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NON-UNIQUENESS FOR PLATEAU’S PROBLEM.
A BIFURCATION PROCESS

JOHANNES C. C. NITSCHE

The discussion to follow will deal with aspects of Plateau’s problem
about which no exhaustive information is available today, and particular
attention will be paid to the phenomenon of non-uniqueness. It is well
known that the area of a minimal surface, its suggestive name notwith-
standing, need not furnish a minimum (absolute or relative) among the
areas of all surfaces having the same boundary. Let us consider a minimal
surface S = {v =1v(w,v); u® +* < R*} which lies imbedded in
Euclidean 3-space. We shall assume that % and » are isothermal
parameters on S so that tX(u,v) = ti(u,v) = E(m,v) > 0 and
t,(u,v)t(u,v) = F(u,v) = 0. Let us further denote by X(u,v) the
unit normal vector of our surface and by K(u, ) its Gaussian curvature.
On 8 we consider the one-parameter family of Jordan curves

I = {t = t(rcos?, rsind); 0 =<¥#=<2x}, 0<r<R,

which bound expanding portions
S(r) = {t=r1(u,v); (u,v)eP,}

of 8. Here f’; is used as an abbreviation for the closure of the disc
P, = {u,v; u* + v* <r?}. For sufficiently small values of r two as-
sertions are valid:

i) S(r) is the unique solution of Plateau’s problem for I, .

ii) The area A[S(r)] of S(r) furnishes the absolute minimum among
the areas of all disc-type surfaces bounded by I, .

As r increases, either one of these statements may become false. As
for i), S(r) will remain unique as long as I', retains a simply covered
convex curve as its parallel, or central, projection on a plane (see [10]);
or as long as the total curvature of I', does not exceed the value 4z
(see [7]). On the other hand, the minimizing property of the surface S(r) —
more precisely, the question whether A[S(r)] remains at least a relative
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minimum — depends on the second variation of its area which, in turn,
is closely related to the eigenvalue problem

(1) AE—2LEKE =0 in P,, £=0 on oP,.

Because K(u,w) is non-positive and vanishes at most in isolated points,
this problem will have a sequence of eigenvalues {A,(r)} satisfying the

inequalities 0 << A,(r) << 43(r) < 44(r) = ... and corresponding eigen-
functions &y(w,v;7), &(w,v;7), ... subject to the ortho-normality
relations
2 ffE|K[£m§”dudv = 4b,, .
Pf

The smallest eigenvalue 1,(r) is a continuous and strictly decreasing
function of r.

If p(u,v) = 37 ¢,&(u,v;r) denotes an arbitrary regular function,
vanishing on &P,, then the area of the comparison surface S®(r) =

{r=1rv(u,v) + enlu,v) X(u,v); (v,?) 515,} is found to be

A9 = A1) +4et [ [0+t + 2BE ) dudo + 0@)

£,

Il

AS(] + 3 S (A —1) 2 + O

> A[S(r)] + & () —1) ff E K| dudy + O) .
}‘f

If 2A,(r) > 1, then S(r) can be imbedded in a field of minimal surfaces
(a detailed construction can be found in [7]), and by a classical argument
going back to H. A. Schwarz ([11], pp. 224 — 240, 332 —334) it is seen that
the area of S(r) furnishes a strong relative minimum. Moreover, since the
boundary value problem 4% —2EKyn = 0 in P,, n=0 on &P,
under the assumption A,(r) > 1 has the unique solution xn(u,2) =0, it
follows (see e.g. [2], Lemma 3.4) that S(r) is isolated or, as we shall also
say, locally unique; see [8]. By [1] the inequality 2,(r) is guaranteed at
least as long as the total curvature [[, E |K|dudv of S(r) remains
smaller than 2x .

If Ayr) <1, then (by choosing #(u,») = &(u,v;r)) dise-type
surfaces bounded by I’ and lying arbitrarily close to S(r) can be con-
structed whose area is smaller than the area of S(r). S(r) is thus seen to
be unstable. It is a matter of record, however, that I, also bounds a
solution surface of least area for Plateau’s problem, Obviously, this surface
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must be distinet from S(r) . Whether it is close to S(r) or not is, of course,
another question. In any case, I', bounds at least two solutions of Plateau’s
problem whenever A,(r) << 1.

The preceding remarks suggest the possible existence of two positive
numbers r; and r, defined as follows: 7, is the supremum of all those
values r for which the surface S(r) represents the unique solution of
Plateau’s problem for I, . The number r, is the supremum of all those
values r for which the area of S(r) is a strong relative minimum among
the areas of all disc-type surfaces bounded by I, , ie., ZA,(ry) =1.
Obviously, the inequalities 0 < r, <7, hold. Since it is not clear whether
the local uniqueness of S(r) for 2,(r) > 1 implies its global uniqueness,
the strict inequality r, < r, cannot be excluded apriori. Our interest here
is directed not so much to this question but rather to the study of the
bifurcation process in which a second or more surfaces branch off from
S(r) as r passes through the critical value » = r,. Considering that the
treasure of general insights is still hidden today, we shall pursue this bi-
furcation process in detail for the case of an explicit example — Enneper’s
minimal surface whose position vector is given with the help of isothermal
parameters u and v by

I u+u'v2—%ual

tu,v) = § —v—ule 4 §ob
1 u? — v?
We have E(u,v) = (1+u+v%?* and K(u,v)= — 4 (14+u?+0%) 4. Itis

known (see [9], § 90) that the part of Enneper’s surface which corresponds
to the dise u® + % < 3 is free of self-intersections. In particular, the image
of every concentric circle u? + v2 = 7%, 0 <r < vV 5, is a Jordan curve
I = {x=3®;7r); 0 <9 <2n} with the position vector

¥

rcosﬁ—%rscossﬂl

3(®;r) = t(rcosd, rsingd) = { —rsind — $13sin 39 .
2 cos 2} '

Pictures of I, can be found in [9], pp. 76, 79. The points (u = * Vg,
» = 0) on the circle u? + v = 3 are mapped by r(u,?) into the same
point {0, 0,3} in space. Accordingly, we shall choose R = V3.
The curvature of the projection y, of I, onto the (x,y)-plane is
given by
(1472) (1—372) + 4 ¢r%sin? 24
r[1 + 272 cos 48 4 PR
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¥, is a convex curve for 0 <r <1 /\/5 so that S(r) is the unique solution
of Plateau’s problem for I, if 0 <r <1 [\/3 . The second criterion for

uniqueness mentioned above leads to a better result. A computation shows
that the total curvature x(I')) of I, is equal to

1 2r

.
Trri g CEO), k() = -

W) = S —
() V14100 + 99t

and that
ko)
CE' #I') = 6=n TR

Here E(k) = [{2V'1 — k*sin># dd denotes the complete elliptic integral
of the second kind. We have »(I) = 4V3E(1/2) = 10.167... < 4z for
r=1/V3 and »(I) = 4V5EQ1/V5) = 13.369... > dn for r = 1.
The equality x(I,) = 4z is achieved for r = 0.882 (see [9], § 828). It is
therefore certain that r, > 0.882, although we conjecture that r, = 1.

The function (u,v) = (1—-u2—?) [ (14+u®+?), which is positive
for u® + v* < 1 and zero for u? + v = 1, is a solution of the differential
equation

AL —2EK{ = AL + &= .

(1+u2+v%)?
From this fact it can be concluded that 4,(1) = 1 so that 7, = 1. Further
properties of the curves I, are discussed in [9], §§ 91, 390 —396. It has
been proved in [4] that I, bounds three distinct solutions of Plateau’s

problem for r in a certain interval r, < r < V3. (A crude estimate for
ro 18 7y = 1.682.) From the following developments it will be seen that
as r passes increasingly through the critical value r = 1, the curves T,
acquire the capability of bounding, in addition to Enneper’s surface, two
further minimal surfaces which appear in a continuous bifurcation process.
It is now necessary to interject some basic definitions. Let I' =
{r=3(); 0 <7 <2z} be a Jordan curve in Euclidean 3-space. We are
concerned with vectors t(u,v) defined in the closure P of the unit dise
P = {w,v; v+ ® <1} which map the boundary &P onto I.
Setting u + i v = w = g ¢ we shall henceforth interchangeably use the
notations r(w,v),or v(w), or t(o,d) (and later also r(w;r) instead of
t{u,v;r), ete.) — whichever is most convenient. Denote by § = $(I) the

set of vectors v(w) e C2(P) N C°P) which are harmonic in P and which map
éP onto I' monotonically so that three fixed distinct points w,, w,, Wy
on &P are transformed into three fixed distinet points & = 3(7) .
(j=1,2,3),0n I', respectively. Once and for all we shall choose wy=1,
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wy, =i, wg = —1. Then () = 3(z(9)) where 7(#) is a continuous
monotone function satisfying the conditions <(0) =7,, 7(n/2) = 1,,
7(n) = 73 and (¥ + 27) = 7(J) + 27 . Endowed with the distance be-
tween two vectors,

lrz—rll = max |ty(u,v) — vy(u, )|,
(u,u}é'.f’

the set $ becomes a metric space. Each element r(w,v) of $ defines
a harmonic surface S = {v = r(u,»); (u,v) eP }. By definition,
a solution of Plateau’s problem for the curve I' is a harmonic surface
whose position vector satisfies in P the additional relations t2 = ¢?,
r,r, = 0. We denote by I the set of all such vectors. It is a matter of
record that an element t(u,v) of 9 provides a topological mapping
between @P and I'.

Since we shall benefit from working with the fixed parameter domain
P, a slight change of the introductory notation is advisable: The portion
of Enneper’s surface bounded by I’ will now be denoted by S9(r) =

{t=1%w;r); weP) where

rpcos? — 13 0% cos 3% Crw — 3wt
t9,d;r) = { —rosiné — 343 03sin 39 = Rejirw + ¢ 38w
% 0? cos 24 r?w?

and (1,8 ;r) = 3(%;7).

Let S(r) = {v=1x(w;r); w eﬁ} be another solution of Plateau’s
problem for the curve I',. By a theorem of H. Lewy [3] the position
vector of S(r) is analytic in P . Moreover, owing to the results of [6], the
derivatives of t(w ;r) can be estimated uniformly for all possible solutions.
We shall refer here to the validity of the inequality

max { [t(1,4;7)], |tg(1,9:7), [rge(1,9;7)]} = K(r)

01=9=2x
with a universal constant K = K(r) depending on r alone, 0 < r < V3.
From the proofs in [6] it would not be difficult to extract an explicit ex-
pression for K(r) in terms of the geometric properties of I',. For the
purposes at hand knowledge of the precise form of K(r) would only be of
minor advantage, however. _

For the time being a value r, 1 <r < V'3 is chosen and then kept

fixed. A computation shows that |r§“(l , ;1) = r(1+#?) and

]ri{%[l JBir)| = 7[1 4+ 136 + 4 cos®29) + 9412 < r VIi4rVi+92,
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From [8], p. 406, we know that |rg(l,d)| =»(1+7%) /2 as long as
[t—t”| < &, = min (=/50,1 /175 K) . Since I, is the topological image

of 2P under the mapping of the position vectors of both surfaces S©
and S, the boundary values of 1 are related to those of t through an
expression of the form

(2) e(l,9;7r) = 90,8 + AF) ;7).
Here A(d) is a periodic analytic function satisfying the inequality A'(#) =

—1. We write A(?) as a Fourier series,

AD) = % + 21 (a, cos n} + b, sin nif)

with the norm ||1|| defined by

A2 = I_f}?{'ﬁ)dﬁ = 1a0+ z (a +b?)
7 2

In view of the “three point condition” above, A(#) is subject to the
conditions  A(0) = A(w/2) = A(m) = 0. The relation 1y(1,d;7) =
(1+A(@) (L, 9 + A®) ;1) whu'h follows from (2) implies the in-
equalities

1 <14+ 1@ < 3K  whenever [r—1 <e,.

From [8], p. 406, we also conclude that

e Y

1
g =19 = [a@)| = @ for 1A@)| <

It follows that the size of the neighborhood of ¢, as measured according
to the metric of §, is also governed by the magnitude of L =
maXy<g<q, |A(#)] . A series expansion of (2) leads to

(3) x(1,8;7) = tO1,9;7) + A 1, P;7) + § 23(9) tQy(1,9;7) + .

We denote by t*(p,# ;) the harmonic vector in P with boundary

values
k

(4) W1, 857 = 3 j-"(15*) PR

o1, 9 ;7).

The complex-valued expression

(5) Do, P) + i,

1(h—0"1)) + i,y
= 1% [(2—1) + i 21,1,
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is an analytic function in P for every element of § ,i.e., for every surface
whose position vector is harmonic in P . It is therefore easily seen that the
surface S is a solution of Plateau’s problem if, and only if, ¥(1,9) = 0.
From [8] we know that this equation is equivalent with the condition

(6) ﬁAw)u Hor, ) = 0,

Here the A" are defined by

k41

ﬁk"'l

(1) A™(1, 97,4 = 2 }t*(ﬂ) WAL, D5 7) O, 95 7).

Applying the estimating procedures used in [5], [8] we find that there
are positive constants ¢ and M such that for max;<y<,.[A(d)] = L,

max<p<y, [A®)| < L

(ﬂ/_f L}m % o
(8) A, 5,0 < € — —y A
‘ . {M’ )m 2 )
A" 1,8 ;r,2) — A™(1,9;r, 1) £ € '—( 2)r (|| E+|i,’f. 1)} ”A" V.

From ([8], p. 408 we take over the computation of o(d;r,1) =
AN diw, A):
r2—1

(9) g(@;r,A) = r(r*+1) {“a €y — ;‘2_‘_—15232

+ i[(r2+1) n— (3r2+1)] (@, ¢, + b, s,,)} .

#=3
In this formula the abbreviations ¢, = cosnd and s, = sinnd have
been used. Condition (6) can be written as

(10) o7, 0) = — > AP, b5r,2) = A1, B0, 7).
m==2

We turn now to the attempt to find a solution 4 = A(¢ ;) of (10) for

values r > 1 close to » = 1. For this purpose we set ¢ =Vr2-1 and
assume A to be of the form

MPsr) = eAV®) + 2 AD(9) + ...

where

[ +]
ANG) = Lal + 3 (af cosnd + b sin nd) .
n=1
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Some preparatory beuristic remarks are in order. A lengthy computation !
shows that

1"2
(11) A®1 ,9;r,psin28) = — 3 (I + 14 ¢ + 3 rt) p?sin 49

9
= — §r2p2sin4ﬁ + p? O(e?) .

Accordingly, we shall choose the first two terms in the expansion of
A(d ;) as follows:

;_m(g) = b(zn sin 27 ,
A2(9) = b sin 29 + b sin 48 .

Then
o@;r,A) = 8P sin 49 + O(8)
and
9
AL, 957, 2) = 5 BPPsin 48 + O()

so that
(12) b = —9--['bﬂ>]2

i 16 22 17

Now the necessity arises to compare certain terms in & . For this purpose
we note the following relations which can be obtained only by extensive
computations (remember the abbreviations s, = sinznd ):

Am(l;ﬁ;?’,f»‘gz + qs,)
2 9 2 ! :
= =3P s+ 9P g (Sptsg) + 507 (228 + 11785 + 28yy)
+ p?0(?) + pq O(e?) + ¢*0(e?),

11
A®(1,9;7r,p8) = r* ?.’Pa (3 8p—8¢) + p* O(e?) .

It is now seen that the coefficients of sin 24 are
1
in ?jza(l,ﬁ;r,ﬂ.): —3b + O,
- 1) p(2) 11 1)
in ;A(l,ﬁ;r,ﬂ.): 9 &3 by b —?aa[bfzj3+0(a4).

1 Unfortunately, neither this computation nor the even more extensive explicit
computations, which will become necessary later on, can be reproduced here.
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Consequently, we shall have
M _ gpmp® — L
by 9 by by =z [bSVT3

or, combined with (12),

(1) Al 11 (193 1 1z ) 30
by +\1g — 3 /P = \1 - 15 [&21")b" = 0.
This condition has three distinet solutions

1 1 4 1 i
W= W - W - -0

and, corresponding to these solutions, b{¥ = 0 in the first case and

b = 9/7 in the other two cases.

The preceding beuristic remarks indicate that a bifurcation appears
as e increases from zero to small positive values. i.e., as r increases from
one to values larger than one. The choice bl = 0 leads, of course, to
M®;r) = 0, that is to say, back to our original surface S(r). Of the
other two cases we shall now discuss rigorously the second for which b =

4/\”? . The third case can be treated similarly.

We shall try to find a solution A(# ;r) of (10) for small positive values

of ¢ in the form
4 9
(13) AB;r) = [TE e+ e2byle) |8y + |:~7- 2+ Sby(e) | 84

1
b | Sale) + e oy + bie) s, + w03 e) )

where

(s e) = ay(e) ¢y + as(e) ¢ + bye) 85 + ayle) ¢y + i (a,(e) ¢, + b,(e) s,)
#=D

and the a,(e), b, (e) are themselves power series in e . In view of the three

point condition we must have

3 ay(e) + ay(e) + u(0;e) = 0,
3 y(e) + bi(e) + p(nf2;¢) = 0,
Lay(e) — ay(e) + p(m;e) = 0.

From these equations the three coefficients a,, a;, b; can be determined:
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agle) = — 2[ay(e) + ay,(e) + agle) + ... ]
(14) a,(e) = — [as(e) + agle) + a,(e) + ... ]
bile) = 2[age) + agle) + ayle) + ... ]
+ [by(e) — ba(E) + 67(5) S
so that
1 : 5
(15) S ae) + alle) + i) < W@ ;).

After substitution of A(# ;) from (13), (1/r*) A1 ,¥d;r,2) attains
an expansion

1 =
?:EA(I 16;?‘ :’1) = 21&4”(8,.&) Cn + B”(E,};)S”].
n=2

From (5) it is clear, that neither a constant term nor terms with cos# or
sin ¢ can appear on the right hand side. In determining the coefficients
A, and B, it is necessary to carry the computations to the point that
explicit expressions become available for all terms up to those of order
et in B, and all terms up to those of order & in the other coefficients.
The result of these computations is as follows:

+ I:ISU 183

36 i
Bye, 1) = —‘\/——Ees—i- E——?"bg(e)+ﬁb4(s)]£4+£582(£,2}:

72 36 i
Bye, ) = ~7 e + v,—aea bo(e) + e By(e, 4),

1324
214/ 7

All the other coefficients have the form

e+ gt fl;ﬂ(e , A) .

By, 3) =

Afe,3) = e84 (e,2), n2=2,
B,,{s,&)=e4B~,,(s,l), n=2,n+%246.

On the other hand,

1 4
a0, 2) = @+¢ﬂﬁaddcg—(gﬂ-rﬁbﬂﬂ)%

+ 263 (24 £2) [ay(e) cg + Dy(e) 5]
68 (24¢%) (44 ) ay(e) ¢
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9
+ (2+6%) (44 6% (E &+ g bq(s)) 8y

+ 8 @+e) S [@+e)n — (443 )] (a,(e) ¢, + b(e) s,) .
n=5

The conditions for the coefficients ay(e), a(e), b,(¢) are contained in
(14). A comparison leads to a system of equations for the Fourier coefficients

of A(®;r). The three “special” equations are

180 183 36 2
—by(e) = 19 — 7 bale) + \/—,754(8) + & Byle, ),

i

(8+62+2%) by(e) = T—?bzfs) —e(6+6) + 33’4(5: ),

1324 2
(16414 2+ 3 &%) by(e) = ﬁj\/—“—’—'? + e Byle, ).

The remaining equations are
(248 agfe) = edyle, 2),
(2+&) [(2+6)n — (4+3e)]a,e) = e A, (e,4), n =3,

(2+e) [(2+e?)m — (4+36%)]b,(e) = e¢B,(e,4), n=8, n+£4,6.

For & = 0 we obtain

ay(e) = asle) = ... = 0,
by(e) = byle) = by(e) = bgle) = ... = 0,
and
“5(0) = G5 = o b0) + =by0),
36

80,0) = = ba(0),

16 by(0) = B

or
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1765 36 180
7 bal0) = =Dy(0) =

—3650 8b,(0) = 0
_’\/_72()+ 4(0) =

and by(0) = 331/ (84 V'7), so that

90 405 331
B0) = 350 B0 = =, B0) = ——=.

In view of the estimates (8), (15) and the solvability for ¢ = 0 it can be
shown that our system of equations has, for all small non-negative values
of ¢, in fact a solution A'*(#;r) of the form (13) whose derivative has
a uniformly bounded norm:

e 4 . [90 9 :I .
(!9,?’)=E‘\/—r?82+8 4982-1-784 + O(&%) .
Let us summarize: We have seen that equations (10) have three distinet
solutions for values of » =1 close to » = 1

@) = 0,
4 S
AN@ s r) = ——=Vr2—1sin 20 + 0@2-1),
(& ;7) T 7 sin 28 + O(r )

\%ﬂ/?:?—_lsin 28 + O(r*—1).
Each generates a solution of Plateau’s problem for the Jordan curve I, .
A% = 0 leads us back to Enneper’s surface S©(r) with the position
vector %o ,# ;7). But in addition to Enneper’s surface two new surfaces
SH(r) and S')(r) appear. In view of (3) the position vectors of these
surfaces are, respectively,

A9 ;)

0’ ey — Qscsl

2
¥, 95r) = Ve, ;) +\/_E\/T2_l [ — %8 — 0% 85 ¢ + O(r*—1).

— 2 + 2p%¢,

We know that Enneper’s surface is not stable for » > 1. The surfaces
S™(r) and S7(r) will be the two surfaces of least area bounded by I .
(It is the special symmetry of I which gives rise to fwo distinet, but
congruent surfaces of least area.) While the point « = v = 0 is mapped
by 1 into the origin of 3-space for all values of r, its image under the

mapping by the vectors t'*) and "), roughly the point
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(0,0,_\—%\@?1) or (0,0,%\@-1),

moves along the z-axis, down or up, as r increases. In this way the surfaces
S8 and S arrange to decrease the surface area of S .
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