
Non-Volatile Memory and Disks: Avenues for Policy
Architectures

Kevin R. B. Butler, Stephen E. McLaughlin, and Patrick D. McDaniel
Systems and Information Infrastructure Security Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University, University Park PA 16802 USA

{butler, smclaugh, mcdaniel}@cse.psu.edu

ABSTRACT
As computing models change, so too do the demands on
storage. Distributed and virtualized systems introduce new
vulnerabilities, assumptions, and performance requirements
on disks. However, traditional storage systems have very
limited capacity to implement needed “advanced storage”
features such as integrity and data isolation. This is largely
due to the simple interfaces and limited computing resources
provided by commodity hard-drives. A new generation of
storage devices affords better opportunities to meet these
new models, but little is known about how to exploit them.
In this paper, we show that the recently introduced fast-
access non-volatile RAM-enhanced hybrid (HHD) disk ar-
chitectures can be used to implement a range of valuable
storage-security services. We specifically discuss the use of
these new architectures to provide data integrity, capability-
based access control, and labeled information flow at the
disk access layer. In this, we introduce systems that place a
security perimeter at the disk interface—and deal with the
parent operating system only as a largely untrusted entity.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
storage, security, labels, NVRAM

1. INTRODUCTION
Computing models are changing at previously unseen rates.

More than just faster processors, larger disks, and more
bandwidth, the way in which computing is performed is
changing. We find our data spread hither and yon be-
cause of increasingly malleable and convenient storage, i.e.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSAW’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-890-9/07/0011 ...$5.00.

SAN, NAS, distributed filesystems, web-based services, etc.
Moreover, the nature of the relationship between the com-
puters and storage is changing; virtualization divorces the
hardware from the user and, through services like Internet
suspend/resume [27], storage from the computer. This is
prompting a revolution in computing, where we are becom-
ing less tied to physical location, and are able to reach the
lofty vision of “computing when and where you want it”.

Of course, such a new paradigm leads to an enormous
number of additional requirements on the computing infras-
tructure. This is particularly true of storage systems. Un-
trusted operating systems may be running. Mutually un-
trusted entities may need to share the same storage device.
New environments require that the requests made to the
storage be regulated in new ways. Unfortunately, these re-
quirements are impossible to meet in current storage archi-
tectures without trusted intermediaries [8].

Partly in response to emerging requirements, the storage
industry has begun to manufacture devices with significant
architectural enhancements. New hybrid hard drives (HHD)
provide a small but fast non-volatile memory in addition to
the slower, spinning disk storage. Such architectures have
thus far only been used to improve performance (by using
the non-volatile memory (NVRAM) as cache) and reducing
power usage (by keeping the drive in hibernation when re-
quests can be served by the cache). These disks are available
to OEM system developers today.

In this paper, we postulate that new storage architecture
features can be used to implement long sought after secu-
rity services at the disk layer. We envision using the fast
NVRAM as a repository for meta-data. When used in con-
junction with the added processing power, comprehensive
security policy can be enforced by the disk on a per-request
basis. Such services build a security perimeter at the edge
of the disk, and permit more secure realization of the new
computing models. For example, these services will allow a
disk to be used by mutually untrusted systems, or in envi-
ronments with heightened security requirements.

This new disk model engenders a new security model: the
threat model is different for this architecture than for regular
disks. We add services that allow the disk to protect itself
against adversarial operating systems, and ultimately make
the disk itself more autonomous. For example, the disk can
support primitives to allow information flow control while
requiring the operating system to attest itself to a certain
hardware and software level. This new layer of security and
enforcement on the part of the disk ensures a stronger trust
relationship between system and storage.

drive enclosure

non-volatile memory

disk
platters

network
interface

logic
disk processor

firmware

network link
(e.g., for
iSCSI)

bus
I/O

SATA/
SCSI/
ATA

interface

Figure 1: A proposed disk architecture for stor-
ing security metadata. The disk proposed has the
ability to communicate over a network or through
traditional disk interfaces (e.g., SATA, SCSI). Non-
volatile memory is used for metadata storage, while
the firmware may be burned in or configurable, de-
pending on requirements.

The remainder of this paper explores the ways these new
disk architectures can be exploited to achieve a range of se-
curity goals. We begin in the following section by discussing
the specifics of the new disk architectures and the ways in
which they diverge from traditional systems. We then posit
three demonstrative applications: a) an integrity preserving
disk, b) a disk that enforces access rights via capabilities,
and c) a disk that implements a lattice-based information
flow policy over the stored content. We conclude by con-
sidering a number of related works and describe our current
efforts to realize the new storage model.

2. ARCHITECTURE
Disk access is a slow process. The amount of time required

to retrieve information from a disk is orders of magnitude
more than that required to retrieve the same information
from the processor cache or main memory. Because of the
vast amounts of data that can be stored on disks, it would be
beneficial to store ancillary metadata related to the stored
data on the disk as well, to provide information about the
data’s structure, content, or semantics. This information
may be substantially smaller than the data it represents.
However, storing this data on the disk subjects its retrieval
to the same long access times as those experienced by the
primary stored information. It is thus desirable to provide
an additional storage medium that provides fast access to
metadata, in addition to the slower bulk access provided by
the mechanical disk.

Some manufacturers have already considered the solution
of using non-volatile memory as an enhanced caching mecha-
nism for the hard disk. In particular, Samsung and Seagate
have released prototype “hybrid hard drive” (HHD) that
may contain 256 MB of flash memory in addition to the tra-
ditional hard disk platters.1 These drives are marketed to
work with the Microsoft Windows Vista operating system,
which includes “ReadyDrive”, an OS component allowing
use of a hard drive’s flash memory as an extended read/write
cache. While this memory can be used for performance, we
propose an architecture that uses this memory, or an ad-
ditional flash memory component on the drive, for storing

1Samsung recently released the MH80 series of hybrid hard
drives, containing as much as 256 MB of flash along with a
hard drive of up to 160 GB [16].

metadata associated with disk blocks. This architecture is
shown in further detail in Figure 1.

While some previous proposals for storage systems have
advocated the use of metadata (e.g., NASD [19]), they em-
ploy the use of a metadata server between the client and
the disk storage. These servers arbitrate policy and store
all information, acting as gatekeepers to the data itself. By
contrast, in our proposal, metadata is encapsulated within
the drive enclosure, providing a sealed solution. If the drive
manufacturer is concerned with physical security issues, ei-
ther the non-volatile flash memory or the entire drive can be
designed in a tamper-proof manner with mechanisms similar
to those employed by the IBM 4758 secure co-processor [15].
Additionally, in contrast to using the non-volatile memory in
the drive as a disk cache accessible by the operating system,
we are able to create scenarios where the operating system
is untrusted that will still enforce data security.

By leveraging non-volatile memory for security metadata,
the cost of accessing this data will be minimal compared to
that of accessing information from the disk itself. For exam-
ple, the seek time of a high speed server drive such as the
Hitachi Ultrastar HUS15K300 73GB hard drive is 3.4 ms
with an average latency of 2.0 ms [24]. By contrast, flash
memory is very fast to access; Park et al. [35] show that the
access time for a 4 KB page of NAND memory is 156 µs for
reads, 652 µs for writes, and 2 ms to erase the page. By
pipelining the operations of the disk such that it seeks and
retrieves or writes data while authenticated encryption com-
putations and accesses to nonvolatile memory are occurring,
the costs of these operations may be completely masked.
Performing operations such as integrity checking and pro-
viding confidentiality on disk necessitates processing by the
drive, as shown in the figure. Disks have become increas-
ingly able to perform processing within the drive unit; many
drives are SMART-enabled [43], allowing them to monitor a
variety of disk attributes; these require some degree of pro-
cessing power from the disk, as do services such as automatic
sector remapping. Additionally, storage hardware employ-
ing object-based storage (OSD) [44] paradigms, including
Panasas Storage Blades [34] and forthcoming OSD drives
from Seagate [40], contain significant processing ability to
collate blocks into objects and manage attributes. Potential
implementations could include burned-in policy through an
ASIC or the ability to provide flexible services through EEP-
ROM firmware or FPGAs that may be reconfigurable for
different operations. Sufficiently powerful processors could
allow the disk to act as a fully autonomous agent capable
of acting as its own iSCSI server, for example, if there is an
onboard network interface card.

We next examine how to leverage this new architecture by
exploring a spectrum of security concerns, and show how ap-
plications using this architecture can solve these problems.

3. APPLICATIONS
We now consider methods of using the flash-assisted disk

architecture for secure metadata. Our proposed applica-
tions are shown in increasingly complexity from integrity
protection, using flash memory to store message authenti-
cation codes for disk blocks, to capability-based access con-
trol, which requires more involved management and storage
layout considerations. We also consider how to implement
information flow using labels, and consider requirements for
policy implementation and enforcement.

Disk

NVRAM

PEP

① ④ ⑤

MACK{10-20}

Req: READ 10-20

③

②

⑥ Resp to OS

Figure 2: Performing authenticated encryption us-
ing security metadata. When a client makes a read
request for blocks 10-20 (step 1), the policy enforce-
ment point, or PEP (usually the processor on the
disk) forwards a request to the disk platters, which
read the blocks (steps 2,3). The non-volatile mem-
ory is consulted to determine the MAC for the in-
tegrity set (step 4); in this case, the set covers blocks
10-20. The results are returned to the PEP (step 5),
and if the MAC is valid, the data is returned to the
OS (step 6).

3.1 Support for Authenticated Encryption
The IEEE P1619.1 standard [25] defines modes of opera-

tion for authenticated encryption. Authenticated encryption
allows for both the confidentiality and integrity of data in
storage systems. It does this through modes of operation
which, for a given plaintext and key pair produce a cipher-
text for confidentiality, and a Message Authentication Code
(MAC), a keyed hash, for integrity. Each mode also requires
an Initialization Vector (IV), which must be unique for every
plaintext/ciphertext pair.

Because the modes of authenticated encryption we inves-
tigate use Counter (CTR) mode to encrypt plaintext, the
resulting ciphertext is the same length. However, due to the
inclusion of the MAC and IV to each ciphertext, these modes
are not length preserving. For this reason, the standard sug-
gests use with devices that support length-expansion, such
as tape drives. Such length expansion is problematic for disk
drives, as it requires that any extra data beyond the length
of a disk sector be stored elsewhere on the disk. This leads
to extra disk seeks and therefore, higher access latencies to
read or write each sector. In order to support authenticated
encryption in devices which do not have a variable length
base unit of storage, such as disk drives, we propose using
the NVRAM in the aforementioned architecture as a store
for the MACs and IVs that must accompany each cipher-
text. We now examine the role of the NVRAM architecture
in the process of authenticated encryption for two modes,
Counter mode with Cipher Block Chaining (CCM) [13] and
Galois Counter Mode (GCM) [14].

CCM mode works as follows: when a subject with a sym-
metric key writes a plaintext record to the disk, an IV is
generated and used to compute a MAC from the plaintext.
Both the IV and MAC are stored in NVRAM. Next, the
plaintext is encrypted using the drive’s onboard processor,
and stored on the disk. When a user with the same key reads
the same record, the ciphertext record is deciphered and the
resulting plaintext is used with the corresponding IV from
NVRAM to compute a MAC, which is compared against the
MAC stored in NVRAM. If the two are equal, the integrity

Figure 3: Comparison of capability granularities.

of the data has been verified. GCM mode uses a similar
procedure, except that it computes MACs from ciphertext
as opposed to plaintext. Having seen how the NVRAM ar-
chitecture is used in authenticated encryption, we now con-
sider an important parameter of these modes left variable by
IEEE 1619.1, the length of a plaintext/ciphertext record.

The length of the MAC according to IEEE P1619.1 is 128
bits and that of the IV is 96 bits. For this reason, the length
of an associated unit of plaintext and therefore ciphertext
is an important detail of any implementation of authenti-
cated encryption. If a single disk sector is used as a unit
of ciphertext, the space required for storing MACs and IVs
is approximately 5.4% of the size of the entire, disk assum-
ing 512 byte sectors. For a 1TB system, 54GB of NVRAM
would be required. To mitigate this large spatial cost, we
consider using integrity sets, fixed size groups of adjacent
sectors, for which a single MAC is calculated and stored.
They are used as follows. When a subject writes one or
more blocks in an integrity set, authenticated encryption
is performed on the entire set, and a single MAC and IV
are stored for the set. When a subject reads one or more
blocks in a set, authenticated decryption is performed on
the whole set. The necessary blocks are extracted from the
ciphertext, and a MAC is calculated and compared against
the one stored in NVRAM. An example of this implemen-
tation in our proposed architecture is shown in Figure 2.

By controlling the size of integrity sets, one can control
the amount of space needed in NVRAM for storing MACs
and IVs. Of course, this savings in space is not without a
cost in time. We have shown that the computational costs
of performing the integrity functions in CCM and GCM in-
creases linearly in the number of sectors per integrity set [6].
This implies that the cost of computing a MAC for a set of
n sectors is equal to the cost of computing n MACs, one for
each sector in the set, plus a constant setup time.

Another advantage of using integrity sets arises from how
modern operating systems handle block-level requests. When
a block-level request arrives at the I/O scheduling layer, re-
quests for adjacent disk blocks are merged together to reduce
the number of requests sent to the disk and therefore disk
seeks. This in turn also minimizes the number of MAC cal-
culations as the size of an integrity set in sectors approaches
that of the mean number of sectors per request.

3.2 Capability-Based Access Control
We now examine how mitigate the loss of confidential-

ity of an entire hard disk, such as when a disk is stolen,
by implementing capability-based mandatory access control
within the disk itself. This implies that the disk must main-
tain a protection state consisting of per-object capabilities
for each subject and an enforcement mechanism to mediate
all access according to them. In the event that a disk is

Figure 4: An example of how per-subject capability
tokens are represented with an associated capability
bitmap. Subject S1 has read access to the first three
integrity sets and write access to the next two. Sim-
ilarly, S2 has read and write access to the first five
integrity sets, while SN has no access to any sets.

stolen, an attacker should not be able to acquire capabili-
ties or successfully perform any block requests to the disk.
Such a capability based protection state will require two
data structures:

1. An unforgeable capability token that can be assigned
to a subject based on credentials.

2. An associated descriptor containing per object capa-
bilities for a subject.

We propose that both of these data structures be main-
tained in NVRAM to ensure the secure storage and fast
availability of the protection state to the enforcement mech-
anism, which we assume to be part of the disk’s firmware.
We do not aim in this section to define semantics such as a
subject’s initial capabilities with an object upon creation, as
these are a matter of policy. We are presenting a plausible
infrastructure for implementing such policies.

3.2.1 Capability Representation
Previous approaches to capability-based systems have rep-

resented capabilities at various levels of granularity within
the OS, such as segments of memory [12] and nodes and
pages [41]. The granularity of capabilities in the disk has
an impact on the amount of space required in NVRAM, the
amount of processing power required in the disk’s controller
or processor, the complexity of the enforcement mechanism,
the degree of coupling with the File System (FS), and the
representation of the capability token. We examine these
factors for three levels of granularity, files, pages, and sec-
tors. The summary of these parameters for the three gran-
ularities can be seen in Figure 3. It is important that re-
gardless of granularity, no block request made without the
appropriate capability will be fulfilled.

Files. In order for capabilities to be represented at the
file level, the disk must receive enough information from the
FS to be able to verify that a given capability token is suf-
ficient to access all of the sectors in a file. This implies a
tight coupling between FS and disk. One such architecture
for which capability-based access control has been explored
is that of Type-Safe Disks [42]. Maintaining capabilities
at the file level requires a tight coupling between the disk
and a file system that may not necessarily be trusted. It
also typically requires more processor overhead than finer
grained, more autonomous methods, due to the maintaining
of data structures that represent file and directory relation-
ships. It is however advantageous in that it requires less
space in NVRAM for capabilities than page or sector level

implementations that must maintain capabilities for the en-
tire disk, as they lack knowledge of block allocation. File
level capabilities also offer a familiar representation of ca-
pability tokens in the form of a file descriptor that can be
returned by the open() system call.

Pages. Most modern microprocessor architectures supply
page tables that map each process’s virtual address space to
pages of physical memory. Pages can be shifted, or paged, in
and out of main memory into secondary storage, providing
processes with address spaces larger than physical memory.
Because of this mapping from physical memory pages to
those stored on the disk, page table data structures may be
used to maintain per-page capabilities. These could be used
to control not only how processes access the pages in mem-
ory, but how the OS may read and write these pages to disk
on behalf of processes. Per-page capabilities are convenient,
as most OSes describe block level requests in terms of pages.
For example, the Linux bio structure, the basic unit of IO
requests to block devices, is composed of structures that
map to pages of physical memory [11]. All an OS need do is
include the correct subject credentials in these requests to
obtain per page capabilities. These capabilities could then
be stored in the page table descriptors for each processes and
retrieved when their corresponding pages must be paged in
or out.

Page granularity capabilities will require more space on
average than file level, as the capabilities for the whole disk
are maintained for each subject regardless of the number
of files. However, the amount of required space is static,
and once allotted, will not change unless more subjects are
added. The only coupling between the disk and the FS/VM
subsystems is the requirement that VM pages always align
with on-disk pages. Only a small processor overhead is
needed to initially distribute the per page capabilities. Once
the subject has obtained the capability, the OS need only
forward it to the disk when reading or writing a page on its
behalf.

Sectors. Representing per-sector read and write capabil-
ities as a bitmap or capabilities list for each subject is not
practical due to the limited capacity of NVRAM. Instead,
we propose maintaining capabilities at the granularity of the
integrity sets mentioned in section 3.1. This differs from the
proposed page granularity in that it does not depend on the
VM subsystem to align pages with the disk. Assuming a
large enough set size, capabilities could be maintained in
static, per subject bitmaps without exhausting the space in
NVRAM. Such a bitmap would map two bits, enough to
express read, write or read and write capabilities, to each
integrity set as seen in Figure 4. A subject would obtain a
single capability token from the disk which would be used for
subsequent disk accesses to map to that subject’s capability
bitmap stored in NVRAM.

There are several advantages to this method above the
other two. First, because the access control is being done
at the same granularity as the authenticated encryption, a
subject’s symmetric key could double as their access token.
This allows the same infrastructure used for key manage-
ment to be implicitly used for capability management. This
is advantageous as there has been much exploration in the
area of key management [9, 21, 46]. Second, provided a so-
phisticated enough on-disk processor, this could also allow
access control decisions and authenticated encryption to be
done concurrently. Such a pairing of authenticated encryp-

tion and access control provides the means to not only pro-
tect confidentiality and verify integrity, but to proactively
protect integrity by denying unauthorized writes. Third, it
requires little processing power. A constant time mapping
from the requested sectors in a block request to the corre-
sponding entries in a subject’s bitmap is all that is needed
to decide whether the request will be granted.

This method will require more space than the file gran-
ularity capabilities, and either more or less than those at
page granularity depending on the size of each integrity set
compared to the system page size. Due to the static size
of the per subject bitmaps, once the necessary amount of
space is allotted in NVRAM, it will not increase until the
addition of more subjects to the disk.

3.2.2 OS Constructions
To reduce trust in the OS, the capability token should

originate from within the disk. All subjects must provide
credentials to the disk to obtain a token, and should not
be able to obtain a token by any other means. As subjects
exist primarily at the OS level, we examine a typical usage
scenario to show the necessary OS level additions to accom-
modate the distribution of capability tokens by the disk.

A user logs in to a system using a program such as login
that executes a shell and makes a new filesystem (VFS) call
to send the user’s credentials and process ID (PID) of that
shell to the disk containing the current working directory.
Once the disk receives the credentials, it maps them to a
capability token or creates a new token that it returns to the
driver. The driver adds this token to the Process Control
Block (PCB) of the shell who’s PID was specified in the
VFS call. Any child processes of the shell will inherit the
token into their PCBs as well. Whenever a subject makes a
VFS system call such as open() or write(), the capability
token is retrieved from the initiating subject’s PCB at the
File System level and included in any block-level requests.
The token is extracted from the request by the disk’s driver,
and included in the request sent to the disk.

Note that in the above scenario, it is possible that the
disk creates a new token for each login session. If a process
continues execution after the user has logged out, due to
the use of nohup or a similar method, it could be given its
own token that maps to the user’s credentials, as part of
the nohup command. Also, if no trusted path for the user’s
credentials is assumed, they could be stored along with the
user’s ID (UID) on an external device such as a smart card
that is recognizable by the disk, and the UID could be used
by the disk to distribute a capability token to that user’s
processes.

For the purpose of capability creation, modification and
revocation, a single meta-capability will be required per
disk. This meta-capability could be used with a privileged
utility to write special blocks to the disk containing user cre-
dentials and capabilities. The owner of the meta-capability
is the disk’s administrator.

3.3 Preserving Information Flow
Providing mechanisms that preserve information flow is a

complex task. While previous applications have dealt with
tokens that may be modified but evaluated with relative
ease, the challenges of fully implementing lattices for infor-
mation flow are commensurately greater. While operating
systems such as SELinux, and a small number of applica-

Disk

NVRAM

PEP
①

② ③

10-40: {HIGH}

Req {LOW}: READ
10-20

Figure 5: An example of enforcing information flow
with disk metadata. A request from a client labeled
LOW to read blocks 10-20 is made (step 1). The
policy enforcement point, or PEP (usually the pro-
cessor), consults the non-volatile memory and finds
that blocks 10-40 are labeled HIGH (step 2). When
this information is returned to the PEP (step 3), it
denies the request and no disk access is made.

tions such as JPMail [22] support information flow measures,
little has been done to protect information flows at the stor-
age layer. We first consider policies and models that preserve
information flow, then discuss how to represent policy, how
to authenticate security levels with the environment outside
the disk, and how metadata is handled.

A well-studied and popular means of controlling informa-
tion flow is through multi-level security (MLS). In the canon-
ical model for MLS that preserves data confidentiality, as
proposed by Bell and La Padula [2], subjects and data ob-
serve the simple property, which states that no subject can
read to a level higher than it is authorized for, and the *-
property, which states that no information may be written
at a lower level than the subject is authorized for. There
are numerous mechanisms that may be enforced for infor-
mation flow preservation, such as the integrity-preserving
model proposed by Biba [3], separation of duties as proposed
by Clark and Wilson [10], and the Chinese Wall model [5],
among many others. Depending on what characteristics of
the information is considered most important to protect, the
policy will be chosen accordingly by system architects.

Policy is represented as a series of labels, which identify
characteristics of both users and data. Figure 5 shows an
example of a disk enforcing an MLS scheme. A user making
a request to the disk has been labeled LOW by the oper-
ating system and is attempting to read a set of blocks that
has previously been labeled HIGH. Because of the simple
security property, a LOW user cannot read HIGH data, so
the access is denied at the policy enforcement point – in this
case, the processor in the disk mediating the operation. The
type of policy enforced by the disk may be modified within
the firmware. Alternately, in a high-assurance environment,
the manufacturer may burn in custom firmware to the drive
such that a specific model must be followed. This approach
also has the advantage that labels may be defined a priori;
with knowledge of these and their semantics, reconciliation
of semantics between user labels and those understood by
the disk may be easier, as systems can ensure label consis-
tency. However, predefining the label space may also limit
the flexibility and granularity of expressible policy.

Regardless of whether labels are predefined or if they can
be configurable by the firmware, the drive must be able to

understand their semantics. In the previous example, policy
enforcement mandates understanding a notion of ordering
and comparison: semantics must be in place to determine
that because HIGH is a more restrictive level than LOW,
a user with level LOW may not be allowed to access data
labeled HIGH. Existing research by Hicks et al. has con-
sidered policy compliance by examining the intersection of
labels in security-typed languages and those derived from
an operating system [23]. In particular, the SIESTA tool
created by Hicks et al. handles the establishment of con-
nections between the Jif security-typed language and the
SELinux operating system. With some modification, a sim-
ilar tool may be used to provide compliance between operat-
ing system labels and those deployed by the storage device.
Alternatively, consider a high-assurance system where the
entire system enforces information flow throughout and all
of the hardware and software to be run is known. In this
case, many if not all system parameters may be determined
in advance, such that for a given system configuration and
policy definition, a hash of the system state may be com-
puted and burned into the drive’s firmware prior to its in-
stallation in the system. Then, a system possessing a trusted
platform module (TPM) may provide a trusted attestation
of the state to the hard disk, which will be able to ascertain
the policy as being correct and the system as being trusted
to preserve information flow.

4. DISCUSSION
In order to leverage our proposed security architecture

with existing disks, some changes will be required. In par-
ticular, the drive’s firmware will need to be rewritten in
order to use the available flash memory for storing security
metadata rather than as a cache. Additionally, as previously
mentioned, some processing power must be present within
the disk to allow for policy evaluation; these can be specific
ASICs or general processor designs as in the Active Disk
approach [38], depending on the desired implementation.

Some modifications may also be necessary from the op-
erating system in order to use these mechanisms. Because
access control decisions may be made in the disk, it may
return an access denial message to the OS. The hardware
driver must be modified to recognize these messages and
propagate them up to the OS; the message to be returned to
users will be implementation-specific. Drivers must also be
cognizant of metadata sent to the disk layer by the operat-
ing system, such as labels. There may, however, be support
within the OS structures to set this data; for example, the
bio structure in Linux, which packages I/O requests to the
block layer, has fields that may contain user-defined infor-
mation, such that metadata may be passed from the OS to
the hardware level. The ioctl control commands may also
be used to directly push information to the disk, though
cleaner interfaces would be preferable.

5. RELATED WORK
Storage security can be considered an offshoot of file sys-

tem security, first considered formally by in Blaze’s CFS [4],
which encrypted directories with a secret key and stored
them as a file in the system. Extensions to CFS include
CryptFS [47], which added a stackable kernel module on
which the file system resides, and TCFS [7], which encrypts
file data and names. Additionally, SFS [29] and SFS-RO [18]

consider untrusted server operation and provide mutual au-
thentication mechanisms between servers and users. More
information on these and other early secure file system pro-
posals can be found in Reidel et al.’s evaluation of storage
security solutions [39].

Since that time, increased attention has been placed on se-
curing data at the block, rather than file, level. Notably, the
NASD project [19] hashed and encrypted blocks and groups
of blocks called objects, storing the metadata on a server.
Similarly, SNAD [31] uses hashing and keyed hashes exten-
sively, calculating an either a digital signature or HMAC
value over blocks. The latter scheme is similar in execution
to ours, but relies on the client to perform the cryptographic
operations and store HMACs, rather than the disk, and does
not take into account the ability to amortize costs and stor-
age over multiple blocks. SCARED [37] provides data in-
tegrity but not at the block layer, so operations cannot be
performed by the disk. SNARE [48] shares some similarities
to NASD and SNAD but relies on capabilities and is best
suited for a remote storage system. None of these schemes
consider authenticated encryption using modes specified by
the IEEE P1619.1 standard.

The Venti storage system [36] is an archival system that
relies on write-once access. Their system considers block
level performance, and attempts to optimize storage by seek-
ing opportunities to compress blocks before adding them to
the archive. Vilayannur et al. [45] also considered optimiz-
ing performance through tuning of parameters, but make
characterizations and modifications to parallel file systems.
By contrast, our approach works at the block layer and is
thus largely independent of the file system running above it.

Oprea et al. [33] consider an on-disk model for protect-
ing block integrity using calculated entropy. Their assump-
tion is of an untrusted disk where the client performs all
calculations and leverage the block’s entropy to make deci-
sions whether to hash the blocks or not. This scheme yields
large reductions in required storage but requires clients to
retrieve their own integrity information. This concept has
also been incorporated into cryptographic file systems [32],
where file in conjunction with the construction of a Merkle
hash tree [30] to represent the file contents; this approach
of building hash trees for integrity has also been considered
in systems such as Cepheus [17], Farsite [1], SUNDR [28],
and Plutus [26], while SiRiUS [20] has hash tree validation
at the file level. For a given file, only blocks considered high
entropy are hashed, as blocks with low integrity are consid-
ered already structured; it is assumed that only if the block
is tampered with will its entropy increase as it becomes cor-
rupt, such that the entropy measurement takes the place of
any hashing. This approach requires an amount of trusted
storage accessible for each file. Our proposals differ in that
we are concerned solely with blocks at the disk level, and all
of our constructions and operations are meant to be able to
be implemented within the disk itself.

6. CONCLUSION
We have proposed a new storage architecture based on

the emergence of hybrid hard disks, by using the non-volatile
memory included in these devices to store security metadata.
This allows provisioning of services such as integrity and
confidentiality protection, capability-based access control,
and information flow preservation within the drive itself,
and ultimately allows for a higher level of assurance between

systems and storage. Further work in this area will include
detailed simulations of the operation of hybrid drives and
understanding performance trade-offs and implementation
challenges when these services are deployed.

Acknowledgements
The authors would like to thank the members of the Sys-
tems and Internet Infrastructure Security Laboratory at The
Pennsylvania State University for their discussions and as-
sistance with providing reviews and editing. This work is
supported by NSF grant CCF-0621429.

7. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE:
Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Proceedings of
the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston,
MA, Dec. 2002.

[2] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical
Report M74-244, MITRE Corporation, Bedford, MA,
1973.

[3] K. Biba. Integrity Considerations for Secure
Computer Systems. Technical Report MTR-3153,
MITRE Corporation, Bedford, MA, Apr. 1977.

[4] M. Blaze. A Cryptographic File System for UNIX. In
Proceedings of the 1st ACM Conference on Computer
and Communications Security (CCS’93), Fairfax, VA,
USA, Nov. 1993.

[5] D. F. C. Brewer and M. J. Nash. The Chinese Wall
Security Policy. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), Oakland,
CA, USA, Apr. 1989.

[6] K. Butler, S. McLaughlin, and P. McDaniel.
High-Performance Disk Integrity through Block
Chaining. Technical Report NAS-TR-0072-2007,
Network and Security Research Center, Department of
Computer Science and Engineering, Pennsylvania
State University, University Park, PA, USA, June
2007.

[7] G. Cattaneo, L. Cauogno, A. D. Sorbo, and
P. Persiano. The design and implementation of a
transparent cryptographic file system for UNIX. In
Proceedings of the 2001 USENIX Annual Technical
Conference, Boston, MA, USA, June 2001.

[8] S. Chaitanya, K. Butler, P. McDaniel, and
A. Sivasubramaniam. Design, Implementation and
Evaluation of Security in iSCSI-based Network
Storage Systems. In Proceedings of 2nd International
Workshop on Storage Security and Survivability
(StorageSS 2006), Alexandria, Virginia, October 2006.

[9] P. Chen, J. Garay, A. Herzberg, and H. Krawczyk.
Design and Implementation of Modular Key
Management Protocol and IP Secure Tunnel. In
Proceedings of 5th USENIX UNIX Security
Symposium, pages 41–54. USENIX Association, 1996.
Salt Lake City, Utah.

[10] D. D. Clark and D. R. Wilson. A Comparison of
Commercial and Military Computer Security Policies.

In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), Oakland, CA, USA, Apr. 1987.

[11] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
Device Drivers. O’Reilly, third edition, 2005.

[12] J. B. Dennis and E. C. V. Horn. Programming
semantics for multiprogrammed computations.
Commun. ACM, 9(3):143–155, 1966.

[13] M. Dworkin. Recommendation for Block Cipher
Modes of Operation: The CCM Mode for
Authentication and Confidentiality, May 2004. NIST
Special Publication 800-38C.

[14] M. Dworkin. Recommendation for Block Cipher
Modes of Operation: The Galois/Counter Mode
(GCM) for Confidentiality and Authentication, May
2006. NIST Special Publication 800-38D (DRAFT).

[15] J. G. Dyer, M. Lindermann, R. Perez, R. Sailer,
L. van Doorn, S. W. Smith, and S. Weingart. Building
the IBM 4758 Secure Coprocessor. IEEE Computer,
39(10):57–66, Oct. 2001.

[16] Engadget. Samsung’s Hybrid Hard Drive (HHD)
Released to OEMs.
http://www.engadget.com/2007/03/07/

samsungs-hybrid-hard-drive-hhd-released-to-oems/,
Mar. 2007.

[17] K. Fu. Group Sharing and Random Access in
Cryptographic Storage File Systems. Master’s thesis,
MIT, June 1999.

[18] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and
secure distributed read-only file system. ACM Trans.
Comput. Syst., 20(1):1–24, Feb. 2002.

[19] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
and D. Rochberg. A case for network-attached secure
disks. Technical Report CMU-CS-96-142, Carnegie
Mellon University, Pittsburgh, PA, USA, Sept. 1996.

[20] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
SiRiUS: Securing Remote Untrusted Storage. In
Proceedings of the 10th ISOC Symposium on Network
and Distributed Systems (NDSS’03), San Diego, CA,
USA, Feb. 2003.

[21] H. Harney, U. Meth, A. Colegrove, and G. Gross.
Group Secure Association Key Management Protocol.
Internet Engineering Task Force, June 2006. RFC
4535.

[22] B. Hicks, K. Ahmadizadeh, and P. McDaniel.
Understanding Practical Application Development in
Security-Typed Languages. In Proceedings of the 22nd
Annual Computer Security Applications Conferences
(ACSAC), Miami, FL, USA, Dec. 2006.

[23] B. Hicks, S. J. R. Rodriguez, T. Jaeger, and
P. McDaniel. From Trusted to Secure: Building and
Executing Applications that Enforce System Security.
In Proceedings of the USENIX Annual Technical
Conference, San Jose, CA, USA, June 2007.

[24] Hitachi. Hitachi Ultrastar 15K300 3.5-inch Enterprise
Hard Disk Drives.
http://www.hitachigst.com/tech/techlib.nsf/

techdocs/F0954C336AF5E24F862572C200563CB3/

$file/Ultrastar_15K300_final_DS.pdf, Apr. 2007.

[25] IEEE. IEEE P1619.1/20 Draft Standard for
Authenticated Encryption with Length Expansion for
Storage Devices. http://attachments.wetpaintserv.
us/2Qjro\%24n0iiv7kYZoz4BTmw\%3D\%3D326044,
June 2007.

[26] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable Secure File Sharing on
Untrusted Storage. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies
(FAST’03), San Francisco, CA, Apr. 2003.

[27] M. Kozuch and M. Satyanarayanan. Internet
suspend/resume. In Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and
Applications, pages 40–46. IEEE Computer Society,
2002.

[28] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
Untrusted Data Repository (SUNDR). In Proceedings
of the 6th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2004), San
Francisco, CA, Dec. 2004.

[29] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file
system security. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles
(SOSP’99), pages 124–139, Kiawah Island, SC, USA,
Dec. 1999.

[30] R. Merkle. Protocols for Public key Cryptosystems. In
Proceedings of the 1980 Symposium on Security and
Privacy, pages 122–133. IEEE, April 1980. Oakland,
CA.

[31] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C.
Reed. Strong Security for Network-Attached Storage.
In Proceedings of the 1st USENIX Conference on File
and Storage Technologies (FAST’02), Monterey, CA,
USA, Jan. 2002.

[32] A. Oprea and M. K. Reiter. Integrity Checking in
Cryptographic File Systems with Constant Trusted
Storage. In Proceedings of the 16th USENIX Security
Symposium, Boston, MA, USA, Aug. 2007.

[33] A. Oprea, M. K. Reiter, and K. Yang. Space-Efficient
Block Storage Integrity. In Proceedings of the 12th
ISOC Symposium on Network and Distributed Systems
Security (NDSS’05), San Diego, CA, USA, Feb. 2005.

[34] Panasas. Panasas: System Hardware.
http://www.panasas.com/hardware.html, 2007.

[35] C. Park, J.-U. Kang, S.-Y. Park, and J.-S. Kim.
Energy-Aware Demand Paging on NAND Flash-based
Embedded Sources. In Proceedings of the International
Symposium on Low Power Electronics and Design
(ISLPED), Newport Beach, CA, USA, Aug. 2004.

[36] S. Quinlan and S. Dorward. Venti: A New Approach
to Archival Storage. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies
(FAST’02), Monterey, CA, USA, Jan. 2002.

[37] B. C. Reed, M. A. Smith, and D. Diklic. Security
Considerations When Designing a Distributed File
System Using Object Storage Devices. In Proceedings
of the 1st IEEE Security in Storage Workshop
(SISW’02), Greenbelt, MD, USA, Dec. 2002.

[38] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle.
Active Disk for Large-Scale Data Processing. IEEE
Computer, pages 68–74, June 2001.

[39] E. Riedel, M. Kallahalla, and R. Swaminathan. A
Framework for Evaluating Storage System Security. In
Proceedings of the 1st USENIX Conference on File
and Storage Technologies (FAST’02), Monterey, CA,
USA, Jan. 2002.

[40] Seagate. The Advantages of Object-Based Storage –
Secure, Scalable, Dynamic Storage Devices. Seagate
Research TP-536, Apr. 2005.

[41] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a
fast capability system. In SOSP, 1999.

[42] G. Sivathanu, S. Sundararaman, and E. Zadok.
Type-Safe Disks. In OSDI, 2006.

[43] Small Form Factor Committee. Specification Draft for
S.M.A.R.T. Applications Guide for the ATA and SCSI
Interfaces. SFF-8055i, June 1996.

[44] T10. Information tecnology - SCSI Object-Based
Storage Device Commands (OSD). Project
T10/1355D, Revision 10, July 2004.

[45] M. Vilayannur, P. Nath, and A. Sivasubramaniam.
Providing Tunable Consistency for a Parallel File
Store. In Proceedings of the 4th USENIX Conference
on File and Storage Technologies (FAST’05), San
Francisco, CA, USA, Dec. 2003.

[46] D. M. Wallner, E. J. Harder, and R. C. Agee. Key
Management for Multicast: Issues and Architectures.
Internet Engineering Task Force, June 1999. RFC
2627.

[47] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A
Stackable Vnode Level Encryption File System.
Technical Report CUCS-021-98, Columbia University,
New York, NY, USA, 1988.

[48] Y. Zhu and Y. Hu. SNARE: A Strong Security System
for Network-Attached Storage. In Proceedings of the
22nd International Symposium on Reliable Distributed
Systems (SRDS’03), Florence, Italy, Oct. 2003.

