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1 Introduction

There has been significant recent progress in the formulation of Lagrangian descriptions
for multiple M2-branes in M-theory [1-6]. These descriptions initially relied on the intro-
duction of a novel algebraic structure, going under the name of a 3-algebra. Even though
one can recast the former in terms of a completely conventional gauge theory language,
the presence of 3-algebras is intriguing and one might wonder about their possibly deeper
connections to M-theory in general.

In this note we begin the investigation of a potential relation between 3-algebras and
multiple M-theory fivebranes. Compared to M2-brane systems the formulation of an M5-
brane theory is difficult at best: Even for the case of a single fivebrane it does not seem
possible to write down a six-dimensional action with conformal symmetry due to the self-
duality of the three-form field-strength. In addition the theory of multiple M5-branes is
given by a conformal field theory in six-dimensions with mutually local electric and mag-
netic states and no coupling constant. All of these features are difficult to reconcile with a
Lagrangian description.!

!For a review on M2 and M5-brane basics see [7].



Here we will simply study the equations of motion of a nonabelian (2,0) tensor mul-
tiplet. Starting with the set of supersymmetry transformations for the abelian M5-brane
we propose an ansatz for a nonabelian generalisation. Apart from the expected nonabelian
versions of the scalars, fermions and the antisymmetric three-form field strength, we intro-
duce a gauge field as well as a non-propagating vector field which transforms nontrivially
under the nonabelian gauge symmetry and has a negative scaling dimension. Our ansatz
involves ‘structure constants’ with four indices that can be associated to a 3-algebra.

It is interesting to note that there have been proposals for M5-brane Lagrangians
that require the introduction of a new scalar field, which can be eliminated at the price
of sacrificing manifest six-dimensional Lorentz invariance [8, 9]. Although here we will
only study the equations of motion, the additional non-propagating vector field that we
introduce is a nonabelian analogue of the auxiliary field in [8, 9]. For recent work that also
touch upon some of these issues see [10-14].

We proceed by studying the closure of the supersymmetry algebra. We find that
it closes on-shell up to translations and gauge transformations if the structure constants
are those of real 3-algebras,? i.e. they are totally antisymmetric and obey the related
‘fundamental identity’. The on-shell conditions yield a set of equations of motion for the
various fields, as well as a number of constraints. The latter prove to be quite restrictive and
upon expanding the theory around a particular vacuum it reduces to five-dimensional super-
Yang-Mills along with six-dimensional, abelian (2,0) tensor multiplets. In particular we
will essentially arrive at a reformulation of the D4-brane theory with conformal symmetry
and (2,0) supersymmetry. This is similar to the Lorentzian M2-brane models [15-17] which
provided a different angle on D2-branes [18]. In this way we hope that new light can be
shed on M5-branes by reformulating D4-branes in terms of a (2,0) system. In addition this
paper can be viewed as a no-go theorem for obtaining a genuine six-dimensional interacting
(2,0) supersymmetric set of equations of motion. On the other hand a different null
reduction leads to a novel system with 4 space and 1 null directions, sporting lightlike
dyonic-instanton string BPS solutions [19]. We conclude with some further remarks on the

possible connection of this theory to the dynamics of multiple M5-branes.

2 A nonabelian (2,0) tensor multiplet

We start by giving the covariant supersymmetry transformations of a free six-dimensional
(2,0) tensor multiplet [20]:

oX" = ier'w
upl 1 11 2N
o = DT X e+ T Hyne
0B, = iel,, U (2.1)

where p = 0,...,5, I =6,...,10 and Hy,n = 39,B,y is selfdual. The supersymmetry
generator € is chiral: I'g19345€¢ = € and the Fermions U are antichiral: I'gj9345¥ = —W. This

2These are the N = 8 3-algebras in three dimensions.



algebra closes on-shell with the equations of motion
g, v = 9,0 X" =0. (2.2)

We note that, from the point of view of supersymmetry, it is sufficient to write the algebra
purely in terms of H,, ) and not mention B,:

6XT = qer’w
ST = ™ Ia I 11 LU
U= D9 X et o TN Hye
5HMV>\ = 3Z'€F[W,a)\]\lf , (2.3)

in which case one must include the equation of motion 9, H,, = 0.

We wish to try and generalise this algebra to allow for nonabelian fields and interac-
tions. To this end we assume all fields take values in some vector space with a basis T4,
viz. XI =X ATA, etc., and promote the derivatives to suitable covariant derivatives

DX =0, X4 — Al AX] (2.4)

where /leA is a gauge field.
Upon reduction on a circle one expects that the six-dimensional (2,0) transformation
rules reduce to those of the five-dimensional super-Yang-Mills, which are given by

ox! = jerlw
§U = 1T D, X e + ;raﬁrf’Faﬁe - ;[XI,XJ]P”F%
§A, = il 50 (2.5)

fora=0,...,4.

In order to obtain a term analogous to the [X!, X /] for §¥ in (2.3) we need to introduce
a I'), matrix to account for the fact that ¢ and ¥ have opposite chirality. Thus a natural
guess is to propose the existence of a new field C'* so that we can consider the ansatz:

oXL =ierlw,
54 =T D, X e+ 31! ;FMHZV% — ;FAFI TORXEXD FOPB e
0Hyyn a4 = 3L, Dy W4 + i€l T\ O XLV pgPP
SAP, = iel \CRUphePE
5Ch =0, (2.6)

Here fOPB, ¢g¢PB 4 and h®PB 4 are ‘structure’ constants that we will determine in due

fC’DB

course. Note that we can assume A is antisymmetric in C, D.



As with the abelian case we also impose selfduality on H,xa:

1
f;w)\TUpHTOPA . (27)

H,ul/)\A = 3

Demanding that this is preserved under supersymmetry gives rise to the Fermion equation:
D Dy 4 + Oy pX T T W pg“PE , =0 . (2.8)

Note that consistency of the above set of equations with respect to their scaling di-
mensions gives

[ =-, W] =[X]+ 3, [X]. (2.9)

so one could still make this work with some other assignment that are all related to the

choice of [X]. However the canonical choice is [X] = 2,[H] = 3,[¥] = 5,[C] = —1.

In particular we see that the new field C* has scaling dimension —1. Therefore, if we
compactify the theory on a circle of radius R we expect the expectation value of C* to be
proportional to R.

2.1 Closure on XA

We now proceed to test the ansatz (2.6) by investigating the closure of the supersymmetry
algebra on the scalars. A straightforward calculation gives

01, 02) X4 = o*D, X4 + AP 4 XL (2.10)
where
o = =2i(&T e), APy =2i(&D\Ie))OpXLfBCP 4 . (2.11)

2.2 Closure on C

Here the situation is rather simple since one clearly has [01, d2]C = 0. On the other hand
what we expect is

61, 82)CYt = 0" D, CH + AB.Cl . (2.12)
These agree on-shell if
D,Ch =0,  CROLFEPB,=0. (2.13)

The second constraint comes from setting AP AC% = 0 but also comes from supersym-
metrising the first constraint.



TA
2.3 Closure on AMB

We continue with the closure on the gauge fields. In order to minimise the size of our
expressions we will freely use the constraints found above. We obtain

[(51, 52]14514 = —QZ‘(EQFAF161)CérDMX£hCDBA — UVCérHﬂV)\DhCDBA
—i(&L I ) CLOAXEX ] fEEC phCPB
+2i(eoT M 1) CADNXHACPB
= ”UVF“fA —|— DﬂABA . (214)

where in the last line we have given what the first three lines should amount to, and the

field-strength is defined from (2.4) through [D,, D,] = F),,:
s = 0 Ay — 0,A s — AlCA s + Al ATp (2.15)
For the first term to give the correct gauge transformation we deduce that
peDB, — DBC (2.16)
Given this we see that the second term is a translation provided that
Ep 4= CaHuapfPP% 4. (2.17)
The second line gives the constraint:

CECaf™ pfPPa=0. (2.18)

We will see shortly that fAB¢ p must satisfy a ‘fundamental identity’ for real 3-algebras [1-
4] and as a result (2.18) will follow from (2.13).

We also see that the third line gives the constraint:
CAD\XEfBPC , =0, (2.19)

which implies that the physics is (largely) five-dimensional. In addition, acting with su-
persymmetry leads to

CAD\U L fBPC =0, (2.20)



2.4 Closure on H ) o

We continue with the closure on the antisymmetric tensor field-strength. In particular
we find:

[01,02) Hyox a4 = 0" DpHpun a — 2i(@L T e1)CLX [gP Y AH i B
—6i(el, I er) (FVA}CA —CLH,y, DQCDBA) xt
—6i(ExT I 1) CLXEDN XD (FPP 4 = g9PP 4)
_?é’; (@TUFJQ)(\TICTW,\,,JTJ\I/D)Cg(hDBCA _ gCDBA)
+2i(@T TR €e1) €urpor CHCFXEXEXE gPIPIC 4 fFOIFL
+i(@L I L) KM OB O, pXEXTXE gPPIC 172,
+3i(6L L arer) e KEMCL Oy p XEXLXE gPPLO 75,

+P <4D[“Hy>\p} At GﬂuApoTC%XéDTXlI)gCDBA

i _
+ 9 e,uu)\poTC%\IIC’FT\IIDgCDBA>

= /UPDPHMV)\ A+ ABAHMV)\ B (221)

where again we have written the required expression in the final line.

The second term of the first line gives the correct gauge transformation if
g“PPa=fPP L. (2.22)

In addition one sees that the second and third lines now vanish. The fourth line will
vanish if

hPBC 4 = ¢OPB (2.23)

Given the previous conditions this implies that f¢PB, = —f¢BP 4 and thus f¢PB, is
totally antisymmetric in C, D, B. Just as with multiple M2-branes, consistency of the gauge
symmetries A 4 implies that the structure constants satisfy the fundamental identity:

FABCPIEE G =0 (2.24)

Using this, along with the second condition in (2.13) one sees that all the terms quadratic
in C} vanish.

Demanding that the seventh line vanishes gives the H-equation of motion:

1 ) -
Euu)\paTCgXéDTXlI)fCDBA + EuuApUTCg\IICFT\I’DfCDBA =0. (225)

D[HHV)\P] ATt 4 8



We see that the Bianchi identity D[AFW]A B = 0, along with the H-equation of motion,
implies that

Cg‘DpH,ul/)\ DfCDBA =0. (226)

One could try to introduce a field By, 4 such that H,, ) 4o = 3D[MBV)\] 4. This would
lead to the algebraic constraint

1 1
6€,u1/)\poTC%Xé’DTX£)fCDBA + 12

but this over-constrains the fields and hence there cannot exist a suitable B, 4. We will
verify this in the next section.

F[;WBABAp} B+ GMVAPJTC%\T/CFT\I/DJCCDBA =0 (2.27)

2.5 Closure on V4

Finally we look at the closure on the fermions. Using the relations that we found above,
one gets

[51,(52]\11,4 = UMDM\I/A —i—/N\BA\I/B

31
+, (&Te)T7(TH D, W4 + XLCYT, T W fOPB )

- i (6T, IX e )TOTK (DD, W 4 + XECUT, DT, fOPB L) - (2.28)
Here we achieve closure with the Fermion equation of motion
MDD, 4 + XLCHT, T U fOPB, =0, (2.29)

which agrees with the condition (2.8) that we obtained from demanding that the selfduality
of H,, a is preserved under supersymmetry.

We can also take a supersymmetry variation of the Fermion equation to obtain the
scalar equation of motion:

7 -
D2xT — QxIJchryrqu pfOPB 4 — C%C, e XEXLXLFEFCLOPB =0, (2.30)
2.6 Summary
Let us summarise the results of our computation. The equations
i
0= D*X} - 2%0;131“1\1/ pfOPB 4 — CLOGXEXLXT FEFC p fOPB

7

1
Curpor CEXEDTXEFOPB 4 + .

4
0 =D, W4+ XLCHD, T W fOPB

0= D[;LHV)\p] AT EpuApaTC%@CPT\I}DfCDBA
0= F,ul/BA - Cé’HuuA DfCDBA
0 = D,C% = CECHFPP 4

0= CAD XL PP a = CEDUp PP 4 = CLD Hun af PP 4, (2.31)



with H,,, ) 4 selfdual, are invariant under the six-dimensional (2,0) supersymmetry trans-
formations

oXL =i,

11
312
SHyyn a4 = 3iel),, Dy W4 + i€l T\ O XL p fOPB

1
§Wa =THID, X e+ | T HE e — QI‘AF” CNXLXDFOPB 4e

SAPy = il \CEUp fCPP 4 (2.32)
sCh =0, (2.33)

provided that fABC¢, = fIABCl, obeys the fundamental identity: fABC g, fPIEF , — 0.
The above are precisely the structure constants for the real 3-algebra of [1-4]. Fur-
thermore we need to endow the 3-algebra with an inner product Tr (TA, TB) = hAB with

which one can construct gauge-invariant quantities. This in turn implies that fABCP =

hPE fABC 1 i antisymmetric in C, D and hence antisymmetric in all of A, B,C, D.

3 Relation to five-dimensional SYM

3-algebras can be classified according to the signature of the metric in group space. In
particular there is exactly one [21, 22| Euclidean four-dimensional 3-algebra, A4, as well as
an infinite set of Lorentzian 3-algebras [15-17]. In this section we move on to investigate the
vacuum solutions of our theory for these two possibilities, but one can also consider three-
algebras with more than one timelike directions [23—-25]. For a recent review of 3-algebras
in physics see [26].

3.1 Lorentzian case

The Lorentzian 3-algebras can be constructed e.g. as in [16] by starting with an ordinary
Lie algebra G and adding two lightlike generators TF such that A = +, —, a,b, ..., raising
the total dimension to dim(G) + 2. The structure constants are given by

f—l—abc _ fabc , fabc_ _ fabc ’ (31)

with f_ the structure constants of the Lie algebra G and all remaining components of

fABC ) vanishing. The metric is given by

0 -10...0
-1 00...0

hap=1 0 0 : (3.2)
© i hg
0 0

We next look for vacua of this theory in the particular case of G = su(N) by expanding
around a particular point

(CY) = gb2d} . (3.3)



while all other fields are set to zero. One then has from the fourth line of (2.31) that

Fog’e = gHops af ®a (3.4)

with = a,5 and all other components of F, WB A zero. As a result the latter correspond
to flat connections that can be set to zero up to gauge transformations and the fifth line
of (2.31) reduces to 9,9 = 0, rendering g constant.

The rest of (2.31) become:

0 = D DaX] — g BT, — X7 X! X o005,

0= DiaHpysq

0 = DHup5 4 + ;ngda(Xclbﬁng + ;‘I’cfﬁ‘lfd)

0 =DV, + gX!TsT10, f,

0= 05X} =050y = O5H,u a , (3.5)
where ZNDQX({ = 0, X} — /Nlaban, while one also has from (2.32) that

6X!I = jer’v,

. 1 1
00, = T Dy X e + 2FQ5F5H§‘556 - 2r5rf IXIX] el e

6AL, = el D5 f P, . (3.6)
We immediately see that with the identifications
1 _
g = g%(M > H;ﬁS = 9 gﬁ > Aolz)a = Aa Cbea (37)
9ym

we recover the equations of motion, Bianchi identity and supersymmetry transforma-
tions (2.5) of five-dimensional SU(N) super-Yang-Mills theory. In particular since g has
scaling dimension —1, we see that gyy also has the correct scaling dimension. Further-
more the fundamental identity reduces to the Jacobi identity for the structure constants of
su(N). Hence the off-shell SO(5,1) Lorentz and conformal symmetries are spontaneously
broken to an SO(4, 1) Lorentz invariance.

However we also have the additional equations

0=0"9,X%
0 = OuHyrg A
0=T"9,W,, (3.8)

with transformations

6XL = dertwy
11
312
OHyx + = 3i€l'},, 05Vt . (3.9)

Sy = DP9, XL e+ | T HE e



These comprise two free, abelian (2,0) multiplets in six dimensions.

Finally we return to the existence of a 2-form B,,, 4. To start we note that (2.27) only
acts on the nonabelian fields. For the abelian sector we have J),H, ), + = 0 and hence we
can locally write Hy,\ + = 30, B, +-

Next, let us look at the nonabelian fields. From (3.4) we have, assuming D5 B,3, = 0,

Fug’s = 9(DaBgs e — DgBas o) fa . (3.10)

However we should compare this using Fag b= 85;10% — 80‘;16% —Ag flﬁcb + flﬁ“cflo‘fb and

DaBm a = 0aBg5 4 — AabaB[gE) p- Examining the derivative terms leads to

C

~ozmb = —gBas chba . (3'11)

If we now look at the nonlinear terms we require f/°.fec, — fet ffe, = 2ff ;% but using
the Jacobi identity one finds instead ffb.f¢¢, — f0.ff¢, = ff;f%,. Thus we conclude
that there is no B, 4 in general.

To summarise, for the choice of a Lorentzian 3-algebra the vacua of the theory
interestingly correspond to the ones for five-dimensional super-Yang-Mills along with
two free, abelian (2,0) multiplets which are genuinely six-dimensional. Presumably one
must be gauged away in order to have a well-defined system of equations with positive
definite energy.

3.2 The Euclidean case and ‘D4 to D4’

Using the Euclidean 3-algebra is qualitatively rather similar: For the A4 3-algebra the
structure constants coincide with the invariant tensor of SO(4), fABCP = ¢ABCD Singling
out one of the SO(4) directions, A = a,4 and expanding the theory around a vev (C)) =
voE 0% leads to (3.5) and (3.6), where £ are now the structure constants of SU(2) and we
can once again identify the theory around this vacuum as five-dimensional SU(2) super-
Yang-Mills. In this case one has only a single six-dimensional (2,0) tensor multiplet,
obtained by (3.8) and (3.9) by considering the replacement (+ — 4). Thus the 44-algebra
does not exhibit any qualitative differences compared to the Lorentzian result, in contrast
to the case of three-dimensional 3-algebra theories with 16 supercharges.

In fact it would have been possible to arrive at our initial ansatz for the six-dimensional
theory by working backwards in the spirit of [18]: Starting with the SU(N) super-Yang-
Mills theory in five dimensions and considering the set of equations of motion and super-
symmetry transformations, we rename the YM coupling 9\2(1\/[ = Ci and the gauge field

ap = géM Hy s, Ay of?, = /Nlolja We then promote the coupling into a field, while im-
posing the external constraint BaCi = 0. This provides the off-shell conformal invariance.
Finally we perform a trivial lift to six dimensions (by making the fields six-dimensional
but imposing the external constraint that none depend on the new direction), add the free
abelian (2,0) tensor multiplets and the flat gauge fields that complete F WB 4, and use the
relations (3.1) between the Lie and 3-algebra generators. By SO(5, 1)-covariantising the
resulting equations and writing everything in terms of generic 3-algebra expressions one
arrives at (2.31) and (2.32).

,10,



Hence, with the use of Lorentzian 3-algebras, it is possible to go from a conventional
description of five-dimensional super-Yang-Mills, the low-energy theory on the D4-brane
worldvolume, to an equivalent 3-algebraic version with off-shell SO(5,1) and conformal
symmetries, as was also the case for D2-branes [18].

4 Null reduction and BPS states

It is of interest to investigate whether or not the (2,0) theory derived above can have any
relevance to multiple M5-branes. As we have seen the nonabelian sector of the theory
is essentially five-dimensional super-Yang-Mills and therefore more appropriately describes
multiple D4-branes. However in this section we will discuss a slightly different choice for C?;.

In particular let us consider six-dimensional coordinates z* = (u,v,z') where u =
1 (.0 5 _ 1
/2 (x° —x°), v = v

we choose any Lorentzian 3-algebra by having that (C%) = goy 5;. The abelian sector

(2 4+ 2%) and i = 1,2,3,4. Following the conventions of section 3.1

of the theory again consists of free 6-dimensional (2,0) tensor multiplets. However the
nonabelian sector is a novel supersymmetric system that effectively lives in 4 space and
1 null dimensions with 16 supersymmetries and an SO(5) R-symmetry. The equations of
motion for the nonabelian fields are

0=Dx! - 129 O, 0, 0w, o,
0 =T"D,W, + gX!T, 11w, f,

1 -
0= D[uHuAp} a ZeuuApTvXcIDTXédea - ége,ul/)\pﬂ-v\pcPT\dedea
0= F,ul/ba - gH;u/v dfdba (41)

with D, vanishing on all fields. Note that the potential term for the scalar fields vanishes. It
would be interesting to try to relate this system to a matrix-model or lightcone description
of M5-branes.

These coordinates are well suited for describing the intersection of M2-branes sus-
pended between parallel M5-branes:

M5:012345 (4.2)
M2:0 56
The resulting solution should appear as a nonabelian version of the selfdual string [27].
The preserved supersymmetries satisfy I',,I'¢e = € in addition to I'y,1234€ = €. In fact,
by choosing C; to point along the v-axis, we can use the above equations to describe the
right-moving modes of the selfdual string i.e. modes with D, = 0.

The BPS solitons for the abelian fields will comprise of selfdual strings as well as their
‘neutral string’ generalisations, as studied in [28]. Thus let us set all the abelian fields to
zero here. The constraints imply that D, vanishes when acting on all the nonabelian fields.

— 11 —



After setting the fermions to zero the BPS condition is 0¥ 4 = 0, which becomes:
0 = D;XT1e — D, XITIT4e
Hoyug T 4 Hygy oTUTYe 4| Hogg (9T
- g xIxd ped LT (4.3)

Note that here we have not directly included the contributions from Hjji, since it is
related by selfduality to Hyyi 4. In addition one finds that H,;;, is antiselfdual and H,;; 4
is selfdual in the transverse space.

The interesting nonabelian solutions should involve a nonvanishing Fijba = Hyij ¢ fel,.
For (4.3) to be satisfied and the solution to be supersymmetric we need to impose the
left-moving projector: I'Ve = 0. In fact this projector breaks another half of the remaining
supercharges bringing the number of preserved ones to 4. Eq. (4.3) now becomes

) ) 1 L
D X!T'T e — Hypi oT'T% — D, XITIT e + 4 Huijal VT e =0, (4.4)

where we have used the fact that from the second projection, I',,I'¢e = 0, one has ['"Ve =
—I'%¢. The first two terms vanish by having that DiXC{ =0, for I > 6, and Hyyi ¢ = DiXS,
while the remaining ones after imposing DUXC{ = Hyijo = 0.

We summarise the i—BPS equations for our null-reduced theory:

1
Hypio = D XS, Hyijo = _2€ijlevkl as (4.5)
with
Hyi o f““ = —Fui™y Hyij o " = F3% . (4.6)

The solutions to these equations consist of taking a nonabelian four-dimensional instanton

F;;%, along with a solution to
D'D;X58 =0, (4.7)

in order to satisfy the H-equation of motion.

These are essentially the BPS equations of a “dyonic-instanton string” [19], the only
difference being that here the dyonic-instanton profile is lightlike. They have smooth finite-
energy solutions. Although the M-theory interpretation of our (2,0) tensor multiplet is
unclear, it is interesting to see these solutions arise since they have the expected properties
of a string-like defect between parallel M5-branes. Here we see that the right-moving
modes of the self-dual string are in one-to-one correspondence with dyonic instantons. We
also note that the possibility of relating dyonic-instantons with “W-Bosons’ of H,,,\ , was
already mentioned in [19].

5 Conclusions

In this paper we have constructed a nonabelian on-shell six-dimensional (2,0) tensor mul-
tiplet. The result was an interacting system of equations where the gauge structure arises

- 12 —



from a 3-algebra. The on-shell conditions are quite restrictive however, and for a spacelike
choice of C!| we essentially obtain a reformulation of the D4-brane theory with conformal
and SO(5,1) Lorentz invariance. We additionally investigated a null choice of Cy which
led to a novel supersymmetric system. These equations are not apparently obtained by di-
mensional reduction of ten-dimensional super-Yang-Mills. It is tempting to speculate that
they can be related to a lightcone or matrix-model formulation of the M5-brane. We found
that this system had dyonic instanton strings as the right-moving BPS states of M2-branes
suspended between parallel M5-branes.

We could also have considered a timelike choice for C?;. This leads to a nonabelian
supersymmetric system in 5 spatial directions with 16 supersymmetries and an SO(5) R-
symmetry. This is the correct symmetry to describe a five-dimensional object in 10 spatial
dimensions, e.g. static 5-branes in 11-dimensions. The equations are essentially just those
of a Euclidean D4-brane in 10 spatial dimensions, obtained by dimensionally reducing
ten-dimensional Wick-rotated super-Yang-Mills theory to five dimensions. However in our
case, since we do not need to Wick rotate, the fermions remain Majorana with the correct
number of components.

Another possible case to study is to set (C%) = 0. Here we obtain multiple non-
interacting copies of the six-dimensional abelian (2, 0) tensor multiplet. Although the gauge
field strength F lfy B is now constrained to vanish one could consider compactifications on
manifolds which admit non-trivial flat connections.

We note that in our construction the nonabelian two-form B, 4 never appears and
indeed does not seem to exist. Thus we cannot write down any minimal couplings to B, .
This may be problematic in the quantum theory of M5-branes which is expected to contain
states which are minimally coupled, such as the selfdual string. This problem is reminiscent
of Ramond-Ramond charges in supergravity which appear as solitonic D-brane states even
though the supergravity fields do not couple minimally.

In terms of applications to Mb-branes, our results should be viewed as exploratory.
Even if we had achieved complete success in writing down a fully six-dimensional system
of equations it would still not be enough to define the quantum theory without also giving
a Lagrangian. Nevertheless it is of interest to try and see what structures might be at
play. The role of 3-algebras, in particular totally antisymmetric Lie 3-algebras, was not
an assumption but rather arose through the demands of supersymmetry. Finally we note
Fuclidean 3-algebras are often associated with a product gauge group of the form G x G.
This suggests a method of realising electric and magnetic states in a local manner by
considering a G x G gauge theory and then identifying the electric states of one copy of
G with magnetic states of the other, either as an explicit projection on the spectrum or
through an on-shell relation.
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A Notation, conventions and useful relations

We work with 32-component Majorana spinors. The I'-matrices acting on the latter are
real and satisfy, I, = —CT,,C~!, where C = I'g. The fermions are Goldstinos of the
symmetry breaking SO(10,1) — SO(5,1) x SO(5) and, by defining the chirality matrix of
SO(5,1) as T'g12345, they and the unbroken supersymmetry parameters satisfy the following

chirality conditions

Po12345V = =¥
Tp10345€ = €. (Al)

Their (anti)commutation relations are

{FWFI} =0
[Co12345, 1] = 0
{Co12345, T} = 0, (A.2)

where 4 = 0,...,5, I = 6,...,10. The conjugate spinors are defined with the charge
conjugation matrix

v =vlC (A.3)

and for our representation we can choose C' = I'y. This makes it antisymmetric CT = —C
and antihermitian Ct = —C with C~! = —C. One also has that

Cr,c~'=-T) and {CT'}=0. (A.4)

We make use of the appropriate Fierz identities. These are derived from the 11d Fierz
identities by reduction. Starting from the standard expansion

1
| (EQanpel )Pman

1
| (EQanQ)anX - 3

(E2x)e1 = —o[%] ((6261)X + (€l e1)I™x — 5

1 1

+ (EQanpqel)anqu + 5

X ,(@anpqrel)rm"pqrx) , (A.5)

the following combination in eleven-dimensions is

1
| (EQPmnpqrel)Pmnpqu 5

5!

(A.6)
where m = 0,...,10. This is what survives by only keeping symmetric matrices (including
the C). By doing the split SO(10,1) — SO(5,1) x SO(5) one has that since €; and ez have
the same chirality with respect to I'g12345 (while € and € the opposite) the surviving terms

1 1
<(62Fm61)rmx— 91 (Egl“mnel)l“m"x—ir

(Eax)er — (E1x)e2 = — 16
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must involve odd powers of I',’s. Moreover, the expression is only nonvanishing when x
has the opposite chirality from €; and e5. One then gets

1 11
(E2x)er — (Eix)er = — <(€2Fuel)1““x—(Ezl“ﬂrfel)rﬂrfwr g1 o1 (@2 T e ) THAT
1 1
+ (gQFﬂr”KLq)F“r”KLXJFS' (@FMPUQ)FWWX> . (A

It is possible to translate the last line above in terms of fewer I'-matrices with the help of

e-tensors. The final answer is

1
(Eax)er — (E1x)e2 = — (2(€2Tu61)P”X —2(&T e THT

16
L 1J pvAIJ

—|—3! 2!(€2FMV)\F e) T Ty ) . (A.8)
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