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Abstract. Discontinuous-Galerkin schemes are presented for convective flow approxima-
tion in reservoir simulation. The methods are compared with slope limited MUSCL and
TVD schemes.

Standard reservoir simulation schemes employ single-point upstream weighting (first
order upwind) for approximation of the convective fluxes when multiple phases or com-
ponents are present. Higher order upwind approximations have also been developed, in-
cluding higher order Godunov schemes. These schemes require a characteristic decom-
position when applied to hyperbolic systems with multiple phases or components present.
The decomposition leads to optimal upwind schemes where upwind directions are resolved
according to characteristic wave components. However the decomposition adds further
complexity and additional computation is required to account for the decomposition ma-
trices.

This paper presents novel Discontinuous-Galerkin schemes for reservoir simulation that
permit reconstruction of stable higher order monotonicity preserving approximations while
avoiding dependence upon both upwinding and characteristic decomposition. The schemes
are formulated within a locally conservative finite volume framework.

Results are presented for gravity driven flows, where the wave direction changes sign
(reverse flow). Results obtained with the new schemes indicate a competitive comparison
with the other higher order schemes.

1 INTRODUCTION

Standard reservoir simulation schemes employ single-point upstream weighting14 (first
order upwind scheme) for approximation of the convective fluxes when multiple phases or
components are present. The aim here is to devise robust, accurate, and efficient methods
that are entropy satisfying and free of spurious oscillations.

1



S. Lamine and M.G. Edwards

Higher order upwind approximations have been developed for two phase flow multi-
component flow, including higher order Godunov schemes15,16. These schemes require a
characteristic decomposition when applied to hyperbolic systems modeling a multicompo-
nent multiphase flow. The decomposition leads to optimal upwind schemes where upwind
directions are resolved according to characteristic wave components. However the de-
composition adds further complexity and additional computation is required to account
for the decomposition matrices12,18. Componentwise limiting is faster than characteris-
tic limiting and implementation is much simpler for coupled multicomponent multiphase
systems.

The discontinuous galerkin (DG) method has been shown to be very attractive for
compact higher order approximation of hyperbolic conservation laws3,4,5,17. The method
is locally conservative and considered to be a generalisation of finite volume methods.
The idea converts numerical fluxes with slope limiters into the finite element framework
in a very natural way. They are able to capture the entropy satisfying discontinuities
without producing spurious oscillations. While the DG approximate solution itself may
not be monotonic, the averages on the control volumes, are proven to be monotonicity
preserving3. Upwind Discontinuous Galerkin (DG) has be is shown to be an efficient
method for hyperbolic laws in compositional modeling compared to first order finite dif-
ference methods17.

This paper presents novel locally conservative non upwind DG schemes for reservoir
simulation that permit reconstruction of stable higher order monotonicity preserving ap-
proximations while avoiding dependence upon both upwinding and characteristic decom-
position. The schemes are formulated within a locally conservative finite volume frame-
work. Comparison between the new non upwind schemes and non upwind high order
MUSCL (Monotone Upstream Centered Scheme for Conservation Laws)18 methods is pre-
sented. In this paper, we restrict our study to the one space dimension case. Application
of RKDG to multidimensional results is the subject of current research.

2 FLOW EQUATIONS

Without loss of generality in terms of the numerical methods applicability, the schemes
presented here are illustrated with respect to two phase flow and three component two
phase flow models, with unit porosity and where the capillary pressure and dispersion are
neglected.

2.1 Two phase flow

We consider a water-oil two phase flow model. In the following, phase quantities
bear suffices a for the aqueous phase (water) and o for the oil phase. The conservation
equations for a two phase flow, in the absence of source and sink terms, over the domain
Ω are written as

∫

Ω

∂S

∂t
+

∫

Ω

∂Va

∂x
= 0 (1)
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where S denotes the aqueous phase saturation and Va is the phase velocity defined via
Darcy’s law by

Va = −λaK
∂φ

∂x
+ ρag

∂h

∂x
. (2)

Here, λa and λo are the phase mobilities, K is the medium permeability, ρ is the phase
density and h is the altitude of the reservoir. The saturation of the oil phase is deduced
from the volume balance equation, where saturations sum to one.
Expressing the phase velocity in terms of total velocity VT = Va + Vo as

Va = f(S)(VT − λo∆ρg
∂h

∂x
), (3)

where f is the fractional flow, the incompressible flow condition, in 1-D, reduces to

∂Vt

∂x
= 0, (4)

from which it follows that the total velocity is spatially constant in 1-D for an incom-
pressible flow. Equations (3) and (4) are used to determine pressure and velocity.
Boundary conditions involve specifying initial saturation field with saturation specified at
an injection well, here the pressure is specified at the production well.
Further details of flow equations are described in14.

2.2 Three component flow

The system considered here is comprised of an aqueous phase (water and polymer
concentration) together with an oil phase. Define C to be the component concentration
in the miscible phase. The conservation equation over Ω in the absence of source and sink
terms writes as

∫

Ω

∂S

∂t
+

∫

Ω

∂F(S)

∂x
= 0, (5)

subject to initial boundary conditions, where S = (S, SC)T denote the vector of conser-
vative variables and F(S) = (Va, CVa) is the nonlinear flux vector, C = (S, C)T denotes
the vector primitive variables.. The phase velocity is defined by equations (2) and (3).

3 LOCALLY CONSERVATIVE FIRST ORDER APPROXIMATION

We consider schemes in one dimension on Ω = [0, 1] with discrete nodes xj = j∆x and
time tn = n∆t. Defining xj+1/2 = xj+xj+1

2
, {Ij}j=1..N with Ij = (xj−1/2, xj+1/2) form an

equidistant partition of Ω.
Before moving to systems we briefly recall that for a scalar equation of the form

∂S

∂t
+

∂f(S)

∂x
= 0, (6)

subject to initial boundary data.
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3.1 Locally conservative upwind approximation

The standard explicit first order upwind scheme can be written as

Sn+1
j = Sn

j −
∆t

∆x
(fn

j+1/2 − fn
j−1/2) (7)

where the approximate flux is defined by

fn
j+1/2 =

1

2
[(fn

j+1 + fn
j )− | λj+1/2 | (Sn

j+1 − Sn
j )] (8)

where

λj+1/2 =

{ fj+1−fj

Sj+1−Sj
, | Sj+1 − Sj |≥ ε;

∂f
∂S

, | Sj+1 − Sj |≤ ε.
(9)

This definition of wave speed ensures that shocks are captured with precision for any
finite jump in Sj with λj+1/2 assuming the Rankine-Hugoniot shock speed across a mesh
interval. In this form the first order scheme appears as a central scheme and is comprised
of a central difference in flux with a central difference of a specific diffusion term. The
scheme can be seen in its original upwind form by noting that for a positive wave speed
the flux uses data to the left and reduces to fj+1/2 = f(Sj), otherwise fj+1/2 = f(Sj+1)
and the flux uses data to the right as with single point upstream weighting. While the
definition of equations (7), (8) does not require any explicit sign dependence in the scheme,
the upwind directions are clearly detected. This explicit scheme is the most fundamental
scheme for scalar conservation laws in one dimension and is stable, locally conservative
and monotonicity preserving subject to a maximum CFL condition of unity. This scheme
requires an entropy fix to disperse expansion shocks10.

3.2 Systems of hyperbolic equations

In order to apply such a scheme to a system of hyperbolic conservation laws, the
system is first decomposed into characteristic form. Decomposition is performed via the
transformation

∆S = R∆W (10)

where R is the matrix of right eigenvalues of the system Jacobian Matrix A = ∂F
∂S and

the matrix of eigen values Λ is defined via

Λ = R−1AR (11)

and ∆S, ∆W represent the respective conservative and characteristic variable increments.
The upwind scheme is in effect applied to each characteristic wave component and the
discrete system is recomposed into a conservative form. The first order scheme for a
system can be written as

Sn+1
j = Sn

j −
∆t

∆x
(fnj+1/2 − fnj−1/2) (12)

where the approximate flux is defined by
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fnj+1/2 =
1

2
[(fnj+1 + fnj )−R | Λj+1/2 | R−1(Sn

j+1 − Sn
j )] (13)

provided the definition of discrete eigenvalues Λj+1/2 have an appropriate generalization of
equation (8) such that conservation and exact shock speed are maintained. The CFL con-
dition now applies with respect to the maximum eigenvalue of the system. The appearance
of the matrix of eigenvalues Rj+1/2 in the system flux approximation is a consequence of
characteristic component upwinding. This leads to an optimal diffusive operator in terms
of numerical diffusion provided the shock jump criteria can be satisfied for the system in
hand.

4 LOCALLY CONSERVATIVE NON UPWIND SCHEMES (1-D)

4.1 Lax Friedrichs Flux

A well known scheme for systems that is monotonicity preserving and has no sign
independence is due to Lax and Friedrichs, and takes the form

fj+1/2 =
1

2
[(f(SL) + f(SR))− ∆x

∆t
(SR − SL)] (14)

where SL and SR denote the left and right states at the cell interface. In practice, this
scheme is too diffusive. This is due to the extra large coefficient of numerical diffusion
that corresponds to a CFL of unity.

4.2 Rusanov Flux11

A less diffusive scheme of this type can be constructed by noting that if the matrix of
eigenvalues R is proportional to the unit matrix then the dependency of the discrete flux
on the matrix of eigenvalues is removed, leaving a much simpler coefficient of artificial
diffusion. Independence from a characteristic decomposition can be achieved by replacing
| Λj+1/2 | with | ΛRUj+1/2 | where

| ΛRUj+1/2 |= max
[SL,SR]

max
k
| λk

j+1/2(S) | I (15)

where the maximum absolute eigenvalue of the system over the interval of states S in
[SL,SR] is used and multiplies the identity matrix. The maximum over the interval also
ensures that the entropy condition is satisfied by the Rusanov flux. For the system
considered here

| ΛRUj+1/2 |= max
[SL,SR]

{| ∂Va

∂S
|, | Va

S
|}I (16)

The discrete flux takes the form

fj+1/2 =
1

2
[(f(SL) + f(SR))− | ΛRUj+1/2 | (SR − SL)] (17)

The flux of equation (17) is a Local Lax Friedrichs (LLF) based flux18 based on Liu and
Osher in12 for the Euler Equations.
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Since the modulus of each eigenvalue in the diffusion operator is replaced by the max-
imum absolute eigenvalue over the system and local interval, it follows that the price to
pay for this simplification is extra numerical diffusion when compared to characteristic
upwinding for a system. However, the Rusanov flux is always less diffusive than the orig-
inal Lax Friedrichs scheme since the original scheme is based on a uniformly maximum
coefficient of diffusion which effectively corresponds to having a unit CFL in the coefficient
of numerical diffusion.

5 HIGH ORDER GODUNOV TYPE FINITE VOLUME SCHEMES in 1-D

A significant step in the generalization of Godunov’s finite volume method to high
order accuracy is due to van Leer13. Godunov’s method is generalized by employing linear
solution reconstruction in each cell. The basic idea in Godunov’s method is to treat the
averages over the interval, Ij as the basic unknowns and solve the approximate problem
exactly. The process of constructing a high order finite volume method is summarized
below:

1. Data reconstruction: using information from the Ij, higher order piecewise poly-
nomials are reconstructed in each interval. Slope limiters are applied to the higher
order data to enforce a local maximum principle and prevent spurious oscillation .

2. Flux evaluation at the interface: An entropy satisfying flux is used to resolve
the approximate solution of the Riemann problem.

3. Time evolution: The favored approach to time accuracy is maintained here via the
use of the Rung Kutta method7, although this would be very expensive for practical
reservoir simulation.

When using the discrete Rusanov flux stated in (17), the extension to high order accu-
racy is simpler to achieve since the non-upwind system formulations have no dependency
upon characteristic variables in this definition of flux. The only spectral pieces of in-
formation needed are modulus of the local highest characteristic wave speeds. For our
case,

ΛRUj+1/2 = max
[SL,SR]

{| ∂Va

∂S
|, | Va

S
|}I. (18)

Consequently, a higher order approximation can be introduced for the left and right states
respectively and be expressed directly in terms of the conservative variables (componen-
twise). In this paper, both conservative and primitive variables are compared.

5.1 Data reconstruction

First, the higher order left and right states are defined using a MUSCL formalism 13.
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5.1.1 Conservative variables

The componentwise higher order reconstruction is written as

SL = Sj +
1

2
Φ(r+

j+1/2)(Sj+1 − Sj), (19)

SR = Sj+1 − 1

2
Φ(r−j+1/2)(Sj+1 − Sj); (20)

where Φ(r±j+1/2) are the slope limiters which are functions of adjacent discrete gradients

r+
j+1/2 =

Sj − Sj−1

Sj+1 − Sj

, r−j+1/2 =
Sj+2 − Sj+1

Sj+1 − Sj

. (21)

5.1.2 Primitive variables

Writing the scheme using the primitive variables gives

SL = Sj +
1

2
PΦ(r+

j+1/2)(Cj+1 −Cj) (22)

SR = Sj+1 − 1

2
PΦ(r−j+1/2)(Cj+1 −Cj) (23)

where P denotes the transformation matrix between conservative and primitive vari-
ables. The slope limiters Φ(r±j+1/2) are functions of

r+
j+1/2 =

Cj −Cj−1

Cj+1 −Cj

, r−j+1/2 =
Cj+2 −Cj+1

Cj+1 −Cj

. (24)

5.2 Monotonicity

Both the Minmod and the Superbee limiters20 are used in this paper. The Fromm
limiter which is precisely Van Leer’s original limiter 13 is defined by

ΦFromm(r) = max(0, min(2r, 2,
1 + r

2
)). (25)

which has been proven to be the most reliable.

5.3 Incorporating the monotone numerical flux

Then, the Rusanov flux described in (17) is applied to the higher order data so that
the Riemann problem is resolved with a higher order flux of the form

fj+1/2 =
1

2
[(f(SL) + f(SR))− | ΛRUj+1/2 | (SR − SL)]. (26)

5.4 Time Stepping

The semi discrete formulation of the scheme is written as
d

dt
Sj = − 1

∆x
[fj+1/2 − fj−1/2] (27)

and is finally integrated using monotonicity preserving Runge Kutta method described in
section 6.3.
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6 FORMULATION OF A NON UPWIND RKDG METHOD

In this section, the RKDG method is briefly introduced for the one dimensional scalar
conservation law. Systems are approximated component by component, except for the
limiting step where the primitive variables are chosen instead of the conservative ones.

6.1 The DG Space Discretisation

In finite element methods, the approximate solution Sh is chosen to belong to a finite-
dimensional space Vh. Its degrees of freedom are then obtained by solving a weak for-
mulation of (6) that is usually obtained by multiplying (6) by a test function vh ∈ Vh,
integrating over suitable domains, and finally integrating by parts. The finite element
used here is a Galerkin method for which

Vh = {p ∈ BV (Ω) ∩ L1(Ω) : p|Ij
∈ P k(Ij)}; (28)

where P k(Ij) is the space of polynomials in Ij of degree at most k on Ij and BV the
space of functions with bounded variation. Note that in Vh, the functions are allowed
to have jumps at the interfaces xj+1/2. This is one of the main differences between the
discontinuous Galerkin method and most of the finite element methods.

6.1.1 Weak formulation

Multiplying equation (6) by arbitrary smooth functions v and integrating over Ij gives
after integration by part:

∫

Ij

∂St(x, t)v(x)dx =
∫

Ij

f(S(x, t))∂xv(x)dx (29)

−(f(S(xj+1/2, t))v(x−j+1/2)− f(S(xj−1/2, t))v(x+
j−1/2)),

Next v is replaced by a test functions in Vh, and the exact solution by the approximate
solution Sh.

6.1.2 Data reconstruction and basis functions

Let {Ψl
j; l = 0..k} be the basis of Legendre polynomials on Ij. The choice of using

Legendre Polynomials stems from their properties to constitute a local L2-orthogonal
basis over Ij, which gives a diagonal mass matrix in the 1-D case.
The approximate solution can be written as

Sh(x, t)|Ij
=

l=k∑

l=0

Sl
j(t)Ψ

l
j(x), (30)

where {Sj
l}l=k

l=0 denote the degrees of freedom of Sh in the interval Ij. Taking vh = Ψl
j

and using the orthogonality property of Ψl
j yields:

8



S. Lamine and M.G. Edwards

∫

Ij

Ψl
j(x)2dx

dSl
j

dt
=

∫

Ij

f(Sh(x, t))∂xΨ
l
j(x)dx (31)

−[fj+1/2(t)Ψ
l
j(xj+1/2)− fj−1/2(t)Ψ

l
j(xj−1/2)].

On the other hand, choosing Ψl
j(x) = Pl(2(x−xj)/∆xj), where Pl denote the Legendre

polynomial of degree l on (−1, 1), we obtain
∫

Ij

Ψl
j(x)2dx =

∆xj

2l + 1
, Ψl

j(xj+1/2) = 1, Ψl
j(xj−1/2) = (−1)l. (32)

The DG space discretisation of (6) reduces to an independent system of ODEs for the
degrees of freedom that can be written in the form:

d

dt
Sl

j = Ll
j(Sh|Ij

) (33)

where

Ll
j =

1

∆xj

∫

Ij

f(Sh(x, t))∂xΨ
l
j(x)dx− 1

∆xj

[fj+1/2(t)− (−1)lfj−1/2(t))]. (34)

Here the local discrete operator Ll
j approximates −f(S)x on Ij. Notice the local property

of this formulation which renders the method highly parallelizable.

6.1.3 Stabilization by local projection limiting

In order to achieve local maximum principle with respect to the means, the recon-
structed values at the interfaces S±j+1/2 need to be modified by some local projection
limiter. Indeed, writing

S−j+1/2 = S̄j + S̃j (35)

S+
j+1/2 = S̄j+1 − ˜̃Sj+1, (36)

the scheme for the means S̄j = 1
∆x

∫
Ij

Sh(x)dx reduces to a semi discrete finite volume
form

d

dt
S̄j = − 1

∆xj

[fj+1/2 − fj−1/2]. (37)

Discontinuous Galerkin methods can be interpreted as a generalization of the finite volume
methods to higher order accuracy via a finite element based data reconstruction operator
R0

k : V 0
h → V k

h , R0
kS̄ = Sh.

Recalling the Legendre polynomials orthogonality properties and that
∫
Ij

Ψl
j(x)dx = 0

for l ≥ 1, we have

S̄j = S0
j , S̃j =

l=k∑

l=1

Sl
j(t),

˜̃Sj = −
l=k∑

l=1

(−1)lSl
j(t). (38)
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Next, the high order data is limited via the use of the restrictive limiter

ΛΠ 1
2
S−j+1/2 = S̄j + m(S̃j,

1

2
∆+S̄j,

1

2
∆−S̄j) (39)

ΛΠ 1
2
S+

j+1/2 = S̄j+1 −m(˜̃Sj+1,
1

2
∆+S̄j+1,

1

2
∆−S̄j+1) (40)

and the less restrictive limiter proposed by Cockburn4

ΛΠ1S
−
j+1/2 = S̄j + m(S̃j, ∆+S̄j, ∆−S̄j) (41)

ΛΠ1S
+
j+1/2 = S̄j+1 −m(˜̃Sj+1, ∆+S̄j+1, ∆−S̄j+1) (42)

This limiter corresponds to adding the minimum amount of numerical diffusion while
preserving the stability of the scheme. The DG method combined with the slope limiters
stated above is proven to be stable19.

In an attempt to reproduce an equivalent to the Fromm limiter described in (25), the
following Fromm type limiter is introduced for the DG method:

ΛΠFrommS−j+1/2 = S̄j + m(min(S̃j,
S̄j+1 − S̄j−1

4
), ∆+S̄j, ∆−S̄j) (43)

ΛΠFrommS+
j+1/2 = S̄j+1 −m(min(˜̃Sj+1,

S̄j+2 − S̄j

4
), ∆+S̄j+1, ∆−S̄j+1) (44)

6.1.4 System of hyperbolic equations

Systems are approximated component by component, except for the limiting step where
either the conservative or the primitive variables are chosen. In the case, where the limiting
affects the primitive variables, Eq’s.(41, 39) take respectively the forms

ΛΠ1S
−
j+1/2 = S̄j + Pm(C̃j, ∆+C̄j, ∆−C̄j) (45)

ΛΠ1S
+
j+1/2 = S̄j+1 −Pm( ˜̃Cj+1, ∆+C̄j+1, ∆−C̄j+1) (46)

and

ΛΠ 1
2
S−j+1/2 = S̄j + Pm(C̃j,

1

2
∆+C̄j,

1

2
∆−C̄j) (47)

ΛΠ 1
2
S+

j+1/2 = S̄j+1 −Pm( ˜̃Cj+1,
1

2
∆+C̄j+1,

1

2
∆−C̄j+1) (48)

and Eq. (43) writes

ΛΠFrommS−j+1/2 = S̄j + Pm(min(C̃j,
C̄j+1 − C̄j−1

4
), ∆+C̄j, ∆−ūj) (49)

ΛΠFrommS+
j+1/2 = S̄j+1 −Pm(min( ˜̃Cj+1,

C̄j+2 − C̄j

4
)), ∆+C̄j+1, ∆−C̄j+1) (50)

where P is the transformation matrix between conservative S and primitive variables C.
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6.2 Incorporating the monotone numerical flux

The discrete approximation is discontinuous at the cell interface xj+1/2 and the non-
linear flux f(S(xj+1/2)) is approximated by a numerical flux h that depends on the two
values of Sh at each side of the interface i.e.

fj+1/2(t) = h(S(x−j+1/2, t), S(x+
j+1/2, t)). (51)

The numerical flux is assumed to be locally lipschitz continuous and satisfies the con-
servation property, the consistency property which is obtained if the numerical flux with
identical state arguments reduces to the true flux of the same state and the monotone
property, which ensures that the scheme converges to the entropy satisfying weak solution.
In this work, Rusanov flux (15) is selected.

6.3 Rung Kutta time discretisation

To discretize the system of ODEs (33), higher-order Runge Kutta time discretizations
are used. As shown by Cockburn4, when polynomials of degree k are used, a Runge Kutta
method of order k + 1 must be used in order to guarantee that the scheme is stable. The
Runge Kutta time discretization introduced in7 is used to integrate the ODE system (33)
in time.

The resulting RKDG method with the slope limiter previously described is proven to
be TVDM (Total Variation Diminishing in the Means) for a scalar equation.
Further details of the method can be found in 3,4,5.

7 NUMERICAL RESULTS in 1D

7.1 Two phase flow

In the case of water-oil two phase flow, both Buckley Leverett with and without grav-
ity fluxes have been implemented. Quadratic mobilities have been considered and the
mobility ratio is set to 1.

For the Buckley Leverett case zero gravity, water is continuously injected at the left
hand boundary and fluid is produced at the right hand side boundary. The computed
and exact water saturation are shown in figures 1-4 at time 0.5 with the prescribed initial
conditions S = 1, x = 0 and S = 0, x > 0.

For the gravity segregation with reverse flow, the computed and exact water saturation
are shown in figures 5-8 at time 1.25 with the prescribed initial conditions initial conditions
are S = 1, x >= 0.5 and S = 0, x < 0.5.

All the results shown have been produced on a grid of 100 nodes.
The second order numerical results using the non upwind high order schemes are dis-

played in Figure 3 and are very similar to those obtained using the upwind flux described
by equations (8), (9) for the Buckley Leverett case, as displayed in Figure 4.

Resolution near the shocks is improved using nonupwind DG and MUSCL schemes
combined with the minmod limiter (Figures 2, 6) comparatively to the first order results
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(Figures 1, 5) as the numerical diffusion near the shock is noticeably reduced. Both DG
and MUSCL using linear reconstructions show similar resolution when the minmod limiter
is used.

The DG shows better overall resolution when using the Fromm limiter (Figures 3, 7).

7.2 Three component two-phase flow

The schemes are compared for gravity segregation with reverse flow. Initial data con-
sists of a vertical aqueous phase column above an oil column of equal volume (95% oil
saturation), separated by a diaphragm which is removed at time t = 0. The heavier
miscible phase moves downwards, creating a shock followed by a constant state, contact
discontinuity due to the polymer and rarefaction wave. The oil moves upwards creating
a shock at the opposite end of the rarefaction. Quadratic relative permeabilities are as-
sumed and the normalised aqueous viscosity is a function of polymer concentration. The
computed and exact water saturation are shown in figures 9-15 at time 1.25, with the
prescribed initial date {

S,C = 0.05, 0.1, x ≤ 0.5;
S,C = 1.0, 07, otherwise.

(52)

The contact discontinuity caused by the linearly degenerate polymer component is
particularly difficult to capture numerically as it is not self sharpening. The saturation
and polymer concentration profiles are heavily smeared by the first order Godunov scheme
scheme (Figure 8), demonstrating that the large amount of numerical diffusion present in
the low-order scheme and rendering it unable to cope with the rarefaction and the contact
discontinuity caused by the polymer. In contrast, excellent resolution of the rarefaction
and shock are obtained by both the DG scheme (Figure 9) with similar resolution to
the higher order MUSCL scheme (Figure 10) using the minmod limiter (most smearing)
applied to the primitive variables for both cases.

A componentwise formulation using conservative variable reconstruction fails to pre-
serve the monotonicity of the solution as both schemes yield oscillatory solution near as
displayed in figures 11 and 12. In contrast, the primitive variable reconstruction schemes
(DG and MUSCL) are oscillation free, with the Fromm limiter giving sharper and mono-
tone profiles. The higher order MUSCL scheme yields a sharper contact discontinuity
using the Fromm limiter. However, our results for three component two phase flow are
found to be over compressive when the least restrictive limiter, (ΛΠ1) is used for the DG,
and accordingly the superbee limiter is applied to the high order MUSCL data.

8 Conclusions

A novel non upwind discontinuous galerkin method is presented for hyperbolic conser-
vation laws in reservoir simulation. The scheme has the following properties:

1. upwind and characteristic decomposition are circumvented, leading to a fundamental
simplification of current methods.

12
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2. Higher order accuracy is achieved in space and time.

3. Local conservation is maintained.

Results are presented for gravity driven flows involving two phase flow and three com-
ponent two phase flow, where the wave direction changes sign (reverse flow) in one dimen-
sion. A new DG limiter is presented which gives the best results in tests to date. Both the
MUSCL Godunov finite volume method and the DG method with linear constructions
yield similar accuracy for the same type of limiter. Both schemes are more accurate and
efficient compared to first order method. However, As the degrees of freedom for the DG
method are twice larger than for the Godunov method in the case of linear rconstruction,
the MUSCL finite volume method shows better efficiency than DG method for the ex-
amples presented. However DG methods may be more appropriate for very high order or
multidimensional approximations.

Finally, this work emphases the importance of using primitive variables and choice
of limiter for nonupwind DG methods in order to preserve the monotonicity without
destroying high order accuracy.
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Figure 1: Buckley Leverett problem with non-upwind Rusanov flux. First Order results.
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Figure 2: P1 results with the minmod limiter and Rusanov non upwind flux for the Buckley Leverett
equation. (a) Discontinuous Galerkin formulation (b) MUSCL formulation
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Figure 3: P1 results with the Fromm type limiter and Rusanov non upwind flux for the Buckley Leverett
equation. (a) Discontinuous Galerkin formulation (b) MUSCL formulation
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Figure 4: P1 results with the Fromm limiter and the upwind flux for the Buckley Leverett equation. (a)
Discontinuous Galerkin formulation (b) MUSCL formulation
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Figure 5: Gravity driven two phase flow with non-upwind Rusanov flux. First Order results.
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Figure 6: P1 results with the minmod limiter and Rusanov non upwind flux for the gravity driven two
phase flow. (a) Discontinuous Galerkin formulation (b) MUSCL formulation
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Figure 7: P1 results with the Fromm type limiter and Rusanov non upwind flux for the gravity driven
two phase flow. (a) Discontinuous Galerkin formulation (b) MUSCL formulation
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Figure 8: Gravity driven three component two phase flow with non-upwind Rusanov flux. First Order.
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Figure 9: P1 Discontinuous Galerkin results with the minmod limiter applied to the primitive variables
and Rusanov non upwind flux for the gravity driven two phase flow. (a) Aqueous saturation (b) Polymer
concentration
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Figure 10: P1 MUSCL results with the minmod limiter applied to the primitive variables and Rusanov
non upwind flux for the gravity driven two phase flow. (a) Aqueous saturation (b) Polymer concentration
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Figure 11: P1 Discontinuous Galerkin results with the minmod limiter applied to the conservative vari-
ables and Rusanov non upwind flux for the gravity driven two phase flow. (a) Aqueous saturation (b)
Polymer concentration
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Figure 12: P1 MUSCL results with the minmod limiter applied to the conservative variables and Rusanov
non upwind flux for the gravity driven two phase flow. (a) Aqueous saturation (b) Polymer concentration
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Figure 13: P1 Discontinuous Galerkin results with the Fromm type limiter applied to the primitive
variables and Rusanov non upwind flux for the gravity driven two phase flow. (a) Aqueous saturation
(b) Polymer concentration
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Figure 14: P1 MUSCL results with the Fromm type limiter applied to the primitive variables and Rusanov
non upwind flux for the gravity driven two phase flow. (a) Aqueous saturation (b) Polymer concentration
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