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S
ingle-particle cryo-EM has transformed rapidly into a main-
stream technique in biological research1. Cryo-EM images 
individual protein particles, rather than crystals and has 

therefore been particularly useful for structural studies of integral 
membrane proteins, which are difficult to crystallize2. These mol-
ecules are critical for drug discovery, targeted by more than half 
of drugs today3. Membrane proteins pose challenges in cryo-EM 
sample preparation, imaging and computational 3D reconstruction, 
as they are often of small size, appear in multiple conformations, 
have flexible subunits and are embedded in a detergent micelle or 
lipid nanodisc2. These characteristics cause strong spatial variation 
in structural properties, such as rigidity and disorder, across the 
target molecule’s 3D density. Traditional cryo-EM reconstruction 
algorithms, however, are based on the simplifying assumption of a 
uniform, rigid particle.

We develop an algorithm that incorporates such domain knowl-
edge in a principled way, improving 3D reconstruction quality 
and allowing single-particle cryo-EM to achieve higher-resolution 
structures of membrane proteins. This expands the range of pro-
teins that can be effectively studied and is especially important 
for structure-based drug design4,5. We begin by formulating a 
cross-validation (CV) regularization framework for single-particle 
cryo-EM refinement and use it to account for the spatial variability 
in resolution and disorder found in a typical molecular complex. 
The framework incorporates general domain knowledge about pro-
tein molecules, without specific knowledge of any particular mole-
cule and critically, without need for manual user input. Through this 
framework we derive a new algorithm called non-uniform refine-
ment, which automatically accounts for structural variability, while 
ensuring that key statistical properties for validation are maintained 
to mitigate the risk of over-fitting during 3D reconstruction.

With a graphics processing unit-accelerated implementation 
of non-uniform refinement in the cryoSPARC software package6, 
we demonstrate improvements in resolution and map quality for a 
range of membrane proteins. We show results on a 48-kDa mem-
brane protein in lipid nanodisc with a Fab bound, a 180-kDa mem-
brane protein complex with a large detergent micelle and a 245-kDa 

sodium channel complex with flexible domains. Non-uniform 
refinement is reliable and automatic, requiring no change in param-
eters between datasets and is without reliance on hand-made spatial 
masks or manual labels.

Iterative refinement and regularization. In standard cryo-EM 3D 
structure determination6–8, a generative model describes the forma-
tion of two-dimensional (2D) electron microscope images from a 
target 3D protein density (Coulomb potential). According to the 
model, the target density is rotated, translated and projected along 
the direction of the electron beam. The 2D projection is modulated 
by a microscope contrast transfer function (CTF) and corrupted by 
additive noise. The goal of reconstruction is to infer the 3D den-
sity map from particle images, without knowledge of latent 3D pose 
variables, that is, the orientation and position of the particle in each 
image. Iterative refinement methods formulate inference as a form 
of maximum likelihood or maximum a posteriori optimization6,9–11. 
Such algorithms can be viewed as a form of block-coordinate 
descent or expectation-maximization12, each iteration comprising 
an E-step, estimating the pose of each particle image, given the 3D 
structure, and an M-step, regularized 3D density estimation given 
the latent poses.

Like many inverse problems with noisy, partial observations, the 
quality of cryo-EM map reconstruction depends heavily on regular-
ization. Regularization methods, widely used in computer science 
and statistics, leverage prior domain knowledge to penalize unnec-
essary model complexity and avoid over-fitting. In cryo-EM refine-
ment, regularization is needed to mitigate the effects of imaging and 
sample noise so that protein signal alone is present in the inferred 
3D density and so accumulated noise does not contaminate latent 
pose estimates.

Existing refinement algorithms use an explicit regularizer in 
the form of a shift-invariant linear filter, typically obtained from 
Fourier shell correlation (FSC)6,10,13–17. Such filters smooth the 3D 
structure using the same kernel, and hence the same degree of 
smoothing, at all locations. As FSC captures the average resolu-
tion of the map, such filters presumably under- and over-regularize  

Non-uniform refinement: adaptive regularization 
improves single-particle cryo-EM reconstruction
Ali Punjani   1,2,3 ✉, Haowei Zhang1 and David J. Fleet   1,2 ✉

Cryogenic electron microscopy (cryo-EM) is widely used to study biological macromolecules that comprise regions with disor-
der, flexibility or partial occupancy. For example, membrane proteins are often kept in solution with detergent micelles and lipid 
nanodiscs that are locally disordered. Such spatial variability negatively impacts computational three-dimensional (3D) recon-
struction with existing iterative refinement algorithms that assume rigidity. We introduce non-uniform refinement, an algo-
rithm based on cross-validation optimization, which automatically regularizes 3D density maps during refinement to account 
for spatial variability. Unlike common shift-invariant regularizers, non-uniform refinement systematically removes noise from 
disordered regions, while retaining signal useful for aligning particle images, yielding dramatically improved resolution and 3D 
map quality in many cases. We obtain high-resolution reconstructions for multiple membrane proteins as small as 100 kDa, 
demonstrating increased effectiveness of cryo-EM for this class of targets critical in structural biology and drug discovery. 
Non-uniform refinement is implemented in the cryoSPARC software package.

NAturE MEtHoDs | VOL 17 | DeCemBer 2020 | 1214–1221 | www.nature.com/naturemethods1214

mailto:alipunjani@cs.toronto.edu
mailto:fleet@cs.toronto.edu
http://orcid.org/0000-0002-4133-6630
http://orcid.org/0000-0003-0734-7114
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-020-00990-8&domain=pdf
http://www.nature.com/naturemethods


ARTICLESNATURE METHODS

different regions, allowing noise accumulation in some regions and 
a loss of resolvable detail in others. This effect should be pronounced 
with membrane proteins that have highly non-uniform rigidity and 
disorder across the molecule. As a motivating example, Fig. 1 shows 
a reconstruction of the TRPA1 membrane protein18 with a relatively 
low density threshold to help visualize regions with substantial noise 
levels, which indicate over-fitting (e.g. the disordered micelle and 
the flexible tail at and bottom of the protein). We hypothesize that 
under-fitting occurs in the core region where over-regularization 
attenuates useful signal. As such, accumulated noise and attenuated 
signal will degrade pose estimates during refinement, limiting final 
structure quality. For inference problems of this type, the amount 
and form of regularization depends on regularization parameters. 
Correctly optimizing these parameters is often critical, but care 
must be taken to ensure that the optimization itself is not also prone 
to over-fitting.

results
We next outline the formulation of an adaptive form of regulariza-
tion and with it, a new refinement algorithm called non-uniform 
refinement. We discuss its properties and demonstrate its applica-
tion on several membrane protein datasets.

Adaptive cross-validation regularization. With the aim of incor-
porating spatial non-uniformity into cryo-EM reconstruction, we 
formulate a family of regularizers denoted rθ, with parameters θ(x) 
that depend on spatial position x. Given a 3D density map m(x), the 
regularization operator, evaluated at x, is defined by

ðrθ mÞðxÞ ¼
X

ξ

hðξ; θðxÞÞmðξ� xÞ ; ð1Þ

where h(x; ψ) is symmetric smoothing kernel, the spatial scale of 
which is determined by parameter ψ.

This family provides greater flexibility than shift-invariant regu-
larizers, but in exchange, requires making the correct choice of a 

new set of parameters, θ(x). We formulate the selection of the regu-
larization parameters as an optimization subproblem during refine-
ment, for which we adopt a twofold CV objective19,20. The data are 
first randomly partitioned into two halves. On each of two trials, 
one part is considered as training data and the other is treated as 
held-out validation data. To find the regularizer parameters θ, one 
minimizes the sum of the per-trial validation errors (e), measuring 
consistency between the model and the validation data; that is,

EðθÞ ¼ eðrθ m1; m2Þ þ eðrθ m2; m1Þ ð2Þ

where m1 and m2 are reconstructions from the two folds of the data. 
Similar objectives have been used for image de-noising21. We also 
introduce constraints on the parameters θ(x) to control degrees of 
freedom. The optimization problem is solved using a discretized 
search algorithm (Methods).

The resulting CV regularizer automatically identifies regions 
of a protein density with differing structural properties, optimally 
removing noise from each region. Fig. 2 illustrates the difference 
between uniform filtering (FSC-based) and the CV-optimal adap-
tive regularizer in non-uniform refinement. Shift-invariant regular-
ization smooths all regions equally, while the adaptive regularizer 
preferentially removes noise from disordered regions, retaining 
high-resolution signal in well-structured regions that is essential for 
2D−3D alignment.

Non-uniform refinement algorithm. The non-uniform refinement 
algorithm takes as input a set of particle images and a low-resolution 
ab initio 3D map. The data are randomly partitioned into two halves, 
each of which is used to independently estimate a 3D half-map. This 
‘gold-standard’ refinement17 allows use of FSC for evaluating map 
quality and for comparison with existing algorithms. The key to 
non-uniform refinement is the adaptive CV regularization, applied 
at each iteration of 3D refinement. The regularizer parameters θ(x) 
are estimated independently for each half-map (Methods), adher-
ing to the ‘gold-standard’ assumptions. In contrast, in conventional 
uniform refinement the two half-maps are not strictly independent 
as the regularization parameters, determined by FSC, are shared 
by both half-maps. Finally, the optimization and application of the 
adaptive regularizer cause non-uniform refinement to be approxi-
mately two times slower than uniform refinement in cryoSPARC.

Validation with membrane protein datasets. We experimentally 
compared non-uniform refinement with conventional uniform 
refinement with three membrane protein datasets, all processed 
in cryoSPARC (see Supplementary Information for an additional 
membrane protein with no soluble region). Both algorithms were 
given the same ab initio structures. Except for the regularizer, all 
parameters and stages of data analysis, including the 2D−3D 
alignment and back-projection, were identical in uniform and 
non-uniform refinements. The default use of spatial solvent mask-
ing during 2D−3D alignment in cryoSPARC was used for both algo-
rithms (Supplementary Information). No manual masks were used 
and no masking was used to identify or separate micelle or nano-
disc regions. The same non-uniform refinement default parameters 
(other than symmetry) were used for all datasets.

When computing gold-standard FSC during the analysis of the 
reconstructed 3D density maps, for each dataset we used the same 
mask for uniform and non-uniform refinement. The masks were 
tested using phase randomization13 to avoid FSC bias. Also, the 
same B-factor was used to sharpen both uniform and non-uniform 
refinement maps for each dataset. This consistency helped to ensure 
that visible differences in 3D structure were due solely to algorith-
mic differences. To color maps using local resolution, we used a 
straightforward implementation of Blocres22 for resolution estima-
tion. No local filtering or local sharpening was used for visualization.  
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Fig. 1 | A 3D map from uniform refinement reveals spatial variations 

in resolution in a prototypical membrane protein (trPA1 ion channel, 

EMPIAr-10024). Following the default FSC-based regularization and 

B-factor sharpening in cryoSPArC, the density map has been thresholded 

at a relatively low value to clearly visualize regions with substantial levels 

of noise. Color depicts local resolution22 as a proxy for local structure 

properties. red indicates higher resolution (e.g. the core inner region), 

yellow indicates moderate resolutions (e.g. the solvent-facing region) and 

blue indicates poor resolution (e.g. the disordered detergent micelle and 

the flexible tail at the bottom). 
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Uniform and non-uniform refinement density maps were thresh-
olded to contain the same total volume for visual comparison.

We also note that the FSC-based regularizer in conventional uni-
form refinement is equivalent to a shift-invariant regularizer opti-
mized with CV. That is, one can show that the optimal shift-invariant 
filter under CV with squared error has a transfer function equiva-
lent to the FSC curve. Thus, the experiments below also capture the 
differences between adaptive and shift-invariant regularization.

STRA6-CaM: CV regularization yields improved pose estimates 
and FSC. Zebrafish STRA6-CaM23 is a 180-kDa C2-symmetric 
membrane protein complex comprising the 74-kDa STRA6 pro-
tein bound to calmodulin (CaM). STRA6 mediates the uptake of 
retinol in various tissues. We processed a dataset of 28,848 particle 
images of STRA6-CaM in a lipid nanodisc, courtesy of O. Clarke 
and F. Mancia (O. Clarke, personal communication). Non-uniform 
refinement provides a substantial improvement in nominal resolu-
tion from 4.0 Å to 3.6 Å (Fig. 3a), indicating an improvement in the 
average signal-to-noise over the entire structure. However, different 
regions exhibited different resolution characteristics (Fig. 3c), as is 
often observed with protein reconstructions22. There was substantial 
improvement in structural detail in most regions, while peripheral 
and flexible regions remained at low resolutions. Differences in struc-
ture quality, clearly visible in detailed views of α-helices (Fig. 3d),  
are especially important during atomic model building, where in 
many cases, protein backbone and side chains can only be traced 
with confidence in the non-uniform refinement map. Improvements 
in structure quality coincided with changes in particle alignments 
(Fig. 3b), approximately 3° on average. While disorder in the lipid 
nanodisc and nonrigidity of the CaM subunits are problematic for 
uniform refinement, adaptive regularization in non-uniform refine-
ment reduces the influence of noise on alignments and produces 
improved map quality, especially in the periphery of the protein.

PfCRT: enabling atomic model building from previously unus-
able data. The Plasmodium falciparum chloroquine resistance 
transporter (PfCRT) is an asymmetric 48-kDa membrane protein24. 
Mutations in PfCRT are associated with the emergence of resistance 
to chloroquine and piperaquine as antimalarial treatments. We 
processed 16,905 particle images of PfCRT in lipid nanodisc with a 
Fab bound (EMPIAR-10330 (ref. 24)). For PfCRT, the difference in 
resolution (Fig. 4a) and map quality (Fig. 4c) between uniform and 
non-uniform refinement is striking.

Using uniform refinement, reaching 6.9 Å, transmembrane 
α-helices are barely resolvable. Non-uniform refinement recovers  

signal up to 3.6 Å and provides a map from which an atomic model 
can be built with confidence. Transmembrane α-helices can be 
directly traced, including side chains. In contrast, the uniform 
refinement map does not show helical pitch and does not sepa-
rate β-strands in the Fab domain. Indeed, an early version of the 
non-uniform refinement algorithm was essential for reconstructing 
the published high-resolution density map and model24.

On the spectrum of proteins studied with cryo-EM, the 
PfCRT-Fab complex (100 kDa) is small. The lipid nanodisc 
(~50 kDa) also accounts for a large fraction of total particle molecu-
lar weight (see Fig. 2). We hypothesized that disorder in this rela-
tively large nanodisc region leads to over- and under-regularization 
in uniform refinement. Most particle images exhibited orientation 
differences >6° between the two algorithms (Fig. 4b), suggesting 
that a large fraction of particle images were grossly misaligned by 
uniform refinement.

Nav1.7 channel: improvement in high-resolution features. Nav1.7 
is a voltage-gated sodium channel found in the human nervous 
system25. It plays a role in the generation and conduction of action 
potentials and is targeted by toxins and therapeutic drugs (e.g. for 
pain relief). We processed data of Nav1.7 bound to two Fabs, form-
ing a 245-kDa C2-symmetric complex solubilized in detergent25. 
Following pre-processing (Methods), as described elsewhere25, we 
detected both active and inactive conformational states of the chan-
nel. We obtained reconstructions with resolutions better than the 
published literature for both, but here we focus on 300,759 particle 
images of the active state.

Compared to the preceding datasets, the Nav1.7 complex has a 
higher molecular weight and, in relative terms, a smaller detergent 
micelle. However, other regions are disordered or flexible, namely, 
a central four-helix bundle, peripheral transmembrane domains 
and the Fabs. For Nav1.7, uniform refinement reaches 3.4 Å reso-
lution and non-uniform refinement reaches an improved 3.1 Å  
(Fig. 5a). This result is also an improvement over the published 
result of 3.6 Å (EMDB-0341)25, where the authors performed all 
processing in cisTEM10.

With non-uniform refinement, map quality was clearly improved 
in central transmembrane regions, while some flexible parts of the 
structure (Fab domains and four-helix bundle) remained at inter-
mediate resolutions (Fig. 5c). In detailed views of α-helices (Fig. 5d) 
closer to the periphery of the protein, improvement in map quality 
and interpretability was readily apparent in the non-uniform refine-
ment map, allowing modeling of side-chain rotamers with confi-
dence. Central α-helices showed less improvement, but map quality 

Raw reconstruction Shift-invariant regularization
(FSC-based)

Adaptive regularization
(cross-validation optimal)

40 Å

Fig. 2 | Images illustrate the difference between shift-invariant regularization and adaptive (CV-optimal) regularization on a membrane protein (PfCrt, 

EMPIAr-10330). A central slice through a raw reconstruction (m-step) of a half-map after nine iterations (left). It shows substantial levels of noise. The 

same reconstruction is shown after uniform isotropic filtering (based on FSC between half-maps). It shows uniform noise attenuation throughout the slice 

(middle). The same half-map reconstruction after adaptive regularization with the optimal CV regularizer shows greater attenuation of noise in the solvent 

background and the nanodisc region, while better preserving the high-resolution structure in the well-ordered protein region (right). 
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remained equal or slightly improved, indicating that reconstruc-
tions of protein regions without disorder were not harmed by using 
non-uniform refinement.

Increased data efficiency. Examining map quality as a function of 
dataset size further helped to explore data efficiency. Figure 6 plots 
inverse resolution versus the number of particles. Such plots are use-
ful as they relate to image noise and computational extraction of sig-
nal15. Across all datasets, non-uniform refinement reached the same 

resolution as uniform refinement with fewer than half the number 
of particle images. It has also been argued that higher curves indi-
cate more accurate pose estimates26. Notably, the resolution gap 
between uniform and non-uniform refinement persists over a wide 
range of dataset sizes. While this resolution gap may decrease for 
much larger datasets than those considered here, the collection of 
more data alone may not allow uniform refinement to match the 
performance of non-uniform refinement for membrane protein tar-
gets until resolution is saturated as one nears fundamental limits.
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Fig. 3 | results of uniform and non-uniform refinement from 28,848 particle images of strA6-CaM in lipid nanodisc (pixel size 1.07 Å, box size 256 

pixels, C2 symmetry yielding 57,696 asymmetric units). a, FSC curves computed with the same mask for both refinements, showing improvement 

from 4.0 Å to 3.6 Å between uniform and non-uniform methods. b, Histograms of change in particle alignment pose and shift between uniform and 

non-uniform refinement. c, 3D density maps from uniform and non-uniform refinement are filtered using the corresponding FSC curves and sharpened 

with the same B-factor, −140 Å2. No local filtering or sharpening was used and thresholds were set to keep the enclosed volume constant. map 

differences were due to algorithmic rather than visualization differences. map color depicts local resolution (Blocres22) on a single-color scale and shows 

how map improvement depends on the region within the map. d, Individual α-helical segments from the non-uniform map (purple) and uniform map 

(gray) illustrate differences in resolvability of backbone and side chains. The left-most α-helix is peripheral, whereas the right-most is central. Docked 

atomic model is courtesy of O. Clarke. 
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Discussion
With adaptive regularization and effective optimization of regu-
larization parameters using CV, non-uniform refinement achieves 
reconstructions of higher resolution and quality from single-particle 
cryo-EM data. It is particularly effective for membrane proteins, 
which exhibit varying levels of disorder, flexibility or occupancy. 
Here we focused on one specific family of adaptive regularizers 
(Methods), but it is possible within the same framework to explore 
other families that may be even more effective. For example, one 
could look to the extensive de-noising literature for different 
regularizers.

Spatial variability of structure properties and the existence of over- 
and under-regularization in uniform refinement are well known. 
For instance, cryo-EM methods for estimating local map resolution 
once 3D refinement is complete leverage statistical tests on the coef-
ficients of a windowed Fourier transform22 or some form of wavelet 
transform27,28. Although non-uniform refinement does not estimate 
resolution per se, the regularizer parameter θ(x) is related to a local 
frequency band limit. As such it might be viewed as a proxy for local 
resolution, but with important differences. Notably, θ(x) is optimized 
with a CV objective and it does not depend on a specific definition of 
‘local resolution’ nor on an explicit resolution estimator.
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Fig. 4 | results of uniform and non-uniform refinement from 16,905 particle images of PfCrt in lipid nanodisc with a single Fab bound (pixel size 

0.5175 Å, box size 300 pixels, no symmetry). a, FSC curves, computed with the same mask, show numerical improvement from 6.9 Å to 3.6 Å.  

b, Histograms of change in particle alignments between uniform and non-uniform refinement. c, 3D density maps from uniform and non-uniform 

refinement, both filtered using the corresponding FSC curve and sharpened with the same B-factor of −100 Å2. No local filtering or sharpening is used and 

thresholds are set to keep the enclosed volume constant. Density differences are thus due to algorithmic rather than visualization differences. maps are 

colored by local resolution from Blocres22, all on the same color scale. d, Individual α-helical segments and β-strands from the non-uniform map (purple) 

and uniform map (gray) illustrate localized differences in resolvability between the maps. 
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Local resolution estimates22,29 or statistical tests30 have also been 
used to adaptively filter 3D maps, for visualization, to assess local 
map quality or to aid molecular model building. The family of fil-
ters and frequency cutoffs are typically selected to maximize visual 
quality. They are not optimized for the local resolution estimator 
nor is consideration given to the number of degrees of freedom in 
filter parameters or the strict independence of half-maps, all criti-
cal for reliable regularization. Thus, while local resolution estima-
tion followed by local filtering is useful for post-processing, its 
use for regularization during iterative refinement (e.g. EMAN2.2  

documentation9), can yield over-fitting (Methods). Map artifacts 
such as spikes or streaks are especially problematic for datasets 
with junk particles, structured outliers or small difficult-to-align 
particles. Non-uniform refinement couples an implicit resolution 
measure to the choice of regularizer, with optimization designed 
to control model capacity and avoid over-fitting of regularization 
parameters (Methods).

Another related technique, used in cisTEM10 and Frealign7 
and among the first to acknowledge and address under- and 
over-fitting, entails manual creation of a mask to label a local 

d

Uniform Non-uniform Uniform Non-uniform Uniform

Non-uniform

Peripheral Central

90°

c

Membrane

Uniform refinement Non-uniform refinement Uniform refinement Non-uniform refinement

a b

FSC = 0.143 3.4 Å 3.1 Å

Local resolution (Å)

3.0 3.3 3.6 3.9 4.2 4.5 4.8

1.0

0.8

0.6

0.4

0.2

0

F
S

C
 b

et
w

ee
n 

ha
lf-

se
ts

DC 12 6 4 3 2.4

Wavelength (Å)

Uniform (3.4 Å)
Non-uniform (3.1 Å)

N
o.

 p
ar

tic
le

s 
(1

,0
00

)

0 3 6 9 12 15

Change in rotation (deg)

25

30

30

40

20

10

0

20

10

15

5

0
0 1 2 3 4 5

Change in shift (Å)

Fig. 5 | results of uniform and non-uniform refinement on 300,759 particle images of Nav1.7 in a detergent micelle with two Fabs bound (pixel size 1.21 Å, 

box size 360 pixels, refined with C2 symmetry yielding 601,518 asymmetric units). a, FSC curves for uniform and non-uniform refinement indicate global 

numerical resolutions of 3.4 Å to 3.1 Å, respectively. b, Histograms of change in particle alignments between uniform and non-uniform refinement. Optimized 

adaptive regularization yields improved alignments through multiple iterations. c, The 3D density maps were filtered using corresponding FSC curves, 

sharpened with a B-factor of −85 Å2. Thresholds were set to keep the enclosed volume constant. No local filtering or sharpening was used. Color depicts 

local resolution (Blocres22) on the same color scale. d, Individual α-helical segments from the non-uniform map (purple) and uniform map (gray) illustrate 

localized differences in resolvability in the peripheral transmembrane domain (left, center) and the central core (right). Docked atomic model is PDB 6N4Q25.
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region one expects to be disordered (e.g. detergent micelle), fol-
lowed by low-pass filtering in that region to a pre-set resolution 
at each refinement iteration. While this shares the motivation for 
non-uniform refinement, it relies on manual interaction during 
refinement, often necessitating a tedious trial and error process 
that can be difficult to replicate.

SIDESPLITTER31 is a recently proposed method to miti-
gate over-fitting during refinement. Based on estimates of 
signal-to-noise ratios from voxel statistics, it smooths local regions 
with low signal-to-noise more aggressively than indicated by a 
global FSC-based resolution. The method does not directly address 
under-fitting nor does it maintain independence of half-maps or 
control for the number of degrees of freedom in the local filter 
model. More generally, the CV framework here is robust to differ-
ent noise distributions and model mis-specification, which can be 
problematic for methods with parametric noise models. Empirical 
results indicate that SIDESPLITTER mitigates over-fitting and 
shows improvement in map quality relative to uniform refinement.

Bases other than the Fourier basis may also enable local control 
of reconstruction. Wavelet bases have been used for local resolu-
tion estimation, but less commonly for reconstruction32. Kucukelbir 
et al.33 proposed the use of an adaptive wavelet basis and a sparsity 
prior. While similar in spirit to the goal of non-uniform refinement, 
this method has a single regularizer parameter for the entire 3D 
map, computed from noise in the corners of particle images. This 
may not capture variations in noise due to disorder, motion or par-
tial occupancy.

Non-uniform refinement has been successful in helping to 
resolve several new structures. Examples include multiple con-
formations of an ABC exporter34, mTORC1 docked on the lyso-
some35, the respiratory syncytial virus polymerase complex36, a 
GPCR-G protein-β-arrestin megacomplex37 and the SARS-CoV-2 
spike protein38.
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Methods
Regularization in iterative re�nement. In the standard cryo-EM 3D 
reconstruction problem setup, the target 3D density map m is typically 
parameterized as a real-space 3D array with density at each voxel, in a Cartesian 
grid of box size N, and a corresponding discrete Fourier representation, m̂ ¼ Fm

I

. 
�e goal of reconstruction is to infer the 3D densities of the voxel array, called 
model parameters. Representing the 3D density, its 2D projections, the observed 
images and the noise model in the Fourier domain is common practice for 
computational e�ciency, exploiting the well-known convolution and Fourier-slice 
theorems6–9. �e unobserved pose variables for each image are latent variables.
Algorithm 1. Iterative refinement (expectation-maximization)

require: Particle image dataset D and ab initio 3D map

1: Use smoothed ab initio 3D map array as the initial model parameters 
m(0)

2: while not converged do

3:  E-step: Given current estimate of model parameters, m(t−1), from 
step t − 1, estimate (via marginalization or maximization) the latent 
variables: zðtÞ  fðmðt�1Þ;DÞ

I4:  M-step: Given the latent variables z(t), compute raw estimates of the 
model parameter ~mðtÞ

I

 (without regularization): ~mðtÞ  hðzðtÞ;DÞ
I5:  regularize: Given noisy model parameters ~mðtÞ

I

, apply the 
regularization operator, rθ, with regularization parameters θ: 
m
ðtÞ  rθð~m

ðtÞÞ
I

6: end while

Iterative refinement methods (Algorithm 1), which provide state-of-the-art 
results6,9–11, can be interpreted as variants of block-coordinate descent or the 
expectation-maximization algorithm12. In cryo-EM, and more generally in inverse 
problems with noisy, partial observations, a critical component that modulates the 
quality of the results is regularization.

One can regularize problems explicitly, using a prior distribution over model 
parameters or implicitly, by applying a regularization operator to the model 
parameters during optimization. Iterative refinement methods tend to use implicit 
regularizers, attenuating noise in the reconstructed map at each iteration. In either 
case, the separation of signal from noise is the crux of many inference problems.

In the cryo-EM refinement problem, like many latent variable inverse 
problems, there is an additional interplay between regularization, noise buildup 
and the estimation of latent variables. Retained noise due to under-regularization 
will contaminate the estimation of latent variables. This contamination is 
propagated to subsequent iterations and causes over-fitting.

This paper reconsiders the task of regularization based on the observation 
that common iterative refinement algorithms often systematically under-fit and 
over-fit different regions of a 3D structure simultaneously. This causes a loss of 
resolvable detail in some parts of a structure and the accumulation of noise in 
others. The reason stems from the use of frequency-space filtering as a form of 
regularization. Some programs, such as cisTEM10, use a strict resolution cutoff, 
beyond which Fourier amplitudes are set to zero before alignment of particle 
images to the current 3D structure. In RELION16, regularization was initially 
formulated with an explicit Gaussian prior on Fourier amplitudes of the 3D 
structure, with a hand-tuned parameter that controls Fourier amplitude shrinkage. 
Later versions of RELION17 and cryoSPARC’s homogeneous (uniform) refinement6 
use a transfer function (or Wiener filter) determined by FSC computed between 
two half-maps13–15.

Such methods presume a Fourier basis and shift-invariance. Although well 
suited to stationary processes, they are less well suited to protein structures, which 
are spatially compact and exhibit non-uniform disorder (e.g. due to motion or 
variations in signal resolution). FSC, for instance, provides an aggregate measure of 
resolution. To the extent that FSC under- or over-estimates resolution in different 
regions, FSC-based shift-invariant filtering will over-smooth some regions, 
attenuating useful signal and under-smooth others, leaving unwanted noise. To 
address these issues we introduce a family of adaptive regularizers that can, in 
many cases, find better 3D structures with improved estimates of the latent poses 
during refinement.

Cross-validation regularization. We formulate a new regularizer for cryo-EM 
reconstruction in terms of the minimization of a CV objective19,20. CV is a 
general principle that is widely used in machine learning and statistics for model 
selection and parameter estimation with complex models. In CV, observed data 
are randomly partitioned into a training set and a held-out validation set. Model 
parameters are inferred using the training data, the quality of which is then 
assessed by measuring an error function applied to the validation data. In k-fold 
CV, the observations are partitioned into k parts. In each of k trials, one part is 
selected as the held-out validation set and the remaining k − 1 parts comprise the 
training set. The per-trial validation errors are summed, providing the total CV 
error. This procedure measures agreement between the optimized model and the 

observations without bias due to over-fitting. Rather, over-fitting during training 
is detected directly as an increase in the validation error. Notably, formulating 
regularization in a CV setting provides a principled way to design regularization 
operators that are more complex than the conventional, isotropic frequency-space 
filters. The CV framework is not restricted to a Fourier basis. One may consider 
more complex parameterizations, the use of meta-parameters and incorporate 
cryo-EM domain knowledge.

Given a family of regularizers rθ with parameters θ, the minimization of CV 
error to find θ is often applied as an outer loop. This requires the optimization 
of model parameters m to be repeated many times with different values of θ, 
a prohibitively expensive cost for problems like cryo-EM. Instead, one can 
also perform CV optimization as an inner loop, while optimization of model 
parameters occurs in the outer loop. Regularizer parameters θ are then effectively 
optimized on-the-fly, preventing under- or over-fitting without requiring multiple 
3D refinements to be completed.

To that end, consider the use of twofold CV optimization to select the 
regularization operator, denoted rθ(m) in the regularization step in Algorithm 1 
(note that k > 2 is also possible). The dataset D is partitioned into two halves, D1

I

 
and D2

I

 and two (unregularized) refinements are computed, namely m1 and m2.  
For each, one half of the data is the ‘training set’ and the other is held out for 
validation. To find the regularizer parameters θ we wish to minimize the total CV 
error E, that is,

min
θ

EðθÞ ¼ min
θ

eðrθðm1Þ;D2Þ þ eðrθðm2Þ;D1Þ

¼ min
θ

k rθðm1Þ �m2k
2þ k rθðm2Þ �m1Þk

2
ð3Þ

where e is the negative log likelihood of the validation half-set given the 
regularized half-map. The second line simplifies this expression by using the 
raw reconstruction from the opposite half-set as a proxy for the actual observed 
images. Note that assumptions for ‘gold-standard’ refinement17 are not broken 
in this procedure. With the L2 norm, equation (3) reduces to a sum of per-voxel 
squared errors, corresponding to white Gaussian noise between the half-set 
reconstructions. When the choice of θ causes rθ to remove too little noise from the 
raw reconstruction, the residual error E will be unnecessarily large. If θ causes rθ to 
over-regularize, removing too much structure from the raw reconstruction, then E 
increases as the structure retained by rθ no longer cancels corresponding structure 
in the opposite half-map. As such, minimizing E(θ) provides the regularizer that 
optimally separates signal from noise.

We note that similar objectives have been used for general image de-noising21 
and adapted for cryo-EM images39–41; however, in these methods the aim was to 
learn a general neural network de-noiser, whereas the goal here is to optimize 
regularization parameters on a single data sample. It is also worth noting that this 
formulation can be extended in a straightforward way to compare each half-set 
reconstruction against images directly (dealing appropriately with the latent pose 
variables) or to use error functions corresponding to different noise models.

Regularization parameter optimization. The CV formulation in equation (3) 
provides great flexibility in choosing the family of regularizers rθ, taking domain 
knowledge into account. For non-uniform refinement, we wish to accommodate 
protein structures with spatial variations in disorder, motion and resolution. 
Accordingly, we define the regularizer to be a space-varying linear filter. The filter’s 
spatial extent is determined by the regularization parameter θ(x), which varies with 
spatial position. Here, we write the regularizer in operator form:

ðrθ mÞðxÞ ¼
X

ξ

hðξ; θðxÞÞmðξ� xÞ ; ð4Þ

where h(x; ψ) is symmetric smoothing kernel, the spatial scale of which is 
specified by ψ. In practice we let h(x; ψ) be an eighth-order Butterworth kernel. 
The eighth-order kernel provides a middle ground between the relatively poor 
frequency resolution of the Gaussian kernel and the sharp cutoff of the sinc kernel, 
which suffers from spatial ringing. We have experimented with different orders of 
Butterworth filters and found that an eighth-order kernel performs well on a broad 
range of particles.

When equation (4) is combined with the CV objective for the estimation of 
θ(x), one obtains

θ
 ¼ argmin

θ

EðθÞ

¼ argmin
θ

P
x
j ðrθ m1ÞðxÞ �m2ðxÞ j

2 þ j ðrθ m2ÞðxÞ �m1ðxÞ j
2
:

ð5Þ

With one regularization parameter at each voxel, that is, θ(x), this reduces to a large 
set of decoupled optimization problems, one for each voxel. That is, for voxel x one 
obtains

θ
ðxÞ ¼ argmin

θðxÞ
j ðrθ m1ÞðxÞ �m2ðxÞ j

2 þ j ðrθ m2ÞðxÞ �m1ðxÞ j
2

ð6Þ

With this decoupling, θ(x) can transition quickly from voxel to voxel, yielding high 
spatial resolution. On the other hand, the individual sub-problems in equation 
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(6) are not well constrained as each parameter is estimated from data at a single 
location, so the parameter estimates are not useful. In essence, our regularizer 
design has two competing goals, namely, reliable signal detection and high spatial 
resolution (respecting boundaries between regions with different properties). 
Signal detection improves through aggregation of observations (e.g. neighboring 
voxels), while high spatial resolution prefers minimal aggregation (equation (6)).

To improve signal detection, we further constrain θ* to be smooth. That is, 
although in some regions θ should change quickly (solvent–protein boundaries), in 
most regions we expect it to change slowly (in solvent and regions of rigid protein 
mass). Smoothness effectively limits the number of degrees of freedom in θ, which 
is important to ensure that θ itself does not over-fit during iterative refinement. 
One can encourage smoothness in θ by explicitly penalizing spatial derivatives of θ 
in the objective (equation (5)), but this yields a Markov random field problem that 
is hard to optimize. Alternatively, one can express θ in a low-dimensional basis (e.g. 
radial basis functions), but this requires prior knowledge of the expected degree 
of smoothness. Instead, we adopt a simple but effective approach. Assuming that 
θ is smoothly varying, we treat measurements in the local neighborhood of x as 
additional constraints on θ(x). A window function can be used to give more weight 
to points close to x. We thereby obtain the following least-squares objective:

min
θðxÞ

X

ξ

wρðξ� xÞ j ðrθðxÞ m1ÞðξÞ �m2ðξÞ j
2 þ j ðrθðxÞ m2ÞðξÞ �m1ðξÞ j

2
 

ð7Þ

where wρ(x) is positive and integrates to 1, with spatial extent ρ. This allows one 
to estimate θ at each voxel independently, while the overlapping neighborhoods 
ensure that θ(x) varies smoothly.

This approach also provides a natural way to allow for variable neighborhood 
sizes, where ρ(x) depends on location x, so both rigid regions and transition 
regions are well modeled. Notably, we want ρ(x) to be large enough to reliably 
estimate the local power of the CV residual error to estimate θ(x) correctly, 
but small enough to enable rapid local transitions. A reasonable balance can 
be specified in terms of the highest frequency with substantial signal power, 
which is captured by the regularization parameter θ(x) itself. In particular, for 
regularizers that are close to optimal, we expect the residual signal to have its 
power concentrated at wavelengths near θ(x). In this case a good measure of the 
local residual power is to aggregate the squared residual over a small number of 
wavelengths θ(x)42. Thus we can reliably estimate both θ(x) and ρ(x) as long as ρ(x) 
is constrained to be a small multiple of θ(x).

We therefore adopt a simple heuristic, that ρ(x) > γ θ(x) where γ, the adaptive 
window factor (AWF), is a constant. With this constraint we obtain the final form 
of the computational problem solved in non-uniform refinement to regularize 3D 
electron density at each iteration; that is,

θðxÞ ¼ argminθðxÞ min
ρðxÞ

P

ξ wρðxÞðξ� xÞ

´ j ðrθðxÞ m1ÞðξÞ �m2ðξÞ j
2



þj ðrθðxÞ m2ÞðξÞ �m1ðξÞ j
2


s:t: ρðxÞ>γ θðxÞ

ð8Þ

We find that as long as γ > 3 we obtain reliable estimates of the local power of the 
residual signal. For γ < 2, estimates of residual power are noisy and optimization 
of the regularization parameters therefore suffers. The algorithm is relatively 
insensitive to values of γ > 3, but there is some loss in the spatial resolution of the 
adaptive regularizer as γ increases.
Non-uniform refinement algorithm. Algorithm 2. Regularization step for 
non-uniform refinement

require Particle image dataset D with pose estimates z

1: randomly partition D into halves, D1

I

 and D2

I

 with corresponding 
poses z1 and z2

2: reconstruct ~m1

I

 and ~m2

I

, the raw (noisy) 3D maps from each half-set

3: estimate regularization parameters θ* by solving equation (8)

4: reconstruct a single map from D; z

I

 and apply the optimal regularizer 
rθ

�

I

Given a set of particle images and a low-resolution ab initio 3D map, 
non-uniform refinement comprises three main steps, similar to conventional 
uniform (homogeneous) refinement (Algorithm 1). The data are randomly 
partitioned into two halves, each of which is used to independently estimate a 3D 
half-map. This ‘gold-standard’ refinement17 allows use of FSC for evaluating map 
quality, and for comparison with existing algorithms. The alignment of particle 
images against their respective half-maps, and the reconstruction of the raw 3D 
density map (the E and M steps in Algorithm 1) are also identical to uniform 
refinement.

The difference between uniform and non-uniform refinement is in the 
regularization step. First, in non-uniform refinement, regularization is performed 
independently in the two half-maps. As such, the estimation of the spatial 
regularization parameters in Algorithm 2 effectively partitions each half-dataset 

into quarter-datasets. We often refer to the raw reconstructions in Algorithm 
2 as quarter-maps. The non-uniform refinements on half-maps are therefore 
entirely independent, satisfying the assumptions of a ‘gold-standard’ refinement17. 
In contrast, conventional uniform refinement uses FSC between half-maps to 
determine regularization parameters at each iteration, thereby sharing masks and 
regularization parameters, both of which contaminate final FSC-based assessment 
because the two half-maps are no longer reconstructed independently.

Most importantly, non-uniform refinement uses equation (8) to define the 
optimal parameters with which to regularize each half-set reconstruction at each 
refinement iteration. Figure 2 shows an example of the difference between uniform 
filtering (FSC-based) and the new CV-optimal regularizer used in non-uniform 
refinement. Uniform regularization removes signal and noise from all parts of 
the 3D map equally. Adaptive regularization, on the other hand, removes more 
noise from disordered regions, while retaining the high-resolution signal in 
well-structured regions that is critical for aligning 2D particle images in the next 
iteration.

In practice, for regularization parameter estimation, equation (8) is solved on 
a discretized parameter space where a relatively simple discrete search method 
can be used (e.g. as opposed to continuous gradient-based optimization). The 
algorithm is implemented in Python within the cryoSPARC software platform6, 
with most of the computation implemented on graphics processing unit 
accelerators. An efficient solution to equation (8) is important in practice because 
this subproblem is solved twice for each iteration of a non-uniform refinement.

Finally, the tuning parameters for adaptive regularization are interpretable 
and relatively few in number. They include the order of the Butterworth kernel, 
the discretization of the parameter space and the scalar relating ρ(x) and θ(x), 
called the AWF. In all experiments, we use an eighth-order Butterworth filter and 
a fixed AWF parameter γ = 3. We discretize the regularization parameters into 50 
possible values, equispaced in the Fourier domain to provide greater sensitivity 
to small-scale changes at finer resolutions. We find that non-uniform refinement 
is approximately two times slower than uniform refinement in our current 
implementation.

Over-fitting of regularizer parameters. As mentioned in the Discussion, 
local resolution estimates or local statistical tests have commonly been used 
to adaptively filter 3D maps. While these methods are generally satisfactory as 
one-time post-processing steps for visualization, in our experience they can lead 
to severe over-fitting when used iteratively within refinement as a substitute for 
regularization. (Supplementary Fig. 1 illustrates one example with the Nav1.7 
dataset.) During iterative refinement, small mis-estimations of local resolution at a 
few locations (due to high estimator variance22) cause subtle over- or under-fitting, 
leaving slight density variations. Over multiple iterations of refinement, these 
errors can produce strong erroneous density that contaminate particle alignments 
and the local estimation of resolution itself, creating a vicious cycle. A related 
technique using iterative local resolution and filtering was described briefly in 
EMAN2.2 documentation9 and may suffer the same problem. The resulting 
artifacts (e.g. streaking and spikey density radiating from the structure) are 
particularly prevalent in datasets with junk particles, structured outliers or 
small particles that are already difficult to align. To mitigate these problems, the 
approach we advocate couples an implicit resolution measure to a particular choice 
of local regularizer, with optimization explicitly designed to control model capacity 
and avoid over-fitting of regularizer parameters.

Data pre-processing. Experimental results for STRA6-CaM and PfCRT datasets 
were computed directly from particle image stacks, with no further pre-processing. 
The original data for the Nav1.7 protein comprise 25,084 raw microscope 
movies (EMPIAR-10261) from a Gatan K2 Summit direct electron detector in 
counting mode, with a pixel size of 0.849 Å. We processed the dataset through 
motion correction, CTF estimation, particle picking, 2D classification, ab initio 
reconstruction and heterogeneous refinement in cryoSPARC v.2.11 (ref. 6). A 
total of 738,436 particles were extracted and then curated using 2D classification 
yielding 431,741 particle images (pixel size 1.21 Å, box size 360 pixels). As 
described elsewhere25, we detected two discrete conformations corresponding to 
the active and inactive states of the channel, with 300,759 and 130,982 particles. 
We obtained reconstructions with resolutions better than the published literature 
for both states, but for the results in this work we focus solely on the active state 
(refined with C2 symmetry yielding 601,518 asymmetric units).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
No new datasets were created in this study. The raw datasets analyzed in this 
study were either downloaded from the EMPIAR repository (EMPIAR-10024, 
EMPIAR-10330, EMPIAR-10261) or were provided by authors of other studies, 
cited in the main text. Density maps and atomic coordinates from EMDB-0341 
and Protein Data Bank 6N4Q were used for visualization. All other results and 
outputs of data analysis in this study are available from the corresponding author 
on reasonable request.
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Code availability
The cryoSPARC software package is freely available in executable form for 
nonprofit academic use at www.cryosparc.com.
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