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EPL, 111 (2015) 24002

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-

formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but

not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, innovative Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary 

research to astrophysics, geophysics, plasma and fusion sciences, including those 

with application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles ensures that EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work  

with others across the whole of the physics community.

Run by active scientists, for scientists 

EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community. The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 105  Number 1 

January  2014

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 103  Number 1 

July 2013

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 104  Number 1 

October 2013

ISSN 0295-5075 www.epl journal.org

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 50+ Co-editors, who are experts in their field, oversee the 

entire peer-review process, from selection of the referees to making all 

final acceptance decisions.

Convenience – Easy to access compilations of recent articles in specific 

narrow fields available on the website.

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from submission to online publication is under  

100 days.

High visibility – Strong promotion and visibility through material available 

at over 300 events annually, distributed via e-mail, and targeted mailshot 

newsletters.

International reach – Over 2600 institutions have access to EPL,  

enabling your work to be read by your peers in 90 countries.

Open access – Articles are offered open access for a one-off author 

payment; green open access on all others with a 12-month embargo.

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to gain recognition for your research through worldwide 

visibility and high citations. As an EPL author, you will benefit from:560,000
full text downloads in 2013

OVER

24 DAYS

10,755

average accept to online 

publication in 2013

citations in 2013

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We greatly appreciate 

the efficient, professional 

and rapid processing of 

our paper by your team.”

Cong Lin

Shanghai University



July 2015

EPL, 111 (2015) 24002 www.epljournal.org

doi: 10.1209/0295-5075/111/24002

Non-universal Voronoi cell shapes in amorphous ellipsoid packs

Fabian M. Schaller1,2(a), Sebastian C. Kapfer1,3, James E. Hilton5, Paul W. Cleary5, Klaus Mecke1,

Cristiano De Michele6, Tanja Schilling7, Mohammad Saadatfar4, Matthias Schröter2,
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PACS 45.70.-n – Classical mechanics of discrete systems: Granular systems
PACS 61.43.-j – Disordered solids

Abstract – In particulate systems with short-range interactions, such as granular matter or simple
fluids, local structure determines the macroscopic physical properties. We analyse local structure
metrics derived from the Voronoi diagram of oblate ellipsoids, for various aspect ratios α and global
packing fractions φg. We focus on jammed static configurations of frictional ellipsoids, obtained
by tomographic imaging and by discrete element method simulations. The rescaled distribution
of local packing fractions φl, defined as the ratio of particle volume and its Voronoi cell volume, is
found to be independent of the particle aspect ratio, and coincide with results for sphere packs.
By contrast, the typical Voronoi cell shape, quantified by the Minkowski tensor anisotropy index
β = β

2,0
0 , points towards a difference between random packings of spheres and those of oblate

ellipsoids. While the average cell shape β of all cells with a given value of φl is similar in dense
and loose jammed sphere packings, the structure of dense and loose ellipsoid packings differs
substantially such that this does not hold true.

Copyright c© EPLA, 2015

The universality of many features of disordered packings
of spherical beads, with respect to preparation protocols
and system parameters, is manifest in various properties,
such as the universal value of the random close packing
limit [1] and the universal distributions for contact num-
bers [2], free volumes [3,4] and Voronoi cell shape mea-
sures [3,5]. While ellipsoidal particles [6–14] and other
aspherical particles [13–30] are receiving increasing atten-
tion, these questions of universality, including the inde-
pendence of system parameters and preparation protocols,
have not been comprehensively addressed yet. A qual-
itative difference between ellipsoid and sphere packings
is revealed by the analysis of the Voronoi diagram of el-
lipsoid packings from various experimental and simulated
origins.

(a)E-mail: fabian.schaller@physik.uni-erlangen.de
(b)E-mail: gary.delaney@csiro.au
(c)E-mail: g.schroeder-turk@murdoch.edu.au

Preparation protocols. – The experimental datasets
(symbol �) comprise packings prepared by different proto-
cols (fluidised beds, different funnels, grids, pouring par-
ticles, etc.) and compaction by vertical tapping. The
ellipsoids have half-axes a : c : c with a ≤ c and the
aspect ratio is defined as α = a/c. These datasets are
the same as those used in ref. [31], comprising in total 73
datasets of jammed oblate ellipsoids of 5 different aspect
ratios α and two different particle types (3D printed par-
ticles with α = 0.4, 0.6, 0.8, 1.0 and considerable surface
roughness; and sugar-coated pharmaceutical placebo pills
with α = 0.59 and lower friction coefficient µ, see table 1
and ref. [31]); the larger half-axis is c = 3mm (smallest
particles) to 4mm (largest particles). The standard devi-
ation of the particle volumes is 2–3%. The packings were
imaged by X-ray tomography; image processing [32] was
used to extract particle coordinates and orientations. The
packings consisted of ≈5000 particles, of which 600–900
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Table 1: Particle and packing properties.

Data set Jammed Gravity Friction (µ) Particles
� Exp. yes yes 0.38–0.75 ≈ 5000
� DEM yes yes no 9323
� DEM yes yes 0.01–1 9323
� DEM yes yes 1000 9323
◦ MD no no no 512
• MC no no no 512
�� ET yes no no 1025

were sufficiently far from cylinder walls to be included in
the analysis; for the sake of spatial homogeneity, packings
where radial variations of the packing fraction about the
mean exceed 0.66% were discarded (as in ref. [31]). Data
is available online [33].

We compare our experimental packings to 120 con-
figurations obtained from discrete element simulations
(DEM, [10]), of ellipsoids sedimenting into a square box
in a viscous fluid under the action of gravity. Packings
generated with a very high friction coefficient and viscos-
ity constitute our estimate of the loosest possible packing
(�, sedimented loose packing, SLP, see discussion in [10]).
Lower values of the friction coefficient and viscosity lead
to denser packings (�). Frictionless particles lead to the
highest packing fraction φg and give our estimate of the
random close packing (RCP, �). The RCP estimate of
the sedimented data is consistent with configurations ob-
tained via a particle expansion method (ET, ��) [15] and
with earlier estimates of densest observed packings [6].

Reference data for equilibrium configurations of hard-
core ellipsoids without gravity in the isotropic fluid phase
(fig. 3) was obtained by event-driven molecular-dynamics
simulations [34] (◦, MD, the same data sets as in ref. [35])
and by canonical Monte Carlo simulations (•, MC, [36]).

Local structure metrics from the Set Voronoi
diagram. – In the following, we adopt a local view, con-
sidering a particle and its immediate surroundings. We
provide detailed data on the local geometry of packings,
relevant for testing theoretical models such as the gra-
nocentric model [37] or other mean-field approaches [38].
For aspherical particles, the Set Voronoi diagram [39], also
known as navigation map [40,41], provides a natural par-
tition of space into N cells, each containing one of the N
particles. The Voronoi cell of particle i is the compact set
of points closer to particle i than to any other particle.
The distance from a point in space to a particle is mea-
sured as the Euclidean distance to the nearest point on
the bounding surface of the particle. This is in contrast
to the conventional Voronoi diagram where the distance
is measured with respect to the particle centre. Facets of
the Set Voronoi diagram are in general curved and cells
are non-convex, see fig. 1. For monodisperse spheres, the
Set Voronoi diagram, henceforth simply referred to as the

a) b) c)

Fig. 1: (Color online) The Set Voronoi cells of ellipsoidal
particles are, in general, non-convex with curved facets and
edges. (a) Subset of an ellipsoid packing with Set Voronoi cells.
(b) Single particle in its cell. (c) Principal axes (eigenvectors
of W

2,0
0 ) of the cell.

“Voronoi diagram”, reduces to the conventional Voronoi
diagram.

The local packing fraction of particle i is defined as
(φl)i = νe/νi, where νe = 4πac2/3 is the volume of the
particle and νi the volume of the Voronoi cell Ki contain-
ing particle i. We characterise the shape of the Voronoi
cell Ki by its volume moment tensor W 2,0

0 =
∫

Ki

x⊗xdv,
where x is the position vector relative to the center of
mass ci of K. Similar to the tensor of inertia, this ten-
sor captures the distribution of mass; the notation W 2,0

0

derives from the theory of Minkowski tensors and integral
geometry [42,43]. The three eigenvalues of this tensor are
µmin

i ≤ µmid
i ≤ µmax

i . The ratio of minimal to maximal
eigenvalue βi = µmin

i /µmax
i ∈ (0, 1] is an indicator of the

shape anisotropy of the Voronoi cell K of particle i. Small
values of βi indicate elongated (anisotropic) cells. Note
the difference to measures of asphericity [3] that quantify
deviations from a spherical shape; the measure βi is 1 (and
K said to be isotropic) for any shape that has statistically
identical mass distribution in any set of three orthogonal
directions; this includes the sphere, but also regular poly-
hedra and the FCC, BCC and HCP Voronoi cells [44].

Probability distribution of Voronoi cell volumes.
– The distribution of the Voronoi cell volumes of sphere
packs has been studied in the context of granular mate-
rials [4,31,37,38], super-cooled liquids [3], and also with
respect to granular entropy and the Edwards ensem-
ble [45–53]. Aste et al. [4] have shown that in random
jammed sphere packings below the RCP limit, the dis-
tribution of Voronoi volumes is universal and indepen-
dent of the preparation protocol. Starr et al. [3] have
obtained a similar result for super-cooled liquids. In both
cases, the distributions of Voronoi cell volumes collapse
when plotted as a function of (ν − 〈ν〉)/σ, where σ is the
standard deviation of the distribution P (ν) and 〈ν〉 its
average. Aste et al. [4] proposed a derivation for a scal-
ing P ((ν − νmin)/(〈ν〉 − νmin)), where νmin is the small-
est possible Voronoi cell of equal-sized spheres and 〈ν〉 =
∑N

i=1 νi/N the average over all Voronoi cells.

Figure 2 demonstrates that this universality is not re-
stricted to sphere packings, but holds more generally for
jammed ellipsoid packings: To the resolution of our data,
the functional form of the distribution depends neither on
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Fig. 2: (Color online) Collapse of the standard deviations of the
local packing fraction distributions supports the universality of
the probability distribution of the local packing fractions. The
inset shows the probability distributions, comprising data sets
between SLP and RCP with different aspect ratios 0.3 ≤ α ≤
1.0 and friction coefficients 0 ≤ µ ≤ 1000.

the global packing fraction φg nor on the particle aspect
ratio α. The probability for a Voronoi cell in a jammed
configuration with global packing fraction φg to have lo-
cal packing fraction φl is written as P (φl | φg). When
plotted as σP (φl | φg) vs. (φl − 〈φl〉)/σ, it is invariant for
all values of φg and α, see also ref. [31]. This plot shows
good agreement between the experimental packings and
jammed packings from simulations across the range of ac-
cessible packing fractions (those between SLP and RCP,
see fig. 3) and aspect ratios 0.3 ≤ α ≤ 1. By contrast,
data from equilibrium configurations does not rescale to
the same curve.

The shape and anisotropy of the typical Voronoi
cell (global averages). – Treating the Voronoi cell vol-
ume, or equivalently the local packing fraction φl, as the
leading term of a shape description of the Voronoi cells,
we now proceed to higher-order terms. While other scalar
quantities, such as surface area, integrated curvatures or
asphericities may contain signatures of such higher-order
terms, we here use the tensorial shape measure W 2,0

0 , sim-
ilar to the tensor of inertia, and its eigenvalue ratio β to
quantify the elongation of a cell.

Figure 3 shows the average Voronoi cell shape
anisotropy, quantified by 〈β〉 =

∑N

i=1 β(Ki)/N , as a func-
tion of global packing fraction φg. Data is for equilibrium
ellipsoid fluids, experiments and simulations of jammed
random ellipsoid packings and for two dense crystalline
configurations (the stretched fcc obtained by scaling the
x-coordinate of the fcc sphere packing, and the densest
known structures discussed by Donev et al. [7]).

For equilibrium fluids in the limit of vanishing density
φg → 0, where the typical distance between particles is
large compared to the particle size, the Voronoi cell shape
is independent of the particle shape. Consequently, the
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Fig. 3: (Color online) Average anisotropy 〈β〉 of the Set Voronoi
cells of the ellipsoids as a function of φg for equilibrium ellipsoid
configurations, static jammed ellipsoid and crystal packings.
Dashes on the right-hand vertical axis mark the anisotropies of
the particles themselves, i.e. β evaluated for a particle rather
than its Voronoi cell. The vertical black lines represent the
loosest (SLP) and densest (RCP) packings obtained by sedi-
mented DEM simulations.

shape anisotropy corresponds to the value β ≈ 0.37 of
the Poisson point process [54]. For denser equilibrium
fluids [35,36] the trend of the Voronoi shape anisotropy
〈β〉 can be understood by realising that the shape of the
Voronoi cells approaches that of the particle itself when
φg increases (see dashes on the right-hand vertical axis
in fig. 3, evaluated for an ellipsoidal particle itself, rather
than its Voronoi cell, the ratio is β = (a/c)2 = α2, see ap-
pendix of ref. [42]). For small α, the curve 〈β〉(φg) hence
decreases, while for larger α, 〈β〉(φg) increases with φg.

For the jammed packings, between SLP and RCP, our
results for spheres (α = 1) are in quantitative agreement
with previously published data [5], with the cells becom-
ing less elongated upon compaction, i.e. β increases with
increasing φg. For ellipsoids with smaller value of α, the
slope of β(φg) becomes smaller and eventually even adopts
slightly negative values for small α < 0.60. There is an
excellent agreement between the experimental packings
(�, with different preparation protocols) and the numer-
ical data points from DEM simulations (�, �, �). As
previously found [42], sphere configurations exhibit a gap
in shape anisotropy between the densest equilibrium con-
figuration and the loosest jammed states. For ellipsoids,
this discontinuity shrinks as the particle’s aspect ratio
decreases.

The shape and anisotropy of the typical Voronoi
cell of a given size (local analysis). – The global pack-
ing fraction φg represents a useful parameter, easily acces-
sible in experiments. However, there is no conceivable
mechanism by which a locally defined quantity, such as

24002-p3
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(a) Voronoi diagram with cells colored according to (φl)i

P
(φ

l)

φl
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1.0

2.0

3.0

4.0

(b) Cell volume distribution P (φl) = P (φl |φg)

φl0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Shape distributions P (β) = P (β|φl , α, X)

〈β
〉(

φ
l)
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0.2
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(d) Average shape parameter 〈β〉(φl)

Fig. 4: (Color online) Illustration of the concept of the
density-resolved local structure analysis, using an artificial two-
dimensional system rather than the three-dimensional data in
figs. 2, 3 and 5. Error bars in (d) represent the standard devi-
ation of the distributions in (c). Note the choice of a large bin
size (discretization) to help visual clarity; typical bin sizes for
quantitative analyses are smaller.

the Voronoi cell shape or the contact number, can de-
pend directly (i.e. by an immediate causal relation) on
φg; a particle cannot sense the global packing fraction.
That said, in packings with sufficient spatial homogeneity,
correlations between averages of the local shape metrics
and the global packing fraction are evidently possible, and
commonly observed. Specifically, the study of the average
contact number Z as a function of φg is a foundation of
the jamming paradigm [31,55].

Here, we use a local density-resolved analysis based on
the idea that the physical mechanisms underlying gran-
ular matter occur at the particle scale. This idea was
applied to contact numbers in ref. [31] and is applied here
to Voronoi cell shapes. Observed correlations between a
local structure metric and the local packing fraction φl are
hence more likely to yield physical insight than those with
the global average φg. A similar approach has been used
for the analysis of sphere packings [2,5].

Figure 4 illustrates the concept of the local density-
resolved analysis. Particles are grouped by their local
packing fraction (φl)i, i.e. into sets S(φl) composed of
all particles i with φl − ∆/2 ≤ (φl)i < φl + ∆/2 for
φl = ∆, 2∆, 3∆, . . . with a small interval ∆ (∆ = 0.1
in fig. 4, ∆ = 0.02 in fig. 5). We define the function
P (β | φl, α,X), which is the probability distribution of
the shape measures β, restricted to the cells in S(φl), i.e.
to those with local packing fraction φl. The unknown pa-
rameters X capture influences from the packing protocol,
friction, etc. As a result, the X may correlate with φg even
though there need not be a causal dependence of the X
on φg. The average 〈β〉(φl, α,X) =

∫
βP (β | φl, α,X) dβ

over all cells in S(φl) provides information on how local
structure changes depending on local packing fraction φl.
In general, 〈β〉 also depends on the aspect ratio α and the
unknown parameters X.

Figure 5 shows the result of this local structure analysis
of β of jammed ellipsoid configurations. The key result
is the following difference between sphere and ellipsoid
packings: in sphere packings, the average shape of the
Voronoi cells of a given local packing fraction φl is, as
far as it is captured by the anisotropy index β, almost
identical in dense and loose packings. This is evidenced
by the near-collapse of the curves 〈β〉(φl, α = 1, X) for
packings of different global packing fraction. 〈β〉 is a
function of φl only, but is largely independent of the un-
known parameters X, the packing protocol and the parti-
cle friction.

In ellipsoid packings, illustrated for α = 0.8 in fig. 5(a),
the curves for different φg do not collapse. The average
〈β〉(φl, α,X) depends on both α and X. This indicates
that packings with low and high φg exhibit differences in
their local structures controlled by α and X. Figure 5(b)
demonstrates the validity of this result for other aspect
ratios. Except for α = 1.0 (spheres) and α ≈ 0.6 (close
to the densest random ellipsoid packing), the local curves
〈β〉(φl) for the loosest and densest simulated packings do
not collapse, which is indicative of structural differences.

Discussion and conclusion. – We have analysed the
Voronoi diagram of oblate ellipsoid packings, establishing
which aspects of the Voronoi diagram are universal, i.e.
independent of preparation protocol and particle aspect
ratio α and further parameters X, and which ones are not.
Considering the geometric nature of this packing problem,
these results have ramifications for our understanding of
jammed systems and disordered solids.
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Fig. 5: (Color online) Relationship between local packing frac-
tion φl and the Voronoi cell anisotropy β. Each curve repre-
sents a fixed value of φg, and is averaged over three independent
realisations. (a) Local analysis for spheres (α = 1) and slightly
oblate ellipsoids (α = 0.8). Gray symbols represent experimen-
tal configurations, for all available values of φg between RLP
and RCP, and the red and blue curves show DEM simulations
of SLP and RCP configurations. The curves on the bottom
(using the right-hand abscissa) show the local packing fraction
distributions P (φl) for each of the four simulated data sets.
(b) Local Voronoi cell anisotropy 〈β〉(φl) for the DEM esti-
mates for SLP and RCP packings for a larger range of aspect
ratios.

The fact that ellipsoidal particles produce denser ran-
dom packings than spheres is well established, with quan-
titative agreement between different studies of the value
of the “random close packing” limit φRCP(α) as a func-
tion of the aspect ratio for oblate ellipsoids [6,10,15], see
the curve labelled RCP in fig. 3. However, while a mean-
field theory for φRCP(α) is developing [13], an intuitive
geometric understanding for φRCP(α) is lacking. In this
regard it is noteworthy that at α ≈ 0.65, the aspect ra-
tio for which φRCP(α) is highest [6,10,15], the Voronoi cell
shapes are found to be independent of the packing frac-
tion. As far as captured by β of the volume moment ten-
sor W 2,0

0 , the shapes remain approximately constant for
all jammed packings, both in the global (fig. 3) and in the
density-resolved analysis (see the cyan α = 0.6 curve in
fig. 5(b)).

The results of fig. 5 emphasise an important distinction
between random packings of spherical beads and those of
aspherical beads. The structure of spherical bead packs
is universal in the following sense: on average, the local
structure of the typical particle of a given fixed but ar-
bitrary local packing fraction φl is very similar in differ-
ently prepared packings, in particular with different φg.
This observation, here made with respect to the Voronoi
cell anisotropy of the volume moment tensor, is consistent
with similar results for local contact numbers [2,31].

It implies that, at least with respect to averages of the
volume tensor shape measure, the following interpretation
of random jammed sphere packs is feasible. We consider
a pool of local structure motifs for each value of the local
packing fraction φl, given by the distributions in fig. 4(c).
For spheres (but not for ellipsoids), these pools are uni-
versal in the sense that, for a fixed value of φl, the same
pools can be used to construct packings of various global
packing fractions φg. A jammed configuration can then
be thought of as the composition of randomly drawn ele-
ments from the pools; the probability distribution P (φl)
determines the fraction of cells to be drawn from each φl

pool. While this clearly does not represent a constructive
approach for the generation of disordered bead packs, it
illustrates the universal nature of the sphere packing prob-
lem: the same pools of structural elements are used for all
global packing fractions, just in different proportions. For
ellipsoid packings, this universality breaks down and mo-
tifs in the φl pools depend on further parameters X and
hence correlate with the global packing fraction.

We speculate that this geometric non-universality is
paralleled by a significantly less universal nature of the
random close packing problem in aspherical particles.
More work is needed to identify the subtle origin of this
non-universality. We have verified that it is neither solely
an effect of particle orientation with the axis of gravity nor
an obvious correlation with packing history. In particu-
lar the same non-universality is observed for two types of
packings with different degrees of particle alignment with
the axis of gravity (simulations and experiments).

Beyond these specific results for ellipsoidal particles,
our analysis demonstrates the importance of the correct
choice for the relevant parameters for the discussion of lo-
cal structure metrics in granular matter. An analysis in
terms of the local packing fraction φl, which may in prin-
cipal directly relate to local physical processes, is more
meaningful than the conventional analysis in terms of the
global packing fraction φg.
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