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Abstract

“Arithmetic random waves” are the Gaussian Laplace eigenfunctions on the two-
dimensional torus [R-W, K-K-W]. In this paper we find that their nodal length con-
verges to a non-universal (non-Gaussian) limiting distribution, depending on the angular
distribution of lattice points lying on circles.

Our argument has two main ingredients. An explicit derivation of the Wiener-Itô
chaos expansion for the nodal length shows that it is dominated by its 4th order chaos
component (in particular, somewhat surprisingly, the second order chaos component
vanishes). The rest of the argument relies on the precise analysis of the fourth order
chaotic component.

Keywords and Phrases: Arithmetic RandomWaves, Nodal Lines, Non-Central Limit
Theorem, Berry’s Cancellation.
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1 Introduction and main results

1.1 Arithmetic random waves

Let T := R
2/Z2 be the standard 2-torus and ∆ the Laplacian on T. We are interested in

the (totally discrete) spectrum of ∆ i.e., eigenvalues E > 0 of the Schrödinger equation

∆f + Ef = 0. (1.1)

Let
S = {n ∈ Z : n = a2 + b2 for some a, b ∈ Z}

be the collection of all numbers expressible as a sum of two squares. Then, the eigenvalues
of (1.1) (also called energy levels of the torus) are all numbers of the form En = 4π2n with
n ∈ S.

In order to describe the Laplace eigenspace corresponding to En, denote by Λn the set of
frequencies:

Λn := {λ = (λ1, λ2) ∈ Z
2 : λ2

1 + λ2
2 = n}

whose cardinality
Nn := |Λn| = r2(n) (1.2)

equals the number of ways to express n as a sum of two squares. (Geometrically, Λn is the
collection of all standard lattice points lying on the centred circle with radius

√
n.) For

λ ∈ Λn denote the complex exponential associated to the frequency λ

eλ(x) = exp(2πi〈λ, x〉)
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with x = (x1, x2) ∈ T. The collection

{eλ(x)}λ∈Λn

of the complex exponentials corresponding to the frequencies λ ∈ Λn, is an L2-orthonormal
basis of the eigenspace En of ∆ corresponding to the eigenvalue En. In particular, the
dimension of En is

dim En = Nn = |Λn|
(cf. (1.2)). The number Nn is subject to large and erratic fluctuations; it grows [La] on
average as

√
log n, but could be as small as 8 for (an infinite sequence of) prime numbers

p ≡ 1 mod 4, or as large as a power of log n.
Following [R-W] and [K-K-W], we define the arithmetic random waves (also called

random Gaussian toral Laplace eigenfunctions) to be the random fields

Tn(x) =
1√
Nn

∑

λ∈Λn

aλeλ(x), x ∈ T, (1.3)

where the coefficients aλ are standard complex-Gaussian random variables verifying the
following properties: aλ is stochastically independent of aγ whenever γ /∈ {λ,−λ}, and

a−λ = aλ

(ensuring that the Tn are real-valued).1 By the definition (1.3), Tn is a stationary (i.e. the
law of Tn is invariant under all the translations

f(·) 7→ f(x′ + ·),

x′ ∈ T), centered Gaussian random field with covariance function

rn(x, x
′) = rn(x−x′) := E[Tn(x)Tn(x′)] =

1

Nn

∑

λ∈Λn

eλ(x−x′) =
1

Nn

∑

λ∈Λn

cos
(
2π〈x− x′, λ〉

)
,

x, x′ ∈ T (by the standard abuse of notation for stationary fields). Note that rn(0) = 1, i.e.
Tn has unit variance.

1.2 Nodal length: mean and variance

Consider the total nodal length of the random eigenfunctions, i.e. the collection {Ln}n∈S of
all random variables with the form

Ln := length(T−1
n (0)). (1.4)

The expected value of Ln was computed in [R-W] to be

E[Ln] =
1

2
√
2

√
En, (1.5)

consistent with Yau’s conjecture [Ya, D-F]. The more challenging question of the asymp-
totic behaviour of the variance Var(Ln) of Ln was addressed in [R-W], and fully resolved
in [K-K-W] as follows.

1From now on, we assume that every random object considered in this paper is defined on a common
probability space (Ω,F ,P), with E denoting mathematical expectation with respect to P.
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Given n ∈ S, define a probability measure µn on the unit circle S1 ⊆ R
2 supported on

angles corresponding to lattice points in Λn:

µn :=
1

Nn

∑

λ∈Λn

δ λ√
n
.

It is known [E-H] that for a density 1 sequence of numbers {nj} ⊆ S the angles of lattice
points in Λn tend to be equidistributed, in the sense that

µnj ⇒
dφ

2π
(1.6)

(where ⇒ indicates weak-∗ convergence of probability measures, and dφ stands for the
Lebesgue measure on S1). However the sequence {µn}n∈S has other weak-∗ adherent points
[Ci, K-K-W] (called attainable measures), partially classified in [K-W].

It was proved in [K-K-W] that one has

Var(Ln) = cn
En

N 2
n

(1 + oNn→∞(1)), (1.7)

where

cn =
1 + µ̂n(4)

2

512
, (1.8)

and, for a measure µ on S1,

µ̂(k) =

∫

S1

z−k dµ(z), k ∈ Z,

are the Fourier coefficients of µ on the unit circle. As

|µ̂n(4)| ≤ 1

by the triangle inequality, the result (1.7) shows that the true order of magnitude of Var(Ln)
is En

N 2
n
: this is of smaller order than what would be a natural guess, namely En

Nn
; this sit-

uation (customarily called arithmetic Berry’s cancellation, see [K-K-W]) is similar to the
cancellation phenomenon observed by Berry in a different setting, see [Be, W1].

In addition, (1.7) shows that, in order for Var(Ln) to exhibit an asymptotic law (equivalent
to {cn} in (1.8) being convergent along a subsequence) we need to pass to a subsequence
{nj} ⊆ S such that the limit

lim
j→∞

|µ̂nj (4)|

exists. For example, if {nj} ⊆ S is a subsequence such that µnj ⇒ µ for some probability
measure µ on S1, then (1.7) reads (under the usual extra-assumption Nnj → ∞)

Var(Lnj ) ∼ c(µ)
Enj

N 2
nj

(1.9)

with

c(µ) =
1 + µ̂(4)2

512
,

where, here and for the rest of the paper, we write an ∼ bn to indicate that the two
positive sequences {an} and {bn} are such that an/bn → 1, as n → ∞. Here, the set of
the possible values for the 4th Fourier coefficient µ̂(4) attains the whole interval [−1, 1]
(see [K-K-W, K-W]). This implies in particular that the possible values of the asymptotic
constant c(µ) attain the whole interval

[
1

512 ,
1

256

]
; the above is a complete classification of

the asymptotic behaviour of Var(Ln).
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1.3 Statement of the main results: asymptotic distribution of the nodal

length

Our main goal is the study of the fine asymptotic behaviour, asNn → ∞, of the distributions
of the sequence of normalised random variables

L̃n :=
Ln − E[Ln]√

Var(Ln)
, n ∈ S, (1.10)

(this is equivalent to studying L̃nj along subsequences {nj}j≥1 ⊆ S satisfying Nnj → ∞;
note that it is possible to choose a full density subsequence in S as above). Since the variance
(1.7) diverges to infinity, it seems reasonable to expect a central limit result, that is, that
the sequence {L̃n} converges in distribution to a standard Gaussian random variable. Our
findings not only contradict this (somewhat naive) prediction, but also classify all the weak-
∗ adherent points of the probability distributions associated with the collection of random

variables
{
L̃n : n ∈ S

}
(where the adherent points are in the sense of weak-∗ convergence

of probability measures). In particular, we will show that such a set of weak-∗ adherent
points coincides with the collection of probability distributions associated with a family
of linear combinations of two independent squared Gaussian random variables; these linear
combinations are parameterized by the adherent points of the sequence {|µ̂n(4)|} of real non-
negative numbers ≤ 1. This will show the remarkable fact that the angular distribution of
Λn (or, more specifically, the 4th Fourier coefficient of µn) does not only prescribe the leading
term of the nodal length variance Var(Ln), but, in addition, it prescribes the asymptotic
distribution of L̃n.

To state our results formally, we will need some more notation. For η ∈ [0, 1], let Mη be
the random variable

Mη :=
1

2
√

1 + η2
(2− (1 + η)X2

1 − (1− η)X2
2 ), (1.11)

where X = (X1,X2) are independent standard Gaussians. Note that for η1 6= η2 the
distributions of Mη1 and Mη2 are genuinely different; this follows for example from the
observation that the support of the distribution of Mη is

(
−∞,

1√
1 + η2

]
.

Our first main result establishes a limiting law for the nodal length distribution for
subsequences {nj}j≥1 ⊆ S provided that the numerical sequence

{∣∣µ̂nj(4)
∣∣ : j ≥ 1

}

of non-negative numbers is convergent. As it was mentioned above, for some full density
subsequence {nj}j≥1 ⊆ S the corresponding lattice points Λnj are asymptotically equidis-
tributed (1.6), so that for this subsequence, in particular,

µ̂nj(4) → 0.

More generally, if for some subsequence {nj}j≥1 ⊆ S the angular distribution of the corre-
sponding lattice points converges to µ, i.e. µnj ⇒ µ, where µ is some probability measure
on S1, then

µ̂nj (4) → µ̂(4).
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From now on, we use the symbol
d−→ to denote convergence in distribution of random

variables; similarly, we will write X
d
= Y to indicate that the random variables X and Y

have the same distribution.

Theorem 1.1. Let {nj} ⊆ S be a subsequence of S satisfying Nnj → ∞, such that the
sequence

{∣∣µ̂nj(4)
∣∣ : j ≥ 1

}
of non-negative numbers converges, that is:

|µ̂nj(4)
∣∣→ η,

for some η ∈ [0, 1]. Then

L̃nj

d−→ Mη, (1.12)

where Mη was defined in (1.11).

Since [K-K-W, K-W] showed that the set of adherent points of {µ̂n(4)}n∈S is all of [−1, 1],
the result above clearly implies that L̃n does not converge in distribution for Nn → ∞;
in particular, if the sequence {|µ̂nj (4)|} does not converge, then the set of probability

distributions associated with the random variables {L̃nj} has at least two different adherent
points in the topology of weak-∗ convergence. It would be desirable to formulate a uniform
asymptotic result a la (1.12) with no separation of the full sequence S into subsequences
according to the angular distribution of Λn (still as Nn → ∞). This has two subtleties
though.

First, since there is no convergence in distribution, we need to couple the random variables
on the same probability space and work with some metric on the space of probability
measures; we choose to work with the Lp-metrics, p ∈ (0, 2). Second, as, given a number
n ∈ S, there is no limiting value η of µ̂n(4), for each n ∈ S the candidate Mη for the
limiting random variable will bear

η = ηn = |µ̂n(4)|

rather than its limiting value.

Theorem 1.2. On some auxiliary probability space (A,A , P̃) for every n ∈ S there exists
a coupling of the random variables L̃n and M|µ̂n(4)| such that, as Nn → ∞,

E
P̃

[∣∣∣L̃n −M|µ̂n(4)|

∣∣∣
p]

→ 0, (1.13)

for every p ∈ (0, 2), and
L̃n −M|µ̂n(4)| → 0, a.s.− P̃. (1.14)

Relation (1.14) is equivalent to saying that, for every sequence {nj} ⊆ S such that

Nnj → ∞, P̃
(
L̃nj − M|µ̂nj (4)|

→ 0
)
= 1. Since, under the most natural coupling of the

family of variables {Mη}η∈[0,1] we have

E [|Mη1 −Mη2 |] ≤ c|η1 − η2|,

for all η1, η2 ∈ [0, 1] (with c > 0 an absolute constant) it is clear that Theorem 1.2 implies the
result of Theorem 1.1. In fact, by the triangle inequality and an immediate computation,
Theorem 1.2 implies the stronger, Lp-convergence, p ∈ (0, 2) to suitably coupled Mη in
(1.12).
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1.4 On the proofs of the main results

In Proposition 3.2 we compute the Wiener-Itô chaos expansion for the nodal length Ln

(1.4), i.e. a series converging in L2(P) of the form

Ln =

∞∑

q=0

proj(Ln|Cq) =

∞∑

q=0

Ln[q]. (1.15)

Here Cq, q = 0, 1, . . . are the so-called Wiener chaoses (see §2.1), namely the orthogonal
components of the L2-space of those random variables that are functionals of some Gaussian
white noise on T – while Ln[q] := proj(Ln|Cq) denotes the orthogonal projection of Ln onto
the q-th chaos.

The decomposition (1.15) is of independent interest, and entails in particular the vanishing
of all the odd-order chaotic components and the term of order two, i.e. Ln[q] = 0 if
q = 2m + 1,m = 0, 1, . . . or q = 2. The precise analysis of the asymptotic behavior
of the fourth-order projection in Proposition 2.2 will allow us to show that its variance is
asymptotic to the total variance of the nodal length (see Proposition 2.3); since the different
components are orthogonal by construction, this will imply that all the projections other
than the one on the fourth chaos are negligible. We notice that it is relatively easy to
show that the contribution to the nodal length variance of each of the chaotic projections
of order q 6= 4 is negligible. It is in principle also possible to directly bound the total
contribution to the variance of the sum of all these projections, thus establishing relation
(1.7) independently. However, this task seems to be technically demanding, and would make
our argument significantly longer. Since the asymptotic result (1.7) is already available from
[K-K-W], we do not pursue such a strategy in the present manuscript.

As a consequence, to study the asymptotic behavior of Ln it will be sufficient to focus
on the above-mentioned fourth-order component; Proposition 2.2 shows that along subse-
quences {nj} satisfying the same hypothesis as in Theorem 1.1, we have

Lnj [4]√
Var(Lnj [4])

d−→ Mη,

where Mη is as in (1.11).
We are then able to prove Theorem 1.1 thanks to Proposition 2.3 and Proposition 2.2. Fi-

nally, Theorem 1.2 will follow from Theorem 1.1 and some standard arguments for uniformly
bounded sequences in L2.

1.5 Plan of the paper

In §2.1 we recall Wiener-Itô chaotic expansions, which we then exploit throughout the whole
paper to prove the main results, given in §2.2; §3 is devoted to the proof of the chaotic
expansion for the nodal length (Proposition 3.2), whereas in §4 we prove Proposition 2.2
and Proposition 2.3. Finally, in §5 we collect the technical proofs of auxiliary lemmas for
the results given in §4.
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2 Proofs of the main results

The proofs of our results rely on a pervasive use of Wiener-Itô chaotic expansions for
non-linear functionals of Gaussian fields; this notion is presented below in a form that is
adapted to the random functions considered in the present paper (see e.g. [N-P, P-T] for
an exhaustive discussion).

2.1 Wiener Chaos

Denote by {Hk}k≥0 the usual Hermite polynomials on R. These are defined recursively as
follows: H0 ≡ 1, and, for k ≥ 1,

Hk(t) = δHk−1(t),

where
δ f(t) = tf(t)− f ′(t).

Recall that H := {[k!]−1/2Hk : n ≥ 0} constitutes a complete orthonormal system in

L2(R,B(R), γ(t)dt) := L2(γ),

where γ(t) = (2π)−1/2e−t2/2 is the standard Gaussian density on the real line.

The arithmetic random waves (1.3) considered in this work are a by-product of a family
of complex-valued Gaussian random variables {aλ : λ ∈ Z

2}, defined on some probability
space (Ω,F ,P) and satisfying the following properties: (a) every aλ has the form xλ + iyλ,
where xλ and yλ are two independent real-valued Gaussian random variables with mean
zero and variance 1/2; (b) aλ and aτ are stochastically independent whenever λ /∈ {τ,−τ},
and (c) aλ = a−λ. Define the space A to be the closure in L2(P) of all real finite linear
combinations of random variables ξ of the form

ξ = z aλ + z a−λ,

where λ ∈ Z
2 and z ∈ C. The space A is a real centered Gaussian Hilbert subspace of

L2(P).

Definition 2.1. For an integer q ≥ 0 the q-th Wiener chaos associated with A, written
Cq, is the closure in L2(P) of all real finite linear combinations of random variables of the
form

Hp1(ξ1) ·Hp2(ξ2) · · ·Hpk(ξk)

for k ≥ 1, where the integers p1, ..., pk ≥ 0 satisfy p1 + · · · + pk = q, and (ξ1, ..., ξk) is a
standard real Gaussian vector extracted from A (note that, in particular, C0 = R).
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Using the orthonormality and completeness of H in L2(γ), together with a standard
monotone class argument (see e.g. [N-P, Theorem 2.2.4]), it is not difficult to show that
Cq ⊥Cm (where the orthogonality holds in the sense of L2(P)) for every q 6= m, and moreover

L2(Ω, σ(A),P) =
∞⊕

q=0

Cq;

that is, every real-valued functional F of A can be (uniquely) represented in the form

F =
∞∑

q=0

proj(F |Cq) =
∞∑

q=0

F [q], (2.16)

where as before F [q] := proj(F |Cq) stands for the the projection onto Cq, and the series
converges in L2(P). Plainly, F [0] = proj(F |C0) = E[F ].

A straightforward differentiation of the definition (1.3) of Tn yields, for j = 1, 2

∂jTn(x) =
2πi√Nn

∑

(λ1,λ2)∈Λn

λjaλeλ(x), (2.17)

(here ∂j =
∂

∂xj
). Hence the random fields Tn, ∂1Tn, ∂2Tn viewed as collections of Gaussian

random variables indexed by x ∈ T are all lying in A, i.e. for every x ∈ T we have

Tn(x), ∂1Tn(x), ∂2Tn(x) ∈ A.

2.2 Proof of Theorem 1.1

We apply the Wiener chaos decomposition (2.16) on the nodal length

Ln =
∞∑

q=0

Ln[q], (2.18)

in L2(P). The following proposition is a reformulation of Theorem 1.1 with the projection
Ln[4] of the nodal length Ln onto the 4th order chaos in place of replacing Ln and it will
be proven in §4.2.

Proposition 2.2. Let {nj} ⊆ S be a subsequence of S satisfying Nnj → ∞, such that the
sequence

{∣∣µ̂nj(4)
∣∣ : j ≥ 1

}
of non-negative numbers converges, that is,

|µ̂nj(4)
∣∣→ η,

for some η ∈ [0, 1]. Then, the corresponding sequences of random variables converges in
distribution to Mη as defined in (1.11), that is,

Lnj [4]√
Var(Lnj [4])

d−→ Mη. (2.19)

Moreover,

Var
(
Lnj [4]

)
∼ 1 + η2

512

Enj

N 2
nj

. (2.20)
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The next proposition, whose proof is given in §4.2, entails that the fourth-order chaotic
component gives the leading term in the expansion, i.e. its behaviour asymptotically dom-
inates the nodal length on the torus.

Proposition 2.3. For every {nj : j ≥ 1} ⊆ S subsequence of S such that limj→∞Nnj = ∞
and the sequence

{∣∣µ̂nj(4)
∣∣ : j ≥ 1

}
of non-negative numbers converges,

Var
(
Lnj −Lnj [4]

)
= o

(
Enj

N 2
nj

)
. (2.21)

Equivalently, under the above assumptions we have that

Var
(
Lnj

)
∼ Var

(
Lnj [4]

)
. (2.22)

Proof of Theorem 1.1 assuming Proposition 2.2 and Proposition 2.3. The chaotic
expansion (2.18) and Proposition 2.3 entail that, as j → +∞,

L̃nj = L̃nj [4] + oP(1),

where oP(1) denotes a sequence of random variables converging to zero in probability. Ac-
tually, by linearity we have

L̃nj [4] =
Lnj [4]√
Var(Lnj )

. (2.23)

It hence follows that L̃nj and the random variable L̃nj [4] have the same asymptotic dis-
tribution. Proposition 2.3 together with (2.19) and (2.23) allow to conclude the proof, i.e.
they immediately imply (1.12).

2.3 Proof of Theorem 1.2

Having established Theorem 1.1, the proof of Theorem 1.2 follows by a rather standard
coupling argument. To achieve the goal of this section, we need to recall the definition of
the Prohorov distance between two probability measures P0,P1 on (R,B(R)):

ρ (P0,P1) := inf {ε > 0 : P0(A) ≤ ε+ P1(A
ε), for every Borel setA ⊂ R} ,

where Aε := {x : |x − y| < ε, for some y ∈ A}. It is a well-known fact that the distance ρ
metrizes the weak-∗ convergence between probability measures, that is: for any collection
{P∞,Pn : n ≥ 1} of probability measures on (R,B(R)), one has that ρ(Pn,P∞) → 0 if and
only if Pn ⇒ P∞ (see e.g. [D, Chapter 11]). For every pair of random variables X1, X2, we
write ρ(X1,X2) for the quantity ρ(D(X1),D(X2)), where D(Xi) denotes the probability
distribution on (R,B(R)) induced by Xi.

Proof. Let us first show that there exists a probability space (A,A , P̃), such that for every
n ∈ S we have a coupling of the random variables L̃n and M|µ̂n(4)| and (1.14) holds. Set
I := [0, 1). Following the proof of [D, Theorem 11.7.1], it is possible to prove that there
exists a measurable space (Z,Z ), as well as

(a) a collection of probability measures {P̃t : t ∈ I} on (Z,Z ), and

(b) a set of measurable mappings Xn, Yn : Z → R, n ∈ S,

9



enjoying the following properties (i)–(iii):

(i) the mapping

C 7→
∫

I

∫

Z
1C(t, z)P̃t(dz) dt =: P̃(C)

is a well-defined probability measure on (A,A ) := (I × Z,B(I)⊗ Z );

(ii) under P̃, one has that Xn
d
= L̃n and Yn

d
= M|µ̂n(4)| for every n ∈ S, that is, for every

Borel set B

P̃(Xn ∈ B) =

∫

I
P̃t(Xn ∈ B)dt = P(L̃n ∈ B), and

P̃(Yn ∈ B) =

∫

I
P̃t(Yn ∈ B)dt = P(M|µ̂n(4)| ∈ B);

(iii) if t < 1− (αn + |n|−1) for some n ∈ S, then

P̃t(|Xn − Yn| ≤ αn + |n|−1) = 1,

where we set, for n ∈ S,
αn := ρ(L̃n,M|µ̂n(4)|) (2.24)

i.e., the Prohorov distance between the law of L̃n and the law of M|µ̂n(4)|.
Since (i) and (ii) give the coupling construction, it remains to prove (1.14). To this

end it is enough to show that αn as defined in (2.24), vanishes as Nn → +∞. For every
subsequence {nj} ⊆ {n}, since |µ̂nj (4)| ≤ 1 for every j, there exists a subsubsequence
{n′

j} ⊆ {nj} such that |µ̂n′
j
(4)| → η for some η ∈ [0, 1], yielding that

ρ
(
L̃n′

j
, M|µ̂n′

j
(4)|

)
≤ ρ
(
L̃n′

j
,Mη

)
+ ρ
(
M|µ̂n′

j
(4)|,Mη

)
→ 0,

where we have applied Theorem 1.1, as well as the fact that, if ηj → η, then Mηj
d→ Mη.

This immediately shows that αn = ρ
(
L̃n,M|µ̂n(4)|

)
→ 0, thus yielding the equality

P̃
(
|Xn − Yn| → 0

)
=

∫

I
P̃t

(
|Xn − Yn| → 0

)
dt = 1,

where we have used (i) and the fact that, by virtue of property (iii) above as well as of the
relation αn → 0, for every t ∈ I there exists an integer nt such that

P̃t(|Xn − Yn| ≤ αn + |n|−1, ∀n > nt) = 1,

implying that, for every t ∈ I, P̃t

(
|Xn − Yn| → 0

)
= 1.

Now we are going to prove (1.13). The sequence of random variables {L̃n − Mn}
is bounded in L2, actually for every n ∈ S we have E

P̃
[|L̃n − Mn|2] ≤ 2(E

P̃
[|L̃n|2] +

E
P̃
[|Mn|2]) = 4. This implies (see e.g. [VdV, Theorem 2.20]) that for each p ∈ (0, 2), the

sequence {|L̃n −Mn|p} is uniformly integrable, i.e.

lim
M→+∞

sup
n

E
P̃

[
|L̃n −Mn|p1|L̃n−Mn|p>M

]
= 0, (2.25)
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where, as usual, 1A denotes the indicator function of some set A. Moreover, we have just
shown that (1.14) holds, so that, as Nn → +∞,

|L̃n −Mn|p −→ 0, P̃− a.s. (2.26)

We can hence apply [D, Theorem 10.3.6] to the sequence {|L̃n − Mn|p}: (2.25) together
with (2.26) implies the Lp-convergence stated in (1.13). The proof is thus concluded.

3 Chaotic expansion of Ln

In order to prove Proposition 2.2 and Proposition 2.3 we need to compute the Wiener-Itô
chaotic expansion (2.18) of the random variable Ln.

3.1 Statement

Let us introduce some more notation to properly state the main result of this section. The
nodal length (1.4) can be formally written as

Ln =

∫

T

δ0(Tn(θ))‖∇Tn(θ)‖ dθ, (3.27)

where δ0 denotes the Dirac delta function and ‖ · ‖ the Euclidean norm in R
2 (see [R-W,

Lemma 3.1] and §3.2.1).
We shall often use the following easy result from [R-W]:

Lemma 3.1 ([R-W], (4.1)). For j = 1, 2 we have that

Var[∂jTn(x)] =
4π2

Nn

∑

λ∈Λn

λ2
j = 4π2n

2
,

where the derivatives ∂jTn(x) are as in (2.17).

Accordingly, for x = (x1, x2) ∈ T and j = 1, 2, we will denote by ∂j T̃n(x) the normalized
derivative

∂j T̃n(x) :=
1

2π

√
2

n

∂

∂xj
Tn(x) =

√
2

n

i√Nn

∑

λ∈Λn

λj aλeλ(x). (3.28)

In view of convention (3.28), we formally rewrite (3.27) as

Ln =

√
4π2n

2

∫

T

δ0(Tn(x))

√
∂1T̃n(x)2 + ∂2T̃n(x)2 dx.

We also introduce two collections of coefficients {α2n,2m : n,m ≥ 1} and {β2l : l ≥ 0}, that
are related to the (formal) Hermite expansions of the norm ‖ · ‖ in R

2 and the Dirac mass
δ0(·) respectively. These are given by

β2l :=
1√
2π

H2l(0), (3.29)

where H2l denotes the 2l-th Hermite polynomial, and

α2n,2m =

√
π

2

(2n)!(2m)!

n!m!

1

2n+m
pn+m

(
1

4

)
, (3.30)
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where for N = 0, 1, 2, . . . and x ∈ R

pN (x) :=
N∑

j=0

(−1)j · (−1)N
(
N

j

)
(2j + 1)!

(j!)2
xj,

(2j+1)!
(j!)2

being the so-called swinging factorial restricted to odd indices.

We are now ready to state the main result of this section. It illustrates the cancellations
that occur for the components of the chaotic expansion (2.18) of Ln (precisely, odd terms
and the second-order one). Consistent to Proposition 2.3, computing the fourth-order com-
ponent only is sufficient to establish the asymptotic behavior of the nodal length. However,
we believe that the complete expansion is of clear independent interest; for instance, (a) it
gives the basic building block to extend our results to other random fields on the torus and
(b) it sheds some light on the Berry’s cancellation phenomenon [Be, W1, W2].

More precisely, as far as point (b) is concerned, we note that the nodal length Lℓ of
Gaussian Laplace eigenfunctions Tℓ, ℓ ∈ N, on the two-dimensional sphere have the same
qualitative behavior. Indeed, on one hand in the chaotic expansion of Lℓ, the odd terms
and the second chaotic projection vanish and the fourth-order component exhibits the same
asymptotic variance as the full nodal length (see [R]). On the other hand, it is also shown
in [R] that the second chaotic projection in the Wiener-Itô expansion of the length of
level curves T−1

ℓ (u), u ∈ R vanishes if and only if u = 0. These results explain why the
asymptotic variance of the length of level curves is consistent to the natural scaling, except
for the nodal case [W1, W2]. Finally, we note that an analogous cancellation phenomenon
occurs for the excursion area and the Euler-Poincaré characteristic of excursion sets for
spherical eigenfunctions, see [M-W, M-R, CMW].

Proposition 3.2 (Chaotic expansion of Ln). (a) For q = 2 or q = 2m+1 odd (m ≥ 1),

Ln[q] ≡ 0,

that is, the corresponding chaotic projection vanishes.
(b) For q ≥ 2

Ln[2q]

=

√
4π2n

2

q∑

u=0

u∑

k=0

α2k,2u−2kβ2q−2u

(2k)!(2u − 2k)!(2q − 2u)!
× (3.31)

×
∫

T

H2q−2u(Tn(x))H2k(∂1T̃n(x))H2u−2k(∂2T̃n(x)) dx.

Consolidating the above, the Wiener-Itô chaotic expansion of Ln is

Ln = ELn +

√
4π2n

2

+∞∑

q=2

q∑

u=0

u∑

k=0

α2k,2u−2kβ2q−2u

(2k)!(2u − 2k)!(2q − 2u)!
×

×
∫

T

H2q−2u(Tn(x))H2k(∂1T̃n(x))H2u−2k(∂2T̃n(x)) dx,

in L2(P).

3.2 Proof of Proposition 3.2

Let us start with an approximating result in L2(P) for the nodal length Ln.
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3.2.1 Approximating the nodal length

Consider the family of random variables {Lε
n, ε > 0} defined as

Lε
n =

1

2ε

∫

T

1[−ε,ε](Tn(x))‖∇Tn(x)‖dx, (3.32)

where 1[−ε,ε] is the indicator function of the interval [−ε, ε], and ‖·‖ is the standard Euclidean
norm in R

2.
In view of the convention (3.28) we rewrite (3.32) as

Lε
n =

√
4π2n

2

1

2ε

∫

T

1[−ε,ε](Tn(x))

√
∂1T̃n(x)2 + ∂2T̃n(x)2 dx.

In [R-W, Lemma 3.1] it was shown that, a.s.

Ln = lim
ε→0

Lε
n, (3.33)

(a rigorous manifistation of (3.27)), and moreover, by [R-W, Lemma 3.2], Lε
n is uniformly

bounded, that is:
Lε
n ≤ 12

√
En. (3.34)

Applying the Dominated Convergence Theorem to (3.33) while bearing in mind the uniform
bound (3.34) implies that the convergence in (3.33) is in L2(P), i.e. the following result:

Lemma 3.3. For every n ∈ S, we have

lim
ε→0

E[|Lε
n − Ln|2] = 0.

3.2.2 Proof of Proposition 3.2: technical computations

In view of Lemma 3.3, we first compute the chaotic expansion of Lε
n and then deduce

Proposition 3.2 by letting ε → 0. Let us start by expanding the function 1
2ε1[−ε,ε](·) into

Hermite polynomials, as defined in §2.1.
Lemma 3.4. The following decomposition holds in L2(γ) (where, as before, γ is the stan-
dard Gaussian density on R):

1

2ε
1[−ε,ε](·) =

+∞∑

l=0

1

l!
βε
l Hl(·),

where, for l ≥ 1

βε
l = − 1

2ε
γ (ε) (Hl−1 (ε)−Hl−1 (−ε)) ,

while for l = 0

βε
0 =

1

2ε

∫ ε

−ε
γ(t) dt.

Proof. Using the completeness and orthonormality of the set H in L2(γ), one has that
βε
0 = 1

2ε

∫ ε
−ε γ(t) dt, and, for l ≥ 1,

βε
l =

1

2ε

∫ ε

−ε
γ(t)Hl(t) dt =

1

2ε

∫ ε

−ε
γ(t)(−1)lγ−1(t)

dl

dtl
γ(t) dt =

=
1

2ε
(−1)l

(
dl−1

dtl−1
γ (ε)− dl−1

dtl−1
γ (−ε)

)
= − 1

2ε
γ (ε) (Hl−1 (ε)−Hl−1 (−ε)) .

13



Now, if l is odd, then Hl−1 is an even function, and therefore βε
l = 0: it follows that

1

2ε
1[−ε,ε](·) = βε

0 +

+∞∑

l=1

1

(2l)!

(
−1

ε
γ (ε)H2l−1 (ε)

)
H2l(·).

Using the notation (3.29), we have that, for all l ≥ 0,

lim
ε

βε
2l = − 1√

2π
(2l − 1)!

(−1)l−1

(l − 1)!2l−1
=

1√
2π

H2l(0) = β2l. (3.35)

Note that, setting βl = 0 for l odd, the set {βl : l = 0, 1, 2, ...} can be interpreted as the
sequence of the coefficients appearing in the formal Hermite expansion of the Dirac mass
δ0.

Now fix x ∈ T, and recall that the coordinates of the vector

∇T̃n(x) := (∂1T̃n(x), ∂2T̃n(x)),

are unit variance centered independent Gaussian random variables (see i.e., [K-K-W]). Now,
since the random variable ‖∇T̃n(x)‖ is square-integrable, it can be expanded into an (infi-
nite) series of Hermite polynomials, as detailed in the following statement.

Lemma 3.5. For (Z1, Z2) a standard Gaussian bivariate vector, we have the L2-expansion

‖(Z1, Z2)‖ =

+∞∑

n=0

n∑

m=0

α2n,2n−2m

(2n)!(2n − 2m)!
H2n(Z1)H2n−2m(Z2),

where the α2n,2n−2m are as in (3.30).

Proof. We may expand

‖(Z1, Z2)‖ =

+∞∑

u=0

u∑

m=0

αu,u−m

u!(u−m)!
Hu(Z1)Hu−m(Z2),

where

αn,n−m =
1

2π

∫

R2

√
y2 + z2Hn(y)Hn−m(z)e−

y2+z2

2 dydz.

Our aim is to compute αn,n−m as explicitly as possible. First of all, we observe that, if n

or n −m is odd, then the above integral vanishes (since the two mappings z 7→
√

y2 + z2

and y 7→
√

y2 + z2 are even). It follows therefore that

‖(Z1, Z2)| =
+∞∑

n=0

n∑

m=0

α2n,2n−2m

(2n)!(2n − 2m)!
H2n(Z1)H2n−2m(Z2).

We are therefore left with the task of showing that the integrals

α2n,2n−2m =
1

2π

∫

R2

√
y2 + z2H2n(y)H2n−2m(z)e−

y2+z2

2 dydz,

where n ≥ 0 and m = 0, . . . , n, are given by (3.30). One elegant way for dealing with this
task is to use the following Hermite polynomial expansion (see e.g. [N-P, Proposition 1.4.2])

eλy−
λ2

2 =
+∞∑

a=0

Ha(y)
λa

a!
, λ ∈ R. (3.36)
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Let us consider the integral

1

2π

∫

R2

√
y2 + z2eλy−

λ2

2 eµz−
µ2

2 e−
y2+z2

2 dydz =
1

2π

∫

R2

√
y2 + z2e−

(y−λ)2+(z−µ)2

2 dydz.

This integral coincides with the expected value of the random variable W :=
√
Y 2 + Z2

where (Y,Z) is a vector of independent Gaussian random variables with variance one and
mean λ and µ, respectively. Since W 2 = Y 2 + Z2 has a non-central χ2-distribution (more
precisely, Y 2 + Z2 ∼ χ2(2, λ2 + µ2)) it is easily checked that the density of W is given by

fW (t) =
+∞∑

j=0

e−(λ2+µ2)/2 ((λ
2 + µ2)/2)j

j!
f2+2j(t

2) 2t 1{t>0}, (3.37)

where f2+2j is the density function of a χ2
2+2j-distributed random variable. The expected

value of W is therefore

E[W ] = 2

+∞∑

j=0

e−(λ2+µ2)/2 ((λ
2 + µ2)/2)j

j!

∫ +∞

0
f2+2j(t

2) t2 dt. (3.38)

From the definition of f2+2j we have

∫ +∞

0
f2+2j(t

2) t2 dt =
1

21+jΓ(1 + j)

∫ +∞

0
t2j+2e−t2/2 dt

=

∏1+j
i=1 (2i− 1)

√
π
2

21+jΓ(1 + j)
. (3.39)

Substituting (3.39) into (3.38) we have

E[W ] = 2e−(λ2+µ2)/2
+∞∑

j=0

((λ2 + µ2)/2)j

j!

∏1+j
i=1 (2i − 1)

√
π
2

21+jΓ(1 + j)
=: F (λ, µ). (3.40)

Applying Newton’s binomial formula to ((λ2 + µ2)/2)j , we may expand the function F in
(3.40) as follows:

F (λ, µ) = 2

+∞∑

a=0

(−1)aλ2a

2aa!

+∞∑

b=0

(−1)bµ2b

2bb!

+∞∑

j=0

1

j!

j∑

l=0

(
j

l

)
λ2lµ2j−2l

∏1+j
i=1 (2i− 1)

√
π
2

21+2jΓ(1 + j)
=

=

+∞∑

a,b=0

(−1)a

2aa!

(−1)b

2bb!

+∞∑

j=0

∏1+j
i=1 (2i − 1)

√
π
2

j!22jΓ(1 + j)

j∑

l=0

(
j

l

)
λ2l+2aµ2j+2b−2l.

Setting n := l + a and m := j + b− l, we also have that

F (λ, µ) =
+∞∑

a,b=0

(−1)a

2aa!

(−1)b

2bb!

+∞∑

j=0

∏1+j
i=1 (2i− 1)

√
π
2

j!22jΓ(1 + j)

j∑

l=0

(
j

l

)
λ2l+2aµ2j+2b−2l

=
∑

n,m

∑

j

∏1+j
i=1 (2i− 1)

√
π
2

j!22jΓ(1 + j)

j∑

l=0

(−1)(n−l)

2n−l(n − l)!

(−1)m+l−j

2m+l−j(m+ l − j)!

(
j

l

)
λ2nµ2m.(3.41)
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Since F (λ, µ) = E[W ] from (3.40), on the other hand (3.36) yields

F (λ, µ) =
1

2π

∫

R2

√
y2 + z2eλy−

λ2

2 eµz−
µ2

2 e−
y2+z2

2 dydz

=
1

2π

∫

R2

√
y2 + z2

+∞∑

a=0

Ha(y)
λa

a!

+∞∑

b=0

Hb(z)
µb

b!
e−

y2+z2

2 dydz

=

+∞∑

a,b=0




1

a!b!2π

∫

R2

√
y2 + z2Ha(y)Hb(z)e

− y2+z2

2 dydz

︸ ︷︷ ︸
:=d(a,b)


λaµb. (3.42)

By the same reasoning as above, if a or b is odd, then d(a, b) in (3.42) must vanish. By
combining the expansions in (3.41) and (3.42), we have

α2n,2m =
1

2π

∫

R2

√
y2 + z2H2n(y)H2m(z)e−

y2+z2

2 dydz

= (2n)!(2m)!
(−1)m+n

2n+m

∑

j

(−1)j
∏1+j

i=1 (2i− 1)
√

π
2

2jj!Γ(1 + j)

j∑

l=0

(j
l

)

(n− l)!(m+ l − j)!
. (3.43)

The equality (3.30) now follows from (3.43) and some computations:

α2n,2m =
1

2π

∫

R2

√
y2 + z2H2n(y)H2m(z)e−

y2+z2

2 dydz

= (2n)!(2m)!
(−1)m+n

2n+m

∑

j

(−1)j
∏1+j

i=1 (2i − 1)
√

π
2

2jj!Γ(1 + j)

j∑

l=0

(j
l

)

(n− l)!(m+ l − j)!

= (2n)!(2m)!
(−1)m+n

2n+m

∑

j

(−1)j
(2j + 1)!!

√
π
2

2j(j!)2

j∑

l=0

(j
l

)

(n− l)!(m+ l − j)!

=
(2n)!(2m)!

n!m!

(−1)m+n

2n+m

n+m∑

j=0

(−1)j
(2j + 1)!!

√
π
2

2jj!

j∑

l=0

(
n

l

)(
m

j − l

)

=

√
π

2

(2n)!(2m)!

n!m!

(−1)m+n

2n+m

n+m∑

j=0

(−1)j
(2j + 1)!!

2jj!

(
n+m

j

)

=

√
π

2

(2n)!(2m)!

n!m!

(−1)m+n

2n+m

n+m∑

j=0

(−1)j
(2(j + 1))!

2j+12jj!(j + 1)!

(
n+m

j

)

=

√
π

2

(2n)!(2m)!

n!m!

(−1)m+n

2n+m

n+m∑

j=0

(−1)j
(2j + 1)!

22j(j!)2

(
n+m

j

)
.

Proof of Proposition 3.2. In view of Definition 2.1, the computations in Lemma 3.4
and Lemma 3.5 (together with the fact that the three random variables Tn(x), ∂1T̃n(x) and
∂2T̃n(x) are stochastically independent, as recalled above) show that, for fixed x ∈ T, the
projection of the random variable

1

2ε
1[−ε,ε](Tn(x))

√
∂1T̃n(x)2 + ∂2T̃n(x)2
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onto each odd chaos vanishes, whereas the projection onto the chaos C2q, for q ≥ 1, equals

q∑

u=0

u∑

m=0

α2m,2u−2mβε
2q−2u

(2m)!(2u − 2m)!(2q − 2u)!
H2q−2u(Tn(x))H2m(∂1T̃n(x))H2u−2m(∂2T̃n(x)).

Since
∫
T
dx < ∞, standard arguments based on Jensen’s inequality and dominated conver-

gence yield that Lε
n[q] = 0 if q is odd and for every q ≥ 1,

Lε
n[2q]

=

√
4π2n

2

q∑

u=0

u∑

m=0

α2m,2u−2mβε
2q−2u

(2m)!(2u − 2m)!(2q − 2u)!
×

×
∫

T

H2q−2u(Tn(x))H2m(∂1T̃n(x))H2u−2m(∂2T̃n(x)) dx.

In view of Lemma 3.3 and (2.18) one has that for every q ≥ 0, as ε → 0, Lε
n[q] necessarily

converge to Ln[q] in L2. We just proved that

Lε
n[q] = 0

for q = 2m+ 1 as stated in part (a) of Proposition 3.2. Moreover, using (3.35), we deduce
from this fact that representation (3.31) in part (b) of Proposition 3.2 is valid. To complete
the proof of part (a) of Proposition 3.2, we need first to show that that Ln[2] = 0. From
the previous discussion we deduce that Ln[2] equals

Ln[2] =
√
4π2

√
n

2

(
α0,0β2

2

∫

T

H2(Tn(x)) dx+
α0,2β0

2

∫

T

H2(∂2T̃n(x)) dx

+
α2,0β0

2

∫

T

H2(∂1T̃n(x)) dx

)
.

(3.44)

Since H2(x) = x2 − 1, we may write

∫

T

H2(Tn(x)) dx =

∫

T

(
Tn(x)

2 − 1
)
dx =

∫

T


 1

Nn

∑

λ,λ′∈Λn

aλaλ′eλ−λ′(x)− 1


 dx

=
1

Nn

∑

λ,λ′∈Λn

aλaλ′

∫

T

eλ−λ′(x) dx

︸ ︷︷ ︸
δλ

′
λ

−1 =
1

Nn

∑

λ∈Λn

(|aλ|2 − 1),
(3.45)

where δλ
′

λ is the Kronecker symbol. (Observe that E[|aλ|2] = 1, hence the expected value of
the integral

∫
T
H2(Tn(x)) dx is 0, as expected.) Analogously, for j = 1, 2 we have

∫

T

H2(∂j T̃n(x)) dx =

∫

T


 2

n

1

Nn

∑

λ,λ′∈Λn

λjλ
′
jaλaλ′eλ−λ′(x)− 1


 dx

=
2

n

1

Nn

∑

λ∈Λn

λ2
j |aλ|2 − 1 =

1

Nn

2

n

∑

λ∈Λn

λ2
j (|aλ|2 − 1),

(3.46)

where the used Lemma 3.1 to establish the last equality.
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Since α2n,2m = α2m,2n, and in light of (3.45) and (3.46), we may rewrite (3.44) as

Ln[2] =
√
4π2

√
n

2


α0,0β2

2

1

Nn

∑

λ∈Λn

(|aλ|2 − 1) +
α0,2β0

2

1

Nn

2

n

∑

λ∈Λn

(λ2
1 + λ2

2)︸ ︷︷ ︸
=n

(|aλ|2 − 1)




=
√
4π2

√
n

2

1

2Nn


α0,0β2

∑

λ∈Λn

(|aλ|2 − 1) + 2α0,2β0
∑

λ∈Λn

(|aλ|2 − 1)




=
√
4π2

√
n

2

1

2Nn
(α0,0β2 + 2α0,2β0)

∑

λ∈Λn

(|aλ|2 − 1).

(3.47)

Since

α0,0 =

√
π

2
, α0,2 = α2,0 =

1

2

√
π

2
, β0 =

1√
2π

, β2 = − 1√
2π

by some explicit computations, (3.47) reads

Ln[2] =
√
4π2

√
n

2

1

2Nn

(
−
√

π

2

1√
2π

+ 2
1

2

√
π

2

1√
2π

) ∑

λ∈Λn

(|aλ|2 − 1)

=
√
4π2

√
n

2

1

2Nn

(
−1

2
+

1

2

) ∑

λ∈Λn

(|aλ|2 − 1) = 0.

The proof of Proposition 3.2 is hence concluded, in view of (2.18).

4 Proofs of Proposition 2.2 and Proposition 2.3

One of the main findings of the present paper is that, for any sequence {nj} such that

Nnj → ∞ and |µ̂nj (4)| converges, the distribution of the normalised sequence {L̃nj} in
(1.10) is asymptotic to one of its fourth-order chaotic projections. The aim of this section
is a precise analysis of the asymptotic behavior of the sequence

Lnj [4]√
Var(Lnj [4])

, j ≥ 1.

which will allow us to prove Proposition 2.2 and Proposition 2.3.

4.1 Preliminary results

Here we state the key tools for our proofs: first an explicit formula for Lnj [4] and then a
Central Limit Theorem for some of its ingredients. First we need some intermediate results,
whose proofs follow immediately from the fact that, for every n ∈ S,

µ̂n(4) =
1

n2Nn

∑

λ=(λ1,λ2)∈Λn

(
λ4
1 + λ4

2 − 6λ2
1λ

2
2

)
,

as well as from elementary symmetry considerations.
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Lemma 4.1. For every n ∈ S we have

1

n2Nn

∑

λ=(λ1,λ2)∈Λn

λ4
ℓ =

3 + µ̂n(4)

8
,

where ℓ = 1, 2, and moreover

1

n2Nn

∑

λ=(λ1,λ2)∈Λn

λ2
1λ

2
2 =

1− µ̂n(4)

8
.

Let us state now the above mentioned CLT result. Let us define, for n ∈ S,

W (n) :=




W1(n)
W2(n)
W3(n)
W4(n)


 :=

1

n
√

Nn/2

∑

λ=(λ1,λ2)∈Λn

λ2>0

(
|aλ|2 − 1

)



n
λ2
1

λ2
2

λ1λ2


 . (4.48)

Exploiting the representation (3.31) in the case q = 2, one can show the following.

Lemma 4.2. We have, for diverging subsequences {nj} ⊆ S such that Nnj → +∞ and
µ̂nj (4) converges,

Lnj [4] =

√
Enj

512N 2
nj

(
1 +W1(nj)

2 − 2W2(nj)
2 − 2W3(nj)

2 − 4W4(nj)
2 + oP(1)

)
. (4.49)

The proof of Lemma 4.2 will be given in §5.

Lemma 4.3. Assume that the subsequence {nj} ⊆ S is such that Nnj → +∞ and µ̂nj(4) →
η ∈ [−1, 1]. Then, as nj → ∞, the following CLT holds:

W (nj)
d−→ Z(η) =




Z1

Z2

Z3

Z4


 , (4.50)

where Z(η) is a centered Gaussian vector with covariance

Σ = Σ(η) =




1 1
2

1
2 0

1
2

3+η
8

1−η
8 0

1
2

1−η
8

3+η
8 0

0 0 0 1−η
8


 . (4.51)

The eigenvalues of Σ are 0, 32 ,
1−η
8 , 1+η

4 and hence, in particular, Σ is singular.

Proof. Each component of the vector W (nj) is an element of the second Wiener chaos
associated with A (see §2.1). As a consequence, by e.g. [N-P, Theorem 6.2.3], to prove
the desired result it is sufficient to establish the following relations (as nj → ∞): (a) the
covariance matrix ofW (nj) converges to Σ, and (b) for every k = 1, 2, 3, 4, Wk(nj) converges
in distribution to a one-dimensional centered Gaussian random variable. Part (a) follows by
a direct computation based on Lemma 4.1, as well as on the fact that the random variables
in the set {

|aλ|2 − 1 : λ ∈ Λnj , λ2 > 0
}
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are centered, independent, identically distributed and unit variance. To prove part (b),
write Λ+

nj
:= {λ ∈ Λnj , λ2 > 0} and observe that, for every k and every nj, the random

variable Wk(nj) is of the form

Wk(nj) =
∑

λ∈Λ+
nj

ck(nj , λ)× (|aλ|2 − 1)

where {ck(nj, λ)} is a collection of positive deterministic coefficients such that

max
λ∈Λ+

nj

ck(nj , λ) → 0,

as nj → ∞. An application of the Lindeberg criterion, e.g. in the quantitative form stated
in [N-P, Proposition 11.1.3], yields that Wk(nj) converges in distribution to a Gaussian
random variable. Since it is easy to verify the claimed eigenvalues of Σ in (4.51) via an
explicit computation, this concludes the proof of Lemma 4.2.

4.2 Proof of Proposition 2.2: asymptotic behaviour of Ln[4]

Proof of Proposition 2.2 assuming Lemma 4.2. Let {nj} ⊆ S be such that Nnj → ∞
and |µ̂nj(4)| → η ∈ [0, 1]. For each subsequence {n′

j} ⊆ {nj} there exists a subsubsequence
{n′′

j } ⊆ {n′
j} such that it holds either (i) µ̂n′′

j
(4) → η or (ii) µ̂n′′

j
(4) → −η. Set

v(n′′
j ) :=

√√√√ En′′
j

512N 2
n′′
j

, j ≥ 1.

Then, as n′′
j → ∞

Q(n′′
j ) :=

Ln′′
j
[4]

v(n′′
j )

d−→ 1 + Z2
1 − 2Z2

2 − 2Z2
3 − 4Z2

4 , (4.52)

by Lemma 4.3 and Lemma 4.2; here Z = Z(η) ∈ R
4 is as in (4.50), i.e. a centred Gaussian

4-variate vector with covariance matrix as in (4.51).
Actually, the multidimensional CLT stated in (4.50) implies that

(W1(nj)
2,W2(nj)

2,W3(nj)
2,W4(nj)

2)
d−→ (Z2

1 , Z
2
2 , Z

2
3 , Z

2
4 ).

A simple computation of Gaussian moments now yields

Var
(
Z2
1 − 2Z2

2 − 2Z2
3 − 4Z2

4

)

= 2 + 8

(
3 + η

8

)2

+ 8

(
3 + η

8

)2

+ 32

(
1− η

8

)2

− 2− 2 + 4

(
1− η

4

)2

= η2 + 1,

entailing in particular that Var
(
Z2
1 − 2Z2

2 − 2Z2
3 − 4Z2

4

)
is the same in both cases (i) – (ii).

We can rewrite (4.52) as, for n′′
j → +∞,

Ln′′
j
[4]

√
1 + η2 v(n′′

j )

d−→ 1√
1 + η2

(1 + Z2
1 − 2Z2

2 − 2Z2
3 − 4Z2

4 ).
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A direct computation (obtained e.g. by diagonalising the covariance matrix Σ appearing in
(4.51)) reveals that, in both cases (i)–(ii), the random variable

1√
1 + η2

(
1 + Z2

1 − 2Z2
2 − 2Z2

3 − 4Z2
4

)

has the same law as Mη, as defined in (1.11). Therefore in particular we have

Lnj [4]√
1 + η2 v(nj)

d−→ 1√
1 + η2

(1 + Z2
1 − 2Z2

2 − 2Z2
3 − 4Z2

4 ). (4.53)

To conclude, it is enough to note that from (4.53), since we are in a fixed Wiener chaos (see
[N-P] e.g.) we can take the limit of the variance on the left-hand side as the variance of the
limit on the right-hand side, thus obtaining (2.20).

4.3 Proof of Proposition 2.3: Lnj
[4] dominates Lnj

Now we are able to prove one of the main findings in this paper, i.e. that the fourth-chaotic
projection and the total nodal length have the same asymptotic behavior.

Proof. Let us first prove (2.22). Note that (1.9) and Proposition 2.2 immediately give
(2.22) i.e., as Nnj → +∞,

Var(Lnj ) ∼ Var(Lnj [4]).

Now let us show that (2.22) is equivalent to (2.21).
Since different chaotic projections are orthogonal in L2, from part (b) of Proposition 3.2

we have

Var(Lnj) = Var(Lnj [4]) +

+∞∑

q=3

Var(Lnj(2q)) (4.54)

or, equivalently,

Var(Lnj − Lnj [4]) =

+∞∑

q=3

Var(Lnj (2q)). (4.55)

(2.22) and (4.54) entail that

+∞∑

q=3

Var(Lnj (2q)) = o
(
Var(Lnj [4])

)
, (4.56)

hence using (2.20) in (4.56) we get (2.21).
Conversely, if (2.21) holds, keeping in mind (2.20) from (4.55) we have (4.56). Let us

substitute (4.56) in (4.54): we immediately have (2.22).
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5 Proof of Lemma 4.2: explicit formula for Lnj
[4]

Consider the following representation of Lnj [4], that is a particular case q = 2 of (3.31):

Lnj [4] =
√
4π2

√
n

2

(α0,0β4
4!

∫

T

H4(Tn(x)) dx (5.57)

+
α0,4β0
4!

∫

T

H4(∂2T̃n(x)) dx+
α4,0β0
4!

∫

T

H4(∂1T̃n(x)) dx+

+
α0,2β2
2!2!

∫

T

H2(Tn(x))H2(∂2T̃n(x)) dx

+
α2,0β2
2!2!

∫

T

H2(Tn(x))H2(∂1T̃n(x)) dx +

+
α2,2β0
2!2!

∫

T

H2(∂1T̃n(x))H2(∂2T̃n(x)) dx
)
,

where the coefficients α·,· and β· are defined according to equation (3.30) and equation
(3.29), respectively.

5.1 Auxiliary results

The next four lemmas yield a useful representations for the six summands appearing on the
right-hand side of (5.57). In what follows, n ∈ S and, moreover, to simplify the discussion
we will sometimes use the shorthand

∑

λ

=
∑

λ=(λ1,λ2)∈Λn

,
∑

λ,λ′

=
∑

λ,λ′∈Λn

and
∑

λ:λ2>0

=
∑

λ=(λ1,λ2)∈Λn

λ2>0

,

in such a way that the exact value of the integer n will always be clear from the context.
Also, the symbol {nj} will always denote a subsequence of integers contained in S such

that Nnj → ∞ and µ̂nj(4) → η ∈ [−1, 1], as nj → ∞. As before, we write ‘
P−→’ to denote

convergence in probability, and we use the symbol oP(1) to denote a sequence of random
variables converging to zero in probability, as Nn → ∞.

Following [K-K-W], we will abundantly use the fine structure of the length-4 spectral
correlation set:

Sn(4) := {(λ, λ′, λ′′, λ′′′) ∈ (Λn)
4 : λ+ · · · + λ′′′ = 0}. (5.58)

Lemma 5.1 ([K-K-W], p. 31). Let Sn(4) be the length-4 spectral correlation set defined in
(5.58). Then Sn(4) is the disjoint union

Sn(4) = An(4) ∪Bn(4),

where An(4) is all the 3 permutations of

Ãn(4) = {(λ, λ′,−λ,−λ′) : λ, λ′ ∈ Λn, λ 6= λ′},

and Bn(4) is all the 3 permutations of

B̃n(4) = {(λ, λ,−λ,−λ) : λ ∈ Λn}.

In particular, using the inclusion-exclusion principle,

|Sn(4)| = 3Nn(Nn − 1).
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Lemma 5.2. One has the following representation:

∫

T

H4(Tn(x)) dx =
6

Nn


 1√

Nn/2

∑

λ:λ2>0

(|aλ|2 − 1) + oP(1)




2

− 3

N 2
n

∑

λ

|aλ|4. (5.59)

Also, as nj → ∞,
3

Nnj

∑

λ

|aλ|4 P−→ 6. (5.60)

Proof. Using the explicit expression H4(x) = x4 − 6x2 + 3, we deduce that

∫

T

H4(Tn(x)) dx =

∫

T

(
Tn(x)

4 − 6Tn(x)
2 + 3

)
dx

=
1

N 2
n

∑

λ,...,λ′′′∈Λn

aλaλ′aλ′′aλ′′′

∫

T

exp(2πi〈λ − λ′ + λ′′ − λ′′′, x〉) dx+

− 6
1

Nn

∑

λ,λ′∈Λn

aλaλ′

∫

T

exp(2πi〈λ− λ′, x〉) dx+ 3

=
1

N 2
n

∑

λ−λ′+λ′′−λ′′′=0

aλaλ′aλ′′aλ′′′ − 6
1

Nn

∑

λ∈Λn

|aλ|2 + 3, (5.61)

where the summation with the subscript λ − λ′ + λ′′ − λ′′′ = 0 is over (λ,−λ′, λ′′,−λ′′′) ∈
Sn(4). By the fine structure of Sn(4) described in Lemma 5.1, the right-hand side of (5.61)
simplifies to

∫

T

H4(Tn(x)) dx = 3
1

N 2
n

( ∑

λ,λ′∈Λn

|aλ|2|aλ′ |2 −
∑

λ

|aλ|4
)
− 6

1

Nn

∑

λ∈Λn

|aλ|2 + 3

= 3
1

Nn

( 1√
Nn

∑

λ∈Λn

(|aλ|2 − 1)
)2

− 3
1

N 2
n

∑

λ∈Λn

|aλ|4

=
6

Nn


 1√

Nn/2

∑

λ:λ2>0

(|aλ|2 − 1) + oP(1)




2

− 3

N 2
n

∑

λ

|aλ|4,

where oP(1) = 0 if n1/2 is not an integer, otherwise

oP(1) = (Nnj/2)
−1/2(|a(n1/2,0)|2 − 1),

thus yielding (5.59) immediately. The limit (5.60) follows from a standard application of
the law of large numbers to the sum,

3

Nnj

∑

λ

|aλ|4 =
3

Nnj/2

∑

λ:λ2>0

|aλ|4 + oP(1),

as well all the variables aλ are i.i.d with

E
[
|aλ|4

]
= 2.

23



Lemma 5.3. For ℓ = 1, 2,

∫

T

H4(∂ℓT̃n(x)) dx =
24

Nn


 1√

Nn/2

∑

λ,λ2>0

(
λ2
ℓ

n

(
|aλ|2 − 1

))
+ oP(1)




2

−
(
2

n

)2 3

N 2
n

∑

λ

λ4
ℓ |aλ|4.

Moreover, as nj → ∞,

(
2

nj

)2 3

Nnj

∑

λ

λ4
ℓ |aλ|4

P−→ 3(3 + η).

Proof. The proof is similar to that of Lemma 5.2. We have that

∫

T

H4(∂ℓT̃n(x)) dx =

∫

T

(∂ℓT̃n(x)
4 − 6∂ℓT̃n(x)

2 + 3) dx

=
1

N 2
n

4

n2

∑

λ,...,λ′′′∈Λn

λℓλ
′
ℓλ

′′
ℓλ

′′′
ℓ aλaλ′aλ′′aλ′′′

∫

T

exp(2πi〈λ− λ′ + λ′′ − λ′′′, x〉) dx +

−6
1

Nn

2

n

∑

λ,λ′

λℓλ
′
ℓaλaλ′

∫

T

exp(2πi〈λ − λ′, x〉) dx + 3

=
1

N 2
n

4

n2

∑

λ−λ′+λ′′−λ′′′=0

λℓλ
′
ℓλ

′′
ℓλ

′′′
ℓ aλaλ′aλ′′aλ′′′ − 6

1

Nn

2

n

∑

λ∈Λn

λ2
ℓ |aλ|2 + 3

=
3

N 2
n

4

n2


∑

λ,λ′

λ2
ℓ (λ

′
ℓ)

2|aλ|2|aλ′ |2 −
∑

λ

λ4
ℓ |aλ|4


− 6

1

Nn

2

n

∑

λ∈Λn

λ2
ℓ |aλ|2 + 3

=
24

Nn


 1√

Nn/2

∑

λ,λ2>0

(
λ2
ℓ

n

(
|aλ|2 − 1

))
+ oP(1)



2

−
(
2

n

)2 3

N 2
n

∑

λ

λ4
ℓ |aλ|4. (5.62)

To conclude the proof, we first observe that the last term in the rhs of (5.62) may be written
as

(
2

nj

)2 3

Nnj

∑

λ

λ4
ℓ |aλ|4

= oP(1) +

(
2

nj

)2 3

Nnj/2

∑

λ:λ2>0

λ4
ℓ(|aλ|4 − 2)

︸ ︷︷ ︸
=:K1(nj)

+
24

n2
jNnj

∑

λ

λ4
ℓ

︸ ︷︷ ︸
=:K2(nj)

. (5.63)

Now for the last term in the rhs of (5.63) we have from Lemma 4.1

K2(nj) = 3(3 + µ̂n(4)),

so that the conclusion follows from the fact that µ̂n(4) → η, as well as from the fact that,
since the random variables {|aλ|4−2 : λ ∈ Λnj , λ2 > 0} inK1(nj) are i.i.d., square-integrable
and centered and λ4

ℓ/n
2 ≤ 1, EK1(nj)

2 = O(N−1
nj

) → 0.
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Lemma 5.4. One has that
∫

T

H2(Tn(x))
(
H2(∂1T̃n(x)) +H2(∂2T̃n(x))

)
dx (5.64)

=
4

Nn


 1√

Nn/2

∑

λ,λ2>0

(
|aλ|2 − 1

)
+ oP(1)




2

− 2

N 2
n

∑

λ

|aλ′ |4.

Proof. For ℓ = 1, 2,

∫

T

H2(Tn(x))H2(∂ℓT̃n(x)) dx =

∫

T

(Tn(x)
2 − 1)(∂ℓT̃n(x)

2 − 1) dx

=

∫

T


 1

Nn

∑

λ,λ′

aλaλ′eλ(x)e−λ′(x)− 1




 2

n

1

Nn

∑

λ′′,λ′′′

λ′′
ℓλ

′′′
ℓ aλ′′aλ′′′eλ′′(x)e−λ′′′(x)− 1


 dx

=
2

n

1

N 2
n

∑

λ−λ′+λ′′−λ′′′=0

λ′′
ℓλ

′′′
ℓ aλaλ′aλ′′aλ′′′ − 1

Nn

∑

λ

|aλ|2 −
2

n

1

Nn

∑

λ

λ2
ℓ |aλ|2 + 1. (5.65)

An application of the inclusion-exclusion principle yields that the first summand in the rhs
of (5.65) equals

2

n

1

N 2
n

∑

λ−λ′+λ′′−λ′′′=0

λ′′
ℓλ

′′′
ℓ aλaλ′aλ′′aλ′′′ (5.66)

=
2

n

1

N 2
n


∑

λ,λ′

λ2
j |aλ|2|aλ′ |2 + 2

∑

λ,λ′

λjλ
′
j|aλ|2|aλ′ |2 − 2

∑

λ

λ2
j |aλ|4 +

∑

λ

λ2
j |aλ|4


 .

Using the relation a−λ = aλ, we also infer that

∑

λ,λ′

λjλ
′
j|aλ|2|aλ′ |2 =

(∑

λ

λj|aλ|2
)2

= 0. (5.67)

Substituting (5.67) into (5.66) and then (5.66) into (5.65) we rewrite (5.65) as

∫

T

H2(Tn(x))H2(∂ℓT̃n(x)) dx

=
2

n

1

N 2
n


∑

λ,λ′

λ2
j |aλ|2|aλ′ |2 −

∑

λ

λ2
j |aλ|4


− 1

Nn

∑

λ

|aλ|2 (5.68)

− 2

n

1

Nn

∑

λ

λ2
ℓ |aλ|2 + 1.

Summing the terms corresponding to ∂1 and ∂2 up, i.e. (5.68) for ℓ = 1 and ℓ = 2, we
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deduce that the lhs of (5.64) equals

∫

T

H2(Tn(x))
(
H2(∂1T̃n(x)) +H2(∂2T̃n(x))

)
dx

=
2

n

1

N 2
n


∑

λ,λ′

(
λ2
1 + λ2

2

)
|aλ|2|aλ′ |2 −

∑

λ

(
λ2
1 + λ2

2

)
|aλ′ |4




− 2

Nn

∑

λ

|aλ|2 −
2

n

1

Nn

∑

λ

(
λ2
1 + λ2

2

)
|aλ|2 + 2

=
2

n

1

N 2
n


∑

λ,λ′

n|aλ|2|aλ′ |2 −
∑

λ

n|aλ′ |4

− 2

Nn

∑

λ

|aλ|2 −
2

n

1

Nn

∑

λ

n|aλ|2 + 2

= 2
1

N 2
n


∑

λ,λ′

|aλ|2|aλ′ |2 −
∑

λ

|aλ′ |4

− 2

Nn

∑

λ

|aλ|2 −
2

Nn

∑

λ

|aλ|2 + 2

=
2

Nn




√
2√

Nn/2

∑

λ,λ2>0

(
|aλ|2 − 1

)
+ oP(1)




2

− 2

N 2
n

∑

λ

|aλ′ |4,

which equals to the rhs of (5.64).

Our last lemma allows one to deal with the most challenging term appearing in (5.57).

Lemma 5.5. We have that
∫

H2(∂1T̃n)H2(∂2T̃n) dx

= −4


 1√

Nn/2

1

n

∑

λ,λ2>0

λ2
2(|aλ|2 − 1)



2

− 4


 1√

Nn/2

1

n

∑

λ,λ2>0
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and the following convergence takes place as nj → ∞:
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n2
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1

N 2
nj
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λ

λ2
1λ

2
2|aλ|4

P−→ 3(1− η). (5.69)

Proof. One has that
∫

H2(∂1T̃n)H2(∂2T̃n)dx =
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N 2
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(5.70)
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First of all, we note that for the first two terms in (5.70)

E

[
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n

1
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∑

λ

(λ2
1 + λ2

2)|aλ|2
]
= E

[
2

Nn

∑

λ

|aλ|2
]
= 2.

Let us now focus on (5.70). Using the structure of S4(n) in Lemma 5.1, we obtain

4

n2

1

N 2
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=
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 .

Let us now denote

A :=
4
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D :=
4
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N 2
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n
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∑
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N 2
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2

4

}
, (5.73)

so that (5.70) with (5.71) read

∫
H2(∂1T̃n)H2(∂2T̃n) dx = A+B + C +D. (5.74)

We have that
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which we may rewrite as
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From (5.73) and (5.75), we get
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(5.76)
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On the other hand,
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. (5.77)

The first statement of Lemma 5.5 then follows upon substituting (5.76), (5.77) and (5.72)
into (5.74).
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Now to prove (5.69) it suffices to write
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= oP(1) +
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and then Lemma 4.1 and an argument similar to the one that concluded the proof of Lemma
5.3 allow to prove the result.

5.2 Proof of Lemma 4.2: technical computations

Substituting the results of Lemmas 5.2-5.5 into (5.57) we obtain, as nj → +∞,
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(5.79)

where R̃(nj) is a sequence of random variables converging in probability to some constant
∈ R. Computing the coefficients α·,· (see (3.30)) and β· (see (3.29)), from (5.79) we obtain
that, as nj → +∞,

Lnj [4] =

√
Enj

512N 2
nj

(
W1(nj)

2 − 2W2(nj)
2 − 2W3(nj)

2 − 4W4(nj)
2 +R(nj)

)
,

where Wk(nj), k = 1, 2, 3, 4 are as in (4.48) and R(nj) is a sequence of random variables
converging in probability to 1. The proof is now complete.
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