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Abstract In this paper, it is proved that, if a toric ideal possesses a fundamental
binomial none of whose monomials is squarefree, then the corresponding semigroup
ring is not very ample. Moreover, very ample semigroup rings of Lawrence type are
discussed. As an application, we study very ampleness of configurations arising from
contingency tables.

Keywords Fundamental binomial · Toric ring · Very ample configuration · Lawrence
lifting · Combinatorial pure subring

1 Introduction

A configuration in R
d is a finite set A = {a1, . . . , an} ⊂ Z

d≥0 such that there exists
a vector w ∈ R

d satisfying w · ai = 1 for all i . Let K [t] = K [t1, . . . , td ] denote the
polynomial ring in d variables over a field K . We associate a configuration A with the
semigroup ring K [A] = K [ta1, . . . , tan ], where ta = ta1

1 · · · tad
d if a = (a1, . . . , ad).

Let K [x] = K [x1, . . . , xn] denote the polynomial ring in n variables over K . The
toric ideal IA of A is the kernel of the surjective homomorphism π : K [x] −→ K [A]
defined by setting π(xi ) = tai for 1 ≤ i ≤ n.

We are interested in the following conditions:
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(i) A is unimodular, i.e., the initial ideal of IA is generated by squarefree monomials
with respect to any monomial order;

(ii) A is compressed, i.e., the initial ideal of IA is generated by squarefree monomials
with respect to any reverse lexicographic order;

(iii) there exists a monomial order < such that the initial ideal of IA with respect to
< is generated by squarefree monomials;

(iv) K [A] is normal, i.e., Z≥0 A = ZA ∩ Q≥0 A;
(v) K [A] is very ample, i.e., (ZA ∩ Q≥0 A) \ Z≥0 A is a finite (or empty) set.

Then (i) �⇒ (ii) �⇒ (iii) �⇒ (iv) �⇒ (v) holds and each of the converse of them is
false in general. If K [A] is not normal, then an element of (ZA ∩ Q≥0 A) \ Z≥0 A is
called hole.

Let PA denote the convex hull of A. For a subset B ⊂ A, K [B] is called com-
binatorial pure subring (Ohsugi et al. 2000; Ohsugi 2007) of K [A] if there exists a
face F of PA such that B = A ∩ F . For example, if K [B] = K [A] ∩ K [ti1, . . . , tis ],
then K [B] is a combinatorial pure subring of K [A]. (This is the original definition
of a combinatorial pure subring in Ohsugi et al. (2000).) A binomial f ∈ IA is called
fundamental if there exists a combinatorial pure subring K [B] of K [A] such that IB

is generated by f . In Sect. 2, it will be proved that, if IA possesses a fundamental
binomial none of whose monomials is squarefree, then K [A] is not very ample. The
Lawrence lifting �(A) of the configuration A is the configuration arising from the
matrix

�(A) =
(

A 0
In In

)
,

where In is the n × n identity matrix and 0 is the d × n zero matrix. A configuration
A is called Lawrence type if there exists a configuration B such that �(B) = A. In
Sect. 2, it will be proved that a configuration of Lawrence type is very ample if and
only if it is unimodular.

In Sect. 3, by using the results in Sect. 2, we study very ample configurations arising
from no n-way interaction models for r1×r2 ×· · ·×rn contingency tables, where r1 ≥
r2 ≥ · · · ≥ rn ≥ 2. Let Ar1r2···rn be the set of vectors e(1)

i2i3···in
⊕e(2)

i1i3···in
⊕· · ·⊕e(n)

i1i2···in−1
,

where each ik belongs to [rk] = {1, 2, . . . , rk} and e(k)
j1 j2··· jn−1

is a unit coordinate vector

of Z
dk with dk =

∏n
�=1 r�

rk
. The toric ideal IAr1r2 ···rn

is the kernel of the homomorphism

π : K [{xi1i2···in | ik ∈ [rk]}] −→ K
[{

t (k)
i1···ik−1ik+1···in

∣∣ k ∈ [n], ik ∈ [rk]
}]

defined by π(xi1i2···in ) = t (1)
i2i3···in

t (2)
i1i3···in

· · · t (n)
i1i2···in−1

. Table 1 is known.
By virtue of the results in Sect. 2, we will prove that configurations in “otherwise”

part are not very ample.

2 Fundamental binomials

The following lemma plays an important role in the present paper.
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Table 1 Algebraic properties of
configurations of contingency
tables

r1 × r2 or r1 × r2 × 2 × · · · × 2 Unimodular
r1 × 3 × 3 Compressed, not unimodular
4 × 4 × 3 Normal, not compressed
5 × 5 × 3 or 5 × 4 × 3 Not compressed (normality is

unknown)
Otherwise, i.e.,
n ≥ 4 and r3 ≥ 3 Not normal
n = 3 and r3 ≥ 4
n = 3, r3 = 3, r1 ≥ 6 and r2 ≥ 4

Lemma 1 Let K [B] be a combinatorial pure subring of K [A]. If K [A] is normal
(resp. very ample), then K [B] is normal (resp. very ample).

Proof Let K [B] be a combinatorial pure subring of K [A]. It is enough to show that
(ZB ∩ Q≥0 B) \ Z≥0 B ⊂ (ZA ∩ Q≥0 A) \ Z≥0 A.

Let α ∈ (ZB ∩Q≥0 B)\Z≥0 B. Since B is a subset of A, we have α ∈ ZA ∩Q≥0 A.
Suppose that α ∈ Z≥0 A. Then α = ∑

a∈A zaa with 0 ≤ za ∈ Z. Since α /∈ Z≥0 B,
0 < za for some a ∈ A \ B. Moreover, since α ∈ Q≥0 B, α = ∑

a∈B qaa with
0 ≤ qa ∈ Q. Thus α = ∑

a∈A zaa = ∑
a∈B qaa. Since K [B] is a combinatorial pure

subring of K [A], there exists a face F of PA such that B = A ∩ F . Then there exist
v ∈ R

d and c ∈ R satisfying

F = PA ∩ { b ∈ R
d | v · b = c },

PA ⊂ { b ∈ R
d | v · b ≤ c }.

Then v · a = c for all a ∈ B and v · a < c for all a ∈ A \ B. Hence v · α =
c

∑
a∈B qa < c

∑
a∈A za. Thus we have c �= 0 and

∑
a∈B qa �= ∑

a∈A za. On the
other hand, since A is a configuration, there exists a vector w ∈ R

d satisfying w ·a = 1
for all a ∈ A. Hence w · α = ∑

a∈B qa = ∑
a∈A za. This is a contradiction. Thus

α ∈ (ZA ∩ Q≥0 A) \ Z≥0 A as desired. �
It is known (Ohsugi et al. 2000, Lemma 3.1) that

Proposition 2 If g = u − v ∈ K [x] is a binomial such that neither u nor v is
squarefree and if IA = (g), then K [A] is not normal.

We extend Proposition 2 as follows:

Lemma 3 If g = u − v ∈ K [x] is a binomial such that neither u nor v is squarefree
and if IA = (g), then K [A] is not very ample.

Proof Let g = x2
1 u′ − x2

2v′. Since g is irreducible, u′ ( �= 1) is not divided by x2 and

v′ ( �= 1) is not divided by x1. Since π(x2
1 u′) = π(x2

2v′), we have
√

π(u′v′) = π(x1u′)
π(x2)

.

Let xk be a variable with k �= 1, 2. Then the monomial π(xm
k )

√
π(u′v′) belongs to the

quotient field of K [A] and is integral over K [A] for all positive integer m. Suppose
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that there exists a monomial w such that π(w) = π(xm
k )

√
π(u′v′). It then follows that

the binomial g′ = x1u′xm
k − x2w belongs to IA. Since IA = (g) and x1u′xm

k is divided
by neither x2

1 u′ nor x2
2v′, we have g′ = 0. Hence x2 must divide u′, a contradiction.

Thus π(xm
k )

√
π(u′v′) is a hole for all m and K [A] is not very ample. �

Theorem 4 If IA possesses a fundamental binomial g = u − v such that neither u
nor v is squarefree, then K [A] is not very ample.

Proof Since g is fundamental, there exists a combinatorial pure subring K [B] of
K [A] such that IB is generated by g. Thanks to Lemma 3, K [B] is not very ample.
Since K [B] is a combinatorial pure subring of K [A], K [A] is not very ample by
Lemma 1. �

Thanks to Theorem 4 together with the results in Ohsugi et al. (2000), we extend
(Ohsugi et al. 2000, Theorem 3.4) as follows:

Corollary 5 Let K [A] be a semigroup ring and let K [�(A)] its Lawrence lifting.
Then, the following conditions are equivalent:

(i) K [A] is unimodular;
(ii) K [�(A)] is unimodular;

(iii) K [�(A)] is very ample.

Proof First, (ii) ⇒ (iii) is well-known. On the other hand, (i) ⇔ (ii) is proved in
(Ohsugi et al. 2000, Theorem 3.4).

In order to show (iii) ⇒ (i), suppose that K [A] is not unimodular. Then, by the
same argument in Proof of (Ohsugi et al. 2000, Theorem 3.4), I�(A) has a fundamental
binomial g none of whose monomials is squarefree. Thanks to Theorem 4, K [�(A)]
is not very ample as desired. �
Remark 6 A binomial f belonging to IA is called indispensable if, for an arbitrary sys-
tem F of binomial generators of IA, either f or − f appears in F . In particular, every
fundamental binomial is indispensable. However, Theorem 4 is not true if we replace
“fundamental” with “indispensable.” Let K [A] = K [t2, t1t2, t3

1 t2, t4
1 t2] ⊂ K [t1, t2].

Then K [A] is very ample and IA is generated by the set of indispensable binomials
{x1x4 − x2x3, x3

2 − x2
1 x3, x3

3 − x2x2
4 , x1x2

3 − x2
2 x4}. (The toric ideal IA has no

fundamental binomials.)

3 Configurations arising from contingency tables

Configurations in “otherwise” part of Table 2 are studied in Ohsugi and Hibi (2007)
by using the notion of combinatorial pure subring and indispensable binomials. For
6 × 4 × 3 case, non-normality is shown in Vlach (1986) and it was proved Hemmecke
et al. (2009) that it is not very ample. On the other hand, compressed configurations
are classified in Sullivant (2006). For 4 × 4 × 3 case, it was announced in (Hemmecke
et al., 2009, p. 87) that Ruriko Yoshida verified that it is normal by using the software
NORMALIZ (Bruns and Ichim 2008).

The basic facts on Ar1···rn are (Ohsugi and Hibi 2007, Proposition 3.1 and
Proposition 3.2):
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Table 2 Algebraic properties of
configurations of n way
contingency tables

r1 × r2 or r1 × r2 × 2 × · · · × 2 Unimodular
r1 × 3 × 3 Compressed, not unimodular
4 × 4 × 3 Normal, not compressed
5 × 5 × 3 or 5 × 4 × 3 Not compressed

(normality is unknown)
Otherwise, i.e.,
n ≥ 4 and r3 ≥ 3 Not normal
n = 3 and r3 ≥ 4
n = 3, r3 = 3, r1 ≥ 6 and r2 ≥ 4

Proposition 7 The configuration Ar1···rn2 is the Lawrence lifting of Ar1···rn .

Proposition 8 Suppose that Ar1···rn and As1···sn satisfy si ≤ ri for all 1 ≤ i ≤ n. Then
K [As1···sn ] is a combinatorial pure subring of K [Ar1···rn ].
Theorem 9 Work with the same notation as above. Then, each configuration in
“otherwise” part is not very ample.

Proof Let A be a configuration in “otherwise” part. Thanks to Proposition 8, K [A]
has at least one of K [A444], K [A643] and K [A3332···2] as a combinatorial pure subring.
It is easy to check that IA444 has a fundamental binomial

x2
111x133x144x223x224x232x242x313x322x341x414x422x431

−x113x114x131x141x2
222x233x244x311x323x342x411x424x432,

and IA643 has a fundamental binomial

x111x221x331x641x212x522x432x642x413x323x2
633x143x543

−x211x321x631x141x412x222x632x542x113x523x333x433x2
643.

Since none of the monomials appearing above is squarefree, both K [A444] and K [A643]
are not very ample by Theorem 4. Moreover, since A333 is not unimodular, K [A3332···2]
is not very ample by Corollary 5 together with Proposition 7. Thus, K [A] is not very
ample by Lemma 1. �

We close the present paper with an interesting problem.

Problem 10. Find natural classes of configurations appearing in statistics which is
not normal but very ample.
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