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Nonadiabatic tunnel ionization: Looking inside a laser cycle
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We obtain a simple closed-form analytical expression for ionization rate as a function of instantaneous laser

phase f(t), for arbitrary values of the Keldysh parameter g , within the usual strong-field approximation. Our

analysis allows us to explicitly distinguish multiphoton and tunneling contributions to the total ionization

probability. The range of intermediate g;1, which is typical for most current intense field experiments, is the

regime of nonadiabatic tunneling. In this regime, the instantaneous laser phase dependence differs dramatically

from both quasistatic tunneling and multiphoton limits. For cycle-averaged rates, our results reproduce stan-

dard Keldysh-like expressions.

DOI: 10.1103/PhysRevA.64.013409 PACS number~s!: 32.80.Rm

Traditionally, beginning with the pioneering paper by
Keldysh @1#, rates of intense-field ionization in both the mul-
tiphoton and tunneling limit are averaged over the laser
cycle. Today, this is no longer sufficient. Subcycle electron
dynamics is now known to play a key role in such processes
as high harmonic generation and above-threshold ionization
in intense low-frequency laser fields ~see, e.g., Refs. @2,3#!. It
is also crucial for the understanding of correlated double
multiphoton ionization of atoms in intense laser fields ~see,
e.g., @4# and references therein!. In general, in few-cycle la-
ser pulses, intensity changes from one cycle to the next,
making cycle-averaging meaningless, especially for highly
nonlinear processes. Subcycle dynamics of multiphoton ion-
ization is the basis of the proposed approaches in @5,6# to
measure the absolute carrier phase w0 of the electric-field
oscillation under the envelope @7#. For linear polarization,

the absolute phase w0 is defined as EW f (t)cos(vLt1w0) @E is
the amplitude, f (t) is the envelope, and vL is the frequency
of the laser field#. Since pulse-to-pulse stability of w0 has
now been experimentally achieved @7#, measuring w0 re-
mains the biggest challenge. Our results provide a simple
way of evaluating the feasibility of various approaches to
measuring w0, which are based on subcycle intense field ion-
ization dynamics.

Experimentally, in intense-field multiphoton ionization
one is typically dealing with intermediate values of the
Keldysh parameter g;1. Here g2

5Ip/2Up , Ip is the ioniza-

tion potential, and Up5E
2/4vL

2 is the average energy of

electron oscillations in the laser field ~atomic units are used
throughout the paper!. It is common to model ionization in
this regime using quasistatic approximation to the rate of
tunnel ionization:

Gqs~ t !5An*,l*B l ,umuIpS 2~2Ip!3/2

Ef ~ t !ucos f~ t !u D
2n*2umu21

3expS 2

2~2Ip!3/2

3Ef ~ t !ucos f~ t !u D . ~1!

Here f(t)5vLt1w0 is the instantaneous phase of the lin-
early polarized laser field. The coefficient An*,l* comes from

the radial part of the wave function at r@1/A2Ip and de-
pends on the effective principal quantum number n*

5Z/A2Ip (Z is the ion charge! and the effective angular
momentum l*. The coefficient B l ,umu comes from the angular
part of the wave function and depends on the actual angular
momentum l and its projection m on the laser polarization
vector. The corresponding expressions are @8–10#

An*,l*5

22n*

n*G~n*1l*11 !G~n*2l*!
,

~2!

B l ,umu5
~2l11 !~ l1umu!!

2 umuumu!~ l2umu!!
,

where G(z) is the gamma function. Averaging Eq. ~1! over a
laser half-cycle for a sufficiently smooth envelope f (t), one
obtains the well-known tunneling formula from Refs.
@8–10#.

Quasistatic approximation Eq. ~1!, which includes the ef-
fect of the Coulomb potential, is rigorously valid only in the
limit g!1. The reasons for the frequent use of Eq. ~1! for
intermediate values of g are ~i! computational convenience,
~ii! absence of simple closed-form analytical expressions for
instantaneous ionization rates for g;1, and ~iii! good accu-
racy of cycle-averaged tunneling ionization rates up to g
;0.5 @11#. Here we provide simple closed-form analytical
expressions for instantaneous ionization rates for arbitrary g .
We note that for cycle-averaged rates, an analytical expres-
sion that is valid in a broad range of g has been derived in
@8,9#. Its accuracy is excellent for many atoms ~He, Ne, Ar,
Kr, Xe! up to g53 –4 @12# and even many small molecules
@13#, and is only restricted by the condition vL!vexc ~here
vexc is the characteristic energy of electronic excitation!,
which ensures adiabatic electron dynamics inside the poten-
tial well.

Dependence of ionization on the instantaneous phase of
the laser field is apparent in ab initio numerical simulations
and is present in intermediate expressions of many analytical
approaches; see, e.g., @1,8,9,14–18#. These intermediate ex-
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pressions are given by multidimensional integrals, which ob-
fuscate the subcycle dynamics of electron appearance in the
continuum. The dynamics is revealed by the saddle-point
analysis, which is possible in the low-frequency case vL

!Ip and is most straightforward in the limits g!1 ~quasi-
static tunneling! and g@1 ~multiphoton limit!. Our analysis
for arbitrary g allows us to explicitly distinguish multiphoton
and tunneling contributions to the total ionization probability
and shows that for g;1, tunneling is still dominant but dif-
fers significantly from its quasistatic limit Eq. ~1!.

The population of continuum states at instant t is

W~ t !5E d3
vuav~ t !u2, ~3!

where av(t) is the probability amplitude of populating the
field-free continuum state labeled by the velocity uv& .

Using the Dykhne method @19,20# and the strong-field
approximation, with exponential accuracy we obtain

av~ t !;E
2`

t

dt8exp„2iSv~ t ,t8!…, ~4!

where

Sv~ t ,t8!5~Ip1
1
2 v

'

2 !~ t2t8!1
1
2 E

t8

t

dt9@v i1v0 f ~ t !

3sin f~ t !2v0 f ~ t9!sin f~ t9!#2 ~5!

is the action integral, v i and v' are the velocity components

parallel and perpendicular to EW, and v05E/vL is the velocity
amplitude of electron oscillations. With exponential accu-
racy, v' can be set to zero, since the Gaussian integral over

v' only contributes to the preexponential factor.
Let us first assume that f (t) is constant, f 51. Generali-

zation for short pulses and the appropriate criterion are given
below. The integral over t8 contains many saddle points t8

,t given by the equation

@v i1sin f~ t !2sin f~ t8!#2
1g2

50. ~6!

For the saddle point closest to t, denoted as t08 , Re(t08)'t .

Other tn8 are separated from t08 by the integer number of

cycles, tn85t0822pn , integer n>1. For constant f (t), the

imaginary part of action is the same for all of them,

Im@S
v
~ t ,tn8!#5Im@S

v
~ t ,t08!# . ~7!

The physical meaning of these saddle points is as follows.

~i! The contribution of the saddle point t08 describes the

population that has just appeared in the continuum at instant

t; the complex t08 is the moment when the electron enters the

classically forbidden region ~under the barrier! while t is
‘‘the moment of birth’’ in the continuum.

~ii! Contributions of the saddle points tn8 , n>1, describe

the population created in the continuum one or more laser
cycles ago; the corresponding action integrals contain contri-
butions from the free-electron motion in the continuum.

~iii! Since we are interested in the contribution to ioniza-
tion at instant t, we should only take into account the saddle

point t08. We note that due to Eq. ~7!, exponential depen-

dence is determined by t08 , while other tn8 with n>1 contrib-

ute to the preexponential factor.

~iv! Physically, for t08 the velocity v i is the longitudinal

electron velocity at the moment of birth in the continuum

and, as known since @1#, v i
2/2!Ip . One can therefore expand

the exponent in av(t) in powers of v i up to the second order

near v i50, with the saddle point t08 of the inner integral

calculated for v i50. Once again, the exponential depen-
dence is determined predominantly by the contribution at

v i50, while the Gaussian integral over v i adds to the pre-
exponential factor @1,8,9,20#.

For convenience, we introduce the phase u(t) defined as

u~ t !5f~ t !2pk5vLt1w02pk ~8!

with the integer k chosen to ensure that

2p/2<u~ t !<p/2. ~9!

This phase is always equal to zero at the local peaks of the
instantaneous electric field. It is easy to check that if the field
envelope is constant during the half-cycle, the function

S0„u(t)…5S
v50(t ,t08) has the following properties:

Im@S0~2u !#5Im@S0~1u !# ,

~10!
Re@S0~2u !#52Re@S0~1u !# .

Therefore, for constant envelope the instantaneous ionization
rate G(t);exp(22 Im@S0„u(t)…#) is an even function of u .

With exponential accuracy, the result for G(t) is

G~ t !;expS 2

E
2 f 2~ t !

vL
3

F„g~ t !,u~ t !…D , ~11!

where the Keldysh parameter g(t)5g/ f (t) now includes the
pulse envelope. The function F(g ,u) is given by the follow-
ing expression:

F~g ,u !5~g2
1sin2u1

1
2 !ln c2

3Ab2a

2A2
sinuuu2

Ab1a

2A2
g ,

a511g2
2sin2u ,

~12!
b5Aa2

14g2 sin2u ,

c5ASAb1a

2
1g D 2

1SAb2a

2
1sinuuuD 2

.

We have reintroduced the envelope into Eq. ~11! by treat-
ing f (t) as nearly constant during one-half of the laser cycle.
Compared to such processes as the generation of high har-
monics, for ionization the requirements of the envelope are
less strict. In high harmonic generation, the electron spends
one or more cycles in the continuum before recombining
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with the parent ion and adiabatic treatment of the envelope
requires f (t) to remain constant during all this time. In ion-
ization, f (t) should remain constant only during a much
shorter tunneling time t tun given by the imaginary part of t

2t08 :

vLt tun52Im@arcsin~sin u2ig !# . ~13!

The phase dependence of

R~g ,u !5

F~g ,u !

F~g ,0 !
~14!

@i.e., F(g ,u) normalized to u50# for different g is shown in
Fig. 1, together with the quasistatic limit 1/cos u.

Several remarks on the results of Eqs. ~11! and ~12! and
Fig. 1 are in order.

~i! As expected, there is no u dependence in F(g ,u) in
the multiphoton limit g@1.

~ii! As g decreases, clear phase dependence appears, re-
flecting a tunneling contribution to the total ionization rate.
The rate peaks at u50 and F(g ,u) is a quadratic function of
u at small u .

~iii! The original Keldysh exponent for the cycle-averaged
ionization rate is obtained by setting u50 in Eqs. ~11! and
~12!. After the previous remark, this is no longer surprising.
Indeed, at large g@1 ~multiphoton limit!, the u dependence
disappears and one can set u50 in the average rate. At small

and intermediate, g , the factor E
2/vL

3 in Eq. ~11! is large,

E
2/vL

3
52Ip /(g2vL)@1, and averaging of G(g ,u) over u

can be done using the saddle-point method. Since the corre-
sponding saddle point is u50 and @F(g ,u)2F(g ,0)#}u2

for small u , the exponential dependence is given by F(g ,0).
~iv! The multiphoton contribution to the total ionization

rate can be defined as the phase-independent background,
which is given by F(g ,6p/2). For g@1,

F~g ,u !'F~g ,6p/2!

5~g2
1

3
2 !ln~2g !2

1
2 g2

211

35

16g2
1••• .

~15!

For g<2, the following approximate expression is valid:

F~g ,p/2!' 4
5 g2Ag~11

3
50 g2

1
80 g2!. ~16!

The leading term in this expansion is exact for g!1 and is
accurate up to g51 within 5%.

At g;1, the multiphoton contribution remains small, but
tunneling differs significantly from the quasistatic limit. This
is illustrated in Fig. 2, where G(t) is calculated for a helium
atom and the laser wavelength l5780 nm. The curves show
the ionization rate as a function of u normalized to u50,
G(u)/G(0), for intensity I5531013 W/cm2 ~when g'2).
Although the multiphoton contribution ~phase-independent
background! is small ~approximately 3.3% in the total rate
integrated over a half-cycle!, the instantaneous rate clearly
differs from the quasistatic limit.

So far, we have only looked at the exponential depen-
dence in G(t). One would like to add the preexponential
factor, N(t), to the exponential dependence Eq. ~11!:

G~ t !5N~ t !expS 2

E
2 f 2~ t !

vL
3

F„g~ t !,u~ t !…D . ~17!

The subcycle dependence in the preexponential factor
N(t) can be ignored ~up to the electric-field envelope!. In-
deed, at g!1 and g'1, ionization is strongly peaked
around f(t)5vLt1w05pk and we only need to know
N(f5pk). At g@1, the subcycle dependence disappears,
and knowing N(f5pk) is again sufficient. Hence, it is suf-
ficient to include the time dependence in N(t) via the enve-
lope Ef (t) only.

The simplest way to define N(t) in Eq. ~17! is to match
our result with the cycle-averaged result of @8#, which is also
valid for g.1. The corresponding preexponential factor is

FIG. 1. Dependence of the exponent F(g ,u) in the instanta-

neous ionization rate on the phase u5vLt1w02pk . Data are nor-

malized to F(g ,0). Labels near the solid curves indicate values of

the Keldysh parameter g . Dashed curve shows the quasistatic limit

g/cos u!1.

FIG. 2. Dependence of the instantaneous ionization rate G(u) on

u . Data are normalized to G(0). Labels ‘‘QS’’ ~dashed curve! and

‘‘NA’’ ~solid curve! stand for ‘‘quasistatic’’ and ‘‘nonadiabatic.’’

Dotted curve shows instantaneous electric field. Calculations are

done for He and laser field with wavelength l5780 nm and inten-

sity I5531013 W/cm2.
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N~ t !5An*,l*B l ,umuS 3k

g3 D
1/2

C IpS 2~2Ip!3/2

Ef ~ t !
D 2n*2umu21

,

~18!

k5ln~g1Ag2
11 !2

g

Ag2
11

,

where An*,l* and B l ,umu are given by Eqs. ~2! and the factor
C5(11g2) umu/213/4Am(vL ,g) is the Perelomov-Popov-
Terent’ev ~PPT! correction to the quasistatic limit g!1 of
the Coulomb preexponential factor, with Am given by Eqs.
~55! and ~56! of Ref. @8#.

We would like to stress that the key difference from the
quasistatic tunneling limit is in the exponent. The PPT cor-
rection C is in practice a slow function of g . In the limit
g!1, the factor C51, while in the limit g@1 for m50 one

has A0'1.2/g2 and C'1.2/Ag .
The subcycle ionization dynamics plays the key role in

such processes as multiphoton correlated double ionization
of noble gases ~see, e.g., @4#, and references therein! and
intense-field ionization with single-cycle pulses, where it
could be the basis for measuring the absolute carrier phase
@5–7#. Such measurement can also be done with circular po-
larization where the instantaneous phase u(t) determines the

direction of the final drift velocity of the freed electrons. In
this case, instantaneous ionization rates Eqs. ~11! and ~12!
have the following phase-independent form:

Gcirc~ t !;expS 2

E
2 f 2~ t !

vL
3

Fcirc„g~ t !…D , ~19!

where the function Fcirc(g) is

Fcirc~g !5~g2
12 !cosh21S 11

g2

2
D22gA11

g2

4
.

~20!

In conclusion, simple expressions for the subcycle ioniza-
tion dynamics derived in this paper can be used as a basis for
evaluating the feasibility of different approaches to measur-
ing the absolute carrier phase of few-cycle pulses in a typical
experimental regime of g;1.

We have benefited from valuable and stimulating discus-
sions with P. Corkum. We greatly appreciate numerous fruit-
ful communications with F. Krausz, A. Apolonski, and D.
Villeneuve.
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