
ARTICLE

Non-universal transmission phase behaviour of a
large quantum dot
Hermann Edlbauer1, Shintaro Takada1,2, Grégoire Roussely1, Michihisa Yamamoto3,4, Seigo Tarucha3,4,

Arne Ludwig5, Andreas D. Wieck5, Tristan Meunier1 & Christopher Bäuerle 1

The electron wave function experiences a phase modification at coherent transmission

through a quantum dot. This transmission phase undergoes a characteristic shift of π when

scanning through a Coulomb blockade resonance. Between successive resonances either a

transmission phase lapse of π or a phase plateau is theoretically expected to occur depending

on the parity of quantum dot states. Despite considerable experimental effort, this

transmission phase behaviour has remained elusive for a large quantum dot. Here we report

on transmission phase measurements across such a large quantum dot hosting hundreds of

electrons. Scanning the transmission phase along 14 successive resonances with an original

two-path interferometer, we observe both phase lapses and plateaus. We demonstrate that

quantum dot deformation alters the sequence of phase lapses and plateaus via parity

modifications of the involved quantum dot states. Our findings set a milestone towards an

comprehensive understanding of the transmission phase of quantum dots.
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The phase of the electron wave function lies at the heart of
coherent transport phenomena such as universal con-
ductance fluctuations or weak localisation1–3. One way of

accessing this quantity employs a quantum interferometer.
Interesting phenomena arise when a quantum dot (QD) is
inserted into one branch of such an interferometer. Then a
Coulomb blockade is present and the wave function of an elec-
tron experiences a phase modification at resonant transfer
through the QD. As one scans through a Coulomb blockade peak,
this transmission phase gradually changes. The magnitude of this
phase shift strongly depends on the coupling of the QD to the
leads in the interferometer branch. In the strong coupling regime,
the transmission phase shift is determined by the electron occu-
pancy of the highest occupied energy level. When this level only
hosts a single electron, its spin plays a predominant role. Below a
certain temperature threshold, in this case the electron forms a
strongly correlated many body state—the Kondo ground state—,
which leads respectively to a π/2 phase shift across two con-
secutive resonances4,5. For weak coupling, on the other hand, a
phase shift of π is theoretically expected to occur along a Cou-
lomb blockade peak and has been measured for the first time in
19976. The course of this shift can be understood by Friedel’s sum
rule and follows a Breit–Wigner profile7.

A puzzling situation arises when scanning through several con-
secutive resonances. In this case, the transmission phase behaviour
in between the resonances in principle depends on the spatial
symmetries of the QD states8,9: If the involved orbitals have the
same parity, a sudden phase lapse of π appears in the valley between
two consecutive resonances. When the orbital parity is changing, on
the other hand, such a lapse is absent giving rise to a phase plateau.
Pioneering experiments have investigated the transmission phase
across a large QD hosting about 200 electrons6. Surprisingly, for
this situation only phase lapses of π have been found in between
each of the investigated resonances. Since the measured series of
phase lapses were robust against changes in various QD properties,
the behaviour was termed universal. A different behaviour was
observed in smaller QDs hosting only a few electrons10. With an
electron number below 10, the occurrence of phase lapses in
between the resonances was found to depend on the QD properties.
Above 14 electrons in the QD, however, only phase lapses were
observed giving support for a universal transmission phase beha-
viour10. Several theoretical models are devoted to explain the
occurrence of phase lapses in a universal regime proposing a
mechanism to make the appearance of a lapse more likely for a
larger QD11–21. Despite these theoretical efforts, there is at present
no satisfactory explanation for the complete absence of phase pla-
teaus and the question about a universal transmission phase
behaviour remains as one of the longest standing puzzles of
mesoscopic physics. Transmission phase measurements are rare
due to their experimental difficulty. Only a few groups have suc-
ceeded in performing such measurements6,10,22,23 and, therefore,
not much data are available to be confronted with theory.

Here we employ a recently developed Mach–Zehnder type
electron interferometer24,25 to address this long standing problem
about a universal transmission phase behaviour experimentally.
The main advantage of this original design is the suppression of
electrons encircling the interferometer structure. It avoids multi-
path contributions to the phase measurement and ensures reliable
two-path interference. Taking this new path of electron inter-
ferometry, we investigate the transmission phase of a large QD
having similar dimensions as in ref. 6. Our measurements clearly
show a non-universal transmission phase behaviour, where the
absence of phase lapses is possible. Additionally, we find char-
acteristic features of a parity-dependent transmission phase
behaviour and demonstrate that the sequence of phase lapses and
plateaus can be modified by QD deformation.

Results
Measurement principle. The transmission phase measurement is
based on Mach–Zehnder interferometry. Exploiting the
Aharonov–Bohm (AB) effect, we measure an electronic inter-
ference pattern that is used to deduce the transmission phase of
the QD. Different from the electronic Mach–Zehnder inter-
ferometer using edge states in the quantum Hall regime26–28, it is
operated at low magnetic fields. A scheme of the electron two-
path interferometer is shown in Fig. 1. It is an effective three
terminal device realized in an AB ring, which is sandwiched
between two tunnel-coupled wires: the tunnel barrier at the
injection side serves as a beam splitter guiding injected electrons
into the two branches of the interferometer. A QD embedded in
the lower branch of the AB ring modifies the phase of the electron
wave passing through. At the detection side, a second tunnel-
coupled wire guides the interfering electron waves—from the
upper and lower interferometer branch—towards a pair of
terminals where the currents, I↑ and I↓, are measured.

Changing the magnetic flux density, B, of a magnetic field
perpendicular to the two-dimensional electron gas (2DEG), we
observe AB oscillations in I↑ and I↓. By tuning the tunnel barriers
via the voltages, VTL and VTR, we obtain anti-phase AB
oscillations. These anti-phase AB oscillations in I↑ and I↓ are the
characteristic feature to ensure reliable two-path interference as
shown by analytical quantum mechanical calculations, computer
simulations and experimental investigations24,25,29,30. The con-
ductance though the QD is controlled by the so-called plunger
gate, P, that is embedded in the QD structure. This electrode
affects the electrostatic potential of the QD and is used to bring a
QD state in resonance with the leads. Figure 2a shows a Coulomb
blockade peak—the electrical conductance through the QD as the
plunger gate voltage, VP, is swept along a resonance. For five
positions along the resonance, the corresponding
anti-phase AB oscillations in I↑ and I↓ are shown in Fig. 2b. The
magnitude of the oscillations is linked with coherent transmission
through the QD and, hence, is stronger at the centre of resonance.
As VP is swept along the resonance, the anti-phase AB oscillations
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Fig. 1 Scheme of the electron two-path interferometer. Shown is a detailed
3D view on the Schottky gates (golden) defining the conductive paths
(red, dotted lines) and the interferometer structure in the two-dimensional
electron gas (2DEG) located 110 nm below the surface. The ohmic contacts
establishing electrical connection to the 2DEG are schematically indicated
via the grey crossed boxes in the terminals of the interferometer. The inset
at the upper right depicts the principle of Mach–Zehnder interferometry—
the photonic counterpart of our electron interferometer
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experience a phase shift (see arrows in Fig. 2b), which directly
reflects the transmission phase of the QD.

Properties of the quantum dot. The QD structure is defined via
voltages on six Schottky gates: transversal to the transmission
direction the QD is confined by the central electrode (C) and
two opposing gates (DL and DR). C depletes the 2DEG below
a central island to form the AB ring. The longitudinal QD
confinement and the coupling to the conductive channels of the
interferometer branch are defined by two narrow gates (CL and
CR). The lithographic dimensions of the QD are approximately
0.5 μm in transverse direction and 0.6 μm in longitudinal direc-
tion. A scanning electron micrograph of the sample is shown in
the methods section. From the electron density in the 2DEG and
the size of the QD, we estimate that the QD contains about 300
electrons.

Let us now introduce further properties of the investigated QD
on the basis of a Coulomb diamond measurement. The presence
of the QD causes Coulomb blockade of electron transport in the
lower interferometer branch allowing characterisation of the QD.
By increasing the tunnel barriers via the voltages VTL and VTR,
electrons are steered only into the lower branch. Using lock-in
detection, we then measure the transconductance, dI↓/dVSD, and
change the plunger gate voltage, VP, and the DC component
of the source-drain voltage, VSD, to obtain the Coulomb
diamonds. Figure 3 shows transconductance data along 14

resonances (for conductance peaks see Supplementary Fig. 1).
We estimate the charging energy, EC, determined by the Coulomb
diamond height, as about 240 μeV31. From the width of
the Coulomb diamonds—the spacing of the resonances—,
VC≈ 26 mV, we calculate the voltage to energy conversion
factor as η= EC ⋅V�1

C ≈ 0.01 e. Approximating the resonances
with a Lorentzian function, we obtain the coupling energy,
Γ � η � ΔVFWHM½V� � 30 � 60 μeV, from the full width at half
maximum, ΔVFWHM. The energy spacing of the excited states, δ,
is hardly resolvable in the measured transconductance data. From
the structures appearing at the resonances A11–A14, however, we
estimate the level spacing as δ≈ 60 μeV. Taking into account the
gate geometry and the depth of the 2DEG, we can estimate the
effective QD area as A≈ 0.3 μm× 0.4 μm. With this information,
we can alternatively estimate δ from the minimum level spacing
of a two-dimensional particle in a box problem32. We derive δ
≳ �h2 � π2=ð2 �m � AÞ � 50 μeV, where ħ is the reduced Planck
constant and m is the effective electron mass in a GaAs crystal.
The two estimates of δ are consistent and δ≈ Γ implies electron
transport at the crossover from the single-level (δ> Γ) to the
multi-level (δ< Γ) regime. For the investigated magnetic field
range, the Zeeman energy is smaller than temperature fluctuation.
We do not observe any enhancement of the valley conductance
when lowering the temperature. Hence, we assume that the
Kondo temperature is lower then the electron temperature.

Transmission phase measurements. To check the universality of
transmission phase lapses in a large QD, it is necessary to
investigate a set of resonances that is as large as possible. When
sweeping the plunger gate over a large voltage range, however,
crosstalk between the different electrostatic QD gates affects the
visibility of the AB oscillations and renders the measurement
more difficult. To overcome this problem, we split the total
sequence of Coulomb blockade peaks into several measurements.
For each, we carefully fine-tune the voltages on the electrodes
defining our interferometer and QD structure to obtain maximal
visibility of the anti-phase AB oscillations along the scanned
resonances. In order to construct the transmission phase along
the investigated resonances, the data sets have to overlap with at
least one resonance.

Following this approach, we obtain the transmission phase along
14 resonances as shown in Fig. 4. Characteristic phase shifts of π (red
data points) are apparent along all of the investigated resonances
labelled as A1–A14 at the corresponding peaks of conductance, G.
Most importantly, however, the data show a significant signature of
non-universal transmission phase behaviour: among the investigated
14 resonances, three times a phase lapse is absent. This leads to clear
phase plateaus after the resonances A4, A10 and A13 (see black
arrows in Fig. 4), where the transmission phase cumulates the
characteristic shift of π. In between those plateaus, nonetheless, we
also observe long sequences of phase lapses as in previous
experimental investigations6.

Parity-dependent occurrence of phase lapses. Theoretically, the
occurrence of phase plateaus is linked to a parity change of the QD
states8,9. For a simple one-dimensional problem, the parity should
change when going from one orbital state to the next one. For a
large QD, which has to be regarded as a two-dimensional system
the situation is more complicated. In this case, the parity is defined
by the coupling of the QD state to the two leads. One usually
defines the quantity Dn ¼ γLn � γRn � γLnþ1 � γRnþ1, where γL=Rn is
respectively the effective coupling at the left and right connection
(L/R) of the nth QD state8,9,17,19. If two successive QD states, n and
n + 1, have the same parity, this quantity is positive and a singu-
larity point called transmission zero occurs that causes a phase lapse
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Fig. 2 Anti-phase AB oscillations along a Coulomb blockade peak.
a Electrical conductance, G, as the plunger gate voltage, VP, is swept along
the resonance. b Excerpts of the currents, I↑ (solid line) and I↓ (dashed line),
as a function of the magnetic flux density, B, for five positions of VP along
the resonance. The VP positions of the current traces are indicated via
correspondingly coloured data points in a. The arrows indicate the shift of
the AB oscillations. For clarity, a continuous background is subtracted and
an offset is added
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in between the resonances. This leads to a suppression of the AB
oscillation in the conductance valleys. When the parity of two
successive QD states changes, on the other hand, the magnitude of
the AB oscillation in the conductance valley is enhanced.

This characteristic feature of enhanced AB oscillation in
conductance valleys without transmission zero is clearly apparent
in our experimental data. In congruency with a parity-dependent
transmission phase behaviour, we find augmented magnitude of
AB oscillation, M, in between resonances where a phase plateau
occurs (see red arrows in Fig. 4). The enhancement of the AB
oscillation is strongly pronounced after the resonances A4 and
A10. Our observation of this theoretically expected signature
shows that transmission phase measurements indeed can be used
to access the sign of the wave functions for the QD states at the
connections to the leads.

Asymmetry in coherent transmission. Another interesting fea-
ture that we find in the present data is the asymmetry of the AB
oscillation magnitude,M, with respect to conductance peaks. This
asymmetry around a resonance could indicate spin-flip scattering
processes33–36. By comparing M with respect to the conductance
peaks, G, in principle the presence of an empty or partially
occupied spin-degenerate level could be deduced37,38. If the
region of reduced AB oscillation magnitude is located at the
positive side of the conductance peak regarding plunger gate
voltage, VP, a partially occupied spin-degenerate level is present.
Vice versa is the situation for an empty spin-degenerate level.
Such a feature is particularly strong at resonances where phase
plateaus occur. Asymmetric peaks in M are also apparent at
several other resonances. Nonetheless, we find no systematic
correspondence to the occurrence of phase plateaus. Other effects
such as the Fano effect23,39,40 or the aforementioned transmission
zero can also lead to an asymmetric AB oscillation magnitude
around the resonances. The asymmetries of AB oscillation peaks
and the sequence of phase plateaus point out the complexity of
the internal structure of the present large QD. A detailed char-
acterisation of the spin-state sequence for the present data is out
of reach. From the occurrence of phase plateaus, however, we can
clearly observe changes in orbital parity.

Modifying the quantum dot shape. According to a parity-
dependent transmission phase behaviour8,9, one expects mod-
ifications of the phase lapse sequence as QD states change. If, for
instance, the QD shape is distorted such that the QD states and,
thus, the sequence of orbital parities changes, one should observe
a modified sequence of phase lapses and plateaus. With the
present experimental setup, we can readily investigate this
assertion. We deform the QD by changing the balance of the
voltages VDL, VDR and VP. As a starting point for the discussion,
we consider a reference QD configuration with VDL=VDR= −
0.92 V. A set of transmission phase shifts measured along five
consecutive resonances is shown in Fig. 5a. For this reference
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configuration, a phase plateau occurs after Coulomb blockade
peak B2. We modify the QD shape by changing the voltages, VDL

and VDR, to −1.08 V. At the same time, we adjust the voltage VP

to keep the electron number constant. Comparing the transmis-
sion phase measurements along the same set of resonances for the
two situations—compare Fig. 5a, b—we find significant changes:
We observe an alternation of the phase lapse sequence as the QD
shape is modified. After deformation of the QD, the phase plateau
now occurs after resonance B3 instead of B2. The deformation
causes indeed a change in the sequence of orbital parities what is
directly reflected in the observed course of the transmission
phase. According to the altered position of the phase plateau
augmented AB oscillation, magnitude, M, appears now in the
conductance valley between B3 and B4. This change clearly shows
the correlation between those two theoretically expected features
and indicates a parity change of the QD state that is moved
through the bias window at resonance B3.

Discussion
Several theories have been striving to explain the experimentally
claimed universal occurrence of transmission phase lapses11–21.
Nonetheless, a satisfactory explanation for such a universal
behaviour could not be found. Only for the case where the cou-
pling energy of the QD, Γ, is larger than the level spacing of the
excited states, δ, a universal transmission phase behaviour has
been theoretically predicted17. In experiment, however, such a
regime is difficult to achieve. So far, all experimental works,
including ours, have been done in a regime where Γ � δ or Γ< δ.
For these conditions, which are typically encountered in experi-
ment, another set of theory predicts that longer sequences of
phase lapses appear for larger QDs, while the probability of
finding a phase plateau remains finite19,21.

In line with previous experimental investigations of a QD
having similar dimensions, we find long sequences of phase
lapses6. Scanning the transmission phase along a larger set of
successive resonances, however, we also observe the absence of
phase lapses giving rise to phase plateaus. This finding is in

qualitative agreement with the theoretically expected finite
probability for phase plateaus of large QDs21 and clearly shows
that the occurrence of phase lapses is not a universal feature as
previously claimed. The non-universal transmission phase beha-
viour is underpinned by the demonstration of altered sequences
of phase lapses by QD deformation. The observed tendency of
augmented transmission at phase plateaus gives additional sup-
port for phase lapse occurrence depending on the parity of the
involved QD states8,9.

In conclusion, our investigations firmly establish that even for
the case of a QD containing a few 100 electrons the absence of
phase lapses is possible. Our findings show the capability of
transmission phase measurements to reveal the microscopic
nature of a physical system, such as the orbital parity. We
anticipate that the present interferometry experiment opens a
path for further studies on other fundamental topics, such as
correlated electron systems41–43.
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Methods
Experimental setup. Our device is realised with a standard Schottky gate technique
in an AlGaAs/GaAs heterostructure hosting a 2DEG with a density, n≈ 3.2 ⋅ 1011 cm
−2, and a mobility, μ≈ 106 cm2 V−1 s−1, that is located 110 nm below the surface. The
structure of the electron two-path interferometer is formed by Schottky gates, which
are realized by electron-beam lithography. A scanning electron microscopy (SEM)
image of those electrodes deposited on the surface of the chip is shown in Fig. 6.
Applying a set of negative voltages on the electrodes, we locally suppress the 2DEG
below and define the conductive paths and the interferometer structure. Electrical
connection to the 2DEG is established via ohmic contacts. The AB ring is defined by
the central electrode, C, which is connected via a metal bridge over the upper
interferometer branch. This electrode allows independent control of the tunnel bar-
riers (TL and TR). The metal bridge is fabricated by two additional electron-beam
lithography steps: First a pad of SU-8 photo-resist is deposited. This pad prohibits
electrical connection of the metal bridge, which is deposited in the second step. The
experiments are performed at a temperature of about 30mK using a 3He/4He dilution
refrigerator. To increase the signal-to-noise-ratio, a standard lock-in measurement is
performed with a modulation frequency of 23.3 Hz and an amplitude of 20 μV. The
output currents, I↑ and I↓, are obtained from the voltages, V↑ and V↓, across a
resistance of 10 kΩ that is placed on the chip carrier.

Data analysis. The transmission phase measurement is performed by sweeping the
magnetic flux density, B, and stepping the voltage on the plunger gate, VP. An
exemplary set of raw data along a resonance is shown in Fig. 7a. Shown is the
difference of the currents, I↑ and I↓, measured at the two terminals at the detection
side. From the periodicity of the AB oscillation, ΔB= h ⋅ e−1 ⋅ A−1≈ 4.5 mT, we can
deduce the effective area of the AB ring as A≈ 2.14 μm× 0.43 μm, which is con-
sistent with the lithographically defined geometry of the Schottky gates. The AB
oscillations experience a shift as VP is scanned along a resonance. This shift directly
reflects the course of the transmission phase as a QD state moves through the
resonance.

To obtain the transmission phase data, we perform a Fourier transform with
respect to B. The measured current signals, I↑ and I↓, contain a continuous
background. To force the inflexion points of the AB oscillations to zero, we smooth
the data and calculate the second derivative. This procedure is comparable to the
subtraction of a continuous background and leads to similar results. By forcing the
inflexion points to zero, however, the quality of the Fourier transform is strongly
enhanced. Therefore, this approach facilitates the detection of the AB periodicity.
Figure 7b shows the magnitude of the Fourier transformed data, M ¼ f"

�� ��þ f#
�� ��.

The data clearly show a peak (see arrow) corresponding to the AB periodicity, ΔB.
For the further analysis, we only process a slice of the data at B=ΔB, which reflects
the AB oscillation:

f AB"=#ðVPÞ ¼ F B
∂2I"=#ðB;VPÞ

∂B2

� �
jB�1¼ΔB�1 : ð1Þ

In order to perform a reliable phase measurement, two criteria have to be met.
The first quality criterion ensures sufficient coherent transmission through the QD
and, thus, a sufficient signal-to-noise ratio of the AB oscillations. The second
quality criterion assesses the anti-phase relation of the AB oscillations in I↑ and I↓,
which assures that multi-path contributions are eliminated24,25,29,30.

The coherent transmission criterion is implemented via a threshold for the
magnitude of AB oscillation, M. Figure 7c shows a comparison of a slice of the
Fourier transformed data at the AB peak (blue data points) with the electrical
conductance through the QD, G (black line). Here G is separately measured by
guiding the electrons only through the interferometer branch hosting the QD. G
shows the Coulomb blockade peak reflecting the total transmission probability
through the QD. The slice of M on the other hand is based on the AB effect—a
phase coherent quantum interference phenomena. Therefore, M merely describes
the coherent transmission probability and serves as adequate quantity for the
assessment criterion. In order to ensure sufficient visibility of the AB oscillations,
we set a coherent transmission criterion such that only data points above a
threshold ofM> 0.5 (blue, dashed line) are kept. By this approach, only data points
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Fig. 7 Exemplary set of raw data with analysis. a Difference of currents, I↑ − I↓, as a function of magnetic flux density, B, and the plunger gate voltage, VP. b
Magnitude of AB oscillation, M, obtained by Fourier analysis with respect to B. The arrow indicates the periodicity of the AB oscillation, ΔB. c Slice of M at
ΔB (left axis; blue points) and electrical conductance through the quantum dot (right axis; black line) as a function of VP. d Difference of the AB phases, ϕ↑

− ϕ↓. e Transmission phase, ϕ, (red points) as a function of VP. The dashed line indicates the evolution expected from a Breit–Wigner profile based on a
Lorentzian fit of G see data (c). Data points not fulfilling our quality criteria are shown as open, grey symbols
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with a distinctive AB peak in the Fourier transform are kept. AB oscillations with a
small signal-to-noise ratio, however, are discarded.

The anti-phase criterion assesses the phase difference of the AB oscillations in
the currents, I↑ and I↓. This AB phase can be directly calculated from the argument
of the projected Fourier transform:

ϕ"=# VPð Þ ¼ arg f AB"=# VPð Þ
� �

: ð2Þ

Figure 7d shows the phase difference of the AB oscillations in the two terminals for
the exemplary data set. The quality criterion is set such that only data points are
accepted, where the deviation from the anti-phase relation is below the threshold:

jj ϕ" � ϕ#j � πj< π � 15%: ð3Þ

Finally, the transmission phase, ϕ, is extracted only for VP values where the data
fulfil the two quality criteria (filled symbols) by evaluating the expression:

ϕ ¼ arg f AB" � f AB#
� �

: ð4Þ
The corresponding values of the exemplary data set are shown in Fig. 7e. The

red, filled triangles show data points fulfilling our quality criteria. Fitting the
conductance, G, shown in Fig. 7c with a Lorentzian function, we can construct the
expected course of ϕ from Breit–Wigner resonance theory (dashed line). The data
points fulfilling our quality criteria agree with the expected course, whereas the
discarded data points (open triangles) strongly deviate.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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