithm and the

optimization strategy. Experimental results and evaluation

are shown in Section 4. Discussion is shown in Section 5.

Section 6 concludes the paper.

2 Background

2.1 Optical model

Figure 1 is a schematic of the bimodal endoscope hard-

ware. When the endoscope diagnoses pathology, images

captured by the endoscope will be more or less influenced

by scattering and absorption phenomenon. In this section,

we introduce an optical model that is widely used in com-

puter vision for describing the light transmission process.

Pictorial description of endoscopic imaging in the optical

model is shown in Fig. 2. This model is defined as follows:

Ic i; jð Þ ¼ J c i; jð Þ � t i; jð Þ þ 1−t i; jð Þð Þ � Ac; ð1Þ

where c is the cth color channel, Ic(i, j) is the hazy image

captured by the endoscope, Jc(i, j) is haze-free image, A is

global atmospheric light, and t(i, j) is the transmission map

that describes the non-scattered light between the observed

objects and the camera. The first term Jc(i, j) × t(i, j) repre-

sents the direct attenuation; the second term (1− t(i, j)) ×Ac

represents the airlight.

If the atmosphere is homogenous, the transmission

t(x, y) can be expressed as follows:

t i; jð Þ ¼ e−βd i;jð Þ; ð2Þ

where β represents the scattering coefficient of the

atmosphere and d(i, j) represents the scene depth

between the endoscope and the diseased tissue.

2.2 Retinex model

When the endoscope diagnoses pathology, non-uniform

illumination images are captured due to the hostile

imaging environment inside the human body. Amongst

the various enhancement methods, the retinex [27] algo-

rithm has received much attention due to its simplicity

and effectiveness in enhancing non-uniform illumination
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images. According to the retinex model, a given image

can be decomposed into two parts: the illumination and

the reflectance components. It is defined as follows:

S ¼ L� R; ð3Þ

where S is the observed image and L and R are illumin-

ation and reflectance components respectively.

For easy calculation, Eq. (3) is usually converted into

the logarithmic form, as shown:

s ¼ l þ r; ð4Þ

where s = log(S), l = log(L), and r = log(R).

3 Method

Here, we propose a novel enhancement algorithm based

on AD-L1L2VR. The proposed approach consists of three

major modules, an anti-degraded module, naturalness

preserved module, and contrast enhancement module,

as illustrated in Fig. 3. Firstly, the original endoscopic

image captured by the camera is processed through

DCP to get a haze-free image. Secondly, the haze-free

endoscopic image is decomposed into the detail compo-

nent and the naturalness component. The naturalness

component is processed by LLGC for preventing color

cast. The detail component is decomposed into reflect-

ance and illumination components via L1L2VR. Finally,

the synthesis of reflectance and mapped naturalness

components become the final output enhanced image.

3.1 Anti-degraded model

In this paper, the haze-free endoscopic image is captured

by an anti-degraded module based on DCP. The dark

channel prior was proposed by He et al. [28], which is a

statistics of the haze-free outdoor images. The dark channel

of the haze-free endoscopic image is defined as follows:

Jdark i; jð Þ ¼ min
c∈ r;j;bf g

min
x;yð Þ∈Ω1

J c x; yð Þð Þ

� �

; ð5Þ

where Jc(x, y) represents the cth channel of J(x, y) and Ω1

represents the local patch centered at (i, j). According to

[25], Eq. (1) is equivalent to:

min
x;yð Þ∈Ω1

Ic x; yð Þ

Ac

� �

¼ ~t i; jð Þ min
x;yð Þ∈Ω1

J c x; yð Þ

Ac

� �

þ 1−~t i; jð Þð Þ:

ð6Þ

According to the dark channel prior, the DCP of haze-

free endoscopic image J is close to zero. So, the trans-

mission map is defined as follows:

~t i; jð Þ ¼ 1− min
x;yð Þ∈Ω

min
c∈ r;g;bf g

Ic x; yð Þ

Ac

� �

: ð7Þ

The haze-free endoscopic image may contain some block

artifacts by directly using the above transmission map. To

overcome this drawback, the transmission map can be re-

fined by guided filtering [29]. It can be described as follows:

Fig. 1 Schematic of the bimodal endoscope hardware

Fig. 2 Description of endoscopic imaging in the optical model
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t i; jð Þ ¼ GuideFilter ~t i; jð Þð Þ: ð8Þ

Finally, because the direct attenuation term Jc(i, j) × t(i, j)

may be close to zero, so the transmission map should be re-

stricted to a low bound t0, it is set 0.1 empirically. So, the

haze-free endoscopic image can be obtained as follows:

J c i; jð Þ ¼
Ic i; jð Þ−Ac

max t xð Þ; t0ð Þ
þ Ac ð9Þ

3.2 Image decomposition based on light filtering

The haze-free endoscopic image is first decomposed into

the detail and naturalness components that are discussed

separately in the following steps. This decomposition

processing can be described as follows:

J c ¼ J cd þ J cn
J cd ¼ 1−αð Þ � J c;

J cn ¼ α� J c
ð10Þ

where J c is the haze-free image of the cth color channel,

J cd and J cn are the detail and naturalness components of

J c, and α is a weighting factor. Based on the assumption

that naturalness is the local maxima for each pixel, α is

defined as follows:

α ¼
1

2

P

x;yð Þ∈Ω2

J c i; jð Þ � H J c x; yð Þ; J c i; jð Þð Þ

Jmax �
P

x;yð Þ∈Ω2

H J c x; yð Þ; J c i; jð Þð Þ
; ð11Þ

where Ω2 is a five-pixel square in four-connectivity

in which J c(i, j) is the center pixel, and J c(i, j) is the

maximum value of three color channels on the

location J c(i, j).

After decomposition, the detail and naturalness com-

ponents can be processed separately. The mapped natur-

alness component can be acquired by using LLGC. And

reflectance can be obtained by the processing detail

component via L1L2VR.

3.3 Naturalness mapping using LLGC

Due to non-uniform illumination or scattering,

images captured by endoscope camera may cause

color cast. To overcome this problem, LLGC will be

used based on the assumption that color variance is

Laplacian-based distributed. The LLGC can be

described as follows:

Jmn ¼ W
� log Jn þ ςð Þ

W

�γ

γ ¼
Q Dmax i; jð Þ Ω3jð Þ

Q Dmin i; jð Þ Ω3j
� �

Q Dc i; jð Þ Sjð Þ ¼
1

N

X

i;jð Þ∈Ω3

1

2b
expð−

Dc i; jð Þ−μj j

b
Þ

Dc i; jð Þ ¼ Jmax i; jð Þ−J c i; jð Þj j

ð12Þ

where W is the white value, ς is a small positive constant,

Ω3 represents a region which is selected from the top

0.1% brightest values in its dark channel, and D(i, j) is the

color difference. max and min represent maximum and

minimum values, respectively, N is the number of pixels

Fig. 3 Flowchart of the proposed algorithm. a Original image. b–d Dark channel, transmission map, and refined transmission map of (a). e Haze-free

image of (a). f Naturalness component of (e). g Naturalness component with gamma correction. h Detail component of (e). i Reflectance component

of (h). j Output image
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of region Ω3, and μ and b are the location and scale

parameters, respectively of the Laplacian distribution.

3.4 Image decomposition via L1L2VR

Computing illumination or reflectance from a single

observed image is ill-posed. To solve this problem, many

variational retinex models have been proposed. In this paper,

the reflectance component is acquired via a L1L2VR model

with simultaneously estimating illumination and reflectance.

The retinex model can be described as S = R × L, where

S represents the acquired detail component Jd in this

paper and R and L represent reflectance and background

illumination components, respectively, of Jd. According

to Bayes’ theorem, the general physical model can be

seen as a posterior distribution:

p R; L Sjð Þ∝p SjR; Lð Þp Rð Þp Lð Þ; ð13Þ

where p(R, L|S) represents posterior distribution, p(S|R, L)

represents the likelihood, p(R) represents prior probability

on the reflectance component, and p(L) represents prior

probability on background illumination component. These

are described as follows:

3.4.0.1 Likelihood p(S|R, L) Most retinex methods

assume that the estimated error ξ = S − R × L is a random

variable with a Gaussian distribution with zero mean

and variance δ21; it can be defined as follows:

p SjR; Lð Þ ¼ N ξ 0; δ21
�

� 1
� �

; ð14Þ

where 1 is the identity matrix. The maximum likelihood

estimation (MLE) solution of Gaussian distribution is

equivalent to the solution of ordinary least squares

(OLS); it is described as follows:

R̂; L̂
� �

¼ arg min
R;L

1

2
S−R� Lk k22: ð15Þ

However, the OLS solution is sensitive to outliers

although it is easy to solve. If the error is Laplacian

distributed (p(S|R, L) = L(ξ|0, δ21)), the MLE solution is

equivalent to the least absolute deviation (LAD) solu-

tion; it is defined as follows:

R̂; L̂
� �

¼ arg min
R;L

S−R� Lk k1: ð16Þ

Compared with the OLS method, the LAD method is

robust to outliers [30].In this paper, we assume the error

vector follows an additive combination of two independ-

ent distributions: Gaussian and Laplacian distributions.

3.4.0.2 Prior p(R) According to the assumption that

reflectance is piece-wise [20, 26, 31], the gradient of

reflectance is Laplacian distributed:

p Rð Þ ¼ L ∇R 0; δ31jð Þ: ð17Þ

3.4.0.3 Prior p(L) Two constraints are assigned for

the background illumination component. The first is

that the background illumination is smooth spatially

[26, 32], and the second is to constrain the scale of

the background illumination. For the first assump-

tion, the gradient of background illumination is

Gaussian distributed:

p1 Lð Þ ¼ N ∇L 0; δ24
�

� 1
� �

: ð18Þ

For the second constraint, the background illumin-

ation follows Gaussian distribution based on the white

patch assumption:

p2 Lð Þ ¼ N ∇L L0; δ
2
5

�

� 1
� �

: ð19Þ

So, the prior p(L) can be rewritten as follows:

p Lð Þ ¼ p1 Lð Þp2 Lð Þ: ð20Þ

In order to effectively estimate the reflectance and illu-

mination components, the maximum a posteriori (MAP)

problem is equivalent to the solution of an energy

minimization problem:

E R; Lð Þ ¼
1

2
S−R� Lk k22 þ α S−R� Lk k1 þ β ∇Rk k1

þ
1

2
γ1 ∇Lk k22 þ

1

2
γ2 L−L0k k22 s:t:S≤L;

ð21Þ

Fig. 4 Anti-degraded model. a, c Original images. b, d Haze-free images of (a) and (c)
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where α, β, γ1, and γ2 are positive parameters which con-

trol each item in the proposed model. L0 is the mean

value of Gaussian distribution, which can be simply esti-

mated by averaging Jd.

However, this assumption may cause halo artifacts

around strong edges, because the background illumin-

ation is not always smooth and may change sharply in

some areas. So, spatial adjustment parameters are intro-

duced to constrain the total variation regularization

strength in this paper. The proposed spatially adaptive

L1L2VR model can be modified as follows:

E R; Lð Þ ¼
1

2
S−R� Lk k22 þ α S−R� Lk k1 þ βw ∇Rk k1

þ γ1v ∇Lk k1 þ
1

2
γ2 L−L0k k22 s:t:S≤L;

ð22Þ

where w and v are weight parameters that control the

TV regularization strength; they are defined as follows:

w ¼ g T x; yð Þð Þ

v ¼ g B x; yð Þð Þ:
ð23Þ

Here, g(x) is a monotone decreasing function. It

should be large where T(x, y) and B(x, y) are small, and

vice versa. This function can be defined as follows:

g xð Þ ¼

�

1−
x

K

� 	2



2; ð24Þ

where K is set to be equal to the 90% value of the cumu-

lative distribution function of T(x, y) or B(x, y). T(x, y)

and B(x, y) are defined:

Fig. 6 AD-L1L2VR results of endoscopic images. a–d original images. e–h AD-L1L2VR results of (a–d)

Fig. 5 L1L2VR results of endoscopic images. a–d Original images. e–h L1L2VR results of (a–d)
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B x; yð Þ ¼ H ∇ J x; yð Þj j−αt � t x; yð Þ½ �

T x; yð Þ ¼ H t x; yð Þ½ �

H xð Þ ¼
0; x < 0

x; x≥0

�
ð25Þ

where ∇J(x, y) is the gradient of Jd, αt is the suppression

strength factor, and t(x, y) is the suppression term. The

suppression term is defined:

t x; yð Þ ¼ ∇ J x; yð Þj j � ωσ x; yð Þ

ωσ x; yð Þ ¼
H DoGσ x; yð Þð Þ

sum H DoGσ x; yð Þð Þð Þ

DoGσ x; yð Þ ¼
1

2π 4σð Þ2
exp

�

−

x2 þ y2

2 4σð Þ2

�

−

1

2πσ2

exp

�

−
x2 þ y2

2σ2

�

:

ð26Þ

Fig. 8 Enhanced results using different methods. a Original image. b LHE. c MSR. d SARV. e NPEA. f AD-L1L2VR

Fig. 7 Enhanced results using different methods. a Original image. b LHE. c MSR. d SARV. e NPEA. f AD-L1L2VR

Rao et al. EURASIP Journal on Wireless Communications and Networking  (2017) 2017:205 Page 7 of 11



3.5 Split Bregman algorithm for the proposed model

Since two unknown variables exist in Eq. (22), the

minimization problem (22) can be divided into two

subproblems as follows:

E1 Rð Þ ¼
1

2

S

L
−R

�

�

�

�

�

�

�

�

2

2

þ α
S

L
−R

�

�

�

�

�

�

�

�

1

þ βw ∇Rk k1; ð27Þ

E2 Lð Þ ¼
1

2

S

R
−L

�

�

�

�

�

�

�

�

2

2

þ α
S

R
−L

�

�

�

�

�

�

�

�

1

þ γ1v ∇Lk k1

þ
1

2
γ2 L−L0k k22: ð28Þ

By introducing an auxiliary variable d and an error b,

E1(R) can be rewritten as follows:

Fig. 10 Enhanced results using different methods. a Original image. b LHE. c MSR. d SARV. e NPEA. f AD-L1L2VR

Fig. 9 Enhanced results using different methods. a Original image. b LHE. c MSR. d SARV. e NPEA. f AD-L1L2VR
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E1 Rð Þ ¼
1

2

S

L
−R

�

�

�

�

�

�

�

�

2

2

þ α
S

L
−R

�

�

�

�

�

�

�

�

1

þ βw dk k1

þ
βwλ

2
d−∇R−bk k22: ð29Þ

The above equation can be transformed:

dj ¼ argminβwd dk k1 þ
βwλ

2
d−∇R−bj−1

�

�

�

�

2

2

Rj ¼ argminR
1

2

S

Lj−1 −R

�

�

�

�

�

�

�

�

2

2

þ α
S

Lj−1 −R

�

�

�

�

�

�

�

�

1

þ
βwλ

2
d−∇R−bj−1

�

�

�

�

2

2

bj ¼ bj−1 þ ∇R−dj:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð30Þ

The above subproblems (30) can be explicitly solved

by split Bregman algorithm [33]. The computation pro-

cedure is described in Algorithm 1.

3.6 Synthesis reflectance and naturalness

According to the retinex theory, the light reaching the

eyes depends on the reflectance and illumination, so we

integrate reflectance component R and mapped natural-

ness component Jmn to get the final enhanced result:

Se ¼ R� Jmn : ð32Þ

4 Results

In our experiments, a large number of images were

tested. Due to space limitations, we have only shown

some of the test images. Some original test images

with a logo are downloaded from http://www.bioon.-

com/. Moreover, the experimental results were calcu-

lated using MATLAB R2011a under Windows 7. In

this paper, the parameters α, β, γ1, γ2, and tol are set

0.1, 0.01, 0.1, 0.2, 10, and 0.01, empirically. The pro-

posed algorithm consists of three major modules, an

anti-degraded module, naturalness preserved module,

and contrast enhancement module. Figure 4 shows

the experimental results obtained by using the anti-

degraded model. It can be seen that the color cast

caused by scattering has been prevented. However,

the details of haze-free images cannot still be seen in

the dark areas. Figure 5 shows the results by using

the proposed L1L2VR method. Overexposed areas are

suppressed, details in the dark areas are enhanced,

and global lightness and contrast are enhanced, while

color cast phenomenon cannot be prevented during

the process of the L1L2VR method. Our proposed al-

gorithm combines the AD method and the L1L2VR

method, which can successfully overcome the above

drawbacks. As shown in Fig. 6, the results obtained

by the proposed algorithm gave a natural look, not

only enhanced details in dark areas, but also

prevented color cast.

Table 2 Discrete entropy of compared methods

italics values are the average values that can evluate the performance of different methods more accurately.

red color data represents the highest value, green color data represents the second highest, and blue color data represents the third highest

Table 1 Contrast of compared methods

italics values are the average values that can evluate the performance of different methods more accurately.

red color data represents the highest value, green color data represents the second highest, and blue color data represents the third highest
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5 Discussion

5.1 Subjective assessment

Figures 7, 8, 9, and 10 illustrated the experimental

results of endoscopic images obtained by the pro-

posed method and other relevant state-of-the-art

methods. In this paper, the proposed algorithm was

compared to the existing local histogram equalization

(LHE) [34], MSR [22], spatially adaptive retinex vari-

ational model (SARV) [35], and Naturalness preserved

enhancement algorithm (NPEA) [36] methods.

Clearly, LHE, MSR, and SARV gave over-enhanced

images, simultaneously saturating the resulting images

much further and causing color cast. For example,

Fig. 7b, d and Fig. 8b, d caused serious color cast.

And Fig. 8c and Fig. 10c caused overexposure

phenomenon. In addition, LHE did not enhance the

dark areas successfully. In the dark area of Fig. 7b

and Fig. 8b, the processed images by LHE did not get

pleasing results. Compared with the above methods,

NPEA and the proposed AD-L1L2VR got very natural-

looking images. The enhanced image reveals a lot of

details in the background regions as well as other in-

teresting areas, while NPEA introduced a light color

cast, especially Fig. 8e and Fig. 10e.

5.2 Objective assessment

Three objective metrics are further presented to evaluate

the enhanced results, including RMS contrast [37],

discrete entropy [38], and lightness of error (LOE) [36].

The averages of evaluation scores are also calculated for

overall comparison. In Tables 1, 2, and 3, red color data

represents the highest value, green color data represents

the second highest, and blue color data represents the

third highest.

The first metric is RMS contrast; it is defined as follows:

C ¼
1

m⋅n

X

m

i¼0

X

n

j¼0

I i; jð Þ−μ½ �2
( )1=2

; ð33Þ

Table 1 shows the quantitative measurement results of the

contrast. As shown in Table 1, LHE and MSR have higher

contrast than the other methods. However, the proposed

algorithm and the NPEA method have a better subjective

assessment performance than the other three methods.

The second metric is discrete entropy; it is defined as

Eq. (34). Higher discrete entropy means more informa-

tion revealed from the original images. From Table 2,

LHE and the proposed algorithm have higher discrete

entropy than others.

H ¼ −

X

x∈L

q xð Þ lnq xð Þ; ð34Þ

The third metric is LOE, which is used to evaluate

naturalness preservation. According to the definition of

LOE, a smaller LOE value means representing better

naturalness preservation. As shown Table 3, the

proposed algorithm has the best naturalness preserva-

tion performance.

In summary, compared with other relevant state-of-

the-art enhancement methods, the proposed algorithm

not only preserve more details and prevent halo arti-

facts, but also prevent color cast caused by scattering.

The proposed algorithm can achieve good quality from

both subjective and objective assessments. It is a good

way to increase diagnosis and reduce misdiagnosis for

endoscopic imaging.

6 Conclusions

This paper proposes a novel image enhancement algo-

rithm via anti-degraded model and L1L2-based vari-

ational retinex theory (AD-L1L2VR) for non-uniform

illumination endoscopic images, which not only

enhances the details of the image but also preserves the

naturalness. The anti-degraded model is used to prevent

color cast caused by scattering. In order to estimate the

reflectance and background illumination component,

L1L2VR is proposed to constrain the TV regularization

strength. Moreover, logarithmic Laplacian-based gamma

correction is conducted on the naturalness component

for preventing color cast caused by non-uniform illu-

mination or scattering. Experimental results demonstrate

that the proposed algorithm has a better performance

than the other existing algorithms.
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