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Non-V-representability of currents in time-dependent many-particle systems
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We argue that an arbitrarily chosen time-dependent current density is generically non-V-representable in a

many-particle system; i.e., it cannot be obtained by applying only a time-dependent scalar potential to the

system. Furthermore, we show by a concrete example that even a current that is V-representable in an inter-

acting many-particle system may sand in general willd turn out to be non-V-representable when the interaction

between the particles is turned off.

DOI: 10.1103/PhysRevB.71.245103 PACS numberssd: 71.15.Mb

I. INTRODUCTION

Since the beginning of density functional theory sDFTd,1–3

the problem of answering the following questions has been
recognized to be of fundamental importance:

s1d Given a spositived particle density nsrWd in an

N-particle system, is there a local potential VsrWd that pro-

duces this density in the ground state of the system?
s2d If a certain particle density nsrWd arises in the ground

state of an N-particle system subjected to a local potential
VsrWd, is there a local potential VssrWd that produces the same

density in the ground state of the same system with the
particle-particle interactions turned off?

The first question is known as the V-representability ques-

tion, and a given density is said to be V-representable if the
answer is affirmative. The original formulation of DFT by
Hohenberg and Kohn1 made heavy use of the assumption
that “all reasonable densities are V-representable.” Subse-
quent work4 has shown that this assumption is necessary
only when one tries to prove the existence of the functional
derivative of the energy functional. The second question lies
at the very heart of the Kohn-Sham formalism.2 Recall that
within this formalism, one tries to obtain the ground-state
density of an interacting many-particle system by applying a
local potential to a noninteracting version of the same sys-
tem. Obviously, it is vital to the success of this theory that
the target density, which is by assumption V-representable,
be also noninteracting V-representable; i.e., the answer to
question s2d must be affirmative.

Even though mathematically rigorous answers to the two
V-representability questions are not known, DFT has been
widely applied to the calculation of the electronic structure
of matter. In these calculations it is tacitly assumed that the
set of V-representable densities in both interacting and non-
interacting systems is dense enough to approximate to an
arbitrary level of accuracy any physical ground-state density
sthese beliefs are supported by mathematical work on lattice
system5d. These assumptions have been automatically trans-
planted to the relatively younger field of time-dependent
density functional theory sTDDFTd,6–8 wherein the questions
are whether a given time-dependent particle density nsrW , td
evolving from a given initial state C can be produced by a
local time-dependent scalar potential VsrW , td and, in the affir-

mative case, whether the same density can also be produced

by a time-dependent scalar potential VssrW , td starting from an

initial state Cs, now with interactions turned off.
In this paper we are not going to challenge the wisdom of

the standard V-representability assumptions in DFT or TD-
DFT, but rather will examine whether such assumptions can

be plausibly extended to the particle current density jWsrW , td.
There are good reasons to undertake this study. During the
past ten years we have seen many indications that the time-
dependent current density,9–13 together with the initial state
of the system sand hence the initial densityd may provide a
more fundamental description of the dynamics. Indeed, the
proof that the time-dependent current density determines the
external scalar potential is the very first step in the proof of
the Runge-Gross sRGd theorem—the foundation theorem of
TDDFT.6 However, the RG theorem does not say anything
about the V-representability question for the current; i.e.,
whether a given time-dependent current can be produced by
a local time-dependent scalar potential. Reasoning by anal-
ogy with the particle density has led sor, as we are going to
show, misledd some workers to believe that the
V-representability assumption for the current density is about
as plausible as the corresponding assumption for the density,
and that therefore any physical current density can be ap-
proximated to an arbitrary degree of precision by the current
density generated by a suitably chosen scalar potential, in an
interacting as well as in a noninteracting system.8

The purpose of this paper is to show that this is not the
case. Due to the vector character of the current density it is
usually impossible for an arbitrary current to be generated by
a single scalar function: the potential. Even in those special
sbut physically very relevantd cases in which this can be
done, the current will not be simultaneously representable in
the noninteracting system.17 A more general theory that
makes use of an effective vector potential to generate the
current is therefore needed: such a theory exists and it is
known as time-dependent current density functional theory
sTDCDFTd.9,13

II. NON-V-REPRESENTABILITY OF GENERIC

CURRENT DENSITIES

In this section we present our main argument against
V-representability of the current density. Recall that the vec-
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tor field jWsrW , td, like any other vector field, can be written as

the sum of a longitudinal component jWLsrW , td, a transversal

component jWTsrW , td, and a constant that can be assumed to

vanish if the full current has to vanish at infinity:

jWsrW,td = jWLsrW,td + jWTsrW,td . s1d

The longitudinal current density jWLsrW , td is curl-free and can

therefore be represented as the gradient of a scalar field,

while the transversal current jWTsrW , td is divergence-free and

can therefore be represented as the curl of a vector field. The

spatial Fourier components of jWL and jWT, denoted by jWLsqW , td

and jWTsqW , td, respectively, are obtained by projecting the Fou-

rier component of jWsqW , td along directions parallel and per-

pendicular to the unit vector q̂, as

jWLsqW ,td = fjWsqW ,td · q̂gq̂ , s2d

and

jWTsqW ,td = jWsqW ,td − jWLsqW ,td . s3d

Notice that the particle density is completely determined by
the longitudinal current density since, according to the con-
tinuity equation, one has

]nsrW,td

]t
= − ¹W · jWLsrW,td s4d

with initial condition nsrW , td=n0srWd.
We begin our argument by assuming that a certain current

density jWsrW , td is V-representable, and let jWLsrW , td and jWTsrW , td
denote its longitudinal and transverse components, respec-
tively. According to the RG theorem, the potential VsrW , td that

produces jWsrW , td is unique up to an arbitrary function of time.

Consider now a second current density jW8srW , td= jWL8srW , td

+ jWT8srW , td= jWLsrW , td+ jWT8srW , td; i.e., jW8srW , td differs from jWsrW , td only

because its transverse component, jWT8srW , td differs from

jWTsrW , td. We claim that j8srW , td is not V-representable. Indeed,

if it were V-representable, then there would be a potential
V8srW , tdÞVsrW , td that generates it shere and in the following,

the Þ sign means that two potentials differ by more than a
mere function of timed. However, this is impossible, since,
according to Eq. s4d, these two different potentials would
give the same particle density, in contradiction with the
Runge-Gross theorem.6 Thus, for a given longitudinal cur-

rent density jWLsrW , td, there is at most one transverse current

density jWTsrW , td such that the full current density jWLsrW , td

+ jWTsrW , td is V-representable.

The ease with which, given a V-representable current den-
sity, we were able to construct infinitely many non-
V-representable ones is a strong indication that
V-representable currents are a rather exceptional occurrence
in the space of all possible currents. To strengthen the argu-
ment let us make the plausible assumption that the mapping
from potentials to V-representable currents, via the solution
of the time-dependent Schrödinger equation, is not only in-
vertible sRG theoremd, but also continuous. This implies

that, within the subset of V-representable current densities,

jWTsrW , td is a continuous functional of jWLsrW , td. Let jWsrW , td

= jWLsrW , td+ jWTsrW , td be a V-representable current density. Con-

sider then a small “neighborhood” of the non-

V-representable current density jW8srW , td= jWLsrW , td+ jWT8srW , td and

let jW1srW , td be a shypotheticald V-representable current density

in this neighborhood. Since, by choice, the longitudinal com-

ponent of jW1, jW1L, is close to jWL, the continuity of the mapping

from jWL to jWT for V-representable currents implies that the

transverse component of jW1, jW1T, is close to jWT. However, this
cannot be true for a sufficiently small neighborhood of

jW8srW , td if the difference between jWT and jWT8 is finite ssee Fig.

1d. We conclude that every non-V-representable current den-
sity is surrounded by a neighborhood that contains only non-
V-representable current densities: the set of V-representable
current densities is not “dense” in the space of all possible
current densities.

III. INTERACTING VERSUS NONINTERACTING

V-REPRESENTABILITY

Undeterred by the above arguments one might insist that,
after all, the task of the Kohn-Sham theory is to approximate
V-representable current densities by noninteracting
V-representable ones. We know that the set of
V-representable current densities is characterized by a certain

jWT versus jWL relation: it is the presence of this constraint that
makes the set so “sparse.” Similarly, in the noninteracting
system, the set of the V-representable current densities is

characterized by another jWT versus jWL relation. It would be
nice if these two relations happened to be the same relation,
so that a Kohn-Sham potential yielding the correct density
would also automatically yield the correct current density.

This conjecture has found its way in the literature,8 so that
it is important to examine it carefully. In this section we
construct an example of a V-representable current density,
which is definitely non-V-representable in the noninteracting

sKohn-Shamd system. Thus, in this example, the jWT versus jWL

relation of the interacting system turns out to be incompat-

ible with the jWT versus jWL relation of the corresponding non-

FIG. 1. A simple cartoon of the sparsity of the V-representable

current densities. The V-representable current density jW lies on a

continuous hypersurface shere schematized as a continuous curved
in current density space. Due to the continuity of the mapping be-

tween jWL and jWT a sufficiently small neighborhood of the non-

V-representable current density jW8 contains only non-

V-representable current densities.
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interacting one. We will argue swithout proofd that this state
of affairs is quite generic for currents generated by scalar
potentials in anisotropic interacting systems.

The system we consider is a two-dimensional interacting
electron liquid that is initially in the ground state with inho-
mogeneous density

n0srWd = n̄s1 + 2g cos GW · rWd , s5d

where GW is a two-dimensional vector parallel to the x axis, n̄

is the average density, and n̄g the amplitude of the density
modulation, with g!1. This density is produced by the ap-
plication of the static potential

V0srWd =
2n̄g

xhsGW d
cos GW · rW s6d

to an initially homogeneous electron liquid of density n̄.18

Here xhsGW d is the static density susceptibility of the homo-

geneous electron gas of density n̄ at wave vector GW .19 We
now apply to this system a time-dependent, periodic scalar
potential of the form

VsrW,td = VeisqW ·rW−vtd + c.c., s7d

where qW is a two-dimensional wave vector, which we assume

to be much smaller in magnitude than both G and kF skWF

being the Fermi wave vector corresponding to the average
density n̄d. The frequency v is assumed to be larger than
both vFq and vFG, where vF is the Fermi velocity associated
with kF.

It is well known that the time-dependent potential of Eq.
s7d can be recast as a longitudinal vector potential

AW srW,td =
qWV

v
eisqW ·rW−vtd + c.c., s8d

so that we can say that the induced current density is

jasrW,td = o
l,b

xabsqW + lGW ,qW ,vd
qbV

v
eifsqW+lGW d·rW−vtg + c.c., s9d

where xabsqW + lGW ,qW ,vd is the dynamical linear response

function of the inhomogeneous liquid, which connects the
cartesian b component of the vector potential amplitude at
wave vector qW to the Cartesian a component of the current

density amplitude at wave vector qW + lGW , where l is an inte-
ger. It should be noted that this response function coincides
with the homogeneous response function xab

h sqW ,vd up to cor-

rections of order g2 when l=0, and is of first order in g when
l= ±1. The components with uluù2 are of order g2 at least.

We now want to show that the exact current of Eq. s9d
cannot be obtained in a non-interacting system subjected
only to scalar potentials that yield the exact density. We first
notice that the ground-state density n0srWd is enforced in a

noninteracting electron gas by the scalar potential

V0,ssrWd =
2n̄g

x0
hsGW d

cos GW · rW , s10d

where x0
hsGW d is the static density susceptibility of the nonin-

teracting electron gas of density n̄ at wave vector GW . We
know from the invertibility of the mapping between vector
potentials and currents that the exact current density of Eq.
s9d can be generated in the noninteracting electron gas by
one and only one time-dependent vector potential,

As,asrW,td = AasrW,td + o
l,l8,b,d

fHxc,absqW + lGW ,qW + l8GW ,vd

3xbdsqW + l8GW ,vd
qdV

v
eifsqW+lGW d·rW−vtg + c.c., s11d

where fHxc,absqW + lGW ,qW + l8GW ,vd is the sum of the so-called

exchange-correlation kernel fxc,absqW + lGW ,qW + l8GW ,vd and the

Hartree kernel fH,absqW + lGW ,qW + l8GW ,vd;s2pe2 / uqW + lGW udfsqa

+ lGadsqb+ lGbd /v2gdll8
for our system. Thus, in order to

prove that the current of Eq. s9d cannot be generated in the
noninteracting system by a scalar potential, we only need to

show that the vector potential AW ssrW , td has a finite transversal

component. If this is the case, then the uniqueness of As

guarantees that the current density cannot be produced by a
purely longitudinal vector potential, and hence not by a
simple scalar potential.

In order to establish the existence of a transversal compo-

nent of AW s we focus on the Fourier component at wave vector

qW and we discard both AW and the contribution of the Hartree
kernel because they are purely longitudinal fields. The quan-
tity of interest is thus the exchange-correlation vector poten-
tial

Axc,asqW ,vd = o
l,b,d

fxc,absqW ,qW + lGW ,vdxbdsqW + lGW ,qW ,vd
qdV

v
.

s12d

The zeroth order in g of this expression is purely longitudi-
nal and can therefore be discarded. The next nonvanishing
contribution is of order g2 and is given by

Axc,asqW ,vd . o
b,d

hfxc,ab
h sqW ,vdxbd

s2dsqW ,qW ,vd + fxc,ab
s2d sqW ,qW ,vd

3xbd
h sqW ,vd + fxc,ab

s1d sqW ,qW + GW ,vdxbd
s1dsqW + GW ,qW ,vd

+ fxc,ab
s1d sqW ,qW − GW ,vdxbd

s1dsqW − GW ,qW ,vdj
qdV

v
, s13d

where the quantities with superscripts s1d and s2d refer to the
inhomogeneous system of density n0srWd and are first order

and second order in g, respectively.
To proceed, we now make use of certain exact identities,

which can be obtained starting from identities that were de-
rived in Ref. 14 from a careful consideration of the behavior
of the current response function and its associated xc kernel
under transformation to an accelerated reference frame.
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These “acceleration identities” are summarized in the follow-
ing four equations:

xab
s1dsGW ,0W ,vd =

n̄g

m
Fdab −

xhsG,vd

xhsGd
Pab

L sGW dG , s14d

xab
s2ds0W ,0W ,vd = − 2Sgn̄G

mv
D2 1

xhsGd
F1 −

xhsG,vd

xhsGd
GPab

L sGW d ,

s15d

fxc,ab
s1d sGW ,0W ,vd = −

gG2

v2 hffxcL
h sG,vd − fxcL

h sG,0dgPab
L sGW d

+ fxcT
h sG,vdPab

T sGW dj , s16d

fxc,ab
s2d s0W ,0W ,vd = − 2gfxc,ab

s1d sGW ,0W ,vd , s17d

where fxcL
h sG ,vd and fxcT

h sG ,vd are the longitudinal and

transverse xc kernels of the homogeneous electron liquid at

density n̄ and wave vector GW , while Pab
L sGW d;GaGb /G2 and

Pab
T sGW d;dab− Pab

L sGW d are the projectors parallel and per-

pendicular to the direction of GW , respectively. The derivation
of these identities is briefly presented in Appendix A.

What makes these identities relevant to the evaluation of

AW xcsqW ,vd is the fact that in our model, q is much smaller than

G or kF; therefore, the quantities appearing in Eq. s13d can be
evaluated in the q→0 limit, where they reduce precisely to
the quantities that appear in Eqs. s14d–s17d. Underlying the
calculation is of course the assumption that the q→0 limits
of the current response functions and xc kernels are
regular—an assumption we have presently no reason to
doubt.

By making use of Eqs. s14d–s17d and of the limiting
form15

lim
q→0

xab
h sqW ,vd =

n̄

m
dab s18d

in Eq. s13d, and discarding all but the leading-order terms in
q, we arrive, after some algebra, at

AW xcsqW ,vd = 2g2
n̄GW sGW · qWd

mv2

xhsG,vd

xhsGd

3ffxcL
h sG,vd − fxcL

h sG,0dg
V

v
. s19d

This vector has a component perpendicular to qW , unless qW

happens to be either parallel or perpendicular to GW : choosing
qW in any other direction provides the desired example of non-
V-representability. Although our derivation has made use of
Eq. s18d, which is valid only in two dimensions, it is possible
to show that the transverse part of Eq. s19d is unchanged in
three dimensions.20

It is also interesting to ask what is the behavior of the

Fourier components of AW xc at wave vectors qW ±GW . These com-
ponents are first order in g and one might think that they lead
more directly to the desired result. Remarkably, this is not

the case: A calculation very similar to the one described in
the previous paragraphs reveals that these components are

purely longitudinal; i.e., parallel to qW ±GW . One needs to go to
at least second order in g to see a transverse component

of AW xc.

IV. DISCUSSION

The example worked out in the previous section shows
that a perfectly legitimate V-representable current density
can turn out to be non-V-representable in the noninteracting
system. We believe that this state of affairs is generic. Only
in exceptional cases will the current density be
V-representable in both the interacting and the noninteracting
versions of the same system. Hence, in general, the Kohn-
Sham equation does not give the correct value of the trans-
verse current density.

We may now ask, how big an error does one make if one
insists on calculating the transverse current by means of the
Kohn-Sham theory? Going back to our model system it is
not difficult to see that the Fourier components of the Kohn-
Sham potential are given by

VKSsqW + lGW ,vd =
v

uqW + lGW u
uAW s,LsqW + lGW ,vdu , s20d

i.e., the Kohn-Sham potential is simply the scalar represen-

tation of the longitudinal part of the vector potential AW s cal-

culated in the previous section sAW s,L and AW s,T are the longitu-

dinal and transversal component of AW s, respectivelyd. The
above equation is accurate up to corrections of order g3.

Indeed, because AW s,T is of order g2 its influence on the lon-

gitudinal current begins at order g3, implying that AW s,L alone
fully accounts for the longitudinal current density up to cor-
rections of order g3. On the other hand, because VKS is

equivalent to AW s,L it clearly fails to produce the part of the

transverse current that is due to AW s,T. This is of order g3 for

the Fourier components at wave vector qW + lGW with lÞ0 and
of order g2 for the Fourier component at wave vector qW . We
conclude that the error on the transverse current is overall of
order g2: this may partly explain the difficulty of finding
examples in which the Kohn-Sham current density differs
significantly from the exact one.

Where does this leave us with regard to the application of
the time-dependent Kohn-Sham theory to the calculation of
current densities? From a fundamental standpoint it is clear
that only the time-dependent CDFT can provide the right
answer. In TDCDFT one does not need V-representability,

but only the much weaker AW -representability assumption. We
know that this assumption holds true in linear response
theory, and it is highly reasonable to assume that the set of

AW -representable current densities is dense in the space of all
current densities. On the other hand, we have also found that
the error entailed by the use of the ordinary Kohn-Sham
equation of TDDFT is of second order in the parameter that
measures the strength of the density nonuniformity, and may
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perhaps be reasonably neglected in practical implementa-
tions of the theory that are based on the local density ap-
proximation.
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APPENDIX A: ACCELERATION IDENTITIES FOR THE

CURRENT RESPONSE FUNCTIONS OF A WEAKLY

INHOMOGENEOUS ELECTRON LIQUID

Our starting point is the acceleration identity in real space

o
d
E xadsrW,rW8,vdFddb +

¹d8¹b8V0srW8d

msivd2 GdrW8 =
n0srWd

m
dab,

sA1d

which was derived in Ref. 14, beginning on p. 205. Both
sides of this identity can be expanded in a series of g: The
Fourier transform of the coefficients of this expansion will
give us the identities s14d and s15d. The first order in g evalu-

ated at wave vector GW gives

xab
s1dsGW ,0W ,vd + o

d

xad
h sGW ,vd

GdGb

mv2 V0sGW d =
n̄g

m
dab.

sA2d

Inserting

V0sGW d =
n̄g

xhsGW d
sA3d

from Eq. s6d, and recalling that

o
d

xad
h sGW ,vdGdGb = xhsGW ,vdv2Pab

L sGW d , sA4d

where xhsGW ,vd is the density-density response function, we

arrive at Eq. s14d.

To derive Eq. s15d we take the q=0 component of both
sides of Eq. sA1d of the second order in g. Since V0srWd and

n0srWd are given by Eqs. s5d and s6d up to corrections of order

g3 we readily obtain

xab
s2ds0W ,0W ,vd = − o

d

fxad
s1ds0W ,GW ,vd + xad

s1ds0W ,− GW ,vdg

3
GdGb

mv2 V0sGW d . sA5d

Inserting Eq. s14d for xad
s1ds0W ,GW ,vd and Eq. sA3d, we imme-

diately arrive at Eq. s15d.
We proceed similarly for the last two identities, Eqs. s16d

and s17d. The starting point in this case is Eq. s27d of Ref.
14:

E fxc,absrW,rW8,vdn0srW8ddrW8 = −
¹a¹bVs,xcsrWd

v2 , sA6d

where, to the required accuracy18

Vs,xcsrWd = 2n̄gfxcL
h sGW ,0dcos GW · rW sA7d

is the exchange-correlation part of the static Kohn-Sham po-

tential VssrWd. Notice that fxcL
h sGW ,0d is the scalar exchange-

correlation kernel of the homogeneous electron liquid at zero
frequency, quite different from the tensorial and frequency-
dependent exchange-correlation kernel of the inhomoge-
neous system, which appears on the left-hand side of Eq.

sA6d. Taking the Fourier component at wave vector GW of
both sides of Eq. sA6d to first order in g, and recalling that

fxc,ab
h sGW ,vd =

G2

v2 ffxcL
h sGW ,vdPab

L sGW d + fxcT
h sGW ,vdPab

T sGW dg ,

sA8d

we arrive at Eq. s16d. Taking the Fourier component of both
sides of Eq. sA6d at wave vector 0 to second order in g, we
finally arrive at Eq. s17d.
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