
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Non-uniform reductions

Buhrman, H.; Hescott, B.; Homer, S.; Torenvliet, L.
DOI
10.1007/s00224-008-9163-5
Publication date
2010
Document Version
Final published version
Published in
Theory of Computing Systems

Link to publication

Citation for published version (APA):
Buhrman, H., Hescott, B., Homer, S., & Torenvliet, L. (2010). Non-uniform reductions. Theory
of Computing Systems, 47(2), 317-341. https://doi.org/10.1007/s00224-008-9163-5

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Aug 2022

https://doi.org/10.1007/s00224-008-9163-5
https://dare.uva.nl/personal/pure/en/publications/nonuniform-reductions(1ff4105a-5ca9-451f-8d4b-9d47f39c0f12).html
https://doi.org/10.1007/s00224-008-9163-5


Theory Comput Syst (2010) 47: 317–341
DOI 10.1007/s00224-008-9163-5

Non-Uniform Reductions

Harry Buhrman · Benjamin Hescott ·
Steven Homer · Leen Torenvliet

Published online: 9 January 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We study properties of non-uniform reductions and related completeness
notions. We strengthen several results of Hitchcock and Pavan (ICALP (1), Lecture
Notes in Computer Science, vol. 4051, pp. 465–476, Springer, 2006) and give a trade-
off between the amount of advice needed for a reduction and its honesty on NEXP.
We construct an oracle relative to which this trade-off is optimal. We show, in a more
systematic study of non-uniform reductions, among other things that non-uniformity
can be removed at the cost of more queries. In line with Post’s program for complexity
theory (Buhrman and Torenvliet in Bulletin of the EATCS 85, pp. 41–51, 2005) we
connect such ‘uniformization’ properties to the separation of complexity classes.

Keywords Non-uniform reductions · Reductions with advice · Non-uniform
complexity · NEXP complete set · EXP complete set · NP complete set

1 Introduction

Reductions and completeness are two of the original concepts in complexity theory
and form part of the core of the field to this day. Determining whether a problem is

H. Buhrman
CWI, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands
e-mail: buhrman@cwi.nl

B. Hescott (�)
Computer Science Department, Tufts University, 161 College Ave, Medford, MA 02155, USA
e-mail: hescott@cs.tufts.edu

S. Homer
Computer Science Department, Boston University, 111 Cummington St, Boston, MA 02215, USA

L. Torenvliet
ILLC, Plantage Muidergracht 24, Amsterdam, The Netherlands
e-mail: leen@science.uva.nl

mailto:buhrman@cwi.nl
mailto:hescott@cs.tufts.edu
mailto:leen@science.uva.nl


318 Theory Comput Syst (2010) 47: 317–341

complete for a particular class is central in determining the computational complex-
ity of that problem. In a broader perspective, questions of whether different types
of reductions are the same or different, and whether completeness notions induced
by these reductions are the same or different have been assiduously explored, e.g.
[12, 13, 27, 30]. Answers to these questions are related to the central open problems
of the field. In some cases, inequality of reductions on certain complexity classes im-
plies inequality of complexity classes. In others, the collapse of degrees to an isomor-
phism type under some notion of reduction also yields the inequality of classes [2, 3,
7, 16, 19, 23, 25, 31]. This makes the properties of reductions, for example whether
they are length-increasing, 1-1, etc. important objects of study. Finally, certain prop-
erties of complete sets in different complexity classes might have implications for the
of equality of these classes [5, 10, 15].

The lion’s share of investigations of reductions has been into uniform reductions.
Now, non-uniformity has entered the realm of the reduction. As with the definitions
of non-uniform complexity classes, by means of advice classes, (P/poly and families
of circuits of a certain size), one can define reductions that are computable by means
of additional advice or by polynomial size circuits.

Allender et al. [4] have shown that the set R of Kolmogorov incompressible
strings, with respect to exponential time Kolmogorov complexity, is complete for
EXP with respect to polynomial time (truth-table) reductions that have a polynomial
amount of advice. Moreover, the advice is indispensable: R is not complete with re-
spect to uniform Turing reductions [8]. For a strengthening of this see the thesis of
Ronneburger [29].

Agrawal [1], while studying the isomorphism conjecture [7] for NP complete sets,
used non-uniform reductions with advice. He showed, under the assumption that a
certain type of one-way function exists, that all many-one complete sets for NP are
1-1 and length increasing complete for reductions that use some amount of non-
uniform advice.

Hitchcock and Pavan [22] show, under a different assumption, namely that NP is
not small (does not have resource bounded measure zero), that every many-one com-
plete set for NP is length increasing complete with reductions that use a polynomial
amount of advice. Moreover they also show that for NEXP the many-one complete
sets are length increasing complete with reductions that use a polynomial amount of
advice.

In this paper we improve the results of Hitchcock and Pavan. In particular, we
show, under the weaker assumption that there exists a DTIME(2nc

) bi-immune set in
NP, that one bit of advice suffices to show that many-one complete sets are length
increasing complete.1 We also improve their results for NEXP. We again reduce the
length of the advice needed to make the reductions length increasing and show that
our result is optimal relative to some oracle. In particular, this yields an oracle where
the many-one complete sets for NEXP are not (uniformly) length increasing com-
plete, in fact they are only exponentially honest, matching the best known result due

1Technically we show something slightly weaker. We show that the many-one reduction is either length
increasing or accepts/rejects without querying a string. The result does hold for 1-tt reductions.



Theory Comput Syst (2010) 47: 317–341 319

to Ganesan and Homer [17]. This shows that non-relativizing techniques are needed
to settle this question.

Another structural property known for EXP [20] and for NEXP [14] is the follow-
ing: Every 1-truth-table complete set is many-one complete. We show that, under the
hypothesis that NP contains a set that is NTIME(2nc

) ∩ co-NTIME(2nc
) bi-immune,

every 1-truth-table complete set for NP is many-one complete with 1 bit of advice.2

By extending an earlier result of [9], we construct an oracle world where such a bi-
immune set exists in NP. This result relates to the work of Glasser et al. [18]. They
show under the assumption that NP differs from coNP at every length that 1-truth-
table complete sets for NP are also many-one complete with polynomial advice.

The results above warrant a more systematic investigation into non-uniform re-
ductions. In particular, is the amount of advice needed for the non-uniform reductions
above optimal? In general, when does advice yield additional power?

In the second part of this paper we begin such a study. We first show that for
EXP constant query reductions that have advice are strictly more powerful than their
uniform counterparts. For example we show that the ≤p/1

m -complete degree and the
≤p

2tt-complete degree for EXP are incomparable. Analogous to uniform reductions,
we show that complete sets for EXP with respect to many-one reductions that use
c bits of advice are 1-1 and length increasing complete with c bits of advice. These
results require new techniques as the original ideas for uniform reductions cannot be
used directly.

Second, we show that non-uniformity can be removed at the price of more queries.
In particular we show that sets that are many-one complete with respect to reductions
that use O(logn) bits of advice are Turing-complete with respect to uniform reduc-
tions for EXP. For the delta levels of the polynomial hierarchy we show that truth-
table reductions suffice in order to ‘uniformize’ the reduction. Here we use ideas and
techniques from the paper that studies the auto-reducibility of complete sets [15].
We have the added bonus that these theorems do not relativize and hope that these
results could be used in a nonrelativizing proof that separates complexity classes. In
particular it follows from our results that solving the question of whether many-one
complete sets with 1 bit of advice are uniformly truth-table complete will separate
complexity classes (EXP from EXPSPACE or PH from EXP). For details see Theo-
rems 35 and 34. Hence understanding questions like these has deep implications for
complexity theory.

2 Notation

We adopt the standard definitions and notations for well-known complexity classes,
and other notions of computational complexity, as can be found, e.g., in [6] and [24].
We use the standard paring function denoted 〈a, b〉 for binary strings a, b, where
|〈a, b〉| = 2|a| + |b| + 2. Let πi(q) denote the ith projection of the k-tuple q , where
i ≤ k. We use the standard definitions for polynomial time reductions, i.e., we say

2Again we technically prove this for the weaker version of many-one reduction that can also accept/reject
without producing a query.



320 Theory Comput Syst (2010) 47: 317–341

A many-one reduces to set B , denoted A ≤p
m B , if there is a polynomial time com-

putable function f where x ∈ A ↔ f (x) ∈ B . The reduction is considered a 1-1
reduction, ≤p

1−1, if in addition the function f is one to one. A many-one reduction
is length increasing, ≤p

m,li, if in addition, ∀x, |f (x)| > |x|. A reduction is honest if
there is a polynomial p, s.t. ∀x,p(|f (x)|) > |x|. We recall the notion of the extended
many-one reduction: A ≤p

m̂
B if there exists a polynomial time Turing machine M

with an output tape, where on input x, M does one of the following: M outputs
f (x) ∈ �∗ and x ∈ A ↔ f (x) ∈ B , M outputs ACCEPT and x ∈ A, or M outputs
REJECT and x /∈ A.

Polynomial time oracle machines are used to characterize both Turing and truth-
table reductions. The query set of an oracle machine M on input x with oracle A is
denoted as Q(MA(x)). The notation MA(x) is also used as a notation for the out-
come of the computation of machine M on input x with oracle A. This can be either
accept/reject or a string y. In the latter case—the machine computes a function—we
also use the notation f A(x). We assume enumerations {Mi}i ({fi}i ) for all conve-
nient classes of machines (functions). A polynomial reduction is nonuniform if it is
in P/poly, i.e. A ≤P/poly

m B if ∃f ∈ FP and h ∈ poly where A = {x|f (x,h(|x|)) ∈ B},
here poly = {g | ∀n, |g(n)| ≤ p(n) for some polynomial p}. Many times the amount
of advice is more or less restrictive, this restriction is on the function h in the defini-
tion above. Namely, for one bit of advice the range of h is {0,1}. We denote a one-bit
nonuniform many one reduction by ≤p/1

m . In many complexity classes K will stand
for the generic complete set, e.g., KA = {〈i, x, k〉 | MA(x) accepts in ≤ k steps} is
the canonical complete set for EXP with oracle A. To avoid confusion we will sub-
script K with the appropriate complexity class, e.g., KEXP. MK or NK will be the
machine accepting this set for deterministic, or resp. nondeterministic complexity
classes.

A reduction from set A to B is considered to be adaptive if the membership of
a string x ∈ A is decided by a polynomial-time Turing machine which has oracle
access to B . Here the computation is allowed to adapt to membership queries to B ,
by basing future queries on previous answers. This reduction is denoted A ≤T B

and is commonly referred to as a Turing reduction. It is natural to consider reduc-
tions that are computed with oracle access to the set B , but are not adaptive. We
say A reduces to B nonadaptively, denoted, A ≤p

tt B if there exist a polynomial-
time function, r and Turing machine M where r(x) = (q1, q2, . . . , qm) and M(x,

[q1 ∈ B], [q2 ∈ B], . . . , [qm ∈ B]) accepts if and only if x ∈ A, these reductions are
commonly referred to as truth table reductions.

In this work we consider the measure hypothesis on NP formulated by Lutz which
states that NP does not have p-measure 0, μ(NP) �= 0. This is equivalent to assum-
ing that there is no polynomial time martingale that succeeds on every language
in NP. A martingale is a function d : �∗ → [0,∞) where (∀w ∈ �∗)[2d(w) =
d(w0)+ d(w1)]. A martingale succeeds on language L if lim supn→∞ d(A≤n) = ∞.
Given a time bound t (n) a language L is considered to be t (n)-random if no O(t(n))

martingale succeeds on L. Informally this relates to whether or not NP is a “large”
subset of E.

The measure hypothesis on NP also implies the existence of a DTIME(2nε
)-bi-

immune set within NP [28]. A set is C-immune if it does not have any infinite subsets
in C, it is C-bi-immune if it and its complement are both C-immune.



Theory Comput Syst (2010) 47: 317–341 321

3 Advice to Strengthen Reductions

3.1 Length Increasing Reductions

Hitchcock and Pavan [22] show that some reductions can be made length increasing
under the assumption that NP is not small. We improve upon the advice needed in
their paper in the following theorem.

Theorem 1 μ(NP) �= 0 =⇒ Every ≤p
m-complete set is ≤p/O(log logn)

m,li -complete.

Proof Choose ε > 0 and let R be a n1+ε -random set in NP. Recall that this means
no O(n1+ε) time martingale succeeds on R. For every n, let xn

0 , . . . , xn
2 logn+2 be the

lexicographically first 2 logn+ 3 strings of length n. We claim that for all but finitely
many lengths n, there is an i, i ≤ 2 logn + 2 where [R(0n) �= R(xi)].

Assume not, then we have infinitely many lengths n′ where ∀i, i ≤ 2 logn′ + 2,
[R(0n′

) = R(xi)]. Now consider the following betting strategy. First divide the cap-
ital so that at each length n we have 1

2n2 in capital. Recall,
∑∞

n=0
1

2n2 ≤ 1. At every

length n bet evenly on {0n}. Use the outcome of R(0n) to bet all or nothing on
xn

1 , . . . , xn
2 logn+2. If the length n is one of the n′ where (∀i ≤ 2 logn′ + 2)[R(0n′

) =
R(xi)] then we make 22 logn′+2

2n′2 at this length as we double our capital for each

xn′
1 , . . . , xn′

2 logn′+2. If n is not one of these lengths, we bet until we loose our capi-

tal for that length, then we bet evenly until the next length. Since 22 logn′+2

2n′2 > 1 and
there are infinitely many such n′, this martingale succeeds on R, contradicting our
assumption that R is a n1+ε -random set.

To identify an index i for which R(0n) �= R(xi) we need about log logn bits. Let

D = {〈x, y,φ〉 | |x| = |y| = |φ| ∧ R(x) + R(y) + SAT(φ) ≥ 2}.
Now let A be a ≤p

m-complete set in NP, and let M calculate the reduction from D

to A.
Next we show that by combining a padded version of the reduction from SAT to

D and the reduction from D to A then gives a length increasing reduction from SAT
to A using O(log logn) bits of advice—the advice is needed to give the length of the
padded string which might be polynomially longer than the input.

Suppose that for every k there are infinitely many 〈x, y,φ〉 such that
|M(〈x, y,φ〉)| < |〈x, y,φ〉|1/k . The set A is in NP so it is DTIME(2nc

)-computable
for some c. Hence for infinitely many 〈x, y,φ〉 it is DTIME(2n) computable whether
〈x, y,φ〉 is in D. This gives a betting strategy since M(〈x, y,φ〉) /∈ A implies x /∈ R

or y /∈ R and M(〈x, y,φ〉) ∈ A implies x ∈ R or y ∈ R. Assume x is lexicograph-
ically less than or equal to y. Given the outcome of M(〈x, y,φ〉) ∈ A use 1/3d of
the capital on x ∈ R and, if necessary, the remaining 2/3d of the capital on y ∈ R. In
either case the capital grows to 4/3. So SAT ≤p/ log logn

m,li D ≤p

m,honest A which proves
the theorem. �

With a weaker assumption but a less standard notion of reduction we arrive at an
even stronger conclusion.



322 Theory Comput Syst (2010) 47: 317–341

Theorem 2 (∀c > 0)[(∃R ∈ NP)[R is DTIME(2nc
)-bi-immune] =⇒ [A is ≤p

m̂
-

complete ⇒ A is ≤p/1
m̂,li-complete]].

Proof Suppose that A is in NTIME(nd). Let

D =
{〈φ,0〉 : φ ∈ SAT ∨ 0|φ| ∈ R

〈φ,1〉 : φ ∈ SAT ∧ 0|φ| ∈ R

}

.

It is easy to see that SAT ≤p/1
m,li D. It therefore suffices to prove that D ≤p

m̂,honest A.
Let M be the reduction from D to A. By definition of D.

φ /∈ SAT =⇒ [0|φ| ∈ R ⇔ M(〈φ,0〉) ∈ A],
φ ∈ SAT =⇒ [0|φ| ∈ R ⇔ M(〈φ,1〉) ∈ A].

If (∀k)(∃∞φ)[|M(〈φ,b〉)| < |〈φ,b〉| 1
k ], then (∀k)(∃∞φ)[|M(〈φ,0〉)| < |〈φ,0〉| 1

k ] or

(∀k)(∃∞φ)[|M(〈φ,1〉)| < |〈φ,1〉| 1
k ].

Then by the DTIME(2nc
)-bi-immunity of R and the fact that M(〈φ,b〉) in A is

NTIME(nd) and hence DTIME(2nd
) computable if |M(〈φ,b〉)| < |φ,b| c

d we can
conclude for almost all of these φ in the first case that φ ∈ SAT; if φ /∈ SAT, we
could calculate 0|φ| ∈ R in DTIME(2n). Similarly, in the second case we know that
φ /∈ SAT. So, for a suitable k whenever |M(〈φ,b〉)| < |〈φ,b〉|1/k , we can decide
membership of φ in SAT in P. In the remaining cases M is honest. �

Hitchcock and Pavan [22] show that for nondeterministic exponential time, no
assumption is needed to make the many-one complete sets length increasing complete
via reductions that use a polynomial amount of advice. Next we will improve this
result to n − logn bits of advice.

Theorem 3 (∀c > 0)[A ≤p
m − complete for NEXP =⇒ A ≤p/n−c logn

m,li complete].

Proof Let A be any ≤p
m NEXP complete set and let K be the standard 1-1, length

increasing, paddable, many-one complete set computable in NTIME(2n). Let p :
�∗ × �∗ → �∗ be a polynomial time padding function for K where ∀x∀r x ∈ K ↔
p(x, r) ∈ K , and let f be a polynomial time 1-1 reduction from K to A. Since f and
p are both 1-1, for every n there is some rn ∈ �n+1 where |f (p(x, rn))| > |x| for all
x ∈ �n. Let r ′ be rn with the last c logn bits removed. Now consider the function p′
which takes x, r ′ as input and tries all possible n bit strings, ri , that are extensions
consistent with r ′ and outputs f (p(x, ri)) for the first ri where |f (p(x, ri))| > |x|.
We know that such an extension exists and that it will be polynomial in n to find such
an ri . Let g(x) = p′(x, r ′) be the reduction from K to A. �

The same proof yields a trade-off between the amount of advice and the honesty
of the reduction.

Theorem 4 For all c, c > 0, the many-one complete sets for NEXP are g(|x|)-honest
for reductions that use g(|x|) − c logn bits of advice.



Theory Comput Syst (2010) 47: 317–341 323

Corollary 5 [17] For any c, the many-one complete sets for NEXP are c logn-honest
complete.

Next we show that this amount of advice is optimal relative to some oracle. First
we construct an oracle witnessing that NEXP has a many-one complete set which
is not complete under length increasing many-one reductions. We then show how to
adapt this oracle to witness that NEXP has a many-one complete set which is not
complete under length increasing many-one reductions that use less than logarithmic
advice.

Theorem 6 There exists an oracle witnessing that NEXP has a many one complete
set that is not complete under length increasing reductions.

Proof We construct sets A, C, and D, such that C = KA
NEXP − D is complete for

NEXPA, but not via length-increasing reductions. The construction has two phases,
a diagonalization phase in which we take care that {0}∗ is not reduced to C via a
many-one reduction that is length increasing on almost all strings, and an encoding
phase, in which the strings in D that are also in KA

NEXP are encoded into the oracle in
such a way that a nondeterministic exponential time set, here C, can compute them
on inputs that are exponentially smaller. We use a fast growing but easy to compute
function b(i) which is at least double exponential, i.e., b(i + 1) > 22b(i)

.
Phase 1: Diagonalization—In this phase we construct D, and part of A.

Additional notation: For integers i and j , and sets X and Y , let qnext(i, j,X,Y )

denote the first query of the form q = 〈0, j ′, x〉, computed by f X(0b(i)) with |q| >

b(i), x /∈ Y , q /∈ X, and j ′ ≤ j , if any, and λ otherwise.
1: Stage 0: A = ∅, D = ∅;
2: Stage i: set j = 1i logb(i); Di = ∅; Ai = ∅;
3: while (q = qnext(i, j,A ∪ Ai,Di)) �= λ do
4: Ai = Ai ∪ {〈0, c,π3(q)〉 | 0i logb(i) ≤ c ≤ j}; recall that π3(q) is the projection of

the third element in q .
5: Di = Di ∪ {π3(q)}; j = j − 1;
6: end while
7: if |f A∪Ai

i (0b(i))| > b(i) then
8: D = D ∪ Di ∪ {fi(0b(i))};
9: A = A ∪ Ai ∪ {〈0, c, fi(0b(i))〉 | 0i logb(i) ≤ c ≤ j};

10: end if
Phase 2: Coding—here we make adjustments to the oracle A such that KA − D

remains incomplete via length increasing reductions. However, strings in D are re-
encoded in A such that a NEXP machine can recover these strings on inputs of loga-
rithmic lengths.

1: Stage x:
2: if x ∈ KA ∩ D then
3: Let c = max{i | 〈0, i, x〉 ∈ A};
4: Let k = b(i)i where b(i) ≤ |x| ≤ b(i)i ;
5: Let y = min{z | |z| = k2 ∧ 〈1, c, z〉 /∈ Q(f A

i (0b(i))) ∪ {Q(NA
K(v)) | v ≤ x}

6: A = A ∪ {〈1, c, y〉};
7: end if



324 Theory Comput Syst (2010) 47: 317–341

Interleaving The diagonalization phase and the coding phase can be executed simul-
taneously, but interleaved. The diagonalization at stage i assumes that the oracle is
fixed below length b(i). Therefore the coding of all such strings has to be done be-
fore this stage starts. This means that the coding of all x’s in KA ∩ D that require
changes to the oracle at lesser length have to be encoded before stage i. The x’s in
∪{Dj | j < i} are of length at most b(i − i)i−1. To determine whether these x’s are

also in KA, queries must be made to A at lengths at most 2b(i−1)i−1
(note that this

may be changed by the encoding itself, but not by stages > i of the diagonaliza-
tion, moreover this encoding stabilizes by the fact that queries of previously encoded
strings are avoided). Then these x’s are encoded at length |x|2 which is at maximum
(b(i − 1)i−1)2. However (∀∞i)[b(i −1)(i−1)2

< 2b(i−1)i−1
< b(i)], since b(i) is dou-

ble exponential. It follows that diagonalization and coding can be safely interleaved
by first doing an entire diagonalization stage, and then coding the strings that entered
D during that stage.

Lemma 7 (Room to diagonalize) Whenever strings need to be added to A during the
diagonalization phase, there are enough strings not yet determined.

Proof The diagonalization phase during stage i adds strings of length between b(i)

and b(i)i . The number of these strings is bounded by b(i)i × ∑b(i)i

j=0 j , which is less

than b(i)3i . For all but finitely many x this is less than 2b(i)i , the number of strings
not yet set in the oracle at this length. �

Lemma 8 (Room to encode) Whenever strings need to be added to A during the
encoding phase, there are enough strings not yet determined.

Proof Whenever a string x needs to be encoded, we search for a string y of length
|x|2 such that 〈1, c, x〉 is not yet in the oracle. Note that strings added by the diag-
onalization phase are all of the form 〈0, u, v〉, so these do not matter. Other strings
that could be prohibited from entering the oracle are strings queried in a computation
of MA

KNEXP
, on inputs y < x. There are less than 2|x|+1 of these strings, each giving

rise to at most 2|y| queries. It follows that this number is bounded by 22|x|+1 which is
much less than the 2|x|2 strings available for almost all x. �

The complete set C is defined as follows.
1: input 〈i, x〉 : i ∈ {0,1};
2: if i = 0 and x ∈ KA − D then accept
3: end if
4: if (∃y)[|y| = 22|x| ∧ 〈1, x, y〉 ∈ A] then accept
5: end if
6: reject

Lemma 9 C ∈ NEXPA.

Proof It follows more or less straightforward from the construction and the way di-
agonalizing and coding is interleaved that computing whether an input is in D can



Theory Comput Syst (2010) 47: 317–341 325

be done in deterministic exponential time. Observe that strings for which nonde-
terministic exponential time computations must be simulated are all exponentially
smaller. x ∈ KA can be decided in nondeterministic linear exponential time, and an
oracle query of length 22|x| can be built in nondeterministic linear exponential time
as well. �

Lemma 10 {0}∗ does not reduce to C via a reduction that is almost always length
increasing.

Proof Suppose it does, then this length increasing reduction has some index i where
b(i + 1) is large enough to satisfy all room to diagonalize/code conditions and more-
over Mi(0b(i)) > b(i). At stage i the oracle is fixed so that the output Mi(0b(i)) is in
D and hence not in C, a contradiction. �

The final part is the definition of the reduction F from KA to C.

1: input x

2: Let k = max{i | b(i) ≤ |x|}
3: if 〈0,0i logb(i), x〉 /∈ A then output 〈0, x〉;
4: else
5: Let � = max{j | 〈0, j, x〉 ∈ A};
6: output 〈1, �〉;
7: end if

The final lemma for this construction then says that C remains complete.

Lemma 11 KA ≤p
m C.

Proof If x /∈ D then x ∈ KA iff x ∈ C. In this case no string of the form 〈0, y, x〉
is in A by construction, so the reduction, which is identity in this case, works. If
x ∈ D ∩KA then for the maximum c such that 〈0, c, x〉 is in A, there exists a string y

of length |x|2 with 〈1, y, c ∈ A〉, hence c ∈ C. If x ∈ D − KA then no such y is in A,
hence c /∈ C. �

�

By the following observation, the construction can be adapted to reductions that
have k bits of advice by the following observation. In stage i of the construction
we diagonalize against many-one reduction Mi , resulting in the coding of ni strings
from KA into strings of length log(ni) = i logn. Instead of diagonalizing against just
Mi the same construction can be used to diagonalize against 2k different advices for
Mi resulting in a coding of 2kni strings from KA into strings of length log(2kni) =
k + i logn.

Corollary 12 There exists an oracle witnessing that NEXP has a many one complete
set that is not complete under length increasing reductions that use k bits of advice.

The oracle above works for nondeterministic polynomial time as well as nonde-
terministic exponential time. The only significant change in the constructions above



326 Theory Comput Syst (2010) 47: 317–341

is that we pad the counter so that the replacement in C is only polynomially smaller
in length than the original element taken from C.

Theorem 13 There exists an oracle witnessing that NP has a many one complete set
that is not complete with length increasing reductions.

Proof As before, we construct sets A, C, and D, such that C = KA
NP −D is complete

for NPA, but not via length-increasing reductions. Again, the construction has two
phases, a diagonalization phase in which we take care that {0}∗ is not reduced to C via
a many-one reduction that is length increasing on almost all strings, and an encoding
phase, in which the strings in D that are also in KA

NP are encoded into the oracle in
such a way that a nondeterministic polynomial time set, here C, can compute them
on inputs that are polynomially smaller. We use a fast growing but easy to compute
function b(i) which is at least double exponential, i.e., b(i + 1) > 22b(i)

.
Phase 1: Diagonalization—In this phase we construct D, and part of A. Let
qnext(i, j,X,Y ) be defined as above. Here the major change is the length of our

counter j , we pad it to 1b(i)
1
2i bits.

1: Stage 0: A = ∅, D = ∅;

2: Stage i: set j = 0b(i)
1
2i −i·lg(b(i))1i·lg(b(i)); Di = ∅; Ai = ∅;

3: while (q = qnext(i, j,A ∪ Ai,Di)) �= λ do

4: Ai = Ai ∪ {〈0, c,π3(q)〉 | 0b(i)
1
2i ≤ c ≤ j};

5: Di = Di ∪ {π3(q)}; j = j − 1;
6: end while
7: if |f A∪Ai

i (0b(i))| > b(i) then
8: D = D ∪ Di ∪ {fi(0b(i))};
9: A = A ∪ Ai ∪ {〈0, c, fi(0b(i))〉 | 0b(i)

1
2i ≤ c ≤ j};

10: end if
Phase 2: Coding—again adjustments to the oracle A such that KA − D remains
incomplete via length increasing reductions, however strings in D are reencoded in
A such that an NP machine can recover these strings. Unlike before, these strings are
polynomially smaller in length.

1: Stage x:
2: if x ∈ KA ∩ D then
3: Let c = max{i | 〈0, i, x〉 ∈ A};
4: Let k = b(i)i where b(i) ≤ |x| ≤ b(i)i ;
5: Let y = min{z | |z| = k2 ∧ 〈1, c, z〉 /∈ Q(f A

i (0b(i))) ∪ {Q(NA
K(v)) | v ≤ x}

6: A = A ∪ {〈1, c, y〉};
7: end if

Interleaving As with NEXP the diagonalization phase and the coding phase can be
executed simultaneously, but interleaved.

Again because of the size of our function b, diagonalization and coding can be
safely interleaved by first doing an entire diagonalization stage, and then coding the
strings that entered D during that stage.



Theory Comput Syst (2010) 47: 317–341 327

Lemma 14 (Room to diagonalize) Whenever strings need to be added to A during
the diagonalization phase, there are enough strings not yet determined.

Lemma 15 (Room to encode) Whenever strings need to be added to A during the
encoding phase, there are enough strings not yet determined.

The proofs for encoding and diagonalization exactly follow the cases for NEXP.
We define a similar complete set C, the only difference is the length of our witness.

1: input 〈i, x〉 : i ∈ {0,1};
2: if i = 0 and x ∈ KA − D then accept
3: end if
4: if (∃y)[|y| = 4|x| ∧ 〈1, x, y〉 ∈ A] then accept
5: end if
6: reject

Lemma 16 C ∈ NPA.

Proof As before, this follows from the construction of the diagonalization and the
encoding. We can decide whether an input is in D in polynomial time. x ∈ KA can
be decided in nondeterministic polynomial time, and an oracle query of length 4|x|
can be built in nondeterministic linear time as well. �

Lemma 17 {0}∗ does not reduce to C via a reduction that is almost always length
increasing.

Proof Suppose it does, then this length increasing reduction has some index i where
b(i + 1) is large enough to satisfy all room to diagonalize/code conditions and more-
over Mi(0b(i)) > b(i). At stage i the oracle is fixed so that the output Mi(0b(i)) is in
D and hence not in C, a contradiction. The final part is the definition of the reduction
F from KA to C.

1: input x

2: Let k = max{i | b(i) ≤ |x|}
3: if 〈0,0i logb(i), x〉 /∈ A then output 〈0, x〉;
4: else
5: Let � = max{j | 〈0, j, x〉 ∈ A};
6: output 〈1, �〉;
7: end if

The final lemma for this construction then says that C remains complete.

Lemma 18 KA ≤p
m C.

Proof If x /∈ D then x ∈ KA iff x ∈ C. On the other hand in this case no string of the
form 〈0, y, x〉 is in A by construction, so the reduction, which is identity in this case
works. If x ∈ D ∩ KA then for the maximum c such that 〈0, c, x〉 is in A there exists
a string y of length |x|2 with 〈1, y, c ∈ A〉, hence c ∈ C. If x ∈ D − KA then no such
y is in A, hence c /∈ C. �

�



328 Theory Comput Syst (2010) 47: 317–341

3.2 1-Truth-Table Versus Many-One Reductions

Sometimes 1-tt reductions can be converted into many-one reductions. Under a rather
strong assumption we can prove this theorem for 1-tt reductions that use one bit of
advice.

Theorem 19 Let A be ≤p

1-tt complete for NP. If there exists a set R in NP that is

NTIME(2cn) ∩ co-NTIME(2cn)-bi-immune, then A is also ≤p/1
m -complete for NP.

Proof Let A be ≤p

1-tt complete and let

D =
{〈φ,0〉 : φ ∈ SAT ∨ 0|φ| ∈ R

〈φ,1〉 : φ ∈ SAT ∧ 0|φ| ∈ R

}

.

Since R ∈ NP, D ∈ NP and so D ≤p

1-tt A. Obviously SAT ≤p/1
m D. The single bit of

advice needed is whether 0|φ| ∈ R. Let M be the ≤p

1-tt reduction from D to A. M ,
on input 〈φ,0〉, produces a string z. Then, depending on the program of M , 〈φ,0〉 ∈
D ↔ z ∈ A or 〈φ,0〉 ∈ D ↔ z /∈ A. In the first case we say M is of type m (many-
one) on input 〈φ,0〉 and in the second case that M is of type m on input 〈φ,0〉. We
now claim that the bi-immunity of R implies M can be of type m for only finitely
many unsatisfiable φ. Or, in other words,

(∃∞φ /∈ SAT)[type(M(φ,0)) = m] ⇒
(∃B)[||B|| = ∞ ∧ B ∈ NTIME(22n) ∩ co-NTIME(22n) ∧ [B ⊆ R ∨ B ⊆ R]].

We first prove this claim. Consider

C = {0n | ∃φ /∈ SAT, |φ| = n, type(M(φ,0)) = m},
||C|| = ∞ → [||C ∩ R|| = ∞ ∨ ||C ∩ R|| = ∞].

Assume ||C ∩R|| = ∞. Set B = C ∩R. Now B ∈ NTIME(22n) by the following algo-
rithm. On input 0n guess φ with |φ| = n and φ /∈ SAT; Check that type(M(φ,0)) = m

and verify 0n ∈ R using the reduction to A. It is also the case that B is in NTIME(22n)

by the following algorithm. On input 0n check that for every φ of length n either
φ ∈ SAT or that type(M(φ,0)) = m, or that there exists a φ /∈ SAT of length n for
which type(M(φ,0)) = m but m(φ,0) ∈ A (which means 0n /∈ R).

We conclude that under the assumption of the theorem there can only be finitely
many unsatisfiable φ such that M(φ,0) is of type m. A similar proof shows that there
can be only finitely many satisfiable φ such that M(φ,1) is of type m. From this we
can build our many-one reduction. �

The premise of the previous theorem seems rather strong. Yet it is not impossible
that NP does have such sets. To provide evidence for this statement we construct
precisely such a set in the following theorem.

Theorem 20 For every constant c, there exists an oracle A such that NP has a set
that is NTIME(2nc

) ∩ co-NTIME(2nc
)-immune.



Theory Comput Syst (2010) 47: 317–341 329

Proof We use a construction appearing in [9] in which the oracle is created from an
infinite Kolmogorov random string. The language that will have the property stated
in the theorem will be the following. For all oracles X define DX = {x | (∃y)[|y| =
n2c ∧ xy ∈ X}. Let Y be an infinite string that has the property that (∀n)[K(Y[1..n]) >

nc]. We will construct A by stages. As+1 is the oracle defined by the end of stage s

and As+1 ⊆ As for all s. The oracle A may have 2n strings of length n+n2c. We now
describe the initial oracle A0.

To encode a string x into D, we need a sequence of |x|2c bits. For this encoding we
use substrings of Y . Up to |x| we have used bits of Y for

∑
i<|x| 2i ≤ 2|x| strings, so

if we let the substrings of Y that encode strings of length |x| start at the 2|x| × |x|2cth
bit of Y , there will never be a conflict (two strings in A taking their encoding from the
same substring of Y , note that strings smaller than x require less bits for encoding).
Moreover, we have sequence from the 2|x| × |x|2cth bit up until the 2|x|+1 × |x|2cth
bit of 2|x| substrings of length |x|2c that can be used to encode strings of length |x|.
The encoding of strings of length |x| + 1 then starts at the 2|x|+1 × |x + 1|2cth bit
of Y , which is quite a bit further along. For A0 up to the ith string of length m we
use a substring of Y , say Y

m,i
A0

of length 2mm2c + im2c bits. The incompressibility of

Y implies that for some constant d and all m and i it holds that K(Y
m,i
A0

) ≥ 2mm2c +
im2c − d . This is the property we will use to prove correctness of our construction.
This ends the description of the initial oracle A0. We shall next describe a stage
construction of the oracle that has the desired properties.

At each stage s we will decide the membership of the string xs in DA, where xs

is the sth string in the lexicographical ordering of �∗. Deciding membership of xs

is deciding whether to remove xsy from A where xsy is the only string that is an
extension of xs currently in A. The Kolmogorov property that makes the entire con-
struction work is that a (nondeterministic) machine that rejects some string xs with
oracle As must also reject xs with oracle A or else it will allow us—via a descrip-
tion of the position of a query on the least accepting path—to describe some initial
segment of Y using significantly less bits than the length of this segment, which then
violates the aforementioned Kolmogorov property.

Let {Mi}i be an enumeration of all nondeterministic Turing machines, where
2nc

is the time bound on inputs of length n for all machines in the enumeration.
The construction maintains two sets of requirements. First, a set Us of yet unsat-
isfied requirements to which occasionally a new element is added and from which
satisfied requirements are removed. Second, a set Vs in which satisfied require-
ments are kept. Sometimes a satisfied requirement will be moved from Vs to Us at
which time it will become unsatisfied again. Every requirement corresponds to a lan-
guage in NTIME(2nc

) ∩ co-NTIME(2nc
), represented by nondeterministic 2nc

-time
bounded machines Mi and Mj . Even requirements R2〈i,j〉 will represent the need
to establish a nonempty intersection of L(Mi) ∩ L(Mj) with D, whereas odd re-
quirements R2〈i,j〉+1 will represent the need to establish a nonempty intersection of
L(Mi) ∩ L(Mj) with D.



330 Theory Comput Syst (2010) 47: 317–341

We will prove that the construction of A meets the following requirements for all
〈i, j 〉.
1. R2〈i,j〉: ||L(MA

i )|| = ∞ =⇒ [[L(MA
i ) �= L(MA

j )] ∨ [L(MA
i ) ∩ DA �= ∅]].

2. R2〈i,j〉+1: ||L(MA
i )|| = ∞ =⇒ [[L(MA

i ) �= L(MA
j )] ∨ [L(MA

i ) ∩ DA �= ∅]].
There are two ways to fulfill these requirements. Either maintain a difference be-

tween L(Mi) and L(Mj ), i.e., the pair Mi,Mj does not represent a language in
NTIME(2nc

) ∩ co-NTIME(2nc
), or maintain a string in the intersection of L(Mi)

and D, respectively D.
A requirement Re with e = 2〈i, j 〉, or e = 2〈i, j 〉 + 1 is active at stage s if xs ∈

L(M
As

i ). Now the construction can be described as follows.
1: stage s:
2: if no requirement is active then
3: As+1 = As ;
4: Vs+1 = Vs ; Us+1 = Us ;
5: else
6: let e be the least active requirement in Us ;
7: if e is even then
8: Us+1 = Us − {e};
9: Vs+1 = Vs ∪ {〈e, xs〉};As+1 = As ;

10: else
11: if {〈i, x〉 ∈ Vs | (i < e) ∧ (2|x|c ≥ |xs |)} = ∅ then
12: Vs+1 = Vs − {〈i, x〉 ∈ Vs | i > e}
13: Us+1 = Us ∪ {i | (i > e) ∧ (∃x)[〈i, x〉 ∈ Vs]} − {e};
14: As+1 = As − {〈xs, ys〉};
15: else
16: As+1 = As ; Vs+1 = Vs ; Us+1 = Us ;
17: end if
18: end if
19: end if
20: if s = 2k then Us+1 = Us+1 ∪ {k}.
21: end if �

We will now prove correctness of our construction in a series of lemmas. The key
lemma in the proof is the following.

Lemma 21 (∀∞s)(∀e < log s)[xs /∈ L(M
As
e ) =⇒ xs /∈ L(MA

e )].

Proof Suppose not. Let e and s be such that e < log s and xs ∈ L(MA
e )−L(M

As
e ). Let

s′ be minimal such that s′ ≥ s and xs ∈ L(M
As′+1
e )−L(M

As′
e ). By construction As′ −

As′+1 = {xs′ys′ }. The string xs′ys′ must be queried in any accepting computation

of M
As′+1
e on input xs . Otherwise M

As′
e would also have an accepting computation

on input xs contradicting the assumption. On input xs , machine Me can only query
strings of length less than or equal to 2|xs |c . Moreover ||{y | y ∈ A0 −As′+1}|| < log s′
since for every such y there is an odd index in Ut − (Ut+1 ∪Vt+1) for some t < s′ and



Theory Comput Syst (2010) 47: 317–341 331

there are no more than log s′ indices in ∪{Ut | t ≤ s′}. Let n be such that n2c > |xs′ |2c.
We will show how to construct the first 2n+1n2c bits of Y using significantly less bits
and hence arrive at a contradiction. Suppose that we have 2n+1n2c − |xs′ |2c bits of Y

that describe the initial segment of Y used to encode A0 for all substrings of Y up
to and including strings of length n + n2c, except ys′ (for strings of length n + n2c

there is a corresponding substring of length n2c in Y as explained above. So ys′ in
Y , xs′ys′ in A0). Furthermore suppose that we have a list of at most log s′ strings
xi1, . . . , xik that says which xij yij are in A0 − A′

s . Note that no strings greater than

xs′ys′ are in A0 − A′
s . Finally let q < 2|xs |c be the index of the query xs′ys′ in the

leftmost accepting computation of M
As′+1
e (xs). Note that q requires at most |x|c bits.

Now we can construct the first 2n+1n2c bits of Y from 2n+1n2c − |xs′ |2c + log s′ ×
|xs′ | + |x′

s | + |xs |c + O(1) bits of information. We arrive at a contradiction for all but
finitely many s. The difference between |x′

s |2c and log s′ × |xs′ | + |x′
s |+ |xs |c +O(1)

will outgrow any constant, and so the complexity assumption on Y will be violated. �

Lemma 22 (∀e)[||{s | (∃x)[〈e, x〉 ∈ Vs+1 − Vs]}|| < ∞].

Proof Whenever 〈e, x〉 is in Vs+1 − Vs there is a smaller index that is moved from
Us+1 either to oblivion or to Vs+1. This means that 0 can enter Vs for only one s and
there is no t such that 〈0, x〉 is in Vt − Vt+1. By induction for i < e, let #i be the
number of times that index i is in Vt+1 − Vt for some t and x. Then it is clear that
#e ≤ ∑e−1

i=0 (1 + #i) which is finite for all e. �

Corollary 23 (∀e)[(∃∞s)[e ∈ Us] =⇒ (∀∞s)[e ∈ Us]].

Lemma 24 If ||L(MA
e )|| = ∞ then L(MA

e ) ∩ DA �= ∅.

Proof Let e be such that ||L(MA
e )|| = ∞ and L(MA

e ) ∩ DA = ∅. If 2e in Vs+1 then

L(M
As+1
e )∩DAs+1 �= ∅. Since L(MA

e )∩DA = ∅ there are infinitely many s such that
2e /∈ Vs . It follows from Corollary 23 that 2e ∈ Us for almost all s. Consequently,
there are infinitely many s such that xs ∈ L(MA

e ) where 2e ∈ Us and e < log s. At
stage s there are two possibilities.

1. xs ∈ L(M
As
e ).

2. xs /∈ L(M
As
e ).

In case 1, since xs /∈ DA there is some e′ < e such that 2e′ + 1 ∈ Us+1 − Us . Hence
case 1 can appear only finitely often. Case 2 must appear infinitely often. Consider a
stage where case 2 appears. Then we have e < log s and xs ∈ L(MA

e ) − L(M
As
e ), so

it follows from Lemma 21 that this can also appear only finitely often, a contradic-
tion. �

Lemma 25 If L(MA
i ) = L(MA

j ) and ||L(MA
i )|| = ∞ then L(MA

i ) ∩ DA �= ∅.

Proof We will first argue that for almost all i and j , if 2〈i, j 〉 + 1 is in Us − (Us+1 ∪
Vs+1) then L(MA

i ) ∩ DA �= ∅. Note that a particular language in NTIME(2nc
) ∩



332 Theory Comput Syst (2010) 47: 317–341

co-NTIME(2nc
) is represented by infinitely many pairs 〈i, j 〉. Suppose that for

some (large) s the index 2〈i, j 〉 + 1 is in Us − (Us+1 ∪ Vs+1). This means that
xs ∈ DA and xs /∈ L(M

As

j ). It follows from Lemma 21 that xs /∈ L(MA
j ) and hence

from the assumption L(MA
i ) = L(MA

j ) that xs ∈ L(MA
i ). If (∀∞s)(∃x)[〈e, x〉 ∈ Vs]

then let t be maximal so that e /∈ Vt . Since At = At+1, it is then the case that
xt ∈ L(M

At+1
i ) ∩ L(M

At+1
j ) and moreover since 〈e, xt 〉 ∈ Vu for all u ≥ t + 1, sub-

sequent changes to the oracle are made only at lengths greater than 2|xt |c hence xt ∈
L(MA

i ) ∩ L(MA
j ). In this case there is nothing to prove. Finally, let e = 2〈i, j 〉 + 1

be such that L(MA
i ) = L(MA

j ) and ||L(MA
i )|| = ∞ and L(MA

i ) ⊆ DA and more-
over (∀∞s)[e ∈ Us]. By Corollary 23 also (∀∞s)(∀e′ ≤ e)[e′ ∈ Us =⇒ e′ ∈ Us+1],
i.e., no requirement of higher priority will be satisfied at stage s. Consider only two
stages where xs ∈ L(MA

i ) and (∀e′ ≤ e)[e′ ∈ Us =⇒ e′ ∈ Us+1]. At any of these
stages there are two possibilities.

1. xs ∈ L(M
As

i ).

2. xs /∈ L(M
As

i ).

In the first case 2〈i, j 〉 + 1 /∈ Us+1 contradicting the assumption and in the second
case xs ∈ L(MA

i ) − L(M
As

i ) so this case can occur only finitely often according to
Lemma 21. �

The following lemma concludes the proof.

Lemma 26 ||DA|| = ∞ and ||DA|| = ∞.

Proof This is immediate from the fact that both sets have nonempty intersec-
tions with languages in NTIME(2nc

) ∩ co-NTIME(2nc
) at infinitely many different

points xs . �
�

4 When Does Advice Help?

As we stated in the introduction, reductions with advice seem to inhabit a higher
level of complexity than do uniform reductions. In the next theorem we show a sim-
ple diagonalization that demonstrates incomparability of uniform 2-tt reductions and
many-one reductions with advice.

Theorem 27 There exists a set A ∈ EXP that is ≤p

2-tt-hard for EXP but not ≤p/1
m -

hard for EXP, and there exists a set A′ ∈ EXP that is ≤p/1
m -hard for EXP but not

≤p

2-tt-hard for EXP.

Proof First we show that there is a set A ∈ EXP that is ≤p

2-tt-hard for EXP but not

≤p/1
m -hard for EXP. We start with an enumeration {Mi}i of all polynomial time trans-

ducers that take one bit of advice and look at the outcome of the computations on



Theory Comput Syst (2010) 47: 317–341 333

input 0n for n spaced exponentially far apart. Our exponential-time computable set
D that we use for diagonalization is a subset of {0}∗ ∪ {1}∗, where strings of this
type appear with exponential gaps between them. Our complete set A is a subset
of {〈b, x〉 | b ∈ {0,1}}, and the 2-tt reduction from KEXP to A on input x computes
〈0, x〉 ∈ A ⊕ 〈1, x〉 ∈ A and accepts if the outcome is 1. On suitable inputs 0n we
diagonalize against Mi . If Mi accepts or rejects without querying, or queries a part of
A that has already been set, i.e., exponentially smaller than the input, we diagonalize
by letting Mi(0n) compute the wrong answer. If the queries are not of the form 〈b, x〉
then we do the same, so for the rest of the proof we assume that Mi on input 0n com-
putes a query that has not yet been set of the form 〈b, x〉, given advice 0 or 1. There
are several possibilities:

1. Mi computes 〈b1, x〉 with advice 0 and 〈b2, y〉 with advice 1 where x �= y. Then
we set 0n ∈ D, 〈b1, x〉 /∈ A, and 〈b2, y〉 /∈ A, furthermore, set 〈1 − b1, x〉 in A if
x ∈ K , and set 〈1 − b2, y〉 in A if y ∈ K .

2. Mi computes 〈b, x〉 both with advice 0 and 1. Then we set 0n ∈ D and set 〈1 −
b, x〉 to reflect x ∈ K correctly.

3. Mi computes 〈b, x〉 with advice 0 and 〈1−b, x〉 with advice 1. Now we set 0n ∈ D

and compute Mi(1n) with advice 0 and 1. The case of small query strings is treated
in the same way, and the cases above are treated in the same way. If we cannot
already diagonalize on 1n alone then it must be the case that Mi(1n) computes
〈by, y〉 and 〈1 − by, y〉. There are three cases.
(a) x = y and b = by . In this case we set 0n ∈ D and 1n /∈ D. Set 〈b, x〉 and

〈1 − b, x〉 consistent with x ∈ K .
(b) b = 1 − by . In this case we set 0n ∈ D, 1n ∈ D, and M0(0n) = M1(1n) /∈ A.
(c) x �= y. In this case we set 0n ∈ D and 1n ∈ D and let M0(0n) /∈ A and

M1(1n) /∈ A.

In the reverse case we have to deal with an enumeration of polynomial time truth-
tables. We use the same complete set, but use the advice to either produce 〈0, x〉 or
〈1, x〉 on input x. There are again some cases to consider, but in this case we only
need a subset of {0}∗ to diagonalize. �

Yet reductions with advice and the induced completeness notions show familiar
properties. Sets complete for EXP are complete under length-increasing, one-one
reductions and are dense.

Theorem 28 If A is complete for EXP under ≤p/1
m -reductions, then A is complete

for EXP under length-increasing ≤p/1
m -reductions as well.

Proof Let {Mi}i be an enumeration of polynomial time many-one reductions that use
one bit of advice. Let D be defined as follows. For b ∈ {0,1} if |Mb

i (〈b, i, x〉)| ≤ |x|
then let 〈b, i, x〉 ∈ D iff x /∈ A. Else let 〈b, i, x〉 ∈ D iff x ∈ K . Since A is complete
for EXP, one of the reductions, say j must compute the reduction from D to A. For
this reduction, it is never the case that the |Mj(〈b, i, x〉)| ≤ |x| when b is the correct
advice for |〈b, i, x〉|. Hence the reduction f (x) = Mj(〈b, i, x〉) where b is the correct

advice for |〈b, i, x〉| is a ≤p/1
m length-increasing reduction from K to A. �



334 Theory Comput Syst (2010) 47: 317–341

Theorem 29 Let A be complete for EXP under ≤p/1
m reductions, then A is dense.

Proof We construct a set W in EXP as follows. For b ∈ {0,1} and x ∈ {0,1}∗. If
there is an x′ < x such that Mb

i (〈b, i, x〉) = Mb
i (〈b, i, x′〉), then 〈b, i, x〉 ∈ W ↔

〈b, i, x′〉 /∈ W . Otherwise 〈b, i, x〉 ∈ W . The set W is exponential time computable
and dense (it has at least one of 〈0, i, x〉, 〈1, i, x〉 for every i and x). The reduction
from W to A cannot have collisions for the correct advice, hence A must also be
dense. �

Theorem 30 Let A be complete in EXP under ≤p/1
m -reductions, then A is also com-

plete under ≤p/1
m,1−1,li -reductions.

Proof Let K be the canonical EXP-complete set. Let K0 = {〈0n, x〉 | n ∈ N,x ∈ K}.
Clearly, K0 is ≤p

m,1−1,li -complete in EXP. We show a ≤p/1
m,1−1,li -reduction from K0

to A.
Let {Mi}i be an enumeration of polynomial time many-one reductions that take

one bit advice. Let Mb
i (x) denote the output of machine i on input x using advice b.

First we use the constructions of Theorems 28 and 29 to find a reduction Mk from
K0 to A that is both length-increasing, and 1-1 on strings of the same length. That is,
if b is the correct advice for |x| then (∀x)[|Mb

k (x)| > |x|] and (∀x, y)[|x| = |y| →
Mb

k (x) �= Mb
k (y)].

Without loss of generality, Mk runs in time nk for almost all inputs, and hence for
almost all x, y and b if |y| > |x|k then Mb

k (x) �= Mb
k (y). Now let y0(x) = min{y |

(∃�)[y = 02(k+1)�−|x|x]} and define f b(x) = Mb
k (y0(x)).

Note that f is polynomial time computable. For every x the length of y0(x) is at
most 2k+1|x|, so that the computation of Mk on y0(x) takes at most 2k2 |x|k time,
which is polynomial in |x|. Next, if x �= x′ then either |y0(x)| = |y0(x

′)| in which
case f b(x) �= f b(x′), for b the correct advice for length |y0(x)| by properties of
Mk , or |y0(x)| �= |y0(x

′)| but then, without loss of generality, assume y0(x
′) to be

the longer string |y0(x
′)| ≥ |y0(x)|k , then f b(x) �= f b′

(x′) for b the correct advice
for length |y0(x)| and b′ the correct advice for length |y0(x

′)| by the fact that Mk is
length increasing and nk-time computable. In both cases f is 1-1. The advice given
to f on input x is the advice belonging to Mk on input y0(x), which depends only
on |x|. �

However, unlike the uniform case, EXP has a ≤p/1
m -complete set that is P-bi-

immune.

Theorem 31 There exists a ≤p/1
m -complete set in EXP that is P-bi-immune.

We construct a set A complete under ≤p/1
m -reductions that is P-bi-immune by

creating A in such a way that every infinite polynomial time language has an element
in A and in A. We construct such an A length by length in stages. At every stage, n,
we consider the polynomial time machines with a smaller index than n, and we do
so by picking the minimally indexed machine that has not accepted an element in A



Theory Comput Syst (2010) 47: 317–341 335

or A. Specifically, define RA
i to be the requirement that Mi accepts some element in A

and RA
i to be the requirement that Mi accepts some element of A. The requirements

are given priority as RA
0 > RA

0 > RA
1 > RA

1 . . . . We will code K the standard many-
one complete set for EXP into A length by length. We do this encoding by adding
in strings of the form 〈b, x〉. Here we will use the bit b to diagonalize against the
polynomial time machines, we keep A ≤p/1

m -complete by using the same bit b at
each length, n.

Proof Let {Mi}i be an enumeration of polynomial time computable sets. Let K be
the standard ≤p

m EXP complete set. We construct A in stages at each stage n we
create set An and A = ⋃

i∈N
Ai

Stage n:

1. Find the minimally indexed machine Mi with i < n, with either ||L(Mi) ∩
An−1|| = ||L(Mi)|| or ||L(Mi)∩An−1|| = ||L(Mi)|| that accepts some 〈b, x〉 with
|〈b, x〉| = n, where b ∈ {0,1}, x ∈ {0,1}∗. If such a machine and 〈b, x〉 exist then
do one of the following:
(a) If ||L(Mi) ∩ An|| = ||L(Mi)|| leave 〈b, x〉 and all 〈b, y〉, with |〈b, y〉| = n out

of An. Then ∀〈1 − b, y〉, |〈1 − b, y〉| = n, put 〈1 − b, y〉 ∈ An ↔ y ∈ K. (We
have fulfilled requirement RA

i .)
(b) Else ||L(Mi) ∩ An|| = ||L(Mi)|| and we put 〈b, x〉 in A. Then ∀〈b, y〉,

|〈b, y〉| = n, put 〈b, y〉 ∈ An ↔ y ∈ K. (We have fulfilled requirement RA
i .)

2. If no machine Mi with i < n accepts a 〈b, x〉 with |〈b, x〉| = n, then we need only
keep A complete, ∀〈0, y〉, |〈0, y〉| = n, put 〈0, y〉 ∈ An ↔ y ∈ K.

We claim that for every Mi with ||L(Mi)|| = ∞, L(Mi) ∩ A �= ∅ and L(Mi) ∩
A �= ∅. First we show L(Mi) ∩ A �= ∅. Assume not, namely, ||L(Mi)|| = ∞,
L(Mi) ⊆ A. Notice that at some stage n,Mi will be the minimally indexed machine
that accepts some 〈b, x〉. Since ||L(Mi)|| = ∞ and L(Mi) ⊆ A it will eventually
accept some 〈b, x〉. We leave that pair out and we have an element in A and a contra-
diction.

The same argument works for the complement. Assume that for some machine Mi ,
||L(Mi)|| = ∞ and, L(Mi) ⊆ A. Again at some stage n,Mi will be the minimally
indexed machine that accepts some 〈b, x〉. This time we put 〈b, x〉 in A and obtain
our contradiction.

Note that for a machine which accepts only a finite number strings or strings of a
different form we are unable to fulfill the corresponding requirement, this does not
influence our result as this machine cannot accept an infinite subset in A or A. �

At the cost of more queries, in particular at the cost of adaptive queries, there does
exist a relation between completeness under reductions that use advice and uniform
reductions as the following theorem shows.

Theorem 32 Every set A that is ≤p/1
m complete in EXP is also ≤p

T -complete in EXP.



336 Theory Comput Syst (2010) 47: 317–341

Proof Let A be some ≤p/1
m complete set, let K be the standard many-one complete

set. We will create a Turing reduction from K to A by using a few intermediate sets
in EXP

These sets will be based on the tableau representation of the exponential time ma-
chine computing x ∈ K . Let the EXP machine computing K be MK . We assume the
running time of MK is 2p(n) for some polynomial p. Consider an exponential size
rectangle that is an encoding of the computation x ∈ K . Where the ith row denotes
the tape contents during the ith step of the computation. The columns of the rectangle
refer to the contents of a particular tape cell throughout each step of the computation.
We call this rectangle the tableau of the computation x ∈ K . Say, a bit in this com-
putation has position i, j , where 1 ≤ i, j ≤ 2p(n), and assume that the final bit in
this computation is 0 or 1 representing reject and accept respectively. Moreover, by
padding i, j , where 1 ≤ i, j ≤ 2p(n), we can ensure that for every x, 〈x, i, j 〉 is of the
same length for every 〈i, j 〉. (Namely, i, j will be binary strings between 0p(n)1 and
10p(n).)

Now consider the language B , the set of 〈i, j, x〉 with the following conditions:

1. 〈i, j 〉 are each padded to length p(|x|) + 1.
2. 〈i, j 〉 bit in the tableau for MK(x) is 1.

First notice that B ∈ EXP, and as A is ≤p/1
m -complete, there is a polynomial

time machine, Mb
B , where for correct the advice b, 〈i, j, x〉 ∈ B ↔ Mb

B(〈i, j, x〉) ∈ A.
Also notice there is a many-one reduction from K to B , i.e. x ∈ K ↔
〈10p(|x|),10p(|x|), x〉 ∈ B . Now for all i, j, i′, j ′ between 0p(n)1 and 10p(n),
〈i, j, x〉 ∈ B corresponds to the 〈i, j 〉 bit of MK(x) and |〈i, j, x〉| = |〈i′, j ′, x〉|. This
means that the same advice bit is used by Mb

B on all 〈i, j, x〉 to compute the bits
of the exponential computation by MK . Since we would like to remove the advice
consider the computation of M0

B and M1
B over all 〈i, j, x〉 with i, j between 0p(n)1

and 10p(n). Let the bits computed by M0
B be the 0-tableau and the bits by M1

B be the
1-tableau. Note that if the final bits in the 0-tableau and the 1-tableau are the same,
then we know the answer to x ∈ K .

If the final bits are not the same, then there must be an inconsistency for exactly
one of the two tableaux (the one computed with the incorrect advice). Now we will
show how to recover the correct advice using the inconsistency in the tableau. Con-
sider the set B ′ defined as:

B ′ = {〈b, i, j, x〉
| [〈i, j, x〉 ∈ B ∧ Mb

B(〈i, j, x〉) ∈ A] ∨ [〈i, j, x〉 /∈ B ∧ Mb
B(〈i, j, x〉) /∈ A]}.

For the correct advice, b, to the reduction MB , 〈b, i, j, x〉 ∈ B ′ for all i, j be-
tween 0p(n)1 and 10p(n). For the incorrect advice, b′, there is some 〈i, j 〉 with
〈b, i, j, x〉 /∈ B ′.

We will also need to find this inconsistency in B ′. For this we define the set B̂ as
follows: we add in all 〈b, i′, j ′, x〉, where 〈i′, j ′〉 is less than 〈i, j 〉, where 〈i, j 〉 is the
location of the first inconsistency with MK .

B̂ = {〈b, i′, j ′, x〉 | 〈i′, j ′〉 is less than the minimal 〈i, j 〉 with 〈b, i, j, x〉 /∈ B ′}.



Theory Comput Syst (2010) 47: 317–341 337

Notice that both B ′ and B̂ are in EXP, therefore there are polynomial time reduc-

tions from B ′ and B̂ to A which use one bit of advice. Let Mb
B ′ and Mb

B̂
be these

reductions respectively.
We are now ready to define the polynomial time Turing machine with oracle access

to A which computes x ∈ K .
On input x

1. Compute p(|x|) where 2p(|x|) is the running time of MK . (Recall that MK is the
exponential machine computing K.)

2. Compute q0 = M0
B(10p(|x|),10p(|x|), x) and q1 = M1

B(10p(|x|),10p(|x|), x), where
Mb

B is the polynomial time reduction from B to A using advice b.

3. Ask q0 ∈ A and q1 ∈ A

If both yes ACCEPT
Else if both no, REJECT
Else continue

4. Now we will assume that 0 was the correct advice and that M0
B(10p(|x|),

10p(|x|), x) ∈ A is the right answer. This assumption also implies that there is
some 〈i, j 〉 such that 〈1, i, j, x〉 /∈ B ′. We will use B̂ to find such a location. We do
this using the reduction Mb

B̂
. Compute l0 = max〈i, j 〉 with M0

B̂
(〈1, i, j, x〉) ∈ A

and l1 = max〈i, j 〉 with M1
B̂
(〈1, i, j, x〉) ∈ A.

5. There are three possibilities from above:

– If no l0 or l1 is found then there is no inconsistency with the 1-tableau, i.e. 1 is
the right advice. If q1 ∈ A ACCEPT, else REJECT.

– One l0 or l1 is found or l0 = l1. This means that there is an inconsistency at l0
and 0 is the correct advice. If q0 ∈ A ACCEPT, else REJECT.

– Both l0 and l1 are found and l0 �= l1. Here exactly one of l0, l1 must be correct
and there is an inconsistency within the 1-tableau and 0 is the correct advice. If
q0 ∈ A ACCEPT, else REJECT. �

With a slightly more complicated proof the above theorem can be extended to
reductions using up to c logn advice. The different advice strings then give rise to a
polynomial number of (possibly disagreeing) tableaux. With help of the one correct
advice, an exponential time computation, and thus a polynomial time reduction, can
point out the first errors in the other computations, thus providing proof for the correct
result.

The tableau technique is a nonrelativizing technique. It is no surprise that this
theorem does not relativize. We make this explicit in the following theorem.

Theorem 33 There exists an oracle A and an set B that is ≤p/1,A
m -complete for

EXPA but not ≤p,A
T -complete for EXPA.

Proof For this proof we use the construction of an oracle appearing in [15]. Here,
a set A is constructed such that EXPA has a Turing complete sets that is not au-
toreducible. In particular there is a subset of S of {0n} such that A − S is no longer



338 Theory Comput Syst (2010) 47: 317–341

Turing complete. The Turing reduction that makes A complete is a very simple one.
If 0|x| ∈ A then x ∈ K ↔ 〈0, x〉 ∈ A else x ∈ K ↔ 〈1, x〉 ∈ A. Of course this is a
≤p/1

m reduction and A − S remains ≤p/1
m complete under this reduction �

The fact that many-one completeness with one bit of advice can be simulated
using more queries, extends to the delta levels of the polynomial hierarchy. Here the
reduction does not even have to be adaptive as the following theorem shows.

Theorem 34 For every k and every set A in �
p
k , if A is ≤p/1

m -complete, then A is
≤p

tt -complete.

Proof Let Xi be the set of variables xi
1, x

i
2, . . . , x

i
n and denote a particular assign-

ment to Xi as the string ωi where the j th bit is the value of xi
j . For each level k of

�
p
k , we fix φ, a boolean formula over X1 ∪X2 ∪· · ·∪Xk with kn variables. Consider

the sets:

Sk(φ) = {X1 | ∀X2∃X3∀ · · ·QXkφ(X1,X2, . . . ,Xk) is true},
Lk = {〈φ, j〉 | the j th bit in the lexicographically least element in Sk(φ) is 1},
Wk(φ,X) = {0n | ∃Y,∀X1∃ · · ·QXk−2φ(X,Y,X1, . . . ,Xk−2) is not true}.
Notice that Lk is complete for �

p
k [26] and that Wk(φ,X) ∈ �

p

k−1. Let A be a

≤p/1
m complete set for �

p
k . We show how to compute Lk using a truth table reduction

to A. We will do this by induction on the level k.
We first show this for PNP as a base case, namely, that k = 1. Let M1 compute

the reduction from L1 to A given advice b, and let Mb
1 (〈φ, j〉) be the output of the

reduction, i.e., for the correct advice b it holds that Mb
1 (〈φ, j〉) ∈ A if and only if

〈φ, j〉 ∈ L1. We pad L1, such that 〈φ,0〉, . . . , 〈φ,n〉 are all of the same length, i.e.,
use the same advice.

Now compute

ω0
1 = 〈M0

1 (〈φ,0〉)〉, . . . , 〈M0
1 (〈φ,n〉)〉,

ω1
1 = 〈M1

1 (〈φ,0〉)〉, . . . , 〈M1
1 (〈φ,n〉)〉.

We know at least one of φ(ω0
1) or φ(ω1

1) must be true as 0 or 1 must be the correct
advice and return the bits of the lexicographically least assignment to φ. This implies
that the other advice either returns an assignment that does not make φ true, or an
assignment that is not lexicographically smaller. In any case, by asking the queries
M0

1 (〈φ,0〉), . . . ,M0
1 (〈φ,n〉) and M1

1 (〈φ,0〉), . . . ,M1
1 (〈φ,n〉) we can check which is

which in polynomial time. Thus giving us a ≤p
tt reduction to A and completing our

base case.
Now we assume that there is a ≤p

tt -reduction from Lk−1 to A. As before, let Mk

compute the ≤p/1
m -reduction from Lk to A and let Mb

k (〈φ, j〉) be the output for the
correct advice b. Again compute:

ω0
k = 〈M0

k (〈φ,0〉)〉, . . . , 〈M0
k (〈φ,n〉)〉,

ω1
k = 〈M1

k (〈φ,0〉)〉, . . . , 〈M1
k (〈φ,n〉)〉.



Theory Comput Syst (2010) 47: 317–341 339

We know that one of φ(ω0
k) or φ(ω1

k) is an element of Sk(φ). To determine which
we use the fact that Lk−1 is �

p

k−1 complete and the ≤p
tt -reduction from Wk(φ,ω0

k)

to A and the inductive assumption that there is a ≤p
tt -reduction from Wk(φ,ω1

k) to A.

We ask if 0|ω0
k | ∈ Wk(φ,ω0

k) and 0|ω1
k | ∈ Wk(φ,ω1

k). At least one of these queries will
be no as 0 or 1 is the correct advice. If only one says no, we have determined the
correct advice and have a ≤p

tt -reduction. If the both are no, one of the assignments
is lexicographically smaller and we again know the correct advice and have a ≤p

tt -
reduction. �

Theorem 35 [15] EXPSPACE has a set that is complete using a many-one reduction
with one bit of advice and is not complete using any truth table reduction.

Proof Consider the EXPSPACE-complete set created by Buhrman et al. [15] which is
complete under truth table reductions that ask 3 queries, but is not autoreducible un-
der nonadaptive reductions. This set A is a subset of {0}∗ ∪ 〈0, x〉∪ 〈1, x〉. The set has
the property that x ∈ K ↔ 0|x| ∈ A ∧ 〈0, x〉 ∈ A or x ∈ K ↔ 0|x| /∈ A ∧ 〈1, x〉 ∈ A.
Here, K is the canonical EXPSPACE complete set. The nonadaptive reduction on
input x queries 0|x|, 〈0, x〉, 〈1, x〉. To show that the set is not autoreducible they con-
struct the set so that all nonadaptive reductions must query 0|x| to be complete.

We use this fact for our claim, consider the set A − {0}∗ from [15] we know that
this set is not complete under nonadaptive reductions. However, consider the many-
one reduction x ∈ K → 〈b, x〉, where b is the advice bit, and b = 0 ↔ 0|x| ∈ A. Here
it is clear that K ≤p/1

m A−{0}∗. This yields a set in EXPSACE complete under many-
one reductions which use one bit of advice that is not complete under nonadaptive
reductions. �

The two previous theorems have some interesting consequences. We don’t know
whether Theorem 32 can be strengthened to truth-table reductions. However there are
two cases.

1. By Theorem 35, if ≤p/1
m -completeness implies ≤p

tt -completeness on EXP then
EXP �= EXPSPACE.

2. By Theorem 34, we know if ≤p/1
m -completeness does not imply ≤p

tt -completeness
on EXP, then PH �= EXP.

5 Further Research

We have initiated the systematic study of non-uniform reductions. Many of the re-
sults here concern reductions which use only 1 bit of advice. In Theorem 19, we
do not know that even this one bit of advice in necessary. Can it be eliminated? In
places where more advice bits are needed can they be reduced? In general, how much
stronger are non-uniform reductions than their uniform counterparts.

Another, more technical question about reductions left open here, is whether the
extended many-one reductions used in Theorem 2 are really needed? This may be



340 Theory Comput Syst (2010) 47: 317–341

more difficult than it first seems as Theorem 13 presents an oracle where length in-
creasing many-one reductions do not exist for NP-complete sets. Can we add an im-
munity assumption to this oracle showing that non-relativizing techniques would be
required to prove Theorem 2 for standard many-one reductions.

Another line of research is to strengthen some of the theorems concerning NP by
weakening the strong hypotheses used in their proof. In particular, are the immunity
and measure assumptions necessary for Theorems 2 and 19? Part of this paper was
motivated by the recent work of Hitchcock and Pavan [21]. That paper features and
compares a number of these strong hypotheses, and it would be interesting to deter-
mine the minimal hypotheses needed in our results here.

Acknowledgements We thank John Hitchcock, Eric Allender, and Stephen Fenner for useful discus-
sions and feedback. We thank John Hitchcock for his observation that the hypothesis in our length increas-
ing result for NP can be weakened to bi-immunity instead of measure zero.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Agrawal, M.: Pseudo-random generators and structure of complete degrees. In IEEE Conference on
Computational Complexity, pp. 139–147 (2002)

2. Agrawal, M., Biswas, S.: Polynomial isomorphism of 1-L complete sets. In: Proc. Structure in Com-
plexity Theory 7th Annual Conference, San Diego, California, pp. 75–80. IEEE Computer Society,
Los Alamitos (1993)

3. Allender, E.: Isomorphisms and 1-L reductions. J. Comput. Syst. Sci. 36(6), 336–350 (1988)
4. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random

strings. In: FOCS, pp. 669–678. IEEE Computer Society, Los Alamitos (2002)
5. Ambos-Spies, K.: p-mitotic sets. In: Börger, E., Hasenjäger, G., Roding, D. (eds.) Logic and Ma-

chines. Lecture Notes in Computer Science, vol. 177, pp. 1–23. Springer, Berlin (1984)
6. Balcázar, J., Díaz, J., Gabarró, J.: Structural Complexity I. Springer, Berlin (1988)
7. Berman, L., Hartmanis, H.: On isomorphisms and density of NP and other complete sets. SIAM J.

Comput. 6, 305–322 (1977)
8. Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings. In: Proceedings

Structure in Complexity Theory, 10th Annual Conference (STRUCTURES95), Minneapolis, pp. 197–
205. IEEE Computer Society, Los Alamitos (1995)

9. Buhrman, H., Torenvliet, L.: Complicated complementations. In: Proceedings 14th IEE Conference
on Computational Complexity, pp. 227–236. IEEE Computer Society, Los Alamitos (1999)

10. Buhrman, H., Torenvliet, L.: Separating complexity classes using structural properties. In: Proceed-
ings 19th IEE Conference on Computational Complexity, pp. 130–138. IEEE Computer Society, Los
Alamitos (2004)

11. Buhrman, H., Torenvliet, L.: A Post’s program for complexity theory. In Bulletin of the EATCS 85,
pp. 41–51 (2005)

12. Buhrman, H., Homer, S., Torenvliet, L.: On complete sets for nondeterministic classes. Math. Syst.
Theory 24, 179–200 (1991)

13. Buhrman, H., Spaan, E., Torenvliet, L.: Bounded reductions. In: Ambos-Spies, K., Homer, S., Schön-
ing, U. (eds.) Complexity Theory, pp. 83–99. Cambridge University Press, Cambridge (1993)

14. Buhrman, H., Spaan, E., Torenvliet, L.: The relative power of logspace and polynomial time reduc-
tions. Comput. Complexity 3(3), 231–244 (1993)

15. Buhrman, H., van Melkebeek, D., Fortnow, L., Torenvliet, L.: Using autoreducibility to separate com-
plexity classes. SIAM J. Comput. 29(5), 1497–1520 (2000)

16. Fenner, S., Fortnow, L., Kurtz, S.A.: The isomorphism conjecture holds relative to an oracle. In: Proc.
33rd IEEE Symposium Foundations of Computer Science, pp. 30–39 (1992)



Theory Comput Syst (2010) 47: 317–341 341

17. Ganesan, K., Homer, S.: Complete problems and strong polynomial reducibilities. In: Proc. Sympo-
sium on Theoretical Aspects of Computer Science. Springer Lecture Notes in Computer Science, vol.
349, pp. 240–250. Springer, Berlin (1988)

18. Glaßer, C., Selman, A.L., Travers, S.D., Zhang, L.: Non-mitotic sets. In: Arvind, V., Prasad, S. (eds.)
STTCS. Lecture Notes in Computer Science, vol. 4855, pp. 146–157. Springer, Berlin (2007)

19. Hartmanis, J., Hemachandra, L.: One-way functions and the non-isomorphism of NP-complete sets.
Theor. Comput. Sci. 81(1), 155–163 (1991)

20. Homer, S., Kurtz, S., Royer, J.: A note on many-one and 1-truth table complete sets. Theor. Comput.
Sci. 115(2), 383–389 (1993)

21. Hitchcock, J.M., Pavan, A.: Hardness hypotheses, derandomization, and circuit complexity. In: 24th
Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 336–347.
Springer, Berlin (2004)

22. Hitchcock, J.M., Pavan, A.: Comparing reductions to NP-complete sets. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP (1). Lecture Notes in Computer Science, vol. 4051, pp.
465–476. Springer, Berlin (2006)

23. Homer, S., Selman, A.L.: Oracles for structural properties: the isomorphism problem and public-key
cryptography. J. Comput. Syst. Sci. 44(2), 287–301 (1992)

24. Homer, S., Selman, A.L.: Computability and Complexity Theory. Springer, New York (2001)
25. Kurtz, S., Mahaney, S., Royer, J.: The isomorphism conjecture fails relative to a random oracle. In

Proc. 21nd Annual ACM Symposium on Theory of Computing, pp. 157–166 (1989)
26. Krentel, M.: The complexity of optimization problem. J. Comput. Syst. Sci. 36, 490–509 (1988)
27. Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial time reducibilities. Theor. Comput.

Sci. 1, 103–123 (1975)
28. Mayordomo, E.: Almost every set in exponential time is p-bi-immune. Theor. Comput. Sci. 136(2),

487–506 (1994)
29. Ronneburger, D.: Kolmogorov complexity and derandomization. PhD thesis, Rutgers University, New

Brunswick, NJ, October 2004
30. Watanabe, O.: A comparison of polynomial time completeness notions. Theor. Comput. Sci. 54, 249–

265 (1987)
31. Young, P.: Juris Hartmanis: Fundamental contributions to the isomorphism problems. In: Selman,

A.L. (ed.) Complexity Theory Retrospective, pp. 108–146. Springer, Berlin (1990)


	Non-Uniform Reductions
	Abstract
	Introduction
	Notation
	Advice to Strengthen Reductions
	Length Increasing Reductions
	1-Truth-Table Versus Many-One Reductions

	When Does Advice Help?
	Further Research
	Acknowledgements
	Open Access
	References


