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ABSTRACT Reducing the cross-modality gap between two different domains is a challenging problem for

heterogeneous face recognition (HFR). The current visual domain face recognition system is not easy to solve

the discrepancy of cross-modality when two comparing domains are heterogeneous. Moreover, the amount

of HFR dataset is significantly insufficient, making it considerable difficulty in training. This paper proposes

a novel two-step framework that consists of the image translation module and the feature learning module to

obtain an enhanced cross-modality matching system for heterogeneous datasets. First, the image translation

module consists of a Preprocessing Chain (PC) method, CycleGAN, and the Siamese network. It enables to

meet the conditions for preserving contents along with changing the styles from the source domain to the

target domain. Second, in the feature learning module, the training dataset and its translated images are used

together for fine-tuning the pre-trained backbone model in the visual domain. This allows for discriminative

and robust feature matching of the probe and gallery test datasets in the visual domain. The experimental

results are evaluated with two scenarios, using the CUHK Face Sketch FERET (CUFSF) dataset and the

CASIANIR-VIS 2.0 dataset. The proposed method achieves a better recognition performance in comparison

to the state-of-the-art methods.

INDEX TERMS Cross-modality gap, heterogeneous face recognition (HFR), image preprocessing, image-

to-image translation, NIR-VIS face matching, sketch-VIS face matching, supervised feature learning.

I. INTRODUCTION

Face recognition (FR) is one of the important research topics

in machine learning and pattern recognition. FR has been

regarded as a relatively accessible and reliable technology in

comparison to other biometric technologies. In recent years,

FR research has been further improved with the develop-

ment of deep learning technique. Deep neural network archi-

tectures [1], [2], creating novel loss functions [2]–[4], and

large-scale face datasets [5]–[7] are the factors that made

it possible to increase performance. Despite these improve-

ments, there are still many challenging tasks in face recog-

nition topic. Conventional face recognition systems identify

people by comparing the visual images under homogeneous

conditions. However, recent intelligent security and criminal

investigation scenarios demand matching cross domains in

heterogeneous environments [8]–[10]. This cross-modality
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gap occurs in various cases, such as various camera sen-

sors, camera resolution differences, and comparing sketch

and photo. Therefore conventional face recognition systems

generally do not guarantee a high recognition rate for Hetero-

geneous face recognition (HFR).

In most cases, HFR involves a gallery dataset consisting of

visual images (VIS). Probe images can be from any modality,

such as near infrared (NIR), thermal infrared (TIR), and

sketch images. Many types of research have attempted to

address the problem of reducing the modality gap between

cross-modality face pairs using handcraft approaches and

deep learning-based approaches. Conventionally, handcraft

approaches are classified as synthesis-based methods, com-

mon subspace projection-based methods, and invariant local

feature-based methods. The handcraft approaches show an

excellent performance in situations like the well-aligned

frontal images along with the small changing conditions of

texture and lighting. However, if these conditions are not

met, this approach does not provide an optimal solution.
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FIGURE 1. Illustration of the flow chart of the proposed framework consisting of the image translation module and the feature learning module. In the
first step, the image translation module is used to maintain the contents of the translated image and to find the optimal style change to each target
domain for the visual and non-visual images. In the second step, the feature learning module enables extracting the discriminative embedding vector
through the backbone network and feature matching of the probe and gallery test datasets in the visual domain.

The recent deep learning-based approach has suggested a

discriminative and robust learning method; however, there

are limitations when relying on large-scale training data that

cannot be applied to HFR datasets with less training data.

This paper proposes a two-step framework consisting of

the image translation module and the feature learning mod-

ule to improve the recognition performance by reducing

the cross-modality gap for heterogeneous face recognition.

There are two forms of motivation in this framework. First,

the image-to-image translation enables the transformation

of different domain images in the unpaired setting. Second,

when the translated images are obtained from cross different

domains, they can be used to provide additional information

by fine-tuning the pre-trainedmodel of the visual domain face

recognition system. Therefore, we can acquire a discrimina-

tive model that can reduce modality gaps between domains.

Then, feature matching is performed to between the probe

images translated from non-visual to visual and the visual

gallery images.

Concretely, the overall of our proposed framework is

shown in Fig. 1. Also, a detailed illustration of each module

is presented in Fig. 2 and Fig. 5, respectively. For the first

step, the image translationmodule consists of a Preprocessing

Chain (PC) method [11], CycleGAN [12], and the Siamese

network. The start of the image translationmodule is applying

the PC method to minimize the illumination variations for

the HFR dataset. This preprocessing method facilitates image

translation by normalizing images of different domains.

Then, the preprocessed images in the cross domains are

used in image translation to the target domain, respectively.

The training process of image translation is carried out by

integrating the proposed Siamese network into CycleGAN.

The training sequence is carried out as follows. A training

image is first used to train the generator of CycleGAN, fol-

lowed by the discriminator of CycleGAN, and the layers of

the Siamese network. And we used contrastive loss [13] in

the Siamese network. The basic ideas of contrastive loss are

to wide the inter-class distance and to narrow the intra-class

distance. Since contrastive loss requires image pairs as inputs,

the proposed Siamese network receives the image pairs as

follows: In other words, the translated image and the positive

sample image are pulled together in the target domain, and

the translated image and negative sample are pushed to each

other in the target domain.

The feature learning module is the second step of the

framework. The same class of translated images and their

corresponding target domain images are labeled as the same

label. Then, the training dataset and its translated images are

used to fine-tune the pre-trained backbone model to obtain

discriminative embedding vector. Therefore, this can not only

reduce the difference of cross-modality but also carry out

feature matching of the probe and gallery test dataset in

the visual domain. The experimental results demonstrate that

the proposed framework shows a better recognition perfor-

mance than the state-of-the-art methods in the CUHK Face

Sketch FERET (CUFSF) dataset and the CASIA NIR-VIS

2.0 dataset.

In this paper, the contributions of our proposed framework

are as follows. First, by applying PCmethod to HFR datasets,

the illumination variations are minimized in cross-domain

images. Second, we additionally implement the Siamese net-

work to reduce the gap between the translated image and
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its corresponding pair in the target domain. The Siamese

network is integrated with CycleGAN and is trained simulta-

neously. Therefore, preprocessed translated images can pre-

serve contents while transforming style more appropriate for

target images. Lastly, translated images are used to provide

additional information by fine-tuning the pre-trained back-

bone model. By doing so, we can acquire a discriminative

embedding vector and this enables us to carry out feature

matching of the probe and gallery test dataset in the visual

domain.

The rest of this paper is organized as follows: Section II

provides a review of works related to HFR. Section III details

the proposed framework. This section starts with introducing

the network architecture of the framework, describing how

to reduce the gaps of cross-modality and how to improve

performance. Section IV describes the experimental setup,

datasets, and presents an analysis of the results of the experi-

ment. Finally, the conclusion is described in Section V.

II. RELATED WORK

This section briefly reviews the literature for the following

three categories of methods minimizing the cross-modality

gap: the common subspace projection based methods, invari-

ant feature descriptor based methods, and the synthesis based

methods.

A. COMMON SUBSPACE PROJECTION BASED METHODS

Common subspace projection based methods that belong

to this approach aim to learn the mapping function that

minimizes the cross-modality discrepancy by projecting

cross-modality images into a common subspace as close as

possible. Lin and Tang [14] proposed a common discriminant

feature extraction method, which is used to extract features

from cross-modality images and this features are projected

into a common feature space. Yi et al. [15] proposed canon-

ical correlation analysis (CCA) for face matching between

NIR and VIS images. Later, Li extends this approach in [16].

Regression based methods [17]–[20] are proposed to enable

learning of mapping functions that connect cross-modality

domains and common spaces. Sharma and Jacobs [21] pro-

posed a method to allow linear mapping of cross-modality

images with a common subspace where the mutual covari-

ance is maximized. To demonstrate the four heterogeneous

scenarios, Klare and Jain [10] proposed a prototype random

subspace (P-RS) method.

B. INVARIANT FEATURE DESCRIPTOR BASED METHODS

Invariant feature descriptor based methods focus on

extracting invariant features that are not affected by the

discrepancy between cross-modality images. Liao et al. [22]

proposed a method applying multi-block binary patterns

(MB-LBP) after difference-of-Gaussian filtering to match

the NIR and VIS face images. Klare et al. [23] proposed a

local feature-based discriminant analysis (LFDA) framework

by extracting scale-invariant feature transform (SIFT) [24]

and multiscale local binary pattern (MLBP) [25] feature

descriptors as a patch unit from sketch and VIS face images.

Zhang et al. [26] proposed a feature descriptor based on cou-

pled information-theoretic encoding (CITE). CITE captures

discriminative local face structures for effective matching

between VIS and sketch images. Galoogahi and Sim [27]

proposed a local radon binary pattern (LRBP) that applies

the local binary pattern after conducting Radon transform of

the VIS face images and the sketch face images. Galoogahi

and Sim [28] also proposed histogram of averaged oriented

gradients (HAOG) to reduce the discrepancy between the VIS

and sketch face images. Recently, Gong et al. [29] proposed

a common encoding feature discriminant (CEFD) approach

to extract discriminative common features by transforming

the cross-modality face images into a common encoding

space. Roy and Bhattacharjee [30] proposed the local max-

imum quotient (LMQ) to extract the invariant features in

the cross-modality face images. Peng et al. [31] proposed

a graphical representation-based HFR (G-HFR). In other

studies [32]–[35] used convolutional neural network (CNN)-

based architecture to find invariant feature space of HFR

datasets.

C. SYNTHESIS METHODS

The synthesis method is a method transforming the dif-

ferent modality images into the same modality. Tang and

Wang [36], [37] first proposed the method transforming the

photo to sketch using the eigenface method. Liu et al. [38]

proposed a Locally Linear Embedding (LLE) method for

transforming the pictures into sketches based on image

patches. A series of Markov model-based approaches have

been proposed to consider the relationship between the adja-

cent local patches [39]–[41]. Wang et al. [42] proposed

the transductive learning method to reduce the high loss

in training samples. To reduce the loss of high-frequency

information, Gao et al. [43] proposed a sparse neigh-

bor selection and spare-representation-based enhancement

(SNS-SRE). Later, Wang et al. [44] proposed sparse fea-

ture selection and supporting vector revision (SFS-SVR).

Additionally, Wang et al. [45] proposed a quick method

to generate a sketch. Peng et al. [46] proposed a Markov

model-based framework learning the weights of the can-

didate for multi-representation and target image patches

adaptively. Recently, many approaches [12], [47] based on

the generative adversarial networks (GANs) proposed by

Goodfellow et al. [48] made it possible to obtain a more

photo-realistic synthesis image than the existing methods.

Additionally, other researchers [49], [50] have employed the

GANs to generate VIS face images from TIR face images.

Song et al. [51] proposed domain-invariant feature learning

by generating a VIS face image from a NIR face image

using GANs. Cao et al. [52] used GANs to augment the

intra-class data in the proposed framework. The advantage

of the synthesis-based approach is that it can apply the

conventional visual domain face recognition system. How-

ever, this approach shows less detail on non-facial areas

and requires a lot of training data. Therefore, the purpose
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FIGURE 2. Illustration of the proposed image translation module consisting of the Preprocessing Chain (PC) method, CycleGAN, and the Siamese
network. CycleGAN learns mapping functions (GXY and GYX ) between two domains (X , Y ), and the Siamese network simultaneously learns a latent
space adding constrains in the learning procedure of mapping functions. The network and loss flows used to learn the network are presented in the
illustration.

FIGURE 3. Illustration of the proposed Siamese network structure. The
weights of each network in the Siamese network are shared by each
other.

of the proposed method is to preserve the contents suit-

able for the target domain while enabling visual-to-visual

matching using the existing visual domain face recognition

system.

III. PROPOSED METHOD

This section presents the proposed framework to improve the

recognition performance by reducing the cross-modality gap

in the HFR datasets. We first explain the baseline overview,

then the image translation module and the feature learning

module.

A. BASELINE OVERVIEW

The purpose of our proposed framework is to reduce

cross-modality gap between different domains to perform dis-

criminative and robust feature matching between probe and

gallery test dataset in the visual domain as illustrated in Fig. 1.

The framework consists of two steps: the image translation

module and the feature learning module. Various types of

image translation methods [12], [47], [53], [54] that use

GANs have recently produced impressive results. The GANs,

which consists of a generator and a discriminator network,

is used to train the generator to produce the most realistic

image in order to prevent the discriminator network from

distinguishing between the real and fake images. Meanwhile,

the discriminator is trained to distinguish between the real

and fake images. This paper adopted the unpaired uni-modal

image translation to overcome the constraints due to the lack

of paired data and to transform the images into the effective

target domain. CycleGAN [12] is used as the baseline for

image translation, which is the first step of the framework

as illustrated in Fig. 2. Zhu et al. proposed CycleGAN by

adopting a cycle consistency loss for the translated image.

The translated image should recover to the original image

after a cycle of translation and reverse translation. Therefore,

CycleGAN needs two generator-discriminator pairs. Since

CycleGAN learns mapping functions by separating the latent

space of the two generators, the translated image makes it

possible to follow a specific style in the target domain. How-

ever, if the structural variation between the source domain

and the target domain is significant, there is no guarantee

that the translated image preserves the contents of the input

image. For example, when looking at the HFR datasets such

as the VIS-NIR and VIS-sketch, it is not easy to preserve the

contents if the image is highly exaggerated or if the spec-

trum range of the camera sensor is too different. Therefore,

the Siamese network is added to the image translation module

to preserve the contents of the translated image in the target

domain as illustrated in Fig. 2. The basic idea of the Siamese

network was first proposed to solve the verification problem

in [55], [56]. The Siamese network extracts 128-dimensional
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FIGURE 4. (a) The quantization level results according to the presence or absence of the Preprocessing Chain (PC) method in the translated
image and its corresponding target image. (b) The stages of the PC method; gamma correction, Difference of Gaussian (DoG) filtering,
masking, and equalization of variation.

embedding vector through the CNN-based network and uses

contrastive loss [13]. Positive and negative pairs are required

to calculate the contrastive loss of the translated image.

To satisfy these conditions, we place the translated image

of the target domain and their positive and negative pairs

in the Siamese network inputs. Also, the weights of each

network in the Siamese network are shared with each other,

as shown in Fig. 3. CycleGAN and the Siamese network are

trained together in the following order: the training dataset is

first used to learn the generators, then the discriminators, and

finally, the layers in Siamese. However, the translated image

cannot guarantee that the range of intensity is similar between

the translated image and the target domain images. Therefore,

the Preprocessing Chain (PC) method proposed by Tan and

Triggs [11] is also applied to the dataset before image trans-

lation is carried out. Results depending on quantization level

and stages of the image preprocessing method are depicted

in Fig. 4. When comparing the result images according to the

quantization level, the intensity level difference between the

target image and translated image ismuch smaller in the result

of applying PC method. After the image translation module

step, the same class of translated images and their corre-

sponding target domain images are labeled as the same label.

The second step, the feature learning module, is then per-

formed as demonstrated in Fig. 5. The residual networks [57]

are chosen as the CNN-based backbone model. After back-

bone network is pre-trained on the large-scale dataset [7],

the recombined training dataset are used to fine-tune the

pre-trained backbone model. This allows the acquisition of

discriminative and robust embedding vector to enable feature

matching of probe and gallery test datasets in the visual

domain.

TABLE 1. The generator, discriminator architecture of CycleGAN [12].

B. IMAGE TRANSLATION MODULE

1) NOTATION AND NETWORK ARCHITECTURE

Image translation is performed between different domains

as the first step to reduce the modality gap in the cross-

domain, as illustrated in Fig. 1 and Fig. 2. The goal of this
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FIGURE 5. Illustration of the proposed feature learning module. A CNN-based residual networks is selected and
this is pre-trained with a large-scale dataset to carry out supervised feature learning. The same class of translated
images and their corresponding target domain images are labeled as the same label and used as fine-tuning data.
Feature matching between the probe and gallery images in the visual domain is performed with this fine-tuned
backbone model.

step is to learn mapping functions between two domains,

X and Y , when given training samples xi ∈ X and yi ∈ Y .

The data distribution is denoted as x ∼ pdata(x) and

y ∼ pdata(y). To transform images to the style of the

target domain, two generator-discriminator {GXY ,DY } and

{GYX ,DX } are required for two domains: X and Y . The

GXY : X → Y indicates mapping from the X domain to

the Y domain, and GYX : Y → X indicates mapping from

the Y domain to the X domain. Additionally, the adversar-

ial discriminators {DX ,DY } distinguish whether the inputs

are real images or fake images. The network architecture

is same as CycleGAN [12], and its details are represented

in Table 1. The generators consist of the convolution layers,

nine residual blocks, and the deconvolution layers. Moreover,

PatchGAN [47] is used for the discriminators. CycleGAN can

generate the translated images to the style of the target domain

because they are separated from each other without sharing

latent space in each translation process. Additionally, since

there are no ground truth images for the translated images,

the guide for maintaining the contents of the target domain

does not exist. This drawback is solved by the CycleGAN

through the cycle consistency loss. In this process, the trans-

lated image should be recovered to original image after a

cycle of translation and reverse translation. However, when

the discrepancy of the cross-modality is large, like the HFR

dataset, the cycle consistency loss is not enough to maintain

the contents of original image. Thus, the additonal siamese

network is integrated with CycleGAN and both are trained

simultaneously. The goal of the Siamese network is to learn a

general similarity function. By measuring and comparing the

similarity of the embedding vectors between the translated

image and their corresponding pair in the target domain, this

network preserves the contents of the translated image in

the target domain. The architecture details of a CNN-based

Siamese network are represented in Table 2. Each translated

image and their corresponding pair go through a network con-

sisting of two branches during training as presented in Fig. 3.

The outputs of these branches are used for optimization using

a contrastive loss [13]. The loss tries to minimize the squared

Euclidean distance between the embedding vectors of posi-

tive image pairs and to maximize that of the negative pairs.

However, the difference from the conventional contrastive

loss is that the conventional one does not check with the

binary labels whether the pair is positive or negative. Datawas

inputted along with their corresponding positive and negative

pair to supply the consistency through the contrastive loss.

In other words, the contrastive loss Lcon pulls a translated

image and its positive pair in the target together, and push

the translated image and negative pair in the target apart,

according to the following equations:

Lcon(x1, x2, x3) = Lnegative paircon (x1, x2)

+Lpositive paircon (x1, x3),

Lnegative paircon (x1, x2) = {max(0,m− De(x1, x2))}
2,

Lpositive paircon (x1, x3) = De(x1, x3)
2. (1)

where x1 is the embedding vector of input image. x2 and

x3 are embedding vectors of corresponding pair images of

input image. De denotes the Euclidean distance between two

embedding vectors. m is the margin that defines the separa-

bility in the embedding space. Here, the Euclidean distance

metric between two embedding vector is defined, according
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TABLE 2. The Siamese network architecture.

to the following equation:

De(S(GXY (x)), S(yxp)) = ‖S(GXY (x)) − S(yxp)‖2. (2)

where yxp is defined as the x corresponding positive pair in

the Y domain and yxn is the x corresponding to the negative

pair in Y domain. S is the Siamese network.

2) LOSS FUNCTION

As illustrated in Fig. 2, the image translation module

is optimized by three objectives: the adversarial loss,

the cycle consistency loss, and the contrastive loss. Two

generator-discriminator pairs, {GXY ,DY } and {GYX ,DX }, are

required to enable the image translation of the unpaired

cross-domain images. Using the adversarial loss [48],

the generators learn the style of the target domain to prevent

the discriminators from distinguishing the images generated.

In contrast, the discriminators learn to classify the images

in their each domain. The adversarial loss can be expressed

according to the following equation:

Ladv(GXY ,GYX ,DY ,DX ) = LYadv(GXY ,DY )

+LXadv(GYX ,DX ). (3)

For generator GXY and its corresponding discriminator

DY , the adversarial loss is expressed with the following

equation:

LYadv(GXY ,DY ) = Ey∼pdata(y) [logDY (y)]

+Ex∼pdata(x) [log(1 − DY (GXY (x)))]. (4)

For the generator GYX and its corresponding discrimina-

tor DX , the adversarial loss is determined by the following

equation:

LXadv(GYX ,DX ) = Ex∼pdata(x) [logDX (x)]

+Ey∼pdata(y)[log(1 − DX (GYX (y)))]. (5)

For the minmax optimizaiton, {GXY ,GYX } aim to minimize

this objective against {DX ,DY }, while {DX ,DY } tries to max-

imize it, i.e.,

G∗
XY ,G∗

YX ,D∗
Y ,D∗

X =argmin
G

max
D

Ladv(GXY ,GYX ,DY ,DX ).

(6)

However, the above general adversarial GAN loss need some

changes. Since general adversarial GAN loss is a form of

cross-entropy, the valuable gradient feedback may not be

delivered to the generator. Therefore, to stabilize the training

procedure, we replace Eq.(4) and Eq.(5) with Least Square

GAN objective [58], as the following equations:

LYadv(GXY ,DY ) = Ey∼pdata(y) [(DY (y) − 1)2]

+Ex∼pdata(x)[DY (GXY (x))
2], (7)

LXadv(GYX ,DX ) = Ex∼pdata(x) [(DX (x) − 1)2]

+Ey∼pdata(y)[DX (GYX (y))
2]. (8)

Next, in the loss function Lcyc [12], the L1 norm is used in the

following equation:

Lcyc(GXY ,GYX ) = Ex∼pdata(x)[‖GYX (GXY (x)) − x‖1]

+Ey∼pdata(y)[‖GXY (GYX (y)) − y‖1]. (9)

Adding this cycle consistency loss, the range of

possible mapping functions gets reduced and it prevents the

network from falling into the mode collapse state. As men-

tioned above, we integrate CNN-based Siamese network with

the CycleGAN. A similarity comparison is made between

the embedding vectors using the contrastive loss in Eq.(1).

A more effective and intuitive approach is used by always

exploiting both positive and negative pairs. In this regard,

Eq.(1) is changed as the following equation:

Lcon(GXY ,GYX , S)

= Lnegativecon (GXY ,GYX , S) + Lpositivecon (GXY ,GYX , S),

Lnegativecon (GXY ,GYX , S)

= Ex∼pdata(x) [max(0,m− De(S(GXY (x)), S(yxn)))
2]

+Ey∼pdata(y)[max(0,m− De(S(GYX (y)), S(xyn)))
2],

Lpositivecon (GXY ,GYX , S)

= Ex∼pdata(x) [De(S(GXY (x)), S(yxp))]

+Ey∼pdata(y)[De(S(GYX (y)), S(xyp))]. (10)

where yxp is defined as the x corresponding positive pair in the

Y domain and yxn is the x corresponding to the negative pair

in Y domain. xyp is defined as the y corresponding positive

pair in the X domain and xyn is the y corresponding to the

negative pair in X domain. S is the Siamese network. Finally,

the full objective of image translation module can be defined,

which consists of three objectives and can be expressed as

follows:

LTotal(GXY ,GYX ,DY ,DX ) = Ladv(GXY ,GYX ,DY ,DX )

+ λLcyc(GXY ,GYX ) + γLcon(GXY ,GYX , S), (11)

where λ and γ are the weights that control the three

objectives.

C. FEATURE LEARNING MODULE

The feature learning module is the second step of the frame-

work as depicted in Fig. 1 and Fig. 5. The feature learning

module enables feature matching in the visual domain. After

the image translation process, the first step of framework,

the translated images are generated in each target domain.
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FIGURE 6. Some sample images in datasets. (a) CHUK Face Sketch FERET (CUFSF), (b) CASIA NIR-VIS 2.0, (c) Cleaned
MS-Celeb-1M, (d) Labeled Faces in the Wild (LFW).

The same class of translated images and their correspond-

ing target domain images are labeled as the same label.

We employ the ResNet-101 [57] as the pre-trained backbone

model. We make pre-trained models with cleaned Celeb-1M

dataset [7] as backbonemodel. Then, the recombined training

dataset is used to fine-tune the pre-trained backbone model

for obtaining discriminative embedding vector. To get the

best backbone model, we use the additional angle margin

loss (ArcFace) proposed by Deng et al. [4].

LArcFace = −
1

N

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j 6=yi
escosθj

,

(12)

where N and n are the batch size and the class number,

respectively. θyi is the target (groud truth) angle. m is the

angular margin penalty and s is the feature scale.

As such, we obtain the backbone network that extracts

512-dimensional embedding vector. Therefore, we can per-

form discriminative and robust feature matching of probe and

gallery test dataset in the visual domain.

IV. EXPERIMENTS

To verify and evaluate the proposed method, two datasets

are adopted. These datasets are the CUHK Face Sketch

FERET (CUFSF) Dataset [26] and the CASIA NIR-VIS

2.0 Face Dataset [59]. Both datasets are the most general

and widely used datasets that are open to public. For this

paper, the cleaned MS-Celeb-1M dataset [7] is used as a

training dataset in second step of the framework to create

the backbone model. Additionally, the Labeled Faces in the

Wild (LFW) dataset [5] is used as validation dataset to vali-

date these models.

A. DATASETS

1) CUHK FACE SKETCH FERET (CUFSF) DATASET

CUHK Face Sketch FERET (CUFSF) Dataset [26] is widely

used among viewed sketch datasets. There are 1,194 subjects

in the FERET dataset [60] and every image is a frontal face.

Photos have illumination variations and exaggerated sketches

were drawn along with the photos as illustrated in Fig. 6(a).

2) CASIA NIR-VIS 2.0 DATASET

The CASIA NIR-VIS 2.0 Face dataset [59] is the largest and

most challenging NIR-VIS dataset due to the large varia-

tions in lighting, expression, and pose as shown in Fig. 6(b).

The CASIA NIR-VIS 2.0 consists of 5,093 VIS images and

12,487 NIR images. There are four sessions with 725 iden-

tities, each with 1 to 22 VIS and 5 to 50 NIR images. And

this is organized for a 10-fold of experiments. For the training

set, there are about 2,500 VIS and 6,100 NIR images from

360 identities. For the test set, the probe set consists of about

6,000 NIR images from 358 identities, and the gallery set

consists of only one VIS image from 358 identities.

3) CLEANED MS-CELEB-1M AND LABELED FACES IN THE

WILD (LFW) DATASET

The cleaned MS-Celeb-1M dataset proposed by Xu et al. [7]

is used as a training dataset in the second step of the frame-

work to create the backbonemodel. The performance is tested

with the Labeled Faces in the Wild (LFW) dataset [5], which

is used as a validation set. Guo et al. [6] produced the MS-

Celeb-1M dataset as one of the most popular datasets in

large-scale datasets. Guo et al. used one million celebrities

for the dataset and released 99,892 celebrities for the original

training dataset; however, the released dataset contains a lot
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of noise. For example, some images labeled as one celebrity

are actually belonged to other celebrities. Some images are

blur and others do not contain human faces. Additionally,

the distribution of the original training data is unbalanced.

Therefore, to compensate for these problems and tomaximize

the efficiency of the dataset, Xu et al. refined the MS-Celeb-

1M dataset. The MS-Celeb-1M dataset refined by Xu et al.

consists of 100K classes and 5,084,127 images.

The LFW dataset is one of the most popular benchmark

dataset. The LFW dataset includes 13,233 face images from

5,749 different identities and provides 6,000 face pairs for the

verification protocol under unrestricted conditions. Fig. 6(c)

and Fig. 6(d) show examples of the cleaned MS-Celeb-1M

and LFW.

B. EXPERIMENTAL SETUP

1) IMPLEMENTATION DETAILS

In experiments, our networks were implemented using Ten-

sorFlow and PyTorch. The experiments were carried out

on a desktop computer with Intel(R) Core(TM) i7 CPU @

3.20 GHz and 16.0GB RAM. And all of the networks in

this paper were learned using NVIDIA GTX1080-TI GPU.

Before performing this method, all images of the datasets

were cropped as a 128 x 128 size using the multitask cas-

caded convolutional networks (MTCNN) detector [61]. For

images that cannot be processed by MTCNN, we manually

cropped those images based on the position of eyes, nose,

and mouth. These cropped images were then subsequently

normalized using Preprocessing Chain (PC)1 method [11] to

reduce illumination variations.

In the first step, the image translation module were trained

based on the following fixed parameter settings in Eq.(11):

λ = 10, γ = 2, m = 2. The network weights of each

layer were initialized by a Gaussian distribution with a zero

mean and a standard deviation of 0.001. For optimization,

Adam [62] was employed where β1 = 0.5, β2 = 0.999,

and the batch size was set to 1. The initial learning rate was

0.0002, and wasmaintained for the first 100 epochs; however,

it linearly decayed to zero over the next 100 epochs. To satisfy

the requirement of the image size of the image translation

module, the input images were resized to 256 x 256. The

embedding size used for the Siamese network was set to the

128-dimension.

In the second step, feature learning module, after the

cleanedMS-Celeb-1M and LFW dataset are used to make the

pre-trained backbone model, HFR training dataset were used

to fine-tune the pre-trained backbone model, and all images

of datasets were resized to 112 x 112. The ResNet-101 [57]

is employed as the pre-trained backbone model. Additionally,

the backbone network was integrated with the ArcFace [4] as

a classifier network to find the best model. The LFW dataset

was also used as a validation set for selecting the optimal

model. The model obtained an accuracy of 99.3% on the

1Source code is available at http://lear.inrialpes.fr/people/triggs/src/
amfg07- demo- v1.tar.gz..

TABLE 3. Confusion matrix.

LFW dataset. The hyper-parameters of the ArcFace, s and m,

were set to 30 and 0.5, respectively, in Eq.(12). The network

weights of each layer were initialized by a Gaussian distribu-

tion with a zero mean and a standard deviation of 0.001. For

optimization, the stochastic gradient descent was employed

where the momentum was 0.9, the weight decay was 0.0005,

and the batch size was set to 128. The learning rate initially set

as 0.001 and maintained for the first 50 epochs,. Afterwards,

the step decayed, i.e., the learning rate was multiplied by

0.1 over the next 50 epochs. The generated backbonemodel in

the network was used in the same structure, when fine-tuned

with the ArcFace. The embedding size used for the feature

matching was set to the 512-dimension.

2) EVALUATION METHODS

We divided the HFR database and used it in the experi-

ment for training data and test data. For CUFSF dataset,

we divided 500 subjects as training dataset and the remaining

694 subjects as test dataset. For CASIA NIR-VIS 2.0 dataset,

we followed View 2 evaluation protocol, which consists of

sub experiments. For the performance test of the proposed

method, all of the experiments were repeated ten times, and

their average was taken as a result of this experiment.

The evaluation of translated image was conducted as a

qualitative evaluation because the translated image has no

ground truth image in target domain. The evaluation of recog-

nition performance is conducted by the identification rate

using cosine similarity. The cosine similarity function was

defined as shown in Eq.(13). Also, the additional evaluation

of recognition performance is conducted by the verification

rate of the specific false acceptance rate (FAR) in Eq.(14) and

is calculated by using the confusion matrix as demonstrated

in Table 3.

Cosine Similarity (A,B) =
A · B

‖A‖‖B‖
. (13)

FAR (False Acceptance Rate) =
FP

FP+ TN
. (14)

C. RESULTS

1) QUALITATIVE EVALUATION

The translated images of the visual and non-visual domain

obtained from the first step, image translation module, are

used as important information for reducing cross-modality

gaps in the second step, feature learning module. There-

fore, the translated image must not only conform to the

style of the target domain but also maintain its contents.
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FIGURE 7. Qualitative evaluations of the image translation modules in (A) CUHK Face Sketch FERET (CUFSF) dataset and (B) CASIA NIR-VIS
2.0 dataset, respectively.

FIGURE 8. Comparison of qualitative evaluations according to whether Preprocessing Chain (PC) is applied or not for image translation modules in
(A) CUHK Face Sketch FERET (CUFSF) dataset and (B) CASIA NIR-VIS 2.0 dataset, respectively.

However, the evaluation methods for the Peak-Signal-

to-Noise Ratio (PSNR) and the Structural Similarity

(SSIM) [63] are not available since the ground truth of the

translated image does not exist. Thus, a qualitative eval-

uation of the translated images was conducted. Because

most HFR datasets have a large discrepancy between visual

and non-visual domain, cycle consistency loss [12] is

not sufficient to maintain contents suitable for the target

domain. Thus, to make translated image maintain con-

tents stable, we have proposed a method to integrate a

CNN-based Siamese network and CycleGAN and train both

simultaneously. As shown in Fig. 7, we can observe that

the system integrating CycleGAN and the Siamese network

maintains the contents of the translated image better than

CycleGAN. Because the translated image cannot guarantee

the similarity of the range of intensity between the translated

image and the target domain image, the preprocessed [11]

dataset was applied to the image translation module as

shown in Fig. 4. As presented in the results of the Fig. 8,

the translated image shows little intensity difference in the

target domain, as well as improved contents retention and

style changes to the target domain.
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TABLE 4. The Rank-1 Accuracy on the CUFSF dataset.

2) QUANTITATIVE EVALUATION

A quantitative evaluation was performed in the feature learn-

ing module, the second step of the framework. The proposed

method was compared with different state-of-the-art methods

based on the evaluation metrics of Eq.(13) and Eq.(14).

First, Table 4 shows the rank-1 accuracy on the CUFSF

dataset. LRBP [27] and G-HFR [31] are methods based on

the invariant feature descriptor. The G-HFR method shows

the highest rank-1 accuracy among the methods being com-

pared. The PLS [21] method is one of the common sub-

space projection based methods; the performance of the PLS

method is not adequate. MRF [40], MWF [41], TFSPS [42],

RSLCR [45], and MrFSPS [46] methods are synthesis based

methods. Overall, the methods have less than 80% perfor-

mance, and the MRF method has the lowest performance

among these methods. We used the several deep learning

networks [57], [64]–[67] pre-trained in the visual domain as a

comparison method. The results of the experiment show that

the performance is poor because the general face recognition

system on the visual domain does not extract any discrim-

inative features that can distinguish the images with cross-

modality. The proposed method shows the best performance

compared with state-of-the-art methods. We also present the

performance with and without preprocessing applied to the

dataset. The result of applying preprocessing shows 2.66%

higher performance than the G-HFR method.

Second, Table 5 shows the rank-1 accuracy and verifica-

tion rate of 0.1% FAR on the CASIA NIR-VIS 2.0 dataset.

We used the recently proposed TRIVET [32], IDR [33],

ADFL [51], CDL [34], W-CNN [35], and the saveral deep

learning pre-trainedmodels [57], [64]–[67] for comparing the

performance with the proposed method. Among compared

methods, the TRIVET method shows the lowest performance

in both the Rank-1 accuracy and VR@FAR=0.1% perfor-

mance, whereas W-CNN shows the highest performance.

TABLE 5. The Rank-1 Accuracy and verification rate of 0.1% FAR on the
CASIA NIR-VIS 2.0 dataset.

FIGURE 9. The receiver operating characteristic (ROC) curves of the
different methods in the CASIA NIR-VIS 2.0 dataset.

The method proposed in this paper shows the highest per-

formance compared with the state-of-the-art method. When

compared with the W-CNN, the rank-1 accuracy was 0.7%

higher, and the VR@FAR=0.1% was 0.34% higher. We plot

the receiver operating characteristic (ROC) curves of the

proposed method and its competitive state-of-the-art methods

in Fig. 9. In order to better show the results of analysis

on the ROC curve, a semi logarithmic coordinate is used

to show the curves. In ROC curves, the proposed method

performs significantly better compared with the other meth-

ods. In the section where FAR is higher than 1%, all the

methods are not significantly different in their verification

rates, except for the several methods [57], [64]–[67], which

are the pre-trained deep learning models. Applying the HFR

dataset directly to the pre-trained models in the visual domain

shows low performance. The reason is that it doesn’t extract

discriminative features in the images with cross-modality. As

shown in Fig. 9, it can be seen that the method to which
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preprocessing is applied has a higher verification rates than

the method to which preprocessing is not applied, except

for a section in which FAR is more than 0.001% and less

than 0.03%.

V. CONCLUSION

This paper proposes a novel two-step framework that consists

of the image translation module and the feature learning

module. The purpose of the proposed method is to obtain

an enhanced cross-modality matching system in the visual

domain system. To make this possible, first, we integrate the

Siamese network with CycleGAN and train it with a prepro-

cessed HFR dataset. By doing so, the translated images better

maintain their contents, while at the same time transforming

style more similar to the target domain. Second, the images

of the training dataset and its translated images are used to

fine-tune the pre-trained backbone model to obtain a discrim-

inative embedding vector. This enables feature matching of

probe and gallery test datasets in the visual domain. Over-

all, the experimental results show that the proposed method

performs better than other state-of-the-art methods. However,

since our framework can be affected by the amount of training

dataset, we plan to consider the unpaired multi-modal image-

to-image translation as a method to overcome the limitations

on the amount of dataset in the cross-domains in future work.
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