Non-very ample configurations arising from contingency tables

Hidefumi Ohsugi • Takayuki Hibi

Received: 23 April 2009 / Revised: 2 December 2009 / Published online: 31 March 2010
© The Institute of Statistical Mathematics, Tokyo 2010

Abstract

In this paper, it is proved that, if a toric ideal possesses a fundamental binomial none of whose monomials is squarefree, then the corresponding semigroup ring is not very ample. Moreover, very ample semigroup rings of Lawrence type are discussed. As an application, we study very ampleness of configurations arising from contingency tables.

Keywords Fundamental binomial • Toric ring • Very ample configuration • Lawrence lifting • Combinatorial pure subring

1 Introduction

A configuration in \mathbb{R}^{d} is a finite set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subset \mathbb{Z}_{\geq 0}^{d}$ such that there exists a vector $\mathbf{w} \in \mathbb{R}^{d}$ satisfying $\mathbf{w} \cdot \mathbf{a}_{i}=1$ for all i. Let $K[\mathbf{t}]=K\left[t_{1}, \ldots, t_{d}\right]$ denote the polynomial ring in d variables over a field K. We associate a configuration A with the semigroup ring $K[A]=K\left[\mathbf{t}^{\mathbf{a}_{1}}, \ldots, \mathbf{t}^{\mathbf{a}_{n}}\right]$, where $\mathbf{t}^{\mathbf{a}}=t_{1}^{a_{1}} \cdots t_{d}^{a_{d}}$ if $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$. Let $K[\mathbf{x}]=K\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring in n variables over K. The toric ideal I_{A} of A is the kernel of the surjective homomorphism $\pi: K[\mathbf{x}] \longrightarrow K[A]$ defined by setting $\pi\left(x_{i}\right)=\mathbf{t}^{\mathbf{a}_{i}}$ for $1 \leq i \leq n$.

We are interested in the following conditions:

This research was supported by JST, CREST.

[^0](i) A is unimodular, i.e., the initial ideal of I_{A} is generated by squarefree monomials with respect to any monomial order;
(ii) A is compressed, i.e., the initial ideal of I_{A} is generated by squarefree monomials with respect to any reverse lexicographic order;
(iii) there exists a monomial order $<$ such that the initial ideal of I_{A} with respect to $<$ is generated by squarefree monomials;
(iv) $K[A]$ is normal, i.e., $\mathbb{Z}_{\geq 0} A=\mathbb{Z} A \cap \mathbb{Q} \geq 0 A$;
(v) $K[A]$ is very ample, i.e., $\left(\mathbb{Z} A \cap \mathbb{Q}_{\geq 0} A\right) \backslash \mathbb{Z}_{\geq 0} A$ is a finite (or empty) set.

Then (i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv) \Longrightarrow (v) holds and each of the converse of them is false in general. If $K[A]$ is not normal, then an element of $\left(\mathbb{Z} A \cap \mathbb{Q}_{\geq 0} A\right) \backslash \mathbb{Z}_{\geq 0} A$ is called hole.

Let P_{A} denote the convex hull of A. For a subset $B \subset A, K[B]$ is called combinatorial pure subring (Ohsugi etal. 2000; Ohsugi 2007) of $K[A]$ if there exists a face F of P_{A} such that $B=A \cap F$. For example, if $K[B]=K[A] \cap K\left[t_{i_{1}}, \ldots, t_{i_{s}}\right]$, then $K[B]$ is a combinatorial pure subring of $K[A]$. (This is the original definition of a combinatorial pure subring in Ohsugi etal. (2000).) A binomial $f \in I_{A}$ is called fundamental if there exists a combinatorial pure subring $K[B]$ of $K[A]$ such that I_{B} is generated by f. In Sect. 2, it will be proved that, if I_{A} possesses a fundamental binomial none of whose monomials is squarefree, then $K[A]$ is not very ample. The Lawrence lifting $\Lambda(A)$ of the configuration A is the configuration arising from the matrix

$$
\Lambda(A)=\left(\begin{array}{ll}
A & 0 \\
I_{n} & I_{n}
\end{array}\right)
$$

where I_{n} is the $n \times n$ identity matrix and $\mathbf{0}$ is the $d \times n$ zero matrix. A configuration A is called Lawrence type if there exists a configuration B such that $\Lambda(B)=A$. In Sect. 2, it will be proved that a configuration of Lawrence type is very ample if and only if it is unimodular.

In Sect. 3, by using the results in Sect. 2, we study very ample configurations arising from no n-way interaction models for $r_{1} \times r_{2} \times \cdots \times r_{n}$ contingency tables, where $r_{1} \geq$ $r_{2} \geq \cdots \geq r_{n} \geq 2$. Let $A_{r_{1} r_{2} \cdots r_{n}}$ be the set of vectors $\mathbf{e}_{i_{2} i_{3} \cdots i_{n}}^{(1)} \oplus \mathbf{e}_{i_{1} i_{3} \cdots i_{n}}^{(2)} \oplus \cdots \oplus \mathbf{e}_{i_{1} i_{2} \cdots i_{n-1}}^{(n)}$, where each i_{k} belongs to $\left[r_{k}\right]=\left\{1,2, \ldots, r_{k}\right\}$ and $\mathbf{e}_{j_{1} j_{2} \cdots j_{n-1}}^{(k)}$ is a unit coordinate vector of $\mathbb{Z}^{d_{k}}$ with $d_{k}=\frac{\prod_{\ell=1}^{n} r_{\ell}}{r_{k}}$. The toric ideal $I_{A_{r_{1} r_{2} \ldots r_{n}}}$ is the kernel of the homomorphism

$$
\pi: K\left[\left\{x_{i_{1} i_{2} \cdots i_{n}} \mid i_{k} \in\left[r_{k}\right]\right\}\right] \longrightarrow K\left[\left\{t_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}}^{(k)} \mid k \in[n], i_{k} \in\left[r_{k}\right]\right\}\right]
$$

defined by $\pi\left(x_{i_{1} i_{2} \cdots i_{n}}\right)=t_{i_{2} i_{3} \cdots i_{n}}^{(1)} t_{i_{1} i_{3} \cdots i_{n}}^{(2)} \cdots t_{i_{1} i_{2} \cdots i_{n-1}}^{(n)}$. Table 1 is known.
By virtue of the results in Sect. 2, we will prove that configurations in "otherwise" part are not very ample.

2 Fundamental binomials

The following lemma plays an important role in the present paper.

Table 1 Algebraic properties of configurations of contingency tables

$r_{1} \times r_{2}$ or $r_{1} \times r_{2} \times 2 \times \cdots \times 2$	Unimodular
$r_{1} \times 3 \times 3$	Compressed, not unimodular
$4 \times 4 \times 3$	Normal, not compressed
$5 \times 5 \times 3$ or $5 \times 4 \times 3$	Not compressed (normality is
	unknown)
Otherwise, i.e.,	
$n \geq 4$ and $r_{3} \geq 3$	Not normal
$n=3$ and $r_{3} \geq 4$	
$n=3, r_{3}=3, r_{1} \geq 6$ and $r_{2} \geq 4$	

Lemma 1 Let $K[B]$ be a combinatorial pure subring of $K[A]$. If $K[A]$ is normal (resp. very ample), then $K[B]$ is normal (resp. very ample).

Proof Let $K[B]$ be a combinatorial pure subring of $K[A]$. It is enough to show that $\left(\mathbb{Z} B \cap \mathbb{Q}_{\geq 0} B\right) \backslash \mathbb{Z}_{\geq 0} B \subset\left(\mathbb{Z} A \cap \mathbb{Q}_{\geq 0} A\right) \backslash \mathbb{Z}_{\geq 0} A$.

Let $\alpha \in(\mathbb{Z} B \cap \mathbb{Q} \geq 0 B) \backslash \mathbb{Z}_{\geq 0} B$. Since B is a subset of A, we have $\alpha \in \mathbb{Z} A \cap \mathbb{Q} \geq 0 A$. Suppose that $\alpha \in \mathbb{Z}_{\geq 0} A$. Then $\alpha=\sum_{\mathbf{a} \in A} z_{\mathbf{a}} \mathbf{a}$ with $0 \leq z_{\mathbf{a}} \in \mathbb{Z}$. Since $\alpha \notin \mathbb{Z}_{\geq 0} B$, $0<z_{\mathbf{a}}$ for some $\mathbf{a} \in A \backslash B$. Moreover, since $\alpha \in \mathbb{Q}_{\geq 0} B, \alpha=\sum_{\mathbf{a} \in B} q_{\mathbf{a}} \mathbf{a}$ with $0 \leq q_{\mathbf{a}} \in \mathbb{Q}$. Thus $\alpha=\sum_{\mathbf{a} \in A} z_{\mathbf{a}} \mathbf{a}=\sum_{\mathbf{a} \in B} q_{\mathbf{a}} \mathbf{a}$. Since $K[B]$ is a combinatorial pure subring of $K[A]$, there exists a face F of P_{A} such that $B=A \cap F$. Then there exist $\mathbf{v} \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$ satisfying

$$
\begin{gathered}
F=P_{A} \cap\left\{\mathbf{b} \in \mathbb{R}^{d} \mid \mathbf{v} \cdot \mathbf{b}=c\right\}, \\
P_{A} \subset\left\{\mathbf{b} \in \mathbb{R}^{d} \mid \mathbf{v} \cdot \mathbf{b} \leq c\right\}
\end{gathered}
$$

Then $\mathbf{v} \cdot \mathbf{a}=c$ for all $\mathbf{a} \in B$ and $\mathbf{v} \cdot \mathbf{a}<c$ for all $\mathbf{a} \in A \backslash B$. Hence $\mathbf{v} \cdot \alpha=$ $c \sum_{\mathbf{a} \in B} q_{\mathbf{a}}<c \sum_{\mathbf{a} \in A} z_{\mathbf{a}}$. Thus we have $c \neq 0$ and $\sum_{\mathbf{a} \in B} q_{\mathbf{a}} \neq \sum_{\mathbf{a} \in A} z_{\mathbf{a}}$. On the other hand, since A is a configuration, there exists a vector $\mathbf{w} \in \mathbb{R}^{d}$ satisfying $\mathbf{w} \cdot \mathbf{a}=1$ for all $\mathbf{a} \in A$. Hence $\mathbf{w} \cdot \alpha=\sum_{\mathbf{a} \in B} q_{\mathbf{a}}=\sum_{\mathbf{a} \in A} z_{\mathbf{a}}$. This is a contradiction. Thus $\alpha \in\left(\mathbb{Z} A \cap \mathbb{Q}_{\geq 0} A\right) \backslash \mathbb{Z}_{\geq 0} A$ as desired.

It is known (Ohsugi et al. 2000, Lemma 3.1) that
Proposition 2 If $g=u-v \in K[\mathbf{x}]$ is a binomial such that neither u nor v is squarefree and if $I_{A}=(g)$, then $K[A]$ is not normal.

We extend Proposition 2 as follows:
Lemma 3 If $g=u-v \in K[\mathbf{x}]$ is a binomial such that neither u nor v is squarefree and if $I_{A}=(g)$, then $K[A]$ is not very ample.

Proof Let $g=x_{1}^{2} u^{\prime}-x_{2}^{2} v^{\prime}$. Since g is irreducible, $u^{\prime}(\neq 1)$ is not divided by x_{2} and $v^{\prime}(\neq 1)$ is not divided by x_{1}. Since $\pi\left(x_{1}^{2} u^{\prime}\right)=\pi\left(x_{2}^{2} v^{\prime}\right)$, we have $\sqrt{\pi\left(u^{\prime} v^{\prime}\right)}=\frac{\pi\left(x_{1} u^{\prime}\right)}{\pi\left(x_{2}\right)}$. Let x_{k} be a variable with $k \neq 1,2$. Then the monomial $\pi\left(x_{k}^{m}\right) \sqrt{\pi\left(u^{\prime} v^{\prime}\right)}$ belongs to the quotient field of $K[A]$ and is integral over $K[A]$ for all positive integer m. Suppose
that there exists a monomial w such that $\pi(w)=\pi\left(x_{k}^{m}\right) \sqrt{\pi\left(u^{\prime} v^{\prime}\right)}$. It then follows that the binomial $g^{\prime}=x_{1} u^{\prime} x_{k}^{m}-x_{2} w$ belongs to I_{A}. Since $I_{A}=(g)$ and $x_{1} u^{\prime} x_{k}^{m}$ is divided by neither $x_{1}^{2} u^{\prime}$ nor $x_{2}^{2} v^{\prime}$, we have $g^{\prime}=0$. Hence x_{2} must divide u^{\prime}, a contradiction. Thus $\pi\left(x_{k}^{m}\right) \sqrt{\pi\left(u^{\prime} v^{\prime}\right)}$ is a hole for all m and $K[A]$ is not very ample.

Theorem 4 If I_{A} possesses a fundamental binomial $g=u-v$ such that neither u nor v is squarefree, then $K[A]$ is not very ample.

Proof Since g is fundamental, there exists a combinatorial pure subring $K[B]$ of $K[A]$ such that I_{B} is generated by g. Thanks to Lemma3, $K[B]$ is not very ample. Since $K[B]$ is a combinatorial pure subring of $K[A], K[A]$ is not very ample by Lemma 1.

Thanks to Theorem4 together with the results in Ohsugi etal. (2000), we extend (Ohsugi et al. 2000, Theorem 3.4) as follows:
Corollary 5 Let $K[A]$ be a semigroup ring and let $K[\Lambda(A)]$ its Lawrence lifting. Then, the following conditions are equivalent:
(i) $K[A]$ is unimodular;
(ii) $K[\Lambda(A)]$ is unimodular;
(iii) $K[\Lambda(A)]$ is very ample.

Proof First, (ii) \Rightarrow (iii) is well-known. On the other hand, (i) \Leftrightarrow (ii) is proved in (Ohsugi et al. 2000, Theorem 3.4).

In order to show (iii) \Rightarrow (i), suppose that $K[A]$ is not unimodular. Then, by the same argument in Proof of (Ohsugi et al. 2000, Theorem 3.4), $I_{\Lambda(A)}$ has a fundamental binomial \bar{g} none of whose monomials is squarefree. Thanks to Theorem 4, $K[\Lambda(A)]$ is not very ample as desired.

Remark 6 A binomial f belonging to I_{A} is called indispensable if, for an arbitrary system \mathcal{F} of binomial generators of I_{A}, either f or $-f$ appears in \mathcal{F}. In particular, every fundamental binomial is indispensable. However, Theorem 4 is not true if we replace "fundamental" with "indispensable." Let $K[A]=K\left[t_{2}, t_{1} t_{2}, t_{1}^{3} t_{2}, t_{1}^{4} t_{2}\right] \subset K\left[t_{1}, t_{2}\right]$. Then $K[A]$ is very ample and I_{A} is generated by the set of indispensable binomials $\left\{x_{1} x_{4}-x_{2} x_{3}, x_{2}^{3}-x_{1}^{2} x_{3}, x_{3}^{3}-x_{2} x_{4}^{2}, x_{1} x_{3}^{2}-x_{2}^{2} x_{4}\right\}$. (The toric ideal I_{A} has no fundamental binomials.)

3 Configurations arising from contingency tables

Configurations in "otherwise" part of Table 2 are studied in Ohsugi and Hibi (2007) by using the notion of combinatorial pure subring and indispensable binomials. For $6 \times 4 \times 3$ case, non-normality is shown in Vlach (1986) and it was proved Hemmecke et al. (2009) that it is not very ample. On the other hand, compressed configurations are classified in Sullivant (2006). For $4 \times 4 \times 3$ case, it was announced in (Hemmecke et al., 2009, p. 87) that Ruriko Yoshida verified that it is normal by using the software NORMALIZ (Bruns and Ichim 2008).

The basic facts on $A_{r_{1} \cdots r_{n}}$ are (Ohsugi and Hibi 2007, Proposition 3.1 and Proposition 3.2):

Table 2 Algebraic properties of configurations of n way contingency tables

$r_{1} \times r_{2}$ or $r_{1} \times r_{2} \times 2 \times \cdots \times 2$	Unimodular
$r_{1} \times 3 \times 3$	Compressed, not unimodular
$4 \times 4 \times 3$	Normal, not compressed
$5 \times 5 \times 3$ or $5 \times 4 \times 3$	Not compressed
	(normality is unknown)
Otherwise, i.e.,	
$n \geq 4$ and $r_{3} \geq 3$	Not normal
$n=3$ and $r_{3} \geq 4$	
$n=3, r_{3}=3, r_{1} \geq 6$ and $r_{2} \geq 4$	

Proposition 7 The configuration $A_{r_{1} \cdots r_{n} 2}$ is the Lawrence lifting of $A_{r_{1} \cdots r_{n}}$.
Proposition 8 Suppose that $A_{r_{1} \cdots r_{n}}$ and $A_{s_{1} \cdots s_{n}}$ satisfy $s_{i} \leq r_{i}$ for all $1 \leq i \leq n$. Then $K\left[A_{s_{1} \cdots s_{n}}\right]$ is a combinatorial pure subring of $K\left[A_{r_{1} \cdots r_{n}}\right]$.

Theorem 9 Work with the same notation as above. Then, each configuration in "otherwise" part is not very ample.

Proof Let A be a configuration in "otherwise" part. Thanks to Proposition 8, $K[A]$ has at least one of $K\left[A_{444}\right], K\left[A_{643}\right]$ and $K\left[A_{3332 \ldots 2}\right]$ as a combinatorial pure subring. It is easy to check that $I_{A_{444}}$ has a fundamental binomial

$$
\begin{aligned}
& x_{111}^{2} x_{133} x_{144} x_{223} x_{224} x_{232} x_{242} x_{313} x_{322} x_{341} x_{414} x_{422} x_{431} \\
& \quad-x_{113} x_{114} x_{131} x_{141} x_{222}^{2} x_{233} x_{244} x_{311} x_{323} x_{342} x_{411} x_{424} x_{432}
\end{aligned}
$$

and $I_{A_{643}}$ has a fundamental binomial

$$
\begin{aligned}
& x_{111} x_{221} x_{331} x_{641} x_{212} x_{522} x_{432} x_{642} x_{413} x_{323} x_{633}^{2} x_{143} x_{543} \\
& \quad-x_{211} x_{321} x_{631} x_{141} x_{412} x_{222} x_{632} x_{542} x_{113} x_{523} x_{333} x_{433} x_{643}^{2}
\end{aligned}
$$

Since none of the monomials appearing above is squarefree, both $K\left[A_{444}\right]$ and $K\left[A_{643}\right]$ are not very ample by Theorem 4. Moreover, since A_{333} is not unimodular, $K\left[A_{3332 \ldots 2}\right]$ is not very ample by Corollary 5 together with Proposition 7. Thus, $K[A]$ is not very ample by Lemma 1.

We close the present paper with an interesting problem.
Problem 10. Find natural classes of configurations appearing in statistics which is not normal but very ample.

References

Bruns, W., Ichim, B. (2008). Normaliz 2. 0. Computing normalizations of affine semigroups. Available from http://www.math.uos.de/normaliz.
Hemmecke, R., Takemura, A., Yoshida, R. (2009). Computing holes in semi-groups and its applications to transportation problems. Contributions to Discrete Mathematics, 4(1), 81-91.
Ohsugi, H. (2007). A geometric definition of combinatorial pure subrings and Gröbner bases of toric ideals of positive roots. Commentarii Mathematici Universitatis Sancti Pauli, 56(1), 27-44.
Ohsugi, H., Hibi, T. (2007). Toric ideals arising from contingency tables. In Commutative algebra and combinatorics. Ramanujan Mathematical Society Lecture Notes Series (Vol. 4, pp. 91-115). Mysore: Ramanujan Mathematical Society.

Ohsugi, H., Herzog, J., Hibi, T. (2000). Combinatorial pure subrings. Osaka Journal of Mathematics, 37, 745-757.
Sullivant, S.(2006). Compressed polytopes and statistical disclosure limitation. Tohoku Mathematical Journal (2), 58(3), 433-445.
Vlach, M. (1986). Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discrete Applied Mathematics, 13, 61-78.

[^0]: H. Ohsugi (\boxtimes)

 Department of Mathematics, College of Science, Rikkyo University, Tokyo 171-8501, Japan
 e-mail: ohsugi@rikkyo.ac.jp
 T. Hibi

 Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan e-mail: hibi@math.sci.osaka-u.ac.jp

