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Abstract 

Currently, most intersection models embedded in macroscopic Dynamic Network Loading 

(DNL) models are not well suited for urban and regional applications. This is so because so-

called internal intersection supply constraints, bounding flows due to crossing and merging 

conflicts inherent to the intersection itself, are missing. This paper discusses the problems that 

arise upon introducing such constraints, which result firstly from a lack of empirical 

knowledge on driver behavior at general intersections under varying conditions and the 

incompatibility of existing theories that describe this behavior with macroscopic DNL. A 

generic framework for the distribution of (internal) supply is adopted, which is based on the 

definition of priority parameters that describe the strength of each flow in the competition for 

a particular supply. Secondly, using this representation, it is shown that intersection models – 

even under realistic behavioral assumptions and in simple configurations (i.e. without internal 

supply constraints) – can produce non-unique flow patterns under identical boundary 

conditions. This solution non-uniqueness is thoroughly discussed and conceptual approaches 

on how it can be dealt with in the model are provided. Also the spatial modeling point of view 

is considered – as opposed to the more traditional point-like modeling. It is revealed that the 

undesirable model properties are not solved – but rather enhanced – when diverting from a 

point-like to a spatial modeling approach. Therefore, we see more merit in continuing the 

point-like approach for the future development of sophisticated intersection models. 

Necessary research steps along these lines are formulated. 

 

Keywords: first-order macroscopic intersection model, Dynamic Network Loading, internal 

intersection supply constraints, solution non-uniqueness 

1 Introduction 

In first-order macroscopic dynamic network loading (DNL) models, the link model provides 

the demand of incoming links and the supply of outgoing links as boundary conditions to the 

intersection model. These intersection (or node) models are typically point-like, i.e. without 

physical dimensions, combining all internal and external constraints into one strongly coupled 

set of equations.  

The function of the intersection model is then two- or threefold. Firstly, it seeks for a 

consistent solution in terms of flows transferred over the intersection, accounting for all 

demand and supply constraints of the adjacent links. Secondly, it imposes additional 

constraints due to limited supply of conflict points on the intersection itself; these are called 

internal intersection supply constraints. The latter typically do not apply to highway junctions 

but can be decisive at regional and urban intersections. These two functions determine the 

flows over the intersection and (if applicable) the congestion dynamics in the adjacent links. 

Finally, imposing additional delay at the intersection itself, e.g. based on delay formulas such 

as those of Akcelik & Troutbeck (1991) and Webster (1958) constitutes a third function in 

models that do not explicitly capture stochastic queue formations in under-saturated 

conditions (e.g. Durlin & Henn, 2005; Yperman et al., 2007). In this paper, the focus is on the 

first two functions, which determine the flows. In the following Section 1.1, the state-of-the-

art regarding these two functions is discussed. Section 1.2 is devoted to an elaboration on the 

intention, scope and contributions of this paper. 

 



 

1.1 State-of-the-art on first-order DNL intersection models 

The first function of the intersection model, combining demand and supply constraints into a 

consistent solution, is severely complicated by the fact that (the distribution of) the supplies 

and the resulting flows are not independent. As discussed in Tampère et al. (2011), this 

dependency should be captured by a supply constraint interaction rule (SCIR). Multiple 

plausible definitions of this rule are conceivable, but it should realistically represent the 

aggregate driver behavior at a congested intersection. Furthermore, Tampère et al. (2011) list 

a set of requirements with which first-order macroscopic intersection models in DNL should 

comply: 

 

1. General applicability to any number of incoming links and outgoing links 

2. Non-negativity of flows 

3. Conservation of vehicles 

4. Compliance with demand constraints and (internal) supply constraints 

5. Flow maximization from the users‟ perspective 

6. Conservation of turning fractions (CTF) 

7. Compliance with the invariance principle of Lebacque & Khoshyaran (2005) 

 

The first four requirements are rather straightforward and well-known in the 

literature. The latter three deserve a little more explanation. For this, we introduce 

the following notation: incoming (upstream) links of the considered intersection are 

indexed by i = 1…I and outgoing (downstream) links are indexed by j = 1…J. The 

demand (supply) of link i (j) is denoted by Si (Rj). The total demand Si consists of 

partial demands Sij in the various outgoing directions, defined by the turning 

fractions fij so that Sij = fijSi. The flow sent by link i to link j is written as qij, and the 

total outflow of i is 
i ij

j

q q . 

 

- Flow maximization from the users’ perspective: 

 Each flow should be actively constrained by either demand or (internal) 

supply. Behaviorally, this reflects the assumption of drivers trying to advance 

whenever possible. This corresponds to individual flow maximization, not 

global flow maximization. The latter is an unrealistic modeling assumption: 

why would (selfish) drivers be inclined to behave cooperatively? 

 

- Conservation of turning fractions (CTF):  

This requirement states that the outflow composition of a link i (in terms of partial 

flows qij in the various downstream directions) must be identical to its demand 

composition (in terms of Sij). Consequently, all outflows of i are coupled through the 

turning fractions that are obtained from the demand composition: 

 

 
ij ij

ij

i i

S q
f

S q
 (1) 

 

CTF implies First-In-First-Out (FIFO) at the intersection level (Daganzo, 

1995). Due to CTF, the intersection model‟s solution is unambiguously 

defined by the incoming flows qi; the partial flows are then derivable as qij = 

fijqi. 

 



- Compliance with the invariance principle of Lebacque & Khoshyaran (2005):   

The invariance principle ensures the compatibility of the intersection model 

with the link traffic flow dynamics and can be formulated as follows. If the 

intersection model produces i iq S , then i enters a congested regime. As a 

consequence of traffic flow dynamics, Si increases after some infinitesimally 

small time increment to the link‟s capacity Ci. Any intersection model that 

predicts a different outcome for qi because of this change from Si to Ci 

contradicts its own initial solution and thus violates the invariance principle. 

The solution of the intersection model should therefore be invariant to 

replacing Si by Ci if qi is supply constrained ( i iq S ). Analogously, if j jq R
 

the solution should be invariant to an increase of Rj to Cj. 

 

The review of state-of-the-art intersection models in Tampère et al. (2011) shows that most 

existing models fail to comply with some or several of the above requirements and as such do 

not fulfill the first function of intersection models properly. Apart from the two intersection 

models introduced in Tampère et al. (2011) – one for unsignalized and one for signalized 

intersections –, adequate intersection models that correctly combine demand and supply 

constraints according to the above requirements are presented by Flötteröd & Nagel (2005), 

Flötteröd (2008), Gentile (2010), Gibb (2011) and Flötteröd & Rohde (forthcoming). 

However, these models still do not incorporate internal supply constraints (except due to 

traffic control), except for Flötteröd & Rohde (forthcoming). 

 

In fact, internal intersection supply constraints, which constitute the second function of 

intersection models, are rarely considered in state-of-the-art models. There are several causes 

for this. Firstly, it is a difficult task to formulate these internal intersection supply constraints. 

Quite some studies exist that estimate the throughput of minor streams yielding to higher 

prioritized flows – e.g. Chapters 8 and 9 in Gartner et al. (2000), Brilon & Wu (2001) and 

Brilon & Miltner (2005). However, these formulations assume an uncongested traffic state 

downstream. Secondly, the internal supply constraints are dependent on the resulting flows. 

This also further complicates the correct fulfillment of the first function. 

Intersection models in the traditional point-like form that do include internal intersection 

supply constraints are presented in Ngoduy et al. (2005), Yperman et al. (2007), Chevallier & 

Leclercq (2007) and Raadsen et al. (2010). Spatial intersection models accounting for internal 

supply constraints are introduced by Buisson et al. (1995) and Chen et al. (2008). However, 

none of these models comply with all of the above listed requirements. The model 

specification of Flötteröd & Rohde (forthcoming) – as mentioned before - does comply, but a 

uniquely converging solution algorithm in the presence of internal supply constraints is 

presented only for the special case where the incoming links can be ranked such that the 

resulting flows from these links are independent from those of lower ranked links. Indeed, the 

impossibility to design a solution algorithm that is proven to converge to a unique solution 

leads to the (possibly seminal) investigation of solution uniqueness presented in that article. 

Motivated by the identification of a simple (three-legged) configuration that already yields 

non-unique flows, the authors provide a heuristic algorithm with guaranteed convergence 

towards a compromise solution.  

 

1.2 Scope of the paper 

On top of the seven requirements of Tampère et al. (2011), additional specifications and 

considerations are needed to develop adequate intersection models that account for internal 



 

conflicts. Including internal intersection supply constraints lifts the model complexity to a 

much higher level. A compromise between realism on the one hand and complexity on the 

other is probably unavoidable. Currently, the commonly adopted balance is to completely 

ignore the internal supply constraints. In many regional or urban DNL applications, however, 

this is unacceptable since these constraints are (largely) responsible for the traffic problems in 

such networks. The additional modeling of these constraints, the resulting methodological 

difficulties and the accompanying research questions are formulated and discussed in this 

paper.  

 

The first problem is which behavioral assumptions are to be made regarding intersection 

conflicts and how this can be modeled by internal intersection supply constraints in a DNL 

intersection model. Section 2 starts by identifying three types of driver behavior: strict and 

limited compliance to priority rules and turn-taking. A classification of intersection conflicts 

under varying saturation levels into these three types of behavior is suggested. These findings 

are partially derived from available empirical studies. Since not all types of conflicts have 

been (sufficiently) documented, additional assumptions are necessary. As such, until validated 

empirically, our classification is susceptible to discussion. 

Section 2.2 introduces the translation of these behavioral considerations into theories to be 

embedded in the DNL intersection model, and the difficulties that arise therewith. In Section 

2.3, a generic framework that extends existing models such as Daganzo (1995) and Flötteröd 

& Rohde (forthcoming) is presented. The distribution of external and internal supply 

constraints is described in terms of priority parameters (or functions). It is shown how these 

can be adapted to model a broad spectrum of driver behavior. 

 

Secondly, this article further develops the findings of Flötteröd & Rohde (forthcoming) on the 

solution non-uniqueness of intersection flows. This discussion benefits from the generic 

framework in terms of priority parameters defined in Section 2.3. In Section 3, we reason 

from the traditional point-like modeling approach. We identify multiple-valued priority ratios 

among incoming flows qi that are tied in several (internal) supply constraints as a general 

source of non-uniqueness (Sections 3.1 and 3.2). It is shown that even for intersection models 

that do not consider internal supply constraints, uniqueness of the solution is not trivially 

guaranteed. This applies, e.g., to the models of Flötteröd & Nagel (2005) and Gentile (2010). 

Yet, in the state-of-the-art, uniqueness is usually implicitly assumed. 

Comparison can be made to the commonly adopted dynamic traffic assignment (DTA) 

framework, which is also known to have multiple solutions in quite realistic cases (Daganzo, 

1998). Therefore, this paper is conceptually similar to Carey (1992), who shows that the First-

In-First-Out (FIFO) behavior of traffic can lead to non-unique solutions in DTA and also 

proposes how to practically deal with this problem.  

In intersection models, we see two ways to deal with the observed non-uniqueness, namely 

stochastically and deterministically. In stochastic DNL models (e.g. Sumalee et al., 2011 and 

Osorio et al., forthcoming), non-unique intersection flows could be permitted. Just as a 

stochastic approach to the DTA problem yields a unique solution in distributional terms (e.g., 

Flötteröd & al., forthcoming), a stochastic DNL could replace non-unique intersection flows 

by a unique distribution. In deterministic DNL modeling, a transformation of the non-unique 

solutions into one prevailing flow pattern is needed, which seems less straightforward. 

Depending on the application, one might favor the stochastic or the deterministic approach. 

For both approaches, empirical studies with the aim of describing the non-uniqueness in 

reality would be highly valuable (see Section 3.3). Even if such studies were to disprove the 

existence of non-uniqueness in reality, still the issue has to be dealt with in the models. In 



Section 3.4, some pragmatic approaches to deal with the non-uniqueness in deterministic 

models are suggested.  

 

Finally, Section 4 discusses spatial intersection modeling, following the suggestion of 

Flötteröd & Rohde (forthcoming) that modeling intersections with physical dimensions might 

alleviate the non-uniqueness encountered in point-like models. However, it is shown that also 

spatial models can produce different flow patterns under identical boundary conditions, and 

that the result is inherently determined based on the history of flows. Moreover, some 

unrealistic and undesirable model behavior is identified. We therefore see better potential in 

research that aims at further developing traditional point-like models rather than abandoning 

them in favor of spatial models.  

 

2 From driver behavior to (internal) supply constraints 

Apart from the quite straightforward constraints imposed by signals or other types of control, 

internal intersection supply constraints arise from conflicts between crossing and merging 

flows. Intersection supply constraints encompass: 

 

- Traffic controls (traffic lights, ramp metering) 

- Crossing conflicts 

o at (un)signalized intersections, between movements originating from different 

incoming links, heading towards different outgoing links 

o with non-motorized traffic (pedestrians, cyclists) 

- Merging conflicts 

o between flows merging into an outgoing link 

o between flows entering a roundabout, merging with flows already on the 

roundabout 

 

It should be noted that conflicts between flows merging into the same outgoing link – listed as 

an internal constraint here - are typically considered as external constraints in the form of the 

outgoing link‟s supply. In fact, they can be considered partially internal and partially external: 

on the one hand, they can be dominated by congestion spilling back from the outgoing link. 

On the other hand, drivers usually evaluate crossing and merging conflicts simultaneously 

before traversing the intersection. 

In this paper, only motorized traffic is considered. Also, conflicts due to traffic controls are 

not discussed since these are either – in case of non-adaptive control – quite straightforward to 

deal with or – in case of adaptive control – to the best of our knowledge, not included in state-

of-the-art DNL models. 

 

2.1 Driver behavior in crossing and merging conflicts 

In the following, a distinction is made between three types of driver behavior in solving 

intersection conflicts, namely strict compliance to priority rules, limited compliance to 

priority rules, and turn-taking. In reality, different driver behavior can be observed depending 

on traffic load, intersection type and geometry, and personal and cultural differences. 

 

Strict compliance to priority rules covers cases where an ordering of the movements is 

imposed, rendering priority to some movements over others. In theory, according to the traffic 



 

rules, this behavior should apply to merging and crossing conflicts at general intersections 

under all circumstances. In reality, this behavior can be observed for crossing and merging 

conflicts at low traffic volumes (under-saturated). 

As traffic volumes increase, priority rules are less strictly obeyed due to politeness from 

prioritized and forcing from non-prioritized drivers. This limited compliance behavior 

commonly arises as the minor movements are in nearly- to over-saturated conditions, while in 

general the major flows are not supply constrained – they may however incur some additional 

delay. This kind of behavior is documented empirically for roundabout merging in Troutbeck 

& Kako (1999) and for crossing and merging flows in Brilon & Miltner (2005).  

In over-saturated conditions, typically some sort of turn-taking behavior occurs - at least for 

merging conflicts - which can be regarded as the alternating use of the available supply by all 

competing movements. Hereby, the „turns‟ or opportunities that are available for each 

movement are determined by the movements‟ outflow capacities, possibly reduced by other 

conflicts (crossing, control). As such, „pure‟ turn-taking behavior overrides the imposed 

priority rules in that each movement obtains a priority that is determined by its physical 

capacity. Several factors may influence this behavior, making it difficult to recognize and 

define in a general way. Empirical studies of merging behavior in over-saturated conditions at 

general intersections are lacking. Cassidy & Ahn (2005) find that congested freeway merging 

occurs in a fixed, site-dependent ratio, independently of the available downstream supply. 

This is further confirmed in Bar-Gera & Ahn (2010), who show that this fixed ratio is well 

approximated by the ratio of the number of lanes of the incoming links of the merge. From a 

smaller data set, Ni & Leonard (2005) conclude that merging follows the ratio of the 

capacities (which is of course very similar to number of lanes). Finally, All-Way-Stop-

Controlled (AWSC) intersections actually prescribe turn-taking for both merging and crossing 

conflicts. Although for AWSC intersections this type of behavior is thus in compliance with 

the priority rules, the behavior at AWSC conflicts is categorized as turn-taking and the 

concepts of limited and strict compliance are preserved for situations as described above. 

 

Naturally, the aggregate driver behavior to be captured by macroscopic intersection models 

may be a mixture of different types of behavior. In Figure 1, a suggestion is provided on how 

aggregate driver behavior at various intersection conflicts could be classified. This 

classification is certainly subject to numerous factors, which are often unknown or 

immeasurable, and it is thus not indisputable. 

 

 

Figure 1: Driver behavior in intersection conflicts 

 

2.2 Existing theories describing observed behavior 

Before constructing a DNL intersection model, theories are needed that describe how to 

model the observed behavior discussed in the previous section. Turn-taking at merging 

conflicts is generally modeled by some sort of distribution rule (see Tampère et al. (2011) for 

Turn-taking
Strict 

compliance

Limited 

compliance

AWSC merging 

and crossing

Merging

(over-saturated)
Crossing and 

merging 

(under-saturated)
Crossing 

(nearly/over-saturated)

Merging 

(nearly-saturated)



a thorough discussion). All further discussion on modeling turn-taking is reserved for the next 

section. Regarding the other two types of behavior, strict and limited compliance, a few 

theories exist to determine the restriction on minor movements from yielding to higher 

prioritized movements in crossing and merging conflicts. The best-known is gap acceptance 

theory (see Chapters 8 and 9 in Gartner et al., 2000), which found a more recent counterpart 

in conflict theory (Brilon & Wu, 2001). Most often these theories assume strict compliance 

with priority rules, but modifications exist for limited compliance (Troutbeck & Kako, 1999; 

Brilon & Miltner, 2005). Although some existing DNL intersection models embed gap 

acceptance theory to model internal conflicts (Yperman et al., 2007; Ngoduy et al., 2005; 

Chevallier & Leclercq, 2007; Flötteröd & Rohde, forthcoming), neither gap acceptance theory 

nor conflict theory was initially designed for use in a DNL context. The incompatibility of 

these theories with DNL stems from two aspects. 

Firstly, both theories are designed for free flowing conditions of the major stream. Gap 

acceptance theory in particular loses some validity in nearly-saturated and definitely in over-

saturated conditions. Conflict theory is, at least theoretically, extendable to over-saturated 

conditions; but this has not been validated empirically. Bridging the different types of driver 

behavior in DNL intersection models by embedding, supplementing and adapting these 

existing theories – or developing new ones – therefore constitutes important future research.  

A second problem stems from the first one. As is discussed in Tampère et al. (2011), multiple 

demand and/or supply constraints interact with each other, causing flows from different 

incoming links to be mutually dependent. This must be captured in a supply constraint 

interaction rule (SCIR); see Section 1.1. This possibility of mutual dependency is not 

considered in gap acceptance and conflict theory, as the major flows are considered known 

(i.e. equal to the demand). In a DNL intersection model, however, the major flows are also 

subject to (internal) supply constraints and therefore not known beforehand. A few existing 

models (Yperman et al., 2007; Ngoduy et al., 2005) that implement internal supply constraints 

derived from gap acceptance theory solve this by making the internal supply constraints that 

limit the minor flows dependent on the demands of the major streams instead of the actual 

major flows. As explained in Section 1, this leads to a violation of the invariance principle if 

the major streams are not demand constrained. Moreover, this simplification may cause an 

overestimation of the constraint imposed on the minor flows (Flötteröd & Rohde, 

forthcoming). 

 

2.3 Modeling (internal) supply constraints in DNL intersection models 

As discussed in Section 2.1, different driver behavior can be observed under varying 

conditions – to be roughly subdivided in strict compliance, limited compliance, and turn-

taking. In the following, priority parameters  are introduced through which these different 

types of driver behavior are modeled.  

An intuitive way of representing the solution space is used (as in Daganzo, 1995). Figure 2 

exemplifies this graphical representation for a two-legged merge. Firstly, the demand 

constraints S1 and S2 set upper bounds on the flow from their respective incoming link. 

Secondly, the external supply constraint function 3 1 2( , ) 0R q q  further reduces the solution 

space. The circumflex is introduced to make a distinction between the supply constraint 

function and the actual supply R3 that link 3 can receive. In the state-of-the-art, this supply 

constraint function is typically written in the form 

 

 3 1 2 1 2 3( , ) 0.R q q q q R  (2) 



 

 

Daganzo (1995) introduces priority parameters 
1
 and 

2
 that represent the strength of links 

1 and 2 in the competition for the restrictive supply R3. If both qi are supply constrained by 

3R  - which is denoted by 3iq R
 
- the supply distribution based on 

1
 and 

2
 renders the 

following solution: 
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R R
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In this case, the priority ratio 2

1

 and the binding supply constraint ( 3 1 2( , ) 0R q q ) together 

dictate the unique solution point A in Figure 2: 
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if q q R
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 (4) 

 

 

Figure 2: Supply constrained solution in merge model (Daganzo, 1995) 

Most existing general intersection models only implement the supply constraints of the 

outgoing links‟ supplies, and can thus be regarded as direct generalizations of Daganzo‟s 

merge model in that they extend relationship (2) into: 

 

 1 1 1( ,..., ) ... 0j I j Ij I jR q q f q f q R j  (5) 

 

Now, a framework is defined that unifies general intersection models that comply with the 7 

requirements listed in Section 1.1 and that encompass a SCIR (see Tampère et al., 2011), 
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controlling the interaction of supply constraints and their distribution on the basis of priority 

parameters. First, this is explained in terms of external supply constraints, afterwards it is 

extended to internal constraints. 

Finite, positive priority parameters ij  are considered so that the strength of i in the 

competition for supply Rj is given by ij ijf . As such, ij  can be regarded as the maximal 

strength (if fij = 1). It is indeed logical that the turning fractions fij play an explicit role; the 

competitive strength of i for Rj is naturally zero if fij = 0. For a particular i’ constrained by Rj (

1( ,..., ) 0j IR q q ), the supply distribution (3) then generalizes to: 

 

 
' ' '

' ' ' ,
i j i j j i j j

ji j i i i

ij ij ij ij

i i

f R R
q q if q q R

f f
 (6) 

 

Typically, it is assumed that one most restrictive constraint can be identified that determines 

the flow from a link i. If the share of Rj is too much to consume for some incoming links i  – 

due to more restrictive demand or other supply constraints - the remaining supply 
j i j

i

R q  

is divided among the remaining i analogous to (6) - for more details see Tampère et al. (2011). 

Also, we presume that vehicles only enter the intersection if they have the opportunity to exit 

via their destination link, so that external supplies Rj do not directly influence flows to other 

outgoing directions. In other words, only a link i that wishes to send flow to a link j (i.e. 

0ijS ) participates in the competition for Rj. Finally, for any combination of incoming links i 

and i’ that are constrained by the same supply Rj, the combination of (6) with the CTF 

requirement renders the following solution (analogous to (4)): 

 

 '

' '

, ' | ,
iji

ji i

i i j

q
i i q q R

q
 (7) 

 

The main difference between models lies in how the priority parameters ij  are defined. In 

the following it is explained how the priority parameters can be used to model different driver 

behavior in external and internal conflicts. Hereby it should be noted that while the priority 

parameters are typically set as constant values, they might as well be functions of the turning 

fractions, capacities or flows (as in the models of Gibb, 2011 and Flötteröd & Rohde, 

forthcoming). Consequently, transitions in driver behavior, e.g. depending on the saturation 

level (see Figure 1), may be accounted for by priority functions rather than constants. For 

simplicity‟s sake, we regard the priority parameters as constants in the remainder of the paper, 

unless stated otherwise. 

 

Regarding external supply constraints, most existing intersection models assume a single-

valued priority parameter 
i
 for a link i, which is then used in the competition for all Rj|Sij > 

0. If an external supply constraint is active, i.e. the merging conflict is over-saturated, this is 

typically solved through turn-taking behavior (see Section 2.1). Turn-taking behavior is 

modeled by basing 
i
 on the number of lanes or capacities of the incoming links, e.g. 

i iC  

(as for example in Tampère et al., 2011). Empirical studies on freeway merges (e.g. Bar-Gera 

& Ahn, 2010) support this common modeling practice of assuming fixed priority parameters 

for any value of Rj to represent turn-taking behavior.  

 



 

Analogous as for external supplies in outgoing links j, internal supplies in intersection 

conflicts k put constraints on the flows qi. Thus, internal supply constraint functions 

1( ,..., )k IN q q  can be considered that bound all subjected flows ( 0ikS ). This could for 

example stem from the conflict area shared by crossing or merging movements. The internal 

supply constraint functions kN  are more difficult to define than the jR . They are to be 

derived from gap acceptance or conflict (or any new) theory, as discussed in Section 2.2. 

Exactly defining these functions kN  is beyond the scope of this paper. However, we can 

state, analogous to (7): 

 

 
'
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i i k
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i i q q N

q
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Very similar to Figure 2, the solution space for a simple intersection with one crossing 

conflict (represented by 3N ) is depicted in Figure 3. 3 1 2( , ) 0N q q  limits q1 and q2 that 

compete for the shared internal supply. Say that for this intersection, the priority rules 

prescribe that q2 has priority over q1. Strict compliance to this priority rule could then be 

modeled by setting 
1 0

1
 and 

2 1 . In consequence, q2 fully consumes its maximal share 

(hence q2 = S2), leaving the remaining internal supply for q1, yielding solution A. Limited 

compliance could be modeled by less extreme values, e.g. 
1* 0  and 

2* 1 yielding A* in 

Figure 3. Recall that if turn-taking behavior applies to the crossing conflict (as in AWSC 

intersections), the i  are based on the capacities Ci. 

 

                                                 
1
 At this point, we should add that at most one ij  (or 

ik
) can be defined zero per j (k). In priority-controlled 

intersections, always a ranking exists between any two movements that are in conflict. In cases of turn-taking 

behavior, zero priorities do not make sense altogether. 



 

Figure 3: Internal supply constrained solution 

Note that the internal supply constraint function 3N  may be non-linear, for instance because 

the consumption rate of the internal supply may be different for q1 and q2, or because of joint 

constraints, which derive from the fact that drivers evaluate crossing and merging conflicts on 

general intersections simultaneously (unless some storage capacity for crossing vehicles is 

present on the intersection). Consider for example the situation in Figure 4, where a minor 

flow from the westbound link has to yield to bi-directional traffic of the major street. A 

vehicle from the minor street will only cross if no prioritized vehicle is approaching from 

either side. 

 

 

Figure 4: Minor movement yielding to bi-directional traffic 
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This suggests to combine these two internal conflicts into one joint internal supply constraint 

function 
1 2 3( , , ) 0N q q q . Regardless, the solution (space) of the intersection model can still 

be represented as in Figure 3. The definition of the priority parameters may, however, be 

more complicated in case of joint constraints. 

 

In conclusion, this section explains in general terms how priority parameters can be used to 

model different types of driver behavior. The depth and complexity of this discussion is 

limited to the level necessary to introduce the concepts of modeling internal supply 

constraints due to merging and crossing conflicts and to elaborate on the solution non-

uniqueness observed therein, as discussed in the next sections. 

 

3 Solution non-uniqueness in point-like intersection models 

In this section, intersection models in the traditional point-like form are discussed, whereas 

spatial models are reserved for Section 4. Firstly, the problem of solution non-uniqueness is 

introduced by means of two simple examples in Section 3.1. Then, this non-uniqueness is 

further analyzed in Section 3.2. Section 3.3 raises the question whether the problem of non-

uniqueness, which arises in the intersection model from realistic behavioral assumptions, 

would in fact be identifiable in reality. Finally, some pragmatic approaches to deal with non-

uniqueness in deterministic intersection models are given in Section 3.4. 

 

3.1 Explanatory examples 

In the literature, solution uniqueness of the intersection model is often implicitly assumed. 

However, the following example shows that even for simple cases, which only consider 

external supply constraints, uniqueness of the solution is not self-evident. 

 

3.1.1 Example 1 (only external supply constraints) 

A simple 2x2-intersection is considered (Figure 5), where the intersection model assumes 

different priority parameters ij  for an incoming link (i = 1, 2) per outgoing link (j = 3, 4). 

This means that the incoming links 1 and 2 have a different priority (maximal strength) in the 

competition for R3 and R4; this could for instance be based on the number of turning lanes. 

This corresponds to the intersection models in Gentile (2010) and Flötteröd & Nagel (2005). 

The solution space defined by the demand and external supply constraints is depicted in 

Figure 5.  

Due to the CTF requirement, both inflows qi are mutually tied in both supply constraints. As 

such, the solution is fully determined by the total inflows qi from which the partial flows qij 

derive (see Section 1.1). If 
1 2( , ) 0jR q q  (see (5)) and both i jq R , the priority parameters 

ij  determine the solution according to (7) (or (6)). 

 



 

Figure 5: Solution non-uniqueness example 1 

In this example, there are two possible solutions (A and B) satisfying all constraints and the 

distribution rule defined by the ij , depending on which supply constraint is considered 

restrictive. This shows that even in simple models without internal intersection supply 

constraints, solution non-uniqueness can be an issue. To our knowledge, this problem has 

never been addressed in the literature; Flötteröd & Rohde (forthcoming) only discuss internal 

supply constraints. Although most existing models assume single-valued priority parameters 

i
 - which would solve the problem – multiple-valued parameters ij  are considered in some 

models (e.g. Flötteröd & Nagel (2005), Gentile (2010), Adamo et al., 1999; Ni et al., 2006; 

Taale, 2008). Hereby we should note that Flötteröd & Nagel (2005) ultimately resort to the 

computation of one “representative” priority parameter. Also, in the latter three models the 

use of separate ij  
does not induce solution non-uniqueness as these models ignore CTF. This 

is due to the fact that as flows from a link i into various directions j are detached, the 

individual qij are no longer tied in multiple supply constraints. Each qij is in this case subject 

to only one supply constraint and can thus be determined via its individual ij . However, 

even without CTF, uniqueness is not guaranteed once internal supply constraints are added; 

see Section 3.2. 

 

3.1.2 Example 2 (with internal supply constraints) 

The following example is a 2x4 intersection, which can be interpreted as a standard 4-leg 

intersection where only two inflows are considered. Other flows can be regarded as negligible 

or at least not decisive for the solution. 

In the upper right part of Figure 6, two crossing conflicts can be identified. The priority rules 

for such conflicts typically state that the left turning movement has to yield to the straight 

q2

q1

S2

S1

B

A

R3

R4

24

14

23

13

S1

S2

R3

R4

f13

f14

f23 f24



 

movement coming from the opposite link, i.e. 
23 14 1 and 

13 24 0  (see Section 

2.3). Considering only the demand constraints and these internal supply constraints (in 

conjunction with CTF), a solution space as in Figure 6 results. 

 

 

Figure 6: Solution non-uniqueness example 2 

Again there are two possible solutions (A and B), depending on whether the distribution of 3N  

or 4N  is followed. The cause of the non-uniqueness is the same as in the previous example, 

namely the inflows qi being faced with different priority ratios for different supply constraints. 

Note that even if limited compliance is assumed, there would still be two different priority 

ratios and hence two solutions. Thus, in intersection models that include internal supply 

constraints, solution non-uniqueness arises from realistic behavioral assumptions. 

 

3.2 General analysis of solution non-uniqueness 

In the following, we assume intersection models to comply with the 7 requirements listed in 

Section 1.1 and to follow the rules regarding supply distribution as described in Section 2.3.  

The previous section illustrates the occurrence of solution non-uniqueness in simple 

examples. We identify the general source of this non-uniqueness in the intersection model as 

the fact that inflows qi, coupled through multiple (internal) supply constraints (and usually 

CTF), are faced with multiple, ambiguous priority ratios. For this, let Fi be the set of (internal) 

supplies for which i competes, i.e.: 

 

 { , | , 0}i ij ikF j k S S  (9) 
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Now, there are two ways in which flows qi can be mutually dependent through multiple 

supply constraints: 

 

1. Two (or more) inflows 
1i

q  and 
2i

q  are tied in two (or more) supply constraints, i.e. 

1 2
#( ) 2i iF F . 

2. Three (or more) inflows 
1i

q , 
2i

q  and 
3i

q  are mutually dependent in some “circular 

way”, so that each (internal) supply constraint binds two different inflows in a 

sequence, returning from the last i to the first, forming a circle in which all inflows are 

mutually dependent, i.e.: 
1 2 2 3 3 11 2 3{ }, { }, { }i i i i i iF F j F F j F F j . Or in other 

words: 
1 1 2 1 2 2 3 2 3 3 1 3

0, 0, 0, 0, 0, 0i j i j i j i j i j i jS S S S S S  with all other Sij = 0 (any j 

could of course be replaced by a k). 

 

Naturally, combinations of 1 and 2 can exist. Option 1 is the more likely of the two to appear 

in an intersection model. Note that this option implicitly assumes CTF, since otherwise the qij 

are detached and thus two inflows qi cannot be reasonably tied in the same two (internal) 

supply constraints. Further in this section, an example of the second, less obvious option is 

provided, which shows that solution non-uniqueness can also exist in non-CTF models. 

 

Now, a sufficient and necessary condition for solution uniqueness of the intersection flows is 

that each priority parameter ij  and ik  of inflows qi that are mutually dependent in supply 

constraints in j and k can be written as the product of a single-valued i  for each i and a 

factor  for each (internal) supply constraint in j or k:  

 

 , , : & ,i j k ij i j ik i k ii j k F  (10) 

with 

 

0

0

0

i

j

k

i

j

k

 (11) 

 

The factors j  and k  are scalable, as is the set of i „s in its entirety. As such, a sufficient 

condition for solution uniqueness can be derived from the above by setting all j  and k  to 

one, thus defining single-valued priority parameters i  for each link i to be applied in the 

distribution of all (internal) supplies.  

 

Proof for condition (10) is added in appendix. For flows qi that are mutually dependent in the 

first manner described above, (10) reads as „the priority ratios are identical for all (internal) 

supply constraints in which these qi are both involved‟, thus ruling out ambiguity and non-

uniqueness.  

To illustrate the second manner for mutual dependency, let us regard the example in Figure 7. 

An intersection is considered with three incoming flows qi (i = 1…3) and three internal supply 

constraint functions kN  (k = 4...6) each encompassing two qi. As such, the constraint 

functions are two-dimensional planes (they only form a triangle in the graph because the same 

function is assumed for each constraint - which seems to make most sense). Now, the set of 

i „s in (10) is presented as a vector i  of which the direction is unique, but not the norm – as 



 

the set of i „s is scalable. If all k  = 1, i  represents the resulting single-valued priority 

parameters. Its unique direction ensures that a unique priority ratio exists between each two 

flows qi; for a particular k, this ratio is formed by the two coordinates of i  of the two i that 

compete in that k. In other words, the priority ratio in k is the projection of i  in the 2-D 

plane of | 0iki S . The unique solution is determined by this vector i , i.e. whichever supply 

constraint it „hits‟ first. The solution is not depicted to avoid overloading the graph; also 

demand constraints are not considered. Now, scaling the priority parameters i  with factors 

1k  leads to multiple-valued priority parameters ik , that still meet (10). In Figure 7, this 

is represented by three priority ratios 
' '

ik i k

i k i k

. As these are parallel to the projections of 

i , the priority ratios remain unchanged and thus the same unique solution results. 

 

 

Figure 7: Graphical illustration of requirement (10) 

 

Reconsidering the above example, it becomes clear that the CTF requirement - which is 

assumed throughout the paper - is not always part of the problem of solution non-uniqueness. 

Assume the following priority parameters in the same example, which correspond to „priority 

to the right‟: 14 24 25 35 36 161; 0; 1; 0; 1; 0 . As such, multiple, ambiguous 

priority ratios produce three solutions A, B and C (Figure 8). Obviously, CTF is not a factor 

here, since all flows qi are unidirectional.  
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Figure 8: Example of non-uniqueness when CTF is not a factor 

Of course, depending on the boundary conditions – the demand, supplies and turning fractions 

– ambiguous priority ratios may or may not induce multiple solutions in a specific case. For 

instance, one supply constraint may dominate and define one unique solution. The non-

uniqueness will appear only under quite specific circumstances, which troubles empirical 

validation. 

 

3.3 Non-uniqueness in the model and reality 

In the previous section, we identified the condition (10), to which the priority parameters ij  

and ik  must comply so that the solution of the intersection model is unique. For models that 

only consider external supply constraints, this condition does not form an insuperable 

problem. In such models, choosing single-valued priority parameters i  (i.e. meeting 

condition (10) with all j  
= 1) is a commonly adopted and accepted modeling assumption. 

For internal intersection constraints, however, multi-valued priority parameters ik  result 

from realistic behavioral assumptions. As discussed in Section 2.1, different driver behavior 

(and thus different priorities) can be observed depending on the type of conflict and the 

saturation level. Furthermore, even one type of behavior - as in Section 3.1.2 where full 

compliance is assumed for both conflicts - may translate into ambiguous priority ratios and 

thus non-uniqueness. Condition (10) is therefore counterintuitive and probably an unrealistic 

modeling assumption if internal supply constraints are involved. 

This means that whether or not multiple solutions exist in reality, the possibility of solution 

non-uniqueness in the model has to be acknowledged and dealt with. Preferably, however, 

this should be supported by empirical research. The empirical studies on intersection flows 

conducted in the past do not provide sufficient support since their focus is typically on various 

q2

q1

q3

q1

q3

N4
N5

q2

N6

N4

N6N5

A

B

C

25

35

14

2436

16



 

aspects of gap acceptance behavior (e.g. headway distributions) and not on validating 

intersection models in DNL (except for simple merges; see e.g. Bar-Gera & Ahn, 2010 and Ni 

& Leonard, 2005). Flow non-uniqueness has never been reported in empirical data, but it has 

also never been looked for. Since non-uniqueness only appears in the model under specific 

circumstances, where multiple supply constraints can dominate under identical boundary 

conditions, identifying these circumstances constitutes a considerable practical difficulty. 

Additionally, the need for a large amount of detailed data – not only traffic counts, but also 

video observation – renders this empirical research labor- and cost-intensive. 

 

3.4 Pragmatic approaches to deal with non-uniqueness in deterministic 

intersection models 

Regardless of whether empirical research is to confirm or disprove the existence of multiple 

solutions in reality, the non-uniqueness has to be dealt with in the intersection model. In 

stochastic models, a unique probability distribution, encompassing the multiple solutions, 

could be composed. For deterministic intersection models, we suggest in the following some 

pragmatic approaches that produce unique solutions. Further developing these into actual 

models requires also extending the other theoretical concepts discussed in this paper, i.e. 

explicitly defining internal supply constraint functions and priority parameters. Moreover, the 

development of efficient algorithms constitutes a considerable challenge. 

 

First of all, it is stressed that the following two approaches to try to remedy the non-

uniqueness should be avoided: 

 

- disregarding CTF  

- extending the requirement of individual flow maximization to global flow 

maximization 

 

Not only do these suffer from unrealistic modeling assumptions; uniqueness is not fully 

guaranteed in either approach. For non-CTF cases, this is demonstrated by the example in 

Section 3.2. Regarding global flow maximization, if the total flow 
i

i

q  is the same for 

multiple solutions, a global maximization is also subject to non-uniqueness. 

 

A model definition in which solution uniqueness is ensured can be obtained by imposing (10). 

This is in line with the modeling assumptions in many state-of-the-art intersection models that 

consider only external supply constraints. As stated before, this assumption lacks realism for 

most types of intersection conflicts. Only if the expected driver behavior is limited to turn-

taking behavior, as in AWSC intersections, reverting to this approach seems natural, e.g. with 

i  
= Ci.  

 

It may be desirable to at first allow ambiguous priorities in the model definition, and then to 

alleviate the non-uniqueness by some kind of pre- or post-processing. In the following, we 

distinguish two types of approaches: (a) pre-processing the priorities so that the model 

produces a unique solution; and (b) computing non-unique solutions that result from different 

priorities and then post-processing these into one solution. In either case, the pre/post-

processing is mathematically formulated as a convex combination of priorities/flows. 

 



a. Pre-processing of the priorities. For every i with multiple-valued priorities ij  and ik , a 

representative priority i  is computed through: 

  
 

i ij ij ik ik

j k

w w i  (12) 

with 

 

0 & 0 , ,

1

ij ik

ij ik

j k

w w i j k

w w i  (13) 

 

Different choices of the weights wij and wik define different pre-processing strategies: 

 

1. If no further information is available, uniform weights can be chosen. Other averaging 

schemes are thinkable but require justification based on supplementary modeling 

assumptions. The model of Flötteröd & Nagel (2005) – without internal supply 

constraints - resorts to this type of approach. 

2. One representative ij  (or ik ) could be selected by setting the respective wij (wik) to 

one and all other weights to zero. This approach could be justified by the following 

considerations:  

a. The (internal) supply constraint that follows most naturally from the history of 

flows could be selected. However, the analysis of Section 4 indicates that such 

a type of additional system memory can lead to undesirable results. 

b. A ranking could be defined among all (internal) supply constraints so that the 

highest ranked active constraint determines the solution. This ranking could be 

made based on the amount of competition that is present for each supply. That 

way, the supply that is most „overloaded‟ would determine the throughput. 

However, this competition or overloading cannot be directly determined from 

the demands Si as this would not be compliant with the invariance principle. 

Rather, this ranking should be based on the competition or overloading that 

arises in case this supply is indeed restrictive, i.e. considering capacities Ci for 

supply constrained and Si for demand constrained links. 

 

A clear advantage of the priority pre-processing approach is that it is relatively 

straightforward to implement, computationally efficient, and always guarantees a unique 

solution under any combination of boundary conditions. Furthermore, the resulting flow 

solution complies with all the requirements listed in Section 1.1 and all demand and (internal) 

supply constraints.  

 

b. Post-processing of the flows. Every possible solution, resulting from the multiple, 

ambiguous priority ratios, is computed, leading to separate intersection flow patterns qr. These 

are then averaged into a unique resulting flow pattern q according to: 
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w rrq q  (14) 

with 
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Again, different choices of the weights define different solution strategies: 

 

1. One could assume a uniform average solution to hold. This is in line with the 

assumption that a deterministic DNL represents average network conditions. A naïve 

averaging, however, raises considerable difficulties. The average flow pattern may not 

comply with the requirement of individual flow maximization, or it may violate the 

invariance principle or some non-linear internal supply constraints. 

2. One could also select a single solution as the most plausible or representative one for 

the given situation (this again corresponds to setting the respective weight wr to one 

and all others to zero). Again, this could be based on previous flows (assuming, e.g., 

that the smallest temporal change in flow patterns is the most plausible). Technically, 

this corresponds to uniquely selecting the priorities that have led to this solution, but 

the selection criterion is now based on flows, which are not known a priori in the 

priority pre-processing approach. 

 

A drawback of the flow post-processing approach is that multiple candidate solutions need to 

be evaluated, rendering the intersection model computationally intensive. Also, as stated 

above, a true averaging of solutions can lead to flows that are inconsistent with the basic 

modeling assumptions. 

 

Answering the question which of the above approaches or any other possible alternative is 

most realistic or most appropriate is difficult or even impossible without further theoretical 

and empirical research. Moreover, the answer might differ under varying circumstances. A 

trade-off between realism on the one hand and computational efficiency and limiting model 

complexity on the other seems inevitable. 

 

4 Spatial intersection modeling 

While the traditional point-like modeling approach is not disputed if internal supply 

constraints are disregarded, complex intersection models implement constraints that clearly 

have physical characteristics. Therefore, one might consider modeling intersections in DNL 

spatially, i.e. as mini-networks in which the conflict zones of crossing and merging flows are 

represented by dummy nodes, connected by dummy links. In this section, however, it is 

shown that spatial models exhibit similar as well as additional disadvantages within the 

macroscopic DNL framework.  

 

Let us consider the example in Section 3.1.2 in a spatial model (Figure 9). Two dummy links 

connect two dummy nodes that represent the intersection conflict zones k.  

 



 

Figure 9: Spatial Model of Example 2 

As in Section 3.1.2, the straight movements have absolute priority over the left movement of 

the other incoming link, and the left movements do not hinder each other. For simplicity‟s 

sake, the internal supplies are modeled identically to outgoing link supplies as a maximum 

number of vehicles that can cross the conflict zone per hour, with conflict zone capacities of 

Nk = 1000 veh/h:  

 
1 2 1 1 2 2( , ) 0 3,4.k k k kN q q f q f q N k  (16) 

 

Consequently, it is possible to simulate this spatial intersection model with any state-of-the-

art DNL model. Here, the Link Transmission Model (Yperman et al., 2007) is chosen, with a 

minor modification
2
 to model the absolute compliance behavior in the internal conflicts. 

 

Firstly, we consider two scenarios in which the boundary conditions external to the 

intersection are identical at the end of the simulation, but their histories are not (see Figure 10 

and Figure 11). 

 

                                                 
2
 For this simple example, this requires nothing more than granting the prioritized movement its maximal share 

(= Sik) and passing the remaining internal supply Nk - Sik to the minor movement. Apart from that, this 

modification does not have any implication for the usual working of the DNL model.  
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Figure 10: Scenario 1: S13 increases gradually 
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Figure 11: Scenario 1: S24 increases gradually 

In scenario 1 and 2, the left-turning demands are initially different. During the simulation, the 

low left-turning demand is gradually increased until it reaches the same level as the high left-

turning demand from the opposing link.  

In the initial phase of scenario 1, S13 is low, allowing link 1 to send its full demand, since 

there is enough remaining supply (N3 – S23 = 200 veh/h) for its minor left-turning movement. 

Meanwhile, the queue of the left-turning movement of link 2, which is obstructed by N4, 

quickly spills back over the dummy link. This renders link 2 congested; also the straight 

movement is thus held back. While S13 is gradually increased, this does not change the flows, 

as link 2 is now unable to claim its maximal share in N3 (leaving N3 – q23 = 800 veh/h for link 

1) due to the active constraint in N4. In result, q1 stays dominant throughout the simulation, 

while the other flow remains constrained. Scenario 2 is exactly the opposite.  

Thus, although the boundary conditions at the end of the simulation are identical in both 

scenarios, the resulting flow patterns are very different. This demonstrates that also in a 

spatial model, solution uniqueness is not guaranteed given only the instantaneous boundary 
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conditions. The spatial model inherently determines the solution on the basis of history, which 

is analogous to a point-like model that would solve the non-uniqueness based on history (see 

Section 3.4).  

 

Now, one might state that determining the solution based on the history might not be an 

unrealistic option per se. However, in scenario 3, a history in which S13 < S24 that lasts only a 

few seconds suffices for q2 to take the advantage and hold it for the entire simulation. (The 

result is the opposite if S13 > S24 holds initially.) Indeed, a time period equal to the spillback 

time over the left-turning dummy link is enough to block the straight flow coming from the 

same link. This means that during the initial phase of a DNL, starting from an empty network, 

a spatial intersection model could steer the simulation results solely based on which flows 

happen to reach an intersection first.  

 

 

 

Figure 12: Scenario 3: A history of a few seconds fixes the solution 
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Finally, a nearly symmetric demand pattern is chosen for scenario 4. In result, an unstable 

flow pattern arises that converges slowly. In this converged solution, q2 dominates q1 thanks 

to a slightly smaller left turning fraction. The speed of convergence depends on the boundary 

conditions and the exact spatial representation (for instance the length of the dummy links and 

therewith the simulation update step).  

 

 

 

Figure 13: Scenario 4: Nearly symmetric demands engender unstable flows 

The above illustrated behavior of spatial intersection models in a macroscopic DNL is clearly 

unrealistic and undesirable. While at first sight a spatial model physically detaches the mutual 

dependencies that lie at the origin of the ambiguity in point-like models, the wave propagation 

over the dummy links rejoins these dependencies. Mostly this rejoined ambiguity is 

immediately and irreversibly solved based on the history of flows, but sometimes, as in 

scenario 4, it causes an oscillating sequence of back and forth propagating waves on the 

dummy links.  
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One flaw of this system lies in the application of macroscopic propagation theories designed 

for links of reasonable length on small dummy links that fit at most a few vehicles. A second 

problem that seems inherent to spatial intersection models is the spatial detachment of 

constraints that are subject to simultaneous driver decisions. Consider again the example in 

Figure 4. While in reality the two internal conflicts are evaluated simultaneously, they would 

be separated into two dummy nodes in the spatial model, leaving no option to capture the 

dependency between the two without further modeling efforts. Due to the before-mentioned 

problems, extreme caution is advised when inheriting networks for DNL or DTA purposes 

directly from static models, in which complex intersections are often modeled spatially. 

 

While the possibility that a theory can be found that realistically treats propagation waves and 

simultaneous decisions in a spatial intersection model cannot be ruled out, it is safe to say that 

currently the problems and shortcomings of point-like intersection models cannot be bypassed 

in a spatial way. Simply regarding an intersection as a mini-network and trying to solve it in a 

standard macroscopic DNL manner produces unrealistic results. Partly, this behavior is 

similar to the non-uniqueness observed in point-like models, as different flow patterns can be 

obtained under instantaneously identical boundary conditions. Moreover, these flow patterns 

depend on the history of the boundary conditions and the exact spatial representation 

(including the dummy links‟ length and characteristics), which makes them difficult to control 

by the modeler. 

As we feel that trying to include simultaneous decisions and accounting for mutually 

dependent flows naturally leads back to a point-like approach, we recommend that research 

on developing and improving traditional point-like intersection models is to be preferred. Two 

additional disadvantages of spatial models reinforce this argument: 

 

- How to represent an intersection in a spatial model is a delicate matter. Caution is 

needed to make sure that the conflicts between the various movements are modeled 

realistically. For example, Chen et al. (2008) define their spatial intersection model as 

a grid of 2x2 cells, in which some movements that in reality would not be in conflict 

do hinder each other, whereas some other movements that are conflicting in reality are 

not in the model. Moreover, the configuration in Chen et al. (2008) can easily lead to 

model-induced, unrealistic gridlock. In Figure 14, an example of a gridlock-sensitive 

representation (a) and a non-gridlock-sensitive representation (b) of a standard 4x4-

intersection is given. In essence, grouping movements into circular patterns may cause 

gridlock. 

 



 

Figure 14: Gridlock-sensitive (a) and non-gridlock-sensitive (b) spatial intersection 

model 

- The Courant-Friedrichs-Lewy condition – stating in the given context that the 

simulation time step must be no larger than the link travel time – constitutes a 

practical difficulty for the small dummy links of a spatial intersection model in that it 

increases the overall computation time in a network tremendously.  

 

5 Conclusion and outlook 

This paper discusses complex intersection modeling in macroscopic, first-order DNL. 

Building on previous research in Tampère et al. (2011) and Flötteröd & Rohde (forthcoming), 

its main contributions are: 

- the general definition of (internal) supply distribution through priority parameters, 

which are used to model different driver behavior 

- the observation and analysis of solution non-uniqueness within this framework, which 

is found to result from realistic behavioral assumptions 

- the formulation of a necessary and sufficient condition for solution uniqueness, which 

is however unlikely to be met on a complex intersection including internal conflicts 

- the description of pragmatic approaches to remedy the non-uniqueness in deterministic 

point-like models 

- the elaboration on the spatial modeling approach, revealing that this exhibits behavior 

that resembles the solution non-uniqueness of point-like models and furthermore 

shows unrealistic results in some cases 

 

In this paper, many problems and concepts are discussed, but not always conclusively solved. 

To build realistic intersection models from these foundations does not only require to deal 

with their inherent non-uniqueness, but also to get further to the bottom of driver behavior in 

intersection conflicts. 

Regarding the modeling of driver behavior in DNL, several open issues remain. A 

classification of different types of driver behavior is suggested, but further empirical 

validation on general (non-freeway) intersections is needed. In particular, specifications are to 

be developed for the internal intersection supply constraints that result from crossing and 

merging conflicts. Some theories exist that may serve as a basis, namely gap acceptance 

a) b)



 

theory (Chapters 8 and 9 in Gartner et al., 2000) and conflict theory (Brilon & Wu, 2001; 

Brilon & Miltner, 2005). Hereby, we give preference to conflict theory since it seems more 

compatible with over-saturated conditions. Also, it is less complicated. Anyhow, further 

extension and adaptation to fit these theories into a DNL environment is required. The 

definition of the priority parameters that govern the internal supply distribution cannot be 

detached from this. Non-linear priority functions rather than constant priority ratios may be 

necessary to realistically capture the transition between different driver behavior, e.g. based 

on the saturation level. Also, caution is needed to preserve the model‟s compliance to the 

requirements listed in Section 1.1 , following Tampère et al. (2011). Accounting for all of this 

should lead to a realistic, but also highly complex intersection model. Depending on the 

application, different trade-offs between realism, model complexity and data requirements 

will be desirable. Hopefully, this discussion will evolve comparably to that of link models, 

where various theories – e.g. travel time functions, vertical and spatial queuing – provide 

different levels of complexity and realism. 

Regarding the treatment of the solution non-uniqueness, foremost empirical studies would be 

valuable that confirm the existence of multiple flow patterns under identical boundary 

conditions, and reveal their characteristics – e.g. probability, frequency of switches, duration 

of stable periods - and the (external) factors that lead to these characteristics – e.g. history, 

neighboring (signaled) intersections, the intersection geometry. This paper aids by helping to 

understand the phenomenon (and when it occurs) in the model, so that these specific 

circumstances can be sought for in the field. This empirical work – even if it disproves non-

uniqueness in reality – can support the further research to develop and improve complex 

intersection models. Hereby, it seems that a point-like approach is most promising, upgrading 

the conceptual pragmatic approaches suggested in Section 3.4 – along with further 

developments of the behavioral modeling as described above – into unambiguous models for 

different types of intersections (AWSC, priority-controlled, signalized and roundabouts).  
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Appendix: proof of (10) as a sufficient and necessary condition for 

uniqueness 

For this proof, the demand constraints are considered to be not restrictive. This does not 

constitute a loss of generality, since the demand constraints can never be a source of mutual 

dependency between flows qi and with that of non-uniqueness. In other words, restrictive 

demand constraints may alleviate some multiple solutions, but never create new ones. Supply 

constraints for which only one inflow competes are in that sense analogous to demand 

constraints and thus also not considered. 

Also note that this proof is formulated for model definitions that meet the 7 requirements of 

Section 1.1 and the supply distribution rules described in Section 2.3 (and Tampère et al., 

2011), in accordance with the rest of the paper. 

For notational convenience, only constraints j are represented in the remainder. However, any 

j could be replaced with an internal supply constraint k, yielding an entirely analogous proof. 

 

Consider the two possible ways in which inflows qi can be mutually dependent and end up in 

multiple solutions (see Section 3.2):  

 

1. Two or more inflows qi are tied in a set of two or more supply constraints j. 

2. Three or more inflows are mutually dependent in some “circular way”. 

 

First, option 1 is considered on a 2x2 example and option 2 on a 3x3 case. Afterwards, both 

are generalized to IxJ. 

 

2x2 case: 

Consider two incoming links i1, i2 and two outgoing links j1 and j2. Assume multi-valued 

priority parameters ij  and that two solutions A and B are possible from the two supply 

constraints. In solution A, the constraint in j1 is binding, in B the constraint in j2. Following 

(5)-(7): 

 

1 1 1

2 2 1

1 1 2

2 2 2

A :

:

A

i i j

A

i i j

B

i i j

B

i i j

q

q

q
B

q

 (17) 

If the model‟s solution is unique, the only possibility for both A and B to be feasible is if they 

are equal: 

 
1 1 2 2

A B A B

i i i iq q and q q  (18) 

Combining (17) and (18) immediately leads to: 

 1 1 1 2

2 1 2 2

i j i j

i j i j

 (19) 

Obviously, if (10) holds then (19) becomes: 

 1 1 1 2

2 1 2 2

(10)
i j i j

i j i j

is sufficient  (20) 

(20) obviously holds and thus (10) is a sufficient condition for uniqueness in this 2x2 case. 

 



 

Now assume (10) does not hold, i.e. ij i j  for exactly one ij (n-1 equalities can always be 

formed with n positive variables). Assume for example 
2 2 2 2i j i j , and that yet (19) still 

holds: 

 1 1 1 2

2 2 2 2

2 1 2 2

(10)
i j i j

i j i j

i j i j

is necessary  (21) 

Thus, if (10) does not hold then (19) cannot hold, hence the solution is non-unique. Thus (10) 

is also a necessary condition.  

 

3x3 case: 

Assume a case as in Figure 7, where no two incoming flows are tied in the same two outgoing 

constraints, but the mutual dependency exists in a circular manner (option 2). Following again 

(5)-(7), three solutions are possible that each bind two qi in the restrictive supply constraint: 

 

1 1 1

2 2 1

2 2 2

3 3 2

3 3 3

1 1 3

:

:

:
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A

i i j

B

i i j

B
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C
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C

i i j

q
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B
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 (22) 

Again, in case the model‟s solution is always unique, the only feasible possibility is: 

 

1 1

2 2

3 3

A C

i i

A B

i i

B C

i i

q q

q q

q q

 (23) 

Note that if two inflows are known and identical, the third is also known and identical under 

identical boundary conditions (since it is individually maximized). Thus, (23) suffices to 

describe the unique solution. 

(22) and (23) yield: 

 

1 3 3 21 1

1 2 3 3 3 2

2 1 3 3 2 2

1 3 3 2 3 31 1 1 1 2 2

2 2

2 1 3 3 2 2 2 1 3 2 1 3

( ) ( )

1

i j i ji jA A C C B A

i i i i i i

i j i j i j

i j i j i ji j i j i jA A

i i

i j i j i j i j i j i j

q q q and q q q

q q

 (24) 

(10) in (24) yields:

  
 3 31 1 2 2

2 1 3 2 1 3

1 (10)
i ji j i j

i j i j i j

is sufficient  (25) 

Assume again (10) does not hold, say 
1 3 1 3i j i j . If (24) were to still hold: 

 3 31 1 2 2

1 3 1 3

2 1 3 2 1 3

1 (10)
i ji j i j

i j i j

i j i j i j

is necessary   (26) 

 

General IxJ case: 

 



Now, let us generalize the previous cases to a IxJ case. Naturally, many combinations of the 

mutual dependencies as described above may exist. For simplicity‟s sake, we will treat them 

separately. 

 

Generalizing (17)-(19), there are a large number of possible solutions, which may be (nested) 

combinations of several supply constraints restricting several qi. Still, isolating any 

combination of i, i’, j and j’, the essence remains that the priority ratios of all mutually 

dependent flows should coincide in their mutual supply constraints: 

 
'

'

' ' '

, ' , '
ij ij

i i

i j i j

i i j j F F  (27) 

(10) in (27) yields: 

 
'

'

' ' '

, ' , ' (10)
i j i j

i i

i j i j

i i j j F F is sufficient  (28) 

 

Assume (10) does not hold, say ' ' ' 'i j i j , (27) would imply: 

 
'

' ' ' '

' ' '

(10)
i j i j

i j i j

i j i j

is necessary  (29) 

 

Generalizing (22) to any circular dependency with l members involved: 
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 (30) 

Again, in case the model‟s solution is unique, the only feasible possibility is: 
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 (31) 

Combining (30) and (31) leads to: 

 1 1 2 2

2 1 3 2 1

... 1l l
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i ji j i j

i j i j i j

 (32) 

(10) in (32) yields: 

 1 1 2 2

2 1 3 2 1

... 1 (10)l l
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is sufficient  (33) 



 

Assume (10) does not hold, say 
1 1l li j i j , while (32) holds:  
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