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Abstract

We prove non-vanishing results for the central value of high derivatives of the com-
plete L-function Λ(f, s) attached to primitive forms of weight 2 and prime level q. For
fixed k ≥ 0 the proportion of primitive forms f such that Λ(k)(f, 1/2) 6= 0 is ≥ pk +o(1)
with pk > 0 and pk = 1/2 + O(k−2), as the level q goes to infinity. This result is
(asymptotically in k) optimal and analogous to a result of Conrey on the zeros of high
derivatives of Riemann’s ξ function lying on the critical line. As an application we
obtain new strong unconditional bounds for the average order of vanishing of the forms
f (i.e. the analytic rank of the Jacobian variety J0(q)).

1 Introduction

In recent years, non-vanishing results for central values of families of L functions and their
derivatives have received considerable attention ([Du, Lu, MM, BFH, P-P, Iw, I-S, KM1,
KM2, VdK1] and others) mainly because of their implications in various areas such as
the Birch-Swinnerton-Dyer conjecture, spectral deformation theory, and classical analytic
number theory. In this paper, we consider a similar question for the central value of higher
derivatives of one such family.

Given a prime number q, let S2(q)∗ denote the set of primitive Hecke eigenforms of
weight 2 relative to the subgroup Γ0(q). Any f ∈ S2(q)∗ admits a Fourier expansion of the
form

f(z) =
∑
n≥1

n1/2λf (n)e(nz),

normalized so that λf (1) = 1. To f is associated an L-function with Euler product,

L(f, s) =
∑
n≥1

λf (n)n−s =
∏
p

(
1− λf (p)

ps
+
εq(p)
p2s

)−1
, (1)

where εq is the trivial character mod q. This Dirichlet series is absolutely convergent when
Re(s) is large, and admits analytic continuation to all of C. The completed L-function

Λ(f, s) = q̂sΓ(s+
1
2

)L(f, s), where q̂ =
√
q

2π
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satisfies the functional equation

Λ(f, s) = εfΛ(f, 1− s), where εf = −q1/2λf (q) = ±1.

We say that f is even (resp. odd) iff εf = +1 (resp. −1) and will use S+
2 (q) (resp.

S−2 (q)) to denote the corresponding subset of S2(q)∗. It is known that

|S+
2 (q)| ∼ |S−2 (q)| ∼ 1

2
|S2(q)∗| ∼ q

24

as q → +∞ (among prime values).
We denote by rf the “analytic rank” of L(f, s), defined as the order of vanishing of

L(f, s) at s = 1
2 , which is the same as that of Λ(f, s), and has the same parity as f .

For k ≥ 0, let pk be “the proportion of f with k-th derivative Λ(k)(f, 1
2) 6= 0”, i.e.

pk = lim inf
q→+∞

|{f ∈ S2(q)∗, Λ(k)(f, 1/2) 6= 0}|
|S2(q)∗|

. (2)

Some of the results of [KM2, VdK1, I-S] can be summarized as follows:

Theorem 1.1 We have
p0 > 0, and p1 > 0,

in other words, a positive proportion of even forms f are such that L(f, 1
2) 6= 0, and a

positive proportion of odd forms are such that L′(f, 1
2) 6= 0.

The currently best bounds for these constants are p0 ≥ 1/4 and p1 ≥ 7/16 (see [I-S,
KM2]). It is not a coincidence that the best bound for p1 available is larger than the best
one for p0, as we show in this paper by considering higher derivatives.

Theorem 1.2 For all k ≥ 0, we have pk > 0. In fact,

pk ≥ πk

where πk is a function satisfying

πk =
1
2
− 1

32
k−2 +O(k−3). (3)

In particular

p2 ≥ 0.48254, p3 ≥ 0.49478, p4 ≥ 0.49758, p5 ≥ 0.49856.

In fact, pk > 0 was already proved in [VdK1] but the bound obtained there, although
positive, approached 0 as k → +∞.

Since the set of forms f such that Λ(k)(f, 1/2) 6= 0 is contained in either S+
2 (q) or S−2 (q),

we must have pk ≤ 1
2 . This is conjectured to be the an equality for k = 0 and 1 (so that pk

should be 0 for k ≥ 2) by Brumer and Murty [Br, M]. While our result does not imply this
conjecture, it at least shows that forms with high order of vanishing are rare.

As an immediate corollary of these computations, we obtain for example the following:
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Corollary 1.3 If q is prime and large enough, then at least 99% of the forms f ∈ S2(q)∗

have rf ≤ 4.

This is clear from the values of π3 and π4 given in the theorem.

In Section 8 we apply Theorem 1.2 to further investigate the analytic rank of the Jaco-
bian variety J0(q) of X0(q); this application arose from discussions with B. Conrey and H.
Iwaniec. Recall that by Eichler-Shimura theory [Shi], we have

L(J0(q), s) =
∏

f∈S2(q)∗

L(f, s).

Using the ideas of [KM1] in addition to the results proved here, we are able to show:

Theorem 1.4 Let α, 0 < α < 2 be a fixed real number. For q prime large enough, we have

1
|S2(q)∗|

∑
f∈S2(q)∗

rαf ≤ 1
2 +

+∞∑
k=0

((k + 2)α − kα)(1
2 − pk) + oα(1).

For example1

1
2 +

∞∑
k=0

((k + 2)α − kα)(1
2 − pk) ≤

1
2 +

∞∑
k=0

((k + 2)α − kα)(1
2 − πk) ≤ 1.1891 if α = 1

≤ 3.2191 if α = 1.9.

In the case α = 2, the series diverges but we can still prove that
∑
r2
f ≤ C, for some

absolute constant C (see Theorem 8.1).

Corollary 1.5 Assume the Birch and Swinnerton-Dyer conjecture for J0(q). Then for q
prime large enough we have

rank J0(q) ≤ (c+ o(1)) dimJ0(q)

where c = 1.1891.

In [KM1], this was proved for some absolute constant c, and in [KM3], it had previously
been proved that one could take c = 6.5. Corollary 1.5 is thus much stronger. This is
explained by the fact that we are looking directly at the order of L(f, s) at s = 1

2 , and
not overcounting zeros in a small neighborhood, as was inherently the case for the methods
of [KM1], [KM3]. However, because of lack of uniformity in k in the limit involved, we still
have to use ideas similar to those of [KM1] (see Section 8).

Maybe the most striking feature of this inequality is that c < 3
2 , which was the first

admissible value obtained by Brumer assuming the Generalized Riemann Hypothesis.

There are many circumstances in which the normalization λf (1) = 1 is not the most
natural, and it is often more convenient to use the “harmonic” normalization (see [Du,
KM1, KM2, M]).

1In view of (3) the above series is convergent for α < 2
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Let ωf = 1/4π(f, f),where (f, g) is the Petersson inner product on Γ0(q)\H. For any
set of complex numbers αf , f ∈ S2(q)∗, we write

∑h

f

αf =
∑
f

ωfαf .

The weights ωf define (asymptotically) a probability measure on S2(q)∗ since

∑h

f

1 = 1 +O(q−3/2), (4)

and for this measure we prove the following variant of Theorem 1.2.

Theorem 1.6 For all k ≥ 0

lim inf
q→+∞

∑h

f, Λ(k)(f,1/2) 6=0

1 ≥ πk,

with the same πk’s as in Theorem 1.2.

Since
∑h

f∈S±2 (q)

1 ∼ 1
2
, the result is still asymptotically optimal.

The advantage of these weights in our setting is that they make it possible to use the
Petersson formula (see 3.2), which shows very clearly the very strong cancellation in the
average of the product λf (n)λf (m) of Hecke eigenvalues when n 6= m.

In this paper we will only prove Theorem 1.6, and the harmonic counterpart of The-
orem 1.4. One may then deduce Theorem 1.2 and Theorem 1.4 using the technique for
“removing” the weight ωf developped and implemented in [KM1, Section 3] (see also
[I-S, KM2]).

It is also possible to prove Theorem 1.2 directly by applying the Eichler-Selberg trace
formula in the form of Lemma 3.4 below, instead of Lemma 3.2, but this leads to a smaller
lower-bound pk ≥ πk, although still satisfying πk = 1/2 +O(k−2).

Theorems 1.2 and 1.6 are in perfect analogy with the results of Conrey [Co], where it
is proven that the proportion of the zeros of ξ(k)(s) (the k-th derivative of Riemann’s ξ
function) lying on the critical line tends to 1 as k → +∞. We thank B. Conrey and D.
Farmer for pointing out the relevance of Conrey’s paper to our problem (which ultimately
leads to simplifications of our initial approach) and for explaining why these methods lead
to higher proportions for higher k.

Although this is somewhat obscured by the fact that we are dealing with Euler products
of degree 2, our proof is easier than Conrey’s since we are looking for zeros at a specific
point rather than throughout the critical line. Another aspect which simplifies our job is
that since λf (n) is real the functional equation is symmetric (the sign εf excepted), so that
the Λ(k)(f, 1/2) are all real. This allows the oscillations of the sign of Λ(k)(f, 1/2) to be well
controlled by the mollifier, which in turn minimizes the loss of information when we apply
the Cauchy-Schwarz inequality.
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The situation is slightly more difficult when complex values are allowed: for example,
considering the same problem for L-functions associated to modular forms twisted by a
non real character (or for Dirichlet L-functions of primitive characters) our method also
gives proportions πk approaching 1/2, but in that case there is no parity issue and the
expected proportion should be 1. It turns out that a less obvious choice of mollifier leads
to proportions approaching 2/3. We hope to come back to this topic in another paper.

As a final remark, we note that the above results are special cases of a general non-
vanishing result for arbitrary linear combinations of derivatives of Λ(f, s) (at s = 1/2):
see Section 6 below for the general statement. In particular the numerical values found in
Corollary 1.3 and in Corollary 1.5 are not the best possible. We refer the reader interested in
numerical experiments and optimization questions to Sections 6, 7 and 8.3 were we describe
the process required to get the optimal bounds and its limitations.

Note also that some authors (see [P] for instance) may find it more natural to look
directly at derivatives of L(f, s) rather than Λ(f, s). Our method can be adapted to cover
this problem also (see Section 6).

Acknowledgment. It is a pleasure to thank B. Conrey, D. Farmer, H. Iwaniec, P.
Sarnak, R. de la Bretèche for discussions related to this work. This project was begun
while the second author visited Rutgers University in April 98 and he would like to thank
H. Iwaniec for his generous hospitality.

The computations were performed on MAPLE and on the PARI System of Batut,
Bernardi, Cohen. The code of the programs used can be obtained from the authors.

The third author was supported by NSF grant DMS-9804517 and also by the Hertz
Foundation.

2 The mollification

In this section, and until Section 6, we fix the integer k ≥ 0. The dependency on k will
become important later on and will be emphasized accordingly.

As is classical, our non-vanishing results are an application of the Cauchy-Schwarz in-
equality supplemented by the method of mollification of moments of the special values being
investigated. We recall the motivation of the mollification technique.

Suppose that we were to consider the first and second (unmollified) moments

Lh =
∑h

f∈S2(q)∗

Λ(k)(f, 1/2),

Qh =
∑h

f∈S2(q)∗

Λ(k)(f, 1/2)2.

Using Lemma 3.2, one can show that, as q → +∞,

Lh ∼ ck(log q̂)k, Qh ∼ c′k(log q̂)2k+1 (5)

for some ck, c′k > 0 (see in particular [Du] for this proof in the case k = 0). This means
that although the “typical” value of Λ(k)(f, 1/2) is of size ck(log q̂)k there is a small (but
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not negligible) subset of forms f for which Λ(k)(f, 1/2) may be as large as (log q̂)k+1/2 (in
other words, the variance of the “random variable” f 7→ Λ(k)(f, 1/2) is large). By Cauchy-
Schwarz, (5) implies that

∑h

f, Λ(k)(f,1/2)6=0

1 ≥ (Lh)2

Qh
� 1

log q
.

To save the log q factor (that is, to control the abnormally large oscillations of Λ(k)(f, 1/2)),
we multiply it by a well chosen mollifier

M(f) =
∑
m<M

λf (m)
xm√
m
,

with M of size q̂∆ for some ∆ > 0, such that Λ(k)(f, 1/2)M(f) is more nearly constant over
all f . We consider the “mollified” moments

Lh =
∑h

f

Λ(k)(f, 1/2)M(f), (6)

Qh :=
∑h

f

|Λ(k)(f, 1/2)M(f)|2. (7)

While those sums become significantly more difficult to deal with, it is still possible to
estimate them asymptotically for ∆ small enough, and we prove that for M as before we
have

Lh ∼ L(x)(log q̂)k

Qh ∼ Q(x)(log q̂)2k

as q → +∞, where L and Q are linear and quadratic forms, respectively, in the coefficients
x = (xm)m<M of the mollifier.

Hence ∑h

f, Λ(k)(f,1/2)6=0

1 ≥ L(x)2

Q(x)
.

For some choices of (xm), it is possible to make this ratio approach a constant as q (and
thus M) goes to infinity.

The problem is now to choose (xm) so that this ratio becomes as large as possible.
Intuitively, the task of the mollifier becomes easier as k growths, since it will have to
dampen oscillations of amplitude up to (log q̂)1/2 of a variable of typical size (log q̂)k. Thus
even a “lazy” mollifier can be adequate, and in particular its length M can be rather short,
i.e. ∆ can be rather small. As we will see, for well chosen (xm), any ∆ > 0 suffices to insure
that

pk ≥ 1
2 +O(k−2) as k → +∞.

In the special cases k = 0, 1 the proportions p0, p1 have a deep arithmetical significance, so
the authors of [I-S, KM2, KM3] considered a more general class of mollifiers, picking (xm)
only at the end of a delicate optimization process. Due to the nature of the expressions
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involved for more general k, it is not possible to do this here, but since the demand on the
mollifier becomes less stringent for large k as well, it is sufficient (and much simpler) to
start with a particular type of mollifier, which mimick those of [Co].

Let M = q̂∆ for a fixed 0 < ∆ < 1 to be chosen later, with the proviso that M is
not an integer. Let P be a polynomial which satisfies P (0) = P ′(0) = 0, and let ψ be the
arithmetic function

ψ(m) =
∏
p|m

(1 +
1
p

). (8)

We choose the following as our mollifier for the kth derivative:

M(f) = MP (f) =
∑
m<M

λf (m)µ(m)
ψ(m)m1/2

P (
logM/m

logM
). (9)

The optimal choices of mollifiers for k = 0, 1 were of this form2, so we expect that this is
not a particularly harsh restriction on the mollifiers. This expectation is borne out by the
strength of our results, since we do obtain the asymptotically best possible result pk → 1/2.

As usual, the specific coefficients were chosen to make MP (f) a reasonable approxima-
tion to the inverse of Λ(k)(f, 1/2) (the Möbius function is the “universal inverse” for Euler
products, and the function ψ accounts for the degree two portion of the Euler factors). The
choice of P will be made at the end of the proof. For now we prefer to keep the argument as
general as possible. Since optimization will now be performed on the space of polynomials,
rather than vectors, we henceforth denote the moments by Lh(P ) and Qh(P ).

One advantage of this type of mollifier is that the polynomial has a convenient contour
integral expression. Given a polynomial P (x) =

∑
k akx

k, we define the auxiliary function

P̂M (s) =
∑
k

k!ak(s logM)−k.

Then we have

Lemma 2.1 If P (0) = 0 and M is not an integer,

δm<MP (
logM/m

logM
) =

1
2πi

∫
(3)

M s

ms
P̂M (s)

ds

s
,

where δm<M is 1 if m < M and 0 if m > M .

Proof. To evaluate the integral, we shift the contour. If m > M , we shift to Re(s) = S,
where S is large, so that we have a convergent integral (since P (0) = 0) dominated by
(M/m)S → 0. If m < M , we shift to <s = −S, with S large. The resulting integral again
tends to zero, and as explained in the appendix, Lemma 9.1, the residue at s = 0 is exactly
that given above. The condition P (0) = 0 was needed to make the integrals absolutely
convergent, since all denominators will thus have s2 or higher powers.

2

2It turns out that the choices P = x2, for k = 0, P = x2 − x3/6, for k = 1, give again the non-vanishing
proportion p0 ≥ 1/4 and p1 ≥ 7/16 for the critical values and their first derivative, if we let ∆→ 1. However
the study of the general quadratic form has other applications

7



3 Auxiliary Lemmas

Here we recall some lemmas about modular forms used in the sequel. More technical lemmas
are presented in an Appendix at the end of the paper.

We begin with Hecke’s recursion formula for primitive forms, which is equivalent to the
Euler product (1).

Lemma 3.1 For m,n ≥ 1 and f ∈ S2(q)∗ one has

λf (m)λf (n) =
∑

d|(m,n)

εq(d)λf
(mn
d2

)
(10)

where εq is the trivial character modulo q.

The next lemma is the special case of the Petersson formula for prime level q and weight 2
(in this case S2(q)∗ is an orthogonal basis of S2(q)).

Lemma 3.2 For m,n ≥ 1 one has

∑h

f∈S2(q)∗

λf (m)λf (n) = δm,n − 2π
∑
c≥1

S(m,n; cq)
cq

J1

(4π
√
mn

cq

)
(11)

where δm,n is the Kronecker symbol,

S(m,n; c) =
∑

x mod c
(x,c)=1

e
(mx+ nx

c

)

is the classical Kloosterman sum and J1(x) is the Bessel function of order 1. Moreover one
has the estimation∑h

f∈S2(q)∗

λf (m)λf (n) = δm,n +O((m,n, q)1/2(mn)1/2q−3/2). (12)

This last bound turns out to be sufficient to allow us to to take a mollifier of length M = q̂∆

for any ∆ < 1/2. To take a longer mollifier requires greater cancellation, and to get this
one must “open” the Kloosterman sums and take advantage of the cancellation inherent
in geometric sums. This allows better bounds on average. One can show (see [VdK2] for
details) the following

Lemma 3.3 Let N1, N2, m1, m2 be such that

N1N2 � q(log q)2, m1m2 � q1−δ

for some δ > 0. Then for all ε > 0

∑
n1∼N1
n2∼N2

∑
c≥1

S(m1n1,m2n2; cq)
cq

J1

(4π
√
m1n1m2n2

cq

)
�ε,δ q

ε (m1m2N1N2)1/2

q
.
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For comparison, using the Weil bound alone gives q−1/2+ε(m1m2N1N2)1/2 here. Lemma
3.3 allows one to take any ∆ < 1 and this leads to the optimal values of pk stated in the
introduction.

Finally, we mention a lemma which is at the core of the argument in [VdK1]. It is not
used in this paper, but as we have mentioned before, it could replace Lemma (3.3) to prove
Theorem 1.2 without recourse to the harmonic average.

Lemma 3.4 Given (an) any bounded sequence of numbers and N ≤ q2−δ for some δ > 0,
where q is prime.

1
|S2(q)∗|

∑
n∼N

an
∑

f∈S2(q)∗

λf (n) =
∑
n∼N

an
n1/2

δn=� +Oδ(N7/4q−3/2 +N39/32q−3/4), (13)

where δn=� is the characteristic function of squares of integers.

4 The first moment

We now begin the proof of Theorem 1.6. The first step is to evaluate the first moment,
Lh(P ) (see (6)) with MP (f) defined in (9).

Since 1/2 is outside the region where the Dirichlet series expression for L(f, s) converges,
we must first find a way to express Λ(k)(f, 1/2) as a rapidly convergent series. We note that
when Re(s) > 1/2, so that all of the relevant sums are absolutely convergent, we have

Λ(k)
f (

1
2

+ s) =
∑
n

λf (n)q̂1/2

n1/2

(
q̂s

ns
Γ(1 + s)

)(k)

A standard contour shift, along with the functional equation, gives

Λ(k)(f, 1/2) = (1 + (−1)kεf )q̂1/2
∑
n

λf (n)
n1/2

Vtotal(
n

q̂
), (14)

where

Vtotal(y) =
1

2πi

∫
(3)

(
Γ(1 + t)

yt

)(k) dt

t
=

k∑
l=0

(
k

l

)
(− log y)l

1
2πi

∫
(3)

(Γ(1 + t))(k−l)y−t
dt

t
(15)

satisfies
Vtotal(y) = ON (y−N )

for all N ≥ 1 when y is large. In addition, when y is small,

Vtotal(y) = (− log y)k +R(− log y) +O(y), as y → 0

where R is a polynomial of degree ≤ k − 1. Over the course of this paper, we will only
be interested in the leading term of the expressions occuring, which give the asymptotic
behavior, and we will drop terms of lower order of magnitude in log q̂ and logM whenever
feasible. In order to simplify nearly every formula yet to come, we restrict ourselves to
evaluating the single term corresponding to (− log y)k in (15), whose contribution to (14)
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we denote by Λ(k)
main(f, 1/2). All other terms can be evaluated in exactly the same way and

will be smaller by a factor of at least (log q̂)−1. As q̂ goes to infinity, we may ignore them
to get the asymptotic formula.

Thus, multiplying by MP (f), the main term of the first harmonic moment is

Lmain(P ) =
∑h

f

Λ(k)
main(f, 1/2)MP (f),

where

Λ(k)
main(f, 1/2)MP (f) = (1 + εf (−1)k)q̂1/2

∑
m,n

λf (m)λf (n)µ(m)
ψ(m)

√
mn

(log
q̂

n
)kP (

log(M/m)
logM

)V (
n

q̂
)

and now
V (y) =

1
2πi

∫
(3)

Γ(1 + t)
yt

dt

t
.

Applying the Petersson formula (12), we infer that when M = q̂∆ for a fixed ∆, 0 <
∆ < 1, we have

Lmain(P ) = q̂1/2
∑
m

µ(m)
ψ(m)

√
m

(log
q̂

m
)kP (

logM/m

logM
)V (

m

q̂
) +O(q̂1/2−γ). (16)

for some γ = γ(∆) > 0 depending on ∆ only (see [I-S, KM1] for details). In particular, the
terms involving the sign of the functional equation εf only contribute part of the remainder
term.

We now focus on the main term of (16), which can be evaluated in any of several ways.
We could replace V (m/q̂) by 1 (since ∆ < 1, m/q̂ → 0) and then evaluate arithmetic sums
involving P and the Möbius function in the spirit of [Co]. For diversity we choose instead
to apply directly the method of residues: we use the integral expressions for P and V , and
introduce the integral expression (again by Lemma 9.1 in the Appendix)

(log
q̂

m
)k =

k!
2πi

∫
Cδ

q̂zdz

mzzk+1
,

where Cδ is a circle of radius δ around the origin in the complex plane. We will be adjusting
δ as becomes necessary through the course of the proof, the exact radius is unimportant.
Thus Lmain(P ) is given by the integral

k!q̂1/2

(2πi)3

∫
Cδ

∫
(3)

∫
(3)

∑
m

µ(m)
ψ(m)m

M sq̂tΓ(1 + t)P̂M (s)
msmt

q̂z

zk+1mz

ds

s

dt

t
dz. (17)

Executing the summation in m, which is absolutely convergent for the variables in the given
range, we have

k!q̂1/2

(2πi)3

∫
Cδ

∫
(3)

∫
(3)

M sq̂t+zΓ(1 + t)P̂M (s)
zk+1

η1(s, t, z)
ζ(1 + s+ t+ z)

ds

s

dt

t
dz, (18)
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where

η1(s, t, z) =
∏
p

(
1− p−1−s−t−z(1 + p−1)−1

1− p−1−s−t−z

)

is absolutely convergent and holomorphic on Re(s+ t+ z) > −1/2, with η1(0, 0, 0) = ζ(2).
It remains to evaluate (18). We will first evaluate the residues coming from the poles

in t, s, and z at the origin, using the lemmas from the appendix. Then we will show that,
other than these residues, (18) contributes a negligible amount to the first moment.

4.1 Evaluating the residues

As far as the residues at the origin are concerned, we may replace ζ(1 + s + t + z) by
(s + t + z)−1. In addition, the Γ(1 + t) and η1(s, t, z) terms, which have neither poles nor
zeros at the point in question, and which are independent of M and q̂, can be treated as
constants, since any part of the residue coming from their derivatives will have fewer powers
of logM and log q̂ than the main term. Thus we are interested in evaluating

k!ζ(2)q̂1/2Ress=z=t=0
M sq̂z+tP̂M (s)(s+ t+ z)

stzk+1
. (19)

The t residue comes from a simple pole, leaving us with

k!ζ(2)q̂1/2Ress=z=0
M sq̂zP̂M (s)(s+ z)

szk+1
.

The remaining terms can be evaluated by the lemmas in the appendix, giving a total residue
of

ζ(2)q̂1/2
(
log q̂)k(

1
logM

P ′(1) +
1

log q̂
kP (1)

)
. (20)

4.2 Shifting the contours

In evaluating (18), we start by shifting the t and s contours to Re(s) = 1/2, passing no
poles in the process. Then we shift the t contour almost to −1/2, far enough to make
q̂Re(t)+δM1/2 negligible (this is possible so long as logq̂M = ∆ < 1). The resulting integral
is too small to contribute to the main term, since the argument of the zeta function is > 1.
Thus only the residue at t = 0 matters, and we have to estimate (up to constants) the
integral

k!
(2πi)2

∫
(1/2)

∫
Cδ

q̂zM sP̂M (s)η(s, 0, z)
szk+1ζ(1 + s+ z)

dsdz.

Next we evaluate the z integral, which merely involves taking k derivatives of the inner
expression. The exact result does not matter, merely note that the only terms in the
denominator will be powers of ζ(1 + s), and there will only be powers of M remaining.

Finally we shift the s contour to the left, past Re(s) = 0 but before crossing any zeros
of ζ(1 + s), so as not to introduce any extra poles. Such a contour exists by the prime
number theorem (were the Riemann Hypothesis known, we could shift s all the way to
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Re(s) = −1/2 + δ for any δ > 0, but fortunately this is not needed). It is known that there
exists a constant c > 0 such that we can shift the contour this way to the one given by

Re(s) = −c/ log(1 + |Im(s)|),

and this will be enough. The pole we acquire from s = 0 has already been discussed in the
previous section. As for the integral, note that on the new contour, 1/ζ(1 + s) has no pole,
and in fact

ζ(j)(1 + s)� (1 + |Im(s)|)δ

for any δ > 0 and any j ≥ 0. So the various derivatives of 1/ζ(1 + s) acquired from the z
integration can be replaced by (1 + |Im(s)|)δ for any small δ. Thus the integral is bounded
(since P (0) = 0) by ∫

M−c/ log(1+|t|)(1 + |t|)−2+δdt� e−c
′(logM)1/2−δ

which is small enough to overcome any log q̂ terms that might arise from the z derivatives.
Thus the contributions from these contours are bounded, and they can be ignored in the
calculation of the first moment, as desired.

Hence we have proved the following proposition:

Proposition 4.1 For fixed 0 < ∆ < 1 and M = q̂∆

Lh(P ) = (1 +Ok((log q)−1))ζ(2)q̂1/2(log q̂)k
( 1

logM
P ′(1) +

1
log q̂

kP (1)
)
.

5 The second moment

The principle is the same as before. We start again with a rapidly convergent series which
gives Λ(k)(f, 1/2)2. The functional equation for Λ(f, 1/2 + s) has always sign +1 so manip-
ulations similar as those performed in the previous section yield

Λ(k)(f, 1/2)2 = 2q̂
∑
n1,n2

λf (n1)λf (n2)

(n1n2)1/2
× 1

2πi

∫
(3)

(
q̂tΓ(1 + t)

nt1

)(k)(
q̂tΓ(1 + t)

nt2

)(k)
dt

t
.

Again, derivatives of Γ(1 + t) will contribute lower orders of magnitude in log q̂, and can
thus be ignored (for the exact value of their contributions, simply carry through this proof
with Γ(`) replacing one or both of the Γ’s, and k− ` replacing either k). Thus we need only
consider

Λ(k)
main(f, 1/2)2 = 2q̂

∑
n1,n2

λf (n1)λf (n2)

(n1n2)1/2
(log

q̂

n1
)k(log

q̂

n2
)kW (

n1n2

q̂2
), (21)

where

W (y) =
1

2πi

∫
(3)

Γ(1 + t)2

yt
dt

t
(22)

decays faster than any negative power of y.
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Multiplying by the square of the mollifier we evaluate

Qmain(P ) =
∑h

f

MP (f)2Λ(k)
main(f, 1/2)2

= 2q̂
∑

n1,n2,m1,m2

µ(m1)µ(m2)
ψ(m1)ψ(m2)

√
m1m2n1n2

P (
logM/m1

logM
)P (

logM/m2

logM
)

×(log
q̂

n1
)k(log

q̂

n2
)kW (

n1n2

q̂2
)
∑h

f

λf (m1)λf (n1)λf (m2)λf (n2).

As in the previous section, we wish to use the Petersson formula for the inner sum
over f . Since, it only applies to products of two eigenvalues, we first appeal to the Hecke
recursion (10).

Note that since q, the level, is prime, and we have the restriction m1,m2 < M < q̂∆ ≤
q∆/2, the trivial character εq won’t appear in the recursion formula.

Replacing m1, n1,m2, n2 by m1d1, n1d1,m2d2, n2d2, we can rewrite the main term of the
second moment as

Qmain = 2q̂
∑
d1,d2

1
d1d2

∑
n1,n2,m1,m2

µ(m1d1)µ(m2d2)
ψ(m1d1)ψ(m2d2)

√
m1m2n1n2

P (
logM/(m1d1)

logM
)P (

logM/(m2d2)
logM

)

×(log
q̂

n1d1
)k(log

q̂

n2d2
)kW (

n1n2d1d2

q̂2
)
∑h

f

λf (m1n1)λf (m2n2).

The inner sum can now be evaluated by the Petersson formula. Integrating by parts and
using Lemma 3.3, one shows (see [I-S] or [VdK2] for details) that the terms coming from
the Kloosterman sums have a total contribution which is

� q̂1−γ

for som γ = γ(∆) > 0 if ∆ < 1 (if one uses the Weil bound on the individual Kloosterman
sums, this follows only in the range ∆ < 1/2).

Thus we can replace the inner average over f by the Kronecker symbol δm1n1,m2n2 . The
most convenient way to do this is to let c = (m1,m2), so that n1 and n2 must be proportional
to m2/c and m1/c, respectively. We make the substitutions n1 = nm2/c and n2 = nm1/c,
then replace m1,m2 by m1c,m2c, so that the main term of the second moment becomes

2q̂
∑
d1,d2

1
d1d2

∑
c

1
c

∑
n

1
n

∑
(m1,m2)=1

µ(m1d1c)µ(m2d2c)
ψ(m1d1c)ψ(m2d2c)m1m2

P (
logM/(m1d1c)

logM
)P (

logM/(m2d2c)
logM

)

×(log
q̂

m2d1n
)k(log

q̂

m1d2n
)kW (

m1m2d1d2n
2

q̂2
). (23)

As before, we evaluate this by converting to integral expressions and using residues and
contour shifts.

By the formula

(log
q̂

ni
)k =

k!
2πi

∫
Cδi

q̂zidzi

zk+1
i nzi

,
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our main term is expressed as

2q̂(k!)2

(2πi)5

∫
Cδ2

∫
Cδ1

∫
(3)

∫
(3)

∫
(3)

q̂2t+z1+z2M s1+s2P̂M (s1)P̂M (s2)
Γ(1 + t)−2s1s2tz

k+1
1 zk+1

2

η(s1, s2, t, z1, z2)ds1ds2dtdz1dz2,

with
η(s1, s2, t, z1, z2) =

∑
m1,m2,d1,d2,c,n

(m1,m2)=1

µ(m1d1c)µ(m2d2c)
ψ(m1d1c)ψ(m2d2c)

(24)

× 1
d1+s1+t+z2

1 d1+s2+t+z1
2 c1+s1+s2n1+2t+z1+z2m1+s1+t+z1

1 m1+s2+t+z2
2

.

The sums are rather intricate, but the ψ functions will only lead to second-order corrections,
as will the relative primality restrictions. Thus, up to Euler products which converge to the
left of s1 = s2 = t = z1 = z2 = 0, the sums must lead to two factors of ζ and four factors
of ζ−1. Thus we write the second moment as

2q̂(k!)2

(2πi)5

∫
Cδ2

∫
Cδ1

∫
(3)

∫
(3)

∫
(3)

Γ(1 + t)2q̂2t+z1+z2M s1+s2P̂M (s1)P̂M (s2)
s1s2tz

k+1
1 zk+1

2

× ζ(1 + 2t+ z1 + z2)ζ(1 + s1 + s2)η2(s1, s2, t, z1, z2)ds1ds2dtdz1dz2

ζ(1 + s1 + t+ z1)ζ(1 + s2 + t+ z1)ζ(1 + s1 + t+ z2)ζ(1 + s2 + t+ z2)
, (25)

where η2 is an Euler product which is absolutely convergent even when all five variables are
slightly to the left of the origin (in particular, η2(0, 0, 0, 0, 0) =

∏
p(1 +O(p−2))).

Once again, we will evaluate the moment through evaluating the residues when all the
variables are zero, and then we will show that the contour integrals which result after
shifting all of the contours to the left of zero give negligible amounts. Lest the main theme
be lost in the mass of calculations which are to follow, note that the total powers of log q̂
and logM which come from an integral of this sort depend entirely on the degree of pole at
the origin. The ζ’s increase that degree, the 1/ζ’s decrease that degree, and the net effect is
that the degree of the second moment is twice that of the first moment, as one would want.
Had we not mollified, there would be no ζ’s in the numerator, one fewer in the denominator,
and no s poles, leading to a net increase of a single factor of log q̂ from that which we will
now find.

5.1 Evaluating the residues

We can again replace ζ(1+z) by z−1 in (25) as far as calculations at the origin are concerned,
so the relevant expression is now

2q̂(k!)2Res(0,0,0,0,0)
Γ(1 + t)2M s1+s2 q̂2t+z1+z2P̂M (s1)P̂M (s2)η2(s1, s2, z1, z2, t)

ts1s2z
k+1
1 zk+1

2

×(s1 + z1 + t)(s2 + z1 + t)(s1 + z2 + t)(s2 + z2 + t)
(z1 + z2 + 2t)(s1 + s2)

. (26)
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As with η1 in the first moment, derivatives of η2 and Γ can be ignored, since they lead
to lower powers of log q̂ and logM . Once again we have a simple pole in t, so its residue
involves merely replacing t with zero everywhere. We thus have

2q̂(k!)2η2(0, 0, 0, 0, 0)Res(0,0,0,0)
Qs1+s2 q̂z1+z2P̂M (s1)P̂M (s2)

s1s2z
k+1
1 zk+1

2

×(s1 + z1)(s2 + z1)(s1 + z2)(s2 + z2)
(z1 + z2)(s1 + s2)

. (27)

Note that this is now nearly symmetric in s ↔ z. It would be completely so if we were
using arbitrary linear combinations of derivatives of Λ, replacing k!/zki by a general Q̂(zi).
We multiply out

(s1 + z1)(s2 + z1)(s1 + z2)(s2 + z2) = s2
1s

2
2 + (s1 + s2)s1s2(z1 + z2) + (s2

1 + s2
2)z1z2

+s1s2(z1 + z2)2 + (s1 + s2)z1z2(z1 + z2) + z2
1z

2
2 ,

collecting terms in a manner which is more convenient for the application of the lemmas in
the appendix. To evaluate the second and fifth terms, we need only apply Lemma 9.1 and
Corollary 9.2, while the other terms require Lemma 9.4 as well. The calculations are now
completely straightforward, and we wind up with a residue at the origin which is equal to

2q̂η2(0, 0, 0, 0, 0)(log q̂)2k
(

log q̂
(logM)3

1
2k + 1

∫ 1

0
P ′′(x)2dx+

1
(logM)2

P ′(1)2

+
1

(log q̂)(logM)
(2

k2

2k − 1

∫ 1

0
P (x)P ′′(x)dx+ 2k

∫ 1

0
P ′(x)2dx)

+
k2

(log q̂)2
P (1)2 +

logM
(log q̂)3

k2(k − 1)2

2k − 3

∫ 1

0
P (x)2dx

)
. (28)

It remains to show that η2(0, 0, 0, 0, 0) = ζ(2)2. Returning to the original sum (24), we
need to factor the zeta functions out of

∑
d1,d2,c,n

∑
(m1,m2)=1

µ(m1d1c)ψ(m1d1c)−1µ(m2d2c)ψ(m2d2c)−1

d1+s1+t+z2
1 d1+s2+t+z1

2 c1+s1+s2n1+2t+z1+z2m1+s1+t+z1
1 m1+s2+t+z2

2

.

The n sum is immediate, giving ζ(1 + 2t+ z1 + z2).
We remove the condition (m1,m2) = 1 by Möbius inversion∑

(m1,m2)=1

f(m1,m2) =
∑

m1,m2

f(m1,m2)
∑

b|m1,m2

µ(b) =
∑
b

µ(b)
∑

m1,m2

f(bm1, bm2),

(for any arithmetic function f).
Replacing bc by c, our sum is

ζ(1 + 2t+ z1 + z2)
∑
c

µ(c)2ψ(c)−2

c1+s1+s2

∑
b|c

µ(b)
b1+2t+z1+z2
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×
∑

(m1d1,c)=1

µ(m1d1)ψ(m1d1)−1

m1+s1+t+z1
1 d1+s1+t+z2

1

∑
(m2d2,c)=1

µ(m2d2)ψ(m2d2)−1

m1+s2+t+z2
2 d1+s2+t+z1

2

.

The last two sums have the same form, so we next evaluate

∑
(md,c)=1

µ(md)
ψ(md)d1+um1+v

.

The sum over m is ∏
(p,cd)=1

(1− p−1−vψ(p)−1) =
∏

(p,cd)=1

(1− p−1−v)ηp(v),

where ηp(0) = (1− p−2)−1. Inserting this into the sum over d, we get

∏
(p,c)=1

(1− p−1−v)ηp(v)
∑

(d,c)=1

µ(d)
ψ(d)d−1−u

∏
p|d

1 + p−1

1 + p−1 − p−1−v .

We find that this is equal to

∏
(p,c)=1

(1 + p−1 − p−1−u − p−1−v)
(1 + p−1)

=
η∗(u, v)

ζ(1 + u)ζ(1 + v)

∏
p|c

(1 + p−1)
1 + p−1 − p−1−u − p−1−v , (29)

where η∗(0, 0) = ζ(2). Thus the m, d sums give the zeta functions desired for the denomi-
nator, and also two factors ζ(2) for the numerator.

Finally, we must evaluate the sum over b and c. Since all we want is η2(0, 0, 0, 0, 0),
we can set u = v = 0 in the product on the right-hand side of (29). Likewise we may set
2t+ z1 + z2 = 0 in the exponent of b. Our remaining sum is thus

∑
c

µ(c)2

ψ(c)2c1+s1+s2
(
∑
b|c

µ(b)
b

)
∏
p|c

(1 + p−1)2

(1− p−1)2
=
∑
c

µ(c)2

c1+s1+s2

∏
p|c

(1− p−1)−1

=
∏
p

(1 +
p−1−s1−s2

1− p−1
) = ζ(1 + s1 + s2)

∏
p

(1− p−1−s1−s2)(1− p−1 + p−1+s1+s2)
(1− p−1)

= ζ(1 + s1 + s2)η3(s1, s2),

where η3(0, 0) = 1. Thus η2(0, 0, 0, 0, 0) = η∗(0, 0)2η3(0, 0) = ζ(2)2, and we have completed
the evaluation of the main term of the second moment.

5.2 Shifting the contours

The goal is to bound all contributions to the integral

2(k!)2

(2πi)5

∫
Cδ2

∫
Cδ1

∫
(3)

∫
(3)

∫
(3)

Γ(1 + t)2q̂2t+z1+z2M s1+s2

s1s2tz
k+1
1 zk+1

2

× ζ(1 + 2t+ z1 + z2)ζ(1 + s1 + s2)η2(s1, s2, t, z1, z2)ds1ds2dtdz1dz2

ζ(1 + s1 + t+ z1)ζ(1 + s2 + t+ z1)ζ(1 + s1 + t+ z2)ζ(1 + s2 + t+ z2)
,
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other than that arising from the pole at s1 = s2 = t = z1 = z2 = 0, by something which is
smaller than (log q̂)2k−2. The general approach is the same as with the first moment, but
the presence of extra zeta functions, especially in the numerator, makes things slightly more
delicate.

Since the radii of the z contours were arbitrary, we set δ2 > δ1 so that z1 + z2 6= 0.
As with the first moment, we shift the s1, s2, t contours to 1/2, then shift the t contour to
Re(t) = −1/2 + δ, with δ > δ1, δ2, but δ small enough that q̂2δ+δ1+δ2−1M is still negligible.
Provided that ∆ < 1, we can always choose δ, δ1, δ2 so that this is the case. Since everything
in the integral other than q̂2t+z1+z2M s1+s2 is bounded in the range in question, we can thus
ignore the resulting t contour. Since si + zj + t has real part at least δ− δ2 > 0 on the new
contour, the only poles we pick up in this process come from t = −1

2(z1 + z2) and t = 0.
We start with the former.

When t = −1
2(z1 + z2), we are left with the integral over z1, z2, s1, s2 of (up to constants

and irrelevant terms)

M s1+s2ζ(1 + s1 + s2)P̂M (s1)P̂M (s2)∏
ζ(1 + si ± (z1 − z2)/2)s1s2z

k+1
1 zk+1

2 (z1 + z2)
.

Note in particular that this integral is independent of q̂. We evaluate the z1, z2 integrals
first, they simply give linear combinations of derivatives of ζ(1+si)−1. We then shift the s1

and s2 contours to the contour (say γ) previously described in section 4 lying to the right
of all zeros of ζ(1 + s) but to the left of Re(s) = 0. Since ζ(1 + s)−1 is analytic in the region
crossed, its derivatives will not increase the number of poles involved, and may decrease
them. In addition, there is a constant depending on k which will enable us to bound the
contribution of derivatives of ζ(1 + s)−1 by ck(1 + log |s|)k, which will have no significant
impact on the resulting contour integral. Thus we may simply ignore these terms in our
consideration of the integral and we are left with the integral of

M s1+s2ζ(1 + s1 + s2)P̂M (s1)P̂M (s2)s−1
1 s−1

2

over γ × γ, along with the poles at s1 = s2 = 0 and s1 = −s2. Note that this is now
independent of k. The contour integral is bounded in the same fashion as in the previous
section, so we focus on the poles. At s1 = −s2, the only dependence of this expression on
M or q̂ comes from the logM factors in the denominators of the P ’s, so this part is clearly
bounded. This leaves us with the pole at s1 = s2 = 0, which simply by counting poles
clearly gives a factor of logM , which is dominated by (log q̂)2k−2 so long as k > 1. This
completes the analysis of the pole at t = −1

2(z1 + z2).
Thus we are left with the pole at t = 0, which gives, up to constants and irrelevant

factors,

q̂z1+z2M s1+s2P̂M (s1)P̂M (s2)ζ(1 + s1 + s2)ζ(1 + z1 + z2)ds1ds2dz1dz2

s1s2z
k+1
1 zk+1

2

∏
ζ(1 + si + zj)

.

Again, we evaluate the z2 and z1 integrals, then shift the s2, s1 contours to γ. The integrals
over γ are again small enough to cancel any positive power of log q̂, so the only term of
importance remaining (other than the pole at s1 = s2 = z1 = z2 = 0, which was the
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main term evaluated in the previous section) comes from the pole at s2 = −s1, integrated
over s1 ∈ γ. This integral is independent of M other than the presence of the 1/ logM
factors in the PM . Provided that P (0) = P ′(0) = 0, there will be a factor of (logM)−4

or smaller coming from these coefficients. On the other hand, the z integrals contribute
at most (log q̂)2k+1, so the contribution from t = z1 = z2 = 0, s1 = −s2 is no larger than
a constant depending on ∆ times (log q̂)2k−3. As seen above, the main term of the second
moment involves a power of ∆ times (log q̂)2k−2, so these terms can be ignored.

This concludes the analysis of the contribution of the contour shifts, and with it the
evaluation of the second moment. We thus have shown the following.

Proposition 5.1 For 0 < ∆ < 1, and P a fixed polynomial such that P (0) = P ′(0) = 0 we
have

Qh(P ) = 2(1 +Ok((log q)−1))q̂ζ(2)2 (log q̂)2k−2

∆2(
∆−1

2k + 1

∫ 1

0
P ′′(x)2dx+ P ′(1)2 + 2k∆

∫ 1

0
(

k

2k − 1
P (x)P ′′(x) + P ′(x)2)dx

+k2∆2P (1)2 +
k2(k − 1)2

2k − 3
∆3
∫ 1

0
P (x)2dx

)
.

6 A generalization to linear combinations of derivatives

In this section we generalize our estimation of the first and the second moment to rather
arbitrary linear combinations of derivatives of Λ(f, s) at s = 1/2 and derive a very general
non-vanishing result for these combinations.

First of all we will rewrite Propositions 4.1 and 5.1 in a slightly more intrinsic form: set
Q(y) = yk, then we have (∆ = logM/ log q̂)

Lh(P ) = (1 +OQ(
1

log q
))ζ(2)q̂1/2 (log q̂)k−1

∆
(Q(1)P ′(1) + ∆Q′(1)P (1)). (30)

Similarly we can write

Qh(P ) = (1 +Ok(
1

log q
))2q̂ζ(2)2 (log q̂)2k−2

∆2(
∆−1

∫ 1

0
Q2(y)dy

∫ 1

0
P ′′(x)2dx+Q(1)2P ′(1)2 + 2∆

∫ 1

0
Q′(y)2dy

∫ 1

0
(PP ′′)(x)dx+

+2∆Q(1)Q′(1)
∫ 1

0
P ′(x)2dx+ ∆Q′(1)2P (1)2 + ∆3

∫ 1

0
Q′′2(y)dy

∫ 1

0
P (x)2dx

)
.

Remarking the equalities ∫ 1

0
(P ′(x)2 + (PP ′′)(x))dx = P (1)P ′(1)

∫ 1

0
(Q′(x)2 + (QQ′′)(x))dx = Q(1)Q′(1)
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we may express the last factor as

(Q(1)P ′(1) + ∆Q′(1)P (1))2 + ∆−1
∫ ∫

[0,1]×[0,1]
(P ′′(x)Q(y)−∆2P (x)Q′′(y))2dxdy.

So we have

Qh(P ) = (1 +OQ(
1

log q
))2q̂ζ(2)2 (log q̂)2k−2

∆2
× (31)[

(Q(1)P ′(1) + ∆Q′(1)P (1))2 + ∆−1
∫ ∫

[0,1]×[0,1]
(P ′′(x)Q(y)−∆2P (x)Q′′(y))2dxdy

]
.

Then we can gene ralize Proposition 4.1 and 5.1 in the following way: for any polynomial
Q(Y ) =

∑
k≥0 akY

k, consider the differential operator

Q̃ = Q(
1

log q̂
∂

∂s
) =

∑
k

ak
1

(log q̂)k
∂k

∂ks
.

We consider the generalized moments

Lh(P,Q) :=
∑h

f

Q̃(Λ(f, s))(1/2)MP (f)

Qh(P,Q) :=
∑h

f

|Q̃(Λ(f, s))(1/2)MP (f)|2

which are linear and quadratic forms in both variables P,Q respectively. From this discus-
sion it is clear that Lh(P,Q) is given by

Lh(P,Q) = (1 +OQ(
1

log q
))ζ(2)q̂1/2 1

∆ log q̂
(Q(1)P ′(1) + ∆Q′(1)P (1)).

Less clear is the case of the second moment, but returning quickly to the proof of Proposition
5.1, one shows that the equality

Qh(P,Q) = (1 +OQ(
1

log q
))2q̂ζ(2)2 1

∆2(log q̂)2
×[

(Q(1)P ′(1) + ∆Q′(1)P (1))2 + ∆−1
∫ ∫

[0,1]×[0,1]
(P ′′(x)Q(y)−∆2P (x)Q′′(y))2dxdy

]
.

remains true as soon as Q is either an odd or an even polynomial (this condition on Q
is necessary to insure a nice functional equation for Q̃(Λ(f, s))). An intriguing fact is the
symmetry in both the first and the second moment between the variables P and Q.

The proof of this equality follows the same steps: for example the expression in (26) has
to be replaced by

2q̂Res(0,0,0,0,0)
Γ(1 + t)2M s1+s2P̂M (s1)P̂M (s2)q̂2t+z1+z2Q̂q̂(z1)Q̂q̂(z2)

ts1s2z1z2

×η2(s1, s2, z1, z2, t)
(s1 + z1 + t)(s2 + z1 + t)(s1 + z2 + t)(s2 + z2 + t)

(z1 + z2 + 2t)(s1 + s2)
.

At this point we are in position to apply Cauchy’s inequality to prove our main result,
which gives a lower bound for the proportion of non-vanishing of a general linear combination
of the derivatives of Λ(f, s) at 1/2.

19



Theorem 6.1 Let Q be a fixed polynomial which is either odd or even. Then as q → +∞
we have

lim inf
q→+∞

∑h

f

Q̃(Λ(f,s))(1/2)6=0

1 ≥ Max
P,∆
R(P,Q) = Max

P,∆

1
2(1 +R2(P,Q))

where R2(P,Q) is the ratio

∆−1
∫ ∫

[0,1]×[0,1]
(P ′′(x)Q(y)−∆2P (x)Q′′(y))2dxdy

(Q(1)P ′(1) + ∆Q′(1)P (1))2 , (32)

P ranges over all polynomials such that P (0) = P ′(0) = 0, and ∆ over all real numbers
such that 0 < ∆ < 1.

Remark.— Note that we have always R(P,Q) < 1/2, which is to be expected, since
only half of the L-functions in question are of a given parity, and thus at most half can be
such that Q̃(Λ(f, s))(1/2) 6= 0.

Remark.— In particular one can use these techniques to analyze the behavior of deriva-
tives of L(f, s) rather than Λ(f, s), since the former at s = 1/2 is just linear combinations
of the latter, multiplied by appropriate factors of log q̂.

Remark.— Note that when looking for the value of the supremum above, Max
P,∆
R(P,Q),

one may assume by continuity that ∆ = 1 and that P ranges over all power series

P (x) = a2x
2 + a3x

3 + . . .

which are absolutely convergent (as are the Taylor series for everything up to P ′′(x)2) on
the interval [0, 1].

7 Optimizing the ratio

In this section we consider in great detail our original case, that of the k-derivatives, namely
Q(y) = yk. In this case, we will find the optimal plynomial P = Pk, that is the function
which minimizes the ratio R2(P, yk). Then Theorem 1.6 will be true with πk defined by

πk =
1

2(1 +R2(Pk, yk))
,

and we will show that this satisfies

πk =
1
2
− 1

32
k−2 +O(k−3),

as claimed in the statement of Theorem 1.2.
A large part of this optimization process works in greater generality and we will switch

to our favorite polynomial only at the very end. For this we denote

I(Q) :=
∫ 1

0
Q(y)dy.
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We need to minimize

R2(P,Q) =
∫ 1

0

(
∆−1I(Q2)P ′′(x)2 − 2∆I(QQ′′)P ′′(x)P (x) + ∆3I(Q′′2)P (x)2

)
dx

(∆Q′(1)P (1) +Q(1)P ′(1))2
(33)

over all functions P (x) = a2x
2 +a3x

3 + . . . where this Taylor series is absolutely convergent
(as are the Taylor series for everything up to P ′′(x)2) on the interval [0, 1].

Assuming for the moment the existence of an optimal such P , we see that the first
derivative with respect to ε of R2(P (x) + εf(x)) must be zero at ε = 0 for all admissible
functions f . From this it is easy to show that P , up to scaling by a constant, must satisfy

∆Q′(1)f(1) +Q(1)f ′(1) =
∫ 1

0
f ′′(x)

(
∆−1I(Q2)P ′′(x)−∆I(QQ′′)P (x)

)
dx

+
∫ 1

0
f(x)

(
∆3I(Q′′2)P (x)−∆I(QQ′′)P ′′(x)

)
dx (34)

for all such f . Let Π(x) be a function with absolutely convergent Taylor series in [0, 1]
satisfying Π′′(x) = P (x). Then two integrations by parts (using f(0) = f ′(0) = 0) turn (34)
into

∆Q′(1)f(1) +Q(1)f ′(1) = f(1)
(
∆3I(Q′′2)Π′(1)−∆I(QQ′′)Π′′′(1)

)
+f ′(1)

(
∆I(QQ′′)Π′′(1)−∆3I(Q′′2)Π(1)

)
+
∫ 1

0
f ′′(x)

(
∆−1I(Q2)Π′′′′(x)− 2∆I(QQ′′)Π′′(x) + ∆3I(Q′′2)Π(x)

)
dx. (35)

For this to be true for all f with Taylor series as described, the expression in the final
integrand must be of the form a0 + a1x, which gives us a fourth-order differential equation
for Π. When Q(y) = 1 or Q(y) = y, one finds that Π (and thus P ) is a polynomial of low
degree, and it is easy to check that, for any ∆, P0(x) = x2 and P1(x) = x2 − x3/6 are the
correct choices (this leads to the p0 = 1/4 and p1 = 7/16 mentioned in the introduction).
When degQ ≥ 2, the differential equation is more intricate. However, its characteristic
polynomial can be factored explicitly, and upon differentiating Π twice (which eliminates
the a0 + a1x term) to get P , we find that P (x) is a linear combination of the functions
e(±α±iβ)x, where

α =
∆√

2I(Q2)

√√
I(Q2)I(Q′′2) + I(QQ′′), (36)

β =
∆√

2I(Q2)

√√
I(Q2)I(Q′′2)− I(QQ′′).

Note that by design (α± iβ)2 are the two roots of the polynomial

∆−1I(Q2)X2 − 2∆I(QQ′′)X + ∆3I(Q′′2). (37)

The conditions P (0) = P ′(0) imply that, up to scaling,

P (x) = sinh(αx)(cos(βx)− L sin(βx))− α

β
e−αx sin(βx). (38)
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One then solves for L by substituting back into the right side of (35) and requiring that the
ratio of f(1) coefficients to f ′(1) coefficients be exactly k for all f (this is a linear constraint
with a single solution).

Note that P is now uniquely determined, so that if there exists a single P which optimizes
R2(P ), it is the one we have just found. Suppose instead that the optimal value of R2(., Q)
comes from a limiting sequence, and in particular suppose there is a function F with Taylor
series of the usual type for which R2(F,Q) < R2(P,Q). This then implies that the function
R2(P + ε(F −P )) has derivative zero at ε = 0 but takes lower values elsewhere. But, taken
as a function of ε, this is a ratio of non-negative quadratics of the form

R2(ε)
a0 + a1ε+ a2ε

2

(b0 + b1ε)2
.

Provided that b0 + b1ε does not divide the numerator, this function has a unique minimum
lying below its horizontal asymptote a2/b

2
1. This minimum lies at the unique solution to

R′2(ε) = 0, which as we have seen is at ε = 0. On the other hand, if b0 + b1ε divides the
numerator (which is positive definite), the function must be a constant in ε, implying that
there is an infinite family of minimal functions. Again, the uniqueness of our P as a solution
to the differential equation rules this possibility out. Thus R2 is minimized at P (x) of the
form given above.

It now remains to calculate the values of R2(P, yk) for ∆ = 1. In this particular case
we find that

α = ∆

√√√√√k(k − 1)
2

√2k + 1
2k − 3

+
2k + 1
2k − 1

, (39)

β = ∆

√√√√√k(k − 1)
2

√2k + 1
2k − 3

− 2k + 1
2k − 1

.
As one may easily check, we have asymptotically as k → +∞ α = ∆(k+ 1/2) +O(k−1) and
β = ∆/2 +O(k−1). One can solve for L by substituting back into (35), although the calcu-
lations are quite ugly, especially for small k where one cannot ignore e−α. Asymptotically
in k one has

L =
(α+ k) sinβ + β cosβ
−(α+ k) cosβ + β sinβ

+O(e−α) (40)

= − tanβ +O(k−1) = − tan(∆/2) +O(k−1).

Rather than solve for L explicitly, we used the MAPLE computer algebra system to optimize
R2(P ) as a function of L, and this gave the values of πk listed in Theorem 1.2 for ∆ = 1.
The optimal values of L for k = 2, 3, 4, 5 were −1.407, −0.8827, −0.7634, and −0.7078,
respectively.

Finally, we examine the rate of convergence R2(P, yk) to zero, which gives the rate of
convergence of πk := 1/(2 + 2R2(P, yk)) to 1/2.

Lemma 7.1 For the optimal Pk as chosen above and 0 < ∆ ≤ 1,

R2(Pk, yk) =
1

16k2
+O(k−3),
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and therefore

πk =
1
2
− 1

32
k−2 +O(k−3).

Proof. We examine the denominator of R2 first. When evaluating P (x) or its derivatives
at x = 1 for large k, it is clearly enough to evaluate the parts coming from eαx, since those
from e−αx will be exponentially small in k. Using the expression for L in (40), we find that

∆kP (1) + P ′(1) =
eα

2

(
∆k + α

cosβ
+O(1)

)
+O(ke−α) =

∆keα

cosβ
+O(eα). (41)

Thus the only terms which will matter in the numerator of R2 are those which include
a factor of e2α, so we may again ignore the e−αx terms of P , and also only evaluate the
integrals at x = 1. Thus we are only interested in the contribution from

Pmain(x) =
1
4

(
(1 + iL)e(α+iβ)x + (1− iL)e(α−iβ)x

)
to∫ 1

0

(
∆−1I(Q2)(Pmain(x)′′)2 − 2∆I(QQ′′)Pmain(x)′′Pmain(x) + ∆3I(Q′′2)Pmain(x)2

)
dx.

By (37), each term in Pmain gives zero when put into this expression by itself. Thus the
only non-zero terms are those involving the products of the two terms in Pmain, which give

1 + L2

16

(
2∆−1I(Q2)(α2 + β2)2 − 2∆I(QQ′′)((α+ iβ)2 + (α− iβ)2) + 2∆3I(Q′′2)

) ∫ 1

0
e2αxdx.

Making the substitution

2∆I(QQ′′)(α± iβ)2 = ∆−1I(Q2)(α± iβ)4 + ∆3I(Q′′2)

and evaluating the integral leaves us with

e2α

2α
1 + L2

16∆(2k + 1)

(
2(α2 + β2)2 − (α+ iβ)4 − (α− iβ)4

)
=
e2α

2α
1 + L2

∆(2k + 1)
(αβ)2.

Using 1 +L2 = (cosβ)−2 +O(1/k), α = ∆(k+ 1/2) +O(1/k), and β = ∆/2 +O(1/k) turns
this into

e2α∆2

16 cos2 β
(1 +O(

1
k

)).

Comparing with the square of (41) completes the proof.
2
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8 Application to the analytic rank of J0(q)

8.1 Proof of Theorem 1.4

Here we will prove Theorem 1.4, the statement of which we recall: let α, 0 < α < 2, be a
fixed real number, then for q prime large enough we have

∑
f∈S2(q)∗

rαf ≤ (1
2 +

+∞∑
k=0

((k + 2)α − kα)(1
2 − pk) + oα(1))|S2(q)∗|. (42)

The proof is relatively straightforward; indeed, if we had∑
Λ(k)(f, 1

2
)6=0

1 ≥ pk|S2(q)∗|

instead of the limit formula ∑
Λ(k)(f, 1

2
)6=0

1 ≥ (pk + ok(1))|S2(q)∗|,

it would be immediate by summing by parts over k. However, we do not know how large
the ok(1) is as function of k (in the case of πk, we have actually shown that the ok(1) is of
size (roughly) (k!)2(log q)−1, which is too large).

To avoid this problem, we will need the following theorem, of independent interest:

Theorem 8.1 There exists an absolute constant C > 0 such that for all q prime∑
f∈S2(q)∗

r2
f ≤ C|S2(q)∗| and

∑h

f∈S2(q)∗

r2
f ≤ C.

Using this, which is proved below in Section 8.2, we now prove (42).

Lemma 8.2 Let k ≥ 0. We have∑
rf≥k

1� (1
2 − pk−1 + 1

2 − pk−2 + ok(1))|S2(q)∗|

where the implied constant is absolute, and we put p−1 = 0.

Proof. If the analytic rank of f is ≥ k, at least we must have

Λ(k−1)(f, 1
2) = Λ(k−2)(f, 1

2) = 0.

By parity considerations, the proportion of forms satisfying those two conditions is

� 1
2 − pk−1 + 1

2 − pk−2 + ok(1).

2
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Let α, 0 < α < 2 be fixed. We consider the average∑
f∈S2(q)∗

rαf .

Introducing a fixed n ≥ 1 we write∑
f∈S2(q)∗

rαf =
∑
rf>n

rαf +
∑
rf≤n

rαf = N1 +N2, say.

By Hölder’s inequality,

N1 ≤
(∑
f

r2
f

)α/2(∑
rf>n

1
)1−α/2

� |S2(q)∗|α/2
(∑
rf>n

1
)1−α/2

(Proposition 8.1)

� (1
2 − pn + 1

2 − pn−1 + on(1))1−α/2|S2(q)∗|1−α/2 (Lemma 8.2)

� (1
2 − πn + 1

2 − πn−1 + on(1))1−α/2|S2(q)∗|1−α/2

�
( 1
n2−α + oα,n(1)

)
|S2(q)∗|1−α/2

and thus
N1 �

( 1
n2−α + oα,n(1)

)
|S2(q)∗|.

Turning to the other term, we have by partial summation

N2 =
n∑
k=1

kα
(∑
rf=k

1
)
≤

n∑
k=1

(kα − (k − 1)α)
(∑
rf≥k

1
)

since the difference between those two expressions comes from forms whose L-function has
order > n. By the lemma∑

rf≥k
1 ≤ (1

2 − pk−1 + 1
2 − pk−2 + ok(1))|S2(q)∗|

(where we put p−1 = 0). Therefore, after some manipulation

N2 ≤ |S2(q)∗|
(

1
2 +

∑
k≤n−2

((k + 2)α − kα)(1
2 − pk) + (nα − (n− 1)α)(1

2 − pn) + on(1)
)
.

We extend the sum to the infinite series, which has non-negative terms, so a limit, finite or
+∞. In fact by Theorem 1.2, we have

1
2 − pk �

1
2 − πk � k−2,

so it converges for α < 2, and we obtain

N2 ≤
(

1
2 +

+∞∑
k=0

((k + 2)α − kα)(1
2 − pk) + on(1)

)
|S2(q)∗|.
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Adding the estimate for N1, and letting then n go to +∞, this proves Theorem 1.4.
Specific values were calculated with the MAPLE computer algebra system. Thus we

find for example that∑
f∈S2(q)∗

rf ≤ (1.1891 + o(1))|S2(q)∗|,
∑

f∈S2(q)∗

r1.9
f ≤ (3.2191 + o(1))|S2(q)∗|.

If α approaches 2, it is eventually better to use the (unspecified but computable) constant
of Proposition 8.1, as the expression above tends to +∞ for α→ 2.

8.2 The average rank squared

We now prove Proposition 8.1. The method is based on that used in [KM1], to which we
refer for complete details of the steps only briefly sketched below.

Applying the explicit formula and proceeding as in [KM1, 4.1] with some help from
Cauchy-Schwarz, we reduce the proof to a density theorem for zeros of automorphic L-
functions.

For any σ ≥ 1
2 , t1 and t2 real, we denote by N(f ;σ, t1, t2) the number of zeros ρ = β+ iγ

of L(f, s) which satisfy β ≥ σ and t1 ≤ γ ≤ t2. Then it is enough to prove the

Proposition 8.3 There exist absolute constants B > 0, c > 0, such that for any σ ≥
1
2 + (log q)−1 and any real numbers t1 < t2 such that t2 − t1 ≥ (log q)−1, it holds∑

f∈S2(q)∗

N(f, σ, t1, t2)2 ≤ (1 + |t1|+ |t2|)Bq1−c(σ−1
2 )(t2 − t1)(log q).

Remark. About the transition from this density theorem to Proposition 8.1: if we
follow [KM1] closely, we see that we need an estimate for the term denoted S1(f, λ) on
average, namely we require ∑

f

S1(f, λ)2 � |S2(q)∗|(log q)2.

The harmonic analogue of this is proved in the course of proving [KM1, Lemma 7]), and
the weight is removed as usual (very easily in this case).

To prove Proposition 8.3, we will appeal to the following fundamental result of [KM1],
which estimates a mollified second moment of L(f, s) on average.

Let M = q̂∆ for some parameter ∆ and let g = gM be the function

g(x) =


1 if x ≤

√
M

logM/x

log
√
M

if
√
M ≤ x ≤M

0 if x > M .

We then put

xm(s) = µ(m)m−s
∑
n≥1

ε(n)µ(mn)2

n2s
g(mn)

and finally

M(f, s) =
∑
m

λf (m)xm(s) =
∑
m

µ(m)λf (m)
ms

∑
n

ε(n)µ(mn)2

n2s
g(mn).
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Proposition 8.4 Let M = q̂∆ with 0 < ∆ < 1
2 , let c < ∆ be any positive real number.

There exists an absolute constant B > 0 such that for all q large enough we have

∑
f∈S2(q)∗

|L(f, σ + it)M(f, σ + it)− 1|2 � (1 + |t|)Bq1− c
2

(σ−1
2 ),

uniformly for σ ≥ 1
2 + (log q)−1 and t ∈ R, the implied constant depending only on c and

∆.

We can now prove the density theorem. The argument is similar to that of [KM1] (based
on Lemma 14 of [S], see also [Kow]), with a simple trick to get to the square.

We may assume that t2 − t1 = (log q)−1. We set

σ′ = σ − 1
2 log q

, t′1 = t1 −
η

log q
, t′2 = t2 +

η

log q

where η > 0 is some parameter, large enough so that

πη

2η + 1
≥ π

6
,

4π
2η + 1

< c.

If we let hf (s) = L(f, s)M(f, s), which vanishes at zeros of L(f, s), using Selberg’s Lemma 14
([S]), we find the zero-detecting inequality

N(f, σ, t1, t2) ≤ 2
π

(log q)
∫ t′2

t′1

sin
(
π
t− t′1
t′2 − t′1

)
log |hf (σ′ + it)|dt

+
2
π

(log q)
∫ +∞

σ′
sinh

(
π
x− σ′

t′2 − t′1

)
{log |hf (x+ it′1)|+ log |hf (x+ it′2)|}dx.

Since log |1 + x| ≤ log(1 + |x|) ≤ |x| and sinh(x) ≥ 0 for x > 0, writing

hf (s) = 1 + (L(f, s)M(f, s)− 1),

we obtain

N(f, σ, t1, t2) ≤ 2
π

(log q)
∫ t′2

t′1

sin
(
π
t− t′1
t′2 − t′1

)
|LM(f, σ′ + it)− 1|dt

+
2
π

(log q)
∫ +∞

σ′
sinh

(
π
x− σ′

t′2 − t′1

)
{|LM(f, x+ it′1)− 1|+ |LM(x+ it′2)− 1|}dx.

We now square this last inequality (now and not before because log |hf (σ′ + it)| might
be negative and very large in absolute value at some point, which would be difficult to
handle), and average over f . The average of N(f, σ, t1, t2)2 is bounded, up to some absolute
multiplicative constant, by a sum of three terms, which are double integrals. All are treated
similarly, so we pick only one for example, namely

(log q)2
∫ +∞

σ′

∫ +∞

σ′
sinh

(
π
x− σ′

t′2 − t′1

)
sinh

(
π
y − σ′

t′2 − t′1

)
M1(x, y)dxdy
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where the mixed moment M1 is

M1(x, y) =
∑
f

|LM(f, x+ it′1)− 1||LM(f, y + it′1)− 1|.

By Cauchy’s inequality, we have

M1(x, y) ≤
(∑
f

|LM(x+ it′1)− 1|2
)1

2
(∑
f

|LM(y + it′1)− 1|2
)1

2

� (1 + |t′1|)Bq
1− c

4
(x−1

2 )− c
4

(y−1
2 ).

Now the double integral splits as a product. One is∫ +∞

σ′
sinh

(
π
x− σ′

t′2 − t′1

)
q−

c
4

(x−1
2 )dx� 1

log q
q−

c
4

(σ′−1
2 )

because q−cx/4 = e−cx(log q)/4 and η has been chosen so that π/(2η + 1) < c/4 (making the
integral converging, and as small as (log q)−1). The second integral is handled in the same
way, and so this first term is seen to be

� (1 + |t′1|)Bq
1− c

2
(σ−1

2 ).

The other two terms are estimated in the same way.

8.3 Final remarks

We wish to emphasize here that the value 1.1891 is certainly not the best possible constant
within reach of our method. In fact the arguments of the preceding section work with-
out change if we consider, instead of the polynomials yk, k ≥ 0, any other family Qk of
polynomials such that degQk = k and Qk is of the same parity as k.

The best possible bound our results can get will be achieved if, for any k, Qk is chosen
to minimize R2(PQ, Q) among all the polynomials of degree k and of the same parity as k,
where PQ is the optimal function corresponding to Q described in Section 7.

For k = 0 or 1, there is no other choice than Q0(y) = 1, Q1(y) = y. The optimal P is
known in those cases, so the bound for r J0(q) will be always

> 1/2 + 2((1/2− 1/4) + (1/2− 7/16)) = 1.125,

and this is the absolute limit of our method, barring any improvement in the (logarithmic)
length of the mollifier ∆ beyond 1 (which would be of great significance independently of
this, and which is feasible assuming GRH for Dirichlet L functions as shown by Iwaniec and
Sarnak [I-S]).

Similarly the 99% result cannot be reduced below 3 since 1/2 + 7/16 < 99/100.
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9 Appendix

In this section we provide the calculations behind the various residue calculations used
throughout the paper. All are in the spirit of lemmas 9 through 11 of Conrey’s work on
high derivatives of the zeta function, although in order to maintain more flexibility, we have
kept ourselves to calculations of residues rather than number-theoretic sums.

As mentioned earlier in the text, given a polynomial

P (x) =
∑

akx
k

and a large number M , we define a new polynomial

P̂M (s) =
∑

ak
k!

(s logM)k

for use in contour integrals.

Lemma 9.1

Ress=0
M sP̂M (s)

s
= P (1).

Proof. This is a straightforward calculation, one has

∑ akk!
(logM)k

Ress=0
M s

sk+1
=
∑

ak,

as desired.
2

Corollary 9.2

Ress=0
M ss`P̂M (s)

s
=

1
(logM)`

P (`)(1).

Proof. Multiplying P̂M (s) by s` gives

∑ akk!
(logM)k

s`−k = (logM)−`
∑

(
akk!

(k − `)!
)

(k − `)!
(s logM)k−`

= (logM)−` ̂(P (`))M (s).

Now use Lemma 9.1. Note that if ` is larger than the degree of the polynomial, then the
residue is zero, as is the derivative, so that this corollary still applies.

2

Corollary 9.3

Ress=0
M sP̂M (s)
s1+`

= (logM)`(
∫ (`)

P )]10,

where
∫ (`) means to take ` antiderivatives, without including constants of integration.

29



Proof.Exactly the same as Corollary 9.2.
2

Lemma 9.4

Ress1,s2=0
M s1+s2P̂M (s1)Q̂M (s2)

s1 + s2
= (logM)(

∫ 1

0
PM (x)QM (x)dx).

Proof. Again, we break the polynomials up by coefficients, letting bk represent the coeffi-
cients of Q, and calculate the residues one at a time.

Ress1=0

∑ ak1k1!
(logM)k1

M s1

sk1+1
1

Ress2=0

∑ bk2k2!
(logM)k2

M s2

sk2+1
2 (s1 + s2)

= Ress1=0

∑
k1

ak1
(logM)k1

k1!M s1

sk1+1
1

∑
k2

bk2
(logM)k2

k2∑
`=0

(
k2

`

)
(−1)``!
s`+1

1

(logM)k2−`

=
∑
k1,k2

ak1ak2
(logM)k1+k2

k2∑
`=0

(−1)`k1!k2!
(k2 − `)!(k1 + `+ 1)!

(logM)k1+k2+1.

We now use the combinatorial identity

B∑
A=0

(−1)A
(

C

B −A

)
=

(
C − 1
B

)
,

which is most easily seen by comparing the Bth coefficients of the identity

(1 + x)C(1− x+ x2 − x3 + · · ·) = (1 + x)C−1.

Using this to evaluate the sum over `, we have

(logM)
∑
k1,k2

ak1bk2
k1!k2!

(k1 + k2 + 1)!

(
k1 + k2

k2

)

= (logM)
∑
k1,k2

ak1bk2
1

k1 + k2 + 1
,

as desired.
2
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