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ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disease, extending from simple steatosis to inflammation and fibrosis 

with a significant risk for the development of cirrhosis. It is highly prevalent and is associated with significant adverse outcomes both through 

liver-specific morbidity and mortality but, perhaps more important, through adverse cardiovascular and metabolic outcomes. It is closely 

associated with type 2 diabetes and obesity, and both of these conditions drive progressive disease toward the more advanced stages. The 

mechanisms that govern hepatic lipid accumulation and the predisposition to inflammation and fibrosis are still not fully understood but 

reflect a complex interplay between metabolic target tissues including adipose and skeletal muscle, and immune and inflammatory cells. 

The ability to make an accurate assessment of disease stage (that relates to clinical outcome) can also be challenging. While liver biopsy is still 

regarded as the gold-standard investigative tool, there is an extensive literature on the search for novel noninvasive biomarkers and imaging 

modalities that aim to accurately reflect the stage of underlying disease. Finally, although no therapies are currently licensed for the treatment 

of NAFLD, there are interventions that appear to have proven efficacy in randomized controlled trials as well as an extensive emerging ther-

apeutic landscape of new agents that target many of the fundamental pathophysiological processes that drive NAFLD. It is highly likely that 

over the next few years, new treatments with a specific license for the treatment of NAFLD will become available. (Endocrine Reviews 41: 

66 – 117, 2020)
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N onalcoholic fatty liver disease (NAFLD) 

is recognized as the hepatic mani-

festation of metabolic syndrome frequently 

co-existing with obesity, dyslipidemia, and in-

sulin resistance. It is characterized by hepatic 

steatosis in the absence of secondary causes such 

as significant alcohol consumption, chronic viral 

hepatitis, medications that induce steatosis, or 

other chronic liver diseases such as autoimmune 

hepatitis, hemochromatosis, or Wilson’s disease. 

NAFLD can be subcategorized into nonalco-

holic fatty liver (NAFL; formerly simple steatosis) 

and nonalcoholic steatohepatitis (NASH). NAFL 

represents steatosis in the absence of histological 

evidence of hepatocyte injury or inflammation, 

while NASH is characterized by the presence of 

steatosis, ballooning degeneration, and lobular 

inflammation, with or without perisinusoidal fi-

brosis on liver histology, and has a greater pro-

pensity to progress to cirrhosis and hepatocellular 

carcinoma (HCC).

There are currently many challenges in the di-

agnosis and management of patients with NAFLD; 

the adverse outcomes associated with the condi-

tion seem clear, yet accurate staging of disease 

without the use of liver biopsy is not established. 

In the absence of licensed pharmacotherapy, 

lifestyle modification remains the mainstay of 

treatment, but this is difficult to implement and 

maintain. Despite these challenges, the field is 

moving rapidly, and in this review, we will sum-

marize the literature detailing current thoughts 

and concepts in pathogenesis, diagnosis, staging, 

and clinical management. NAFLD is a condition 

with increasing prevalence in children; however, 

the scope of this review will focus largely on data 

from adult patients.

Epidemiology of NAFLD

Prevalence of NAFLD

Meta-analysis of studies using imaging modalities 

for diagnosis has confirmed NAFLD as the 

commonest liver disease worldwide affecting ap-

proximately 25% of the global population (1). The 

prevalence of NAFLD is highest in the Middle 

East (32%) and South America (30%), lowest in 

Africa (13%), and intermediate in Europe (24%), 

Asia (27%) and North America (24%). The global 

burden of NAFLD has rapidly increased over time 

with prevalence increasing from 15% to 25% be-

tween 2005 and 2010 (1). In the United States, 

prevalence increased 2.7-fold between 2003 and 

2011 (2). However, estimates of NAFLD prevalence 

vary according to the modality used for diagnosis. 

Using liver biochemical tests (or liver function 

tests), abnormalities in the absence of other causes 

of liver disease as the primary method of diagnosis 

significantly underestimates the true prevalence 

of NAFLD by up to 10% (1). A summary of the 

major factors driving the increasing prevalence of 

NAFLD is presented schematically in Fig. 1.

Incidence of NAFLD

There are fewer published data regarding the in-

cidence of NAFLD. Given that the rates of obesity 

have increased 2- to 3-fold across the Americas, 

Europe, and Asia over the past 3 decades, it is gen-

erally assumed that NAFLD incidence is rising 

proportionally. Pooled incidence of NAFLD in 

Asia and Israel was found to be 52 and 28 per 1000 

person-years, respectively (1). A recent community 

study in North America using coding data for case 

identification demonstrated NAFLD incidence 

increased 5-fold between 1997 and 2014 from 62 

ESSENTIAL POINTS

 • Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver condition worldwide and is 

tightly associated with obesity and type 2 diabetes.

 • Patients with NAFLD have both increased liver-related and cardiovascular morbidity and 

mortality; the majority of excess deaths occur through cardiovascular disease.

 • Accurate staging of liver disease is important for risk stratification, and this is currently achieved 

through liver biopsy although there are many established and developing platforms aiming to 

provide noninvasive and accurate assessments.

 • Lifestyle modification and bariatric surgery (where appropriate), alongside aggressive 

cardiovascular risk reduction form the mainstays of treatment, and this is best delivered through 

a multidisciplinary approach that combine dedicated hepatology and metabolic input.

 • The therapeutic landscape is developing rapidly, and although there are currently no licensed 

therapies, several potentially disease-modifying drugs are now in phase 3 clinical studies.
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to 329 per 100 000 person-years (3). The increase 

was found to be disproportionally higher among 

adults aged 18 to 39 years in whom the incidence 

of NAFLD increased 7-fold from 20 to 140 per 

100 000 person years. This upward trend was also 

demonstrated in a second North American study 

in which overall incidence increased over a 10-year 

period particularly in the young (<45 years) where 

incident cases increased by 7.5% each year (2). 

The rising incidence and shift in the epidemiology 

toward younger populations serves as a stark re-

minder that the global burden of NAFLD and its 

complications including HCC, liver failure, and 

cardiovascular events is only set to increase.

Epidemiology of NASH, advanced fibrosism, and 

HCC

Six to 30% of patients with ultrasound (US)-proven 

NAFLD will have biopsy-proven NASH, corre-

sponding to overall population prevalence between 

1.5% and 6.45% (1). Approximately 40% of NASH 

patients develop fibrosis progression, with an av-

erage annual fibrosis stage progression rate of 0.09. 

The annual HCC incident rate in NASH patients 

was 5.29 per 1000 person-years. Although this 

HCC risk is less than that observed in chronic viral 

hepatitis (4), given the high prevalence of NAFLD, 

the global burden of NASH-related HCC will con-

tinue to rise, and, indeed, HCC is now the fourth 

leading etiology of cancer mortality worldwide 

(5). A UK study found that NAFLD-associated 

HCC had increased 10-fold over a decade (6), 

highlighting the clear shift in the attributable pro-

portion of HCC from viral hepatitis to NASH.

Ethnicity and NAFLD

The contribution of ethnicity to the prevalence and 

severity of NAFLD is complex and remains contro-

versial. Studies have demonstrated that Hispanic 

patients have a disproportionately higher, and 

African-Americans, a lower prevalence of NAFLD 

compared with white populations, and while these 

observations have been confirmed in recent meta-

analysis of epidemiological studies from the United 

States, the interpretation of detailed aspects of 

the data needs to be considered. Importantly, the 

ethnicity-related differences were smaller in high-

risk groups (obesity and type 2 diabetes mellitus 

[T2D]) compared with population-based cohorts 

(7); the prevalence of NAFLD (and NASH) in high-

risk Hispanic patients was not different to that of 

whites. Further studies have suggested that when 

Hispanic and white patients are matched for obe-

sity, the severity of NASH, and advanced fibrosis 

are not different between the 2 groups (8). The 

data with regards to African Americans are a little 

clearer in that they do have a lower prevalence of 

NAFLD; however, NASH can develop as frequently 

as is seen in white patients and, there is no evidence 

to suggest any difference in the rates of advanced 

Figure 1. Multiple mechanisms and risk factors contribute to the development of hepatic steatosis and NASH. Obesity, insulin re-

sistance and type 2 diabetes remain the key drivers to disease progression. Abbreviations: BMI, body mass index; CVD, cardiovascular 

disease; DAMPs, damage-associated molecular patterns; DNL, de novo lipogenesis; FFA, free fatty acids, GC, glucocorticoids; HSD17B13, 

17β-hydroxysteroid dehydrogenase type 13; IR, insulin resistance; MBOAT7, membrane bound O-acyltransferase domain containing 7; 

NASH, nonalcoholic steatohepatitis; PCOS, polycystic ovary syndrome; PNPLA3, phospholipase domain-containing protein 3; PAMPs, 

pathogen associated molecular patterns; ROS, reactive oxygen species; ↓T4, hypothyroidism; TM6SF2, transmembrane 6 superfamily 2.
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fibrosis with differing ethnicity (9). Overall, these 

data would suggest that ethnicity might have a rel-

atively greater influence on NAFLD prevalence 

rather than its severity.

The causes for ethnicity related differences in 

NAFLD prevalence and severity are complex, with 

contributions from genetic and environmental 

factors, socioeconomic status, and differential 

access to health care. Although obesity and T2D 

are well established risk factors for NAFLD these 

factors cannot entirely explain for the observed 

racial differences considering that metabolic syn-

drome is highly prevalent in black compared with 

white populations (10), yet the latter group has far 

higher rates of NAFLD. Gene variants may have 

a greater influence over susceptibility to NAFLD 

prevalence; for example, the prevalence the poly-

morphism in patatin-like phospholipase domain-

containing protein 3 (PNPLA3) in different racial 

groups was found in 49% of Hispanics, 23% in 

White persons and 17% in black persons (11).

The epidemiology of NAFLD in South Asian 

populations has been extensively reviewed. A recent 

systematic review and meta-analysis (that included 

data from 237 studies and >13 million participants), 

concluded that in Asia the prevalence of NAFLD 

was 29.6% and that the annual incidence rate was 

50 cases per 1000 person-years (12). Furthermore, 

in Asian patients with biopsy-proven NAFLD, 

NASH was identified in approximately 63.5% of 

cases (1). Within south Asian populations living in 

western countries, NAFLD was most prevalent in 

those patients originating from Bangladesh (13). 

While the absolute prevalence and incidence rates 

of NAFLD and NASH are not markedly different 

compared with other populations (in fact, in abso-

lute terms may actually be slightly lower) (14) for a 

given body mass index (BMI), the prevalence and 

severity of NAFLD are likely to be higher mirroring 

observations with respect to T2D. The reasons for 

this are not fully understood, but genetic variability, 

alterations in adipose tissue biology, and lifestyle 

differences (diet and physical activity) are likely to 

be important (15).

NAFLD, obesity, and T2D

The prevalence of NAFLD increases in high-risk 

groups particularly in those with obesity and T2D. 

In an unselected Italian population sample 91% 

of patients who were obese (BMI ≥ 30 kg/m2) and 

67% of those who were overweight (BMI 25–30 

kg/m2) had US evidence of NAFLD (16). Similarly, 

the pooled prevalence of biopsy-proven NAFLD in 

morbidly obese patients undergoing bariatric sur-

gery was found to be 91% (17). There has been a 

global increase in obesity in the last 30 years, which 

has largely been accounted for by new cases arising 

in Asia as a result of urbanization, lifestyle changes, 

Westernized diet and overnutrition. The number 

of obese people in China was below 0.1 million in 

1975 and rose to 43.2 million in 2014, accounting for 

16.3% of global obesity (18). The number of obese 

people in India rose from 0.4 to 9.8 million in the 

same timeframe (19). This has correlated with year-

on-year increases in NAFLD prevalence (20) even 

in traditionally rural areas (21, 22). In patients with 

T2D, 2 large studies from Italy reported NAFLD 

prevalence as 60% to 70% (23, 24), and data from 

the United Kingdom suggested a prevalence of 

42.6% (25). Recent meta-analysis of studies in T2D 

demonstrated a pooled NAFLD prevalence estimate 

of 60%, although there was a high degree of heter-

ogeneity among eligible studies with proportions 

ranging from 29.6% to 87.1% (26). In a global meta-

analysis of studies in unselected general populations, 

obesity and T2D were present in 51% and 22.5% 

of those with NAFLD, respectively (27). Taken to-

gether, these data indicate the close association of 

obesity and T2D with NAFLD, and in these high-

risk groups, NAFLD prevalence is roughly double 

that found in the general population (7).

NAFLD in patients with BMI <25 kg/m2

Although NAFLD is usually associated with obe-

sity, it can occur in those with a BMI < 25 kg/

m2, and this has been extensively and recently 

reviewed (28, 29). The prevalence of NAFLD 

ranges from 7% in the United States (30) to 19% 

in Asia (14), although ethnicity-specific cut-offs 

for BMI need to be considered when interpreting 

published epidemiological which can make direct 

comparisons challenging. Despite patients with 

lean NAFLD having a more favorable cardiac 

and metabolic profile than obese patients with 

NAFLD, they have worse metabolic parameters 

(dyslipidemia, hypertension, insulin resistance) 

relative to lean controls without NAFLD (31). 

This cardio-metabolic risk is in part attributable 

to alterations in body fat distribution particularly 

increased visceral adiposity (32). Polymorphisms 

in PNPLA3 and transmembrane 6 superfamily 

member 2 (TM6SF2) may also have a rela-

tively greater contribution in the pathogenesis 

of nonobese versus obesity-associated NAFLD 

(see Genetic predisposition to NAFLD and di-

sease progression section) (33–35). Data are 

conflicting regarding the histological correlates 

of lean NAFLD with studies suggesting both a 

reduced (35–37) and equivalent (38, 39) prev-

alence of NASH and/or fibrosis compared with 
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NAFLD in overweight patients. Those with lean 

NAFLD may however have accelerated progres-

sion of fibrosis with 1 study showing a higher 

rate of developing cirrhosis or HCC over 20 years 

compared with overweight patients with NAFLD 

(39); however, this remains controversial. This 

suggests that once an individual develops NASH, 

obesity is unlikely to be the primary driver in fi-

brosis progression. The effect of lean NAFLD on 

overall prognosis is similarly controversial. While 

a retrospective study of 646 NAFLD patients 

(19% with lean NAFLD) found no increase in 

overall mortality (39), a prospective study of 

>1090 biopsy-proven NAFLD patients (11.5% 

with lean NAFLD), published in abstract form 

only, did demonstrate a higher overall mortality 

compared with overweight patients with NAFLD 

despite presenting with a healthier metabolic 

profile and less advanced fibrosis (40). Further 

studies are clearly required to better establish the 

pathogenesis, progression, and prognosis in this 

condition. Disentangling obesity from insulin re-

sistance is important. Nonobese individuals who 

have NAFLD are more insulin resistant than those 

without NAFLD and indeed may be as insulin re-

sistant as some obese individuals, and this may be 

the most important driver to disease progression 

(rather than obesity per se) (41). However, con-

sensus remains that NAFLD in nonobese patients 

is not benign and represents an important adverse 

risk factor for cardiovascular and liver health.

Associations with other endocrine disease

NAFLD is also associated with other endocrine 

conditions, and this has been reviewed previ-

ously (42). Hypogonadism in men and androgen 

excess in women are both associated with he-

patic steatosis (43). Testosterone treatment has 

been shown to reduce liver fat in men (44), and 

we have shown that limiting androgen availa-

bility using 5α-reductase inhibition can increase 

hepatic steatosis (45). In patients with polycystic 

ovary syndrome (PCOS), there is continued de-

bate as to the relative contributions of androgen 

excess and systemic insulin resistance as the main 

driver of the increased prevalence of NAFLD 

(46). There are currently no published data that 

have examined the impact of limiting androgen 

action in patients with PCOS as a strategy to im-

prove NAFLD. Glucocorticoid excess is associated 

with NAFLD (47), and furthermore limiting en-

dogenous glucocorticoid availability through the 

prereceptor inhibition of the cortisol-regenerating 

enzyme, 11β-hydroxysteroid dehydrogenase type 

1, deceases liver fat content (48). Hypothyroidism 

is also associated with NAFLD (49), and it is inter-

esting to note that liver-specific thyroid receptor 

agonism is being developed as a possible thera-

peutic strategy (see Thyroid hormone receptor-β 

agonists section) (50).

NALFD has a sexually dimorphic prevalence 

(see Gender and age in NAFLD, NASH and HCC 

section), and estrogens are likely to play a crucial 

role. Estradiol is believed to be protective for the 

development of NAFLD (51), and its prevalence 

increases in postmenopausal women. There is also 

evidence to suggest that postmenopausal hormone 

replacement therapy can protect against NAFLD 

(52, 53). Growth hormone (GH) deficiency is also 

linked to the development of NAFLD, with some 

evidence showing that GH replacement is associ-

ated with improvements in liver histology (54).

Gender and age in NAFLD, NASH, and HCC

NAFLD is significantly more prevalent in men 

than women in the general population (55) al-

though NAFLD in people with a BMI < 25 kg/

m2 may be more prevalent in women (30). In the 

Dallas Heart Study, white men had an approx-

imately 2-fold increased prevalence of NAFLD 

compared with white women (56). Several 

mechanisms may contribute to this observation 

including body fat distribution, hepatic fatty 

acid partitioning, lifestyle, and sex hormone me-

tabolism (55, 57, 58). There also appears to be 

gender-specific differences in relation to age, 

with NAFLD prevalence differing relatively little 

across all age groups in men (59) but increasing 

significantly after the age of 50 years in women 

(59, 60). Menopausal status is implicated in this 

age–sex interaction with up to double the rate of 

NAFLD found in postmenopausal compared with 

premenopausal women (59, 61–63). The protec-

tive role of estrogens is further supported by the 

observation that the risk of NAFLD increases in 

young women having oophorectomy (64) and in 

those on tamoxifen (65), and that there is a risk-

reduction in those receiving hormone replace-

ment therapy (61). In those patients with NAFLD, 

the risk of NASH may be higher in women and 

data from the NASH Clinical Research Network 

(CRN) showed that patients with biopsy-proven 

NASH were more likely to be female than male in 

a roughly 2:1 ratio. While this may reflect a higher 

disease burden in women, it may be accounted 

for by sex differences among those pursuing 

and receiving healthcare. Data regarding the im-

pact of gender on fibrosis progression are con-

flicting. While one systematic review of risk 

factors for fibrosis progression in NASH found 
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associations with age but not with gender (66), 

several cross-sectional biopsy studies have shown 

an increased risk of advanced fibrosis in females 

compared with males, independent of metabolic 

risk factors (67, 68). Furthermore, duration of 

estrogen deficiency in the postmenopausal state 

does confer fibrosis risk among women with 

NAFLD (69, 70). Irrespective of etiology of liver 

disease, HCC has a strong male preponderance, 

with a male to female ratio estimated to be 2:1 

to 2.5:1. However the male–female ratio may be 

lower in NASH-associated HCC (1.6:1) compared 

with hepatitis B and C virus (HCV) and alcohol-

related cirrhosis. Male patients with NASH also 

appear to develop HCC at a less advanced stage of 

liver fibrosis than female patients (71), and their 

overall survival is worse compared with women 

(72, 73). Overall prognosis in NAFLD also seems 

to be effected by gender with National Health 

and Nutrition Examination Survey (NHANES 

III) data from North America showing that male 

gender was significantly associated with overall 

mortality (74).

Sleep disturbance and NAFLD

Obstructive sleep apnea (OSA) is a highly preva-

lent disorder affecting 9% to 38% (75) of the ge-

neral population and is associated with obesity in 

up to 60% of cases (76). The disease has become 

increasingly clinically relevant due to its associa-

tion with cardiovascular morbidity and mortality 

(77–79). A recent meta-analysis found OSA to 

be independently associated with the presence of 

NAFLD and with degree of hepatic steatosis, lob-

ular inflammation, ballooning degeneration, and 

fibrosis (80). OSA is characterized by the repeti-

tive occurrence of partial or complete pharyngeal 

collapse during sleep leading over time to chronic 

intermittent hypoxia, which has been implicated in 

the pathogenesis and progression of NAFLD (81) 

through mitochondrial dysfunction (82–84) and 

increased hepatic de novo lipogenesis (DNL) (85, 

86), reactive oxygen species (84, 85, 87), gut per-

meability (88), and liver inflammation (83, 89). 

Nocturnal continuous positive airway pressure 

(CPAP) is the gold-standard treatment for OSA 

and improves cognitive function, daytime som-

nolence, and quality of life. Despite observational 

data suggesting CPAP may improve liver function 

tests in those with OSA and suspected NAFLD (90) 

and improve cardiovascular disease (CVD) (91), 

randomized control trials in adults have failed to 

demonstrate a significant benefit on metabolic 

syndrome (92) and noninvasive markers of stea-

tosis, hepatic inflammation, and fibrosis (93, 94).

Diet and NAFLD

Westernized versus Mediterranean diet in NAFLD 

NAFLD prevalence has mirrored the global ep-

idemic of obesity and T2D and is associated 

with consumption of a Westernized diet (95–

102) characterized by high intake of fast foods, 

confections, refined grains, red and processed 

meats, full-fat dairy products, and soft drinks. 

NAFLD patients have a higher median daily 

total energy intake compared with age- and sex-

matched healthy controls (100, 103). By con-

trast, the Mediterranean diet, characterized by 

low consumption of saturated fat and cholesterol, 

high consumption of monounsaturated fatty 

acids, a balanced omega-6 to omega-3 fatty acid 

ratio, and high content of complex carbohydrates 

and fiber, has been associated with lower rates 

of NAFLD (98, 104–106), NASH (106), and fi-

brosis (107) as well as cardiovascular events and 

cancer (108–110). Randomized trials have shown 

the Mediterranean diet to reduce plasma alanine 

aminotransferase (ALT) levels in obese patients 

with T2D (111) and improve insulin sensitivity and 

hepatic steatosis measured by magnetic resonance 

spectroscopy (MRS) in patients with NAFLD (112, 

113), independent of weight loss. The biological 

mechanisms involved in these improvements are 

likely to include the anti-inflammatory and lipid 

lowering properties of the Mediterranean diet and 

its impact on gut microbiota composition (114). 

The Mediterranean dietary pattern is therefore the 

current recommended macronutrient composi-

tion in NAFLD and is recommended in the joint 

European Association for the Study of the Liver 

(EASL)–European Association for the Study of 

Diabetes–European Association for the Study of 

Obesity clinical practice guidelines (115).

Fructose in NAFLD 

Fructose is a major component of the 2 most 

widely used sweeteners: sucrose and high-fructose 

corn syrup. Its consumption, predominantly in the 

form of soft drinks, has increased significantly over 

the last 100 years and now makes up around 15% 

of the energy consumed as part of a Westernized 

diet (116). Patients with NAFLD consume nearly 

3 times more fructose compared with age-, sex-, 

and BMI-matched controls (117), and daily 

intakes of sucrose sweetened drinks significantly 

increases hepatic and visceral fat accumulation 

compared with milk, diet cola, and water (118). 

Fructose consumption was associated with higher 

fibrosis stage in 427 adults enrolled in the NASH 

CRN (119). Furthermore, low fructose intake may 
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protect against future development of NAFLD in 

obese individuals (120). Mechanistically, fruc-

tose appears to have a major role in inducing he-

patic steatosis both by stimulating hepatic DNL 

and attenuating β-fatty acid oxidation (121–

125). In contrast to glucose, fructose is rapidly 

phosphorylated by fructokinase leading to a re-

duction in adenosine triphosphate (ATP). This fall 

in ATP induces a cascade of impaired protein syn-

thesis (126), oxidative stress, and mitochondrial 

dysfunction (127, 128), features well established in 

the pathogenesis of NASH. The drop in intracel-

lular phosphate also drives rapid purine nucleotide 

turnover culminating in the formation of uric acid 

(124, 129). Fructose is the only common carbohy-

drate to generate uric acid during its metabolism, 

which has also been implicated in the pathogenesis 

of NAFLD through increased oxidative stress and 

impaired β-oxidation (127, 128). Epidemiological 

studies have demonstrated an association between 

hyperuricemia and NAFLD (130), with meta-

analysis showing a dose-dependent rise in inci-

dence of NAFLD by 3% for every 1 mg/dL increase 

in serum uric acid (131).

Coffee, caffeine, and NAFLD 

Coffee is one of the most commonly consumed 

beverages worldwide with 85% of the US pop-

ulation drinking caffeine daily, 98% of which is 

accounted for by coffee (132). An association be-

tween coffee consumption and a decreased risk 

of liver disease has been documented in a range 

of etiologies including NAFLD (133). Using die-

tary intake data from four continuous cycles of 

the National Health and Nutrition Examination 

Surveys, Bierdinc et al. demonstrated caffeine in-

take, mostly as coffee, to be independently associ-

ated with a lower risk of NAFLD (odds ratio [OR] 

0.931, 95% confidence interval [CI] 0.900–0.964) 

(134). Similarly, 2 case-control studies have shown 

a beneficial effect of coffee on the risk of NAFLD; 

Catalano et al. and Gutiérrez-Grobe et al. both 

found that coffee drinking was associated with 

less severe steatosis on US in Italian and Mexican 

patients with NAFLD, respectively (135, 136). In 

contrast, a recent large Italian population study 

including 2800 participants found that coffee 

drinking was not associated with decreased odds 

for hepatic steatosis detected on US (137). Coffee 

has also been linked with a significant reduction 

in the risk of fibrosis among NASH patients (138) 

and those with morbid obesity, but only with filter 

coffee and not espresso coffee (139). This may be 

due to the confounding fibrogenic effect of su-

crose (glucose + fructose), which may be added 

in greater quantity to espresso coffee as compared 

to filter coffee. Recent meta-analysis of observa-

tional studies found that regular coffee consump-

tion was significantly associated with reduced 

hepatic fibrosis in patients with NAFLD, but not 

with NAFLD prevalence. This antifibrotic effect 

seems to be related to coffee and not to caffeine 

specifically, and further work is needed to identify 

which of the >100 compounds found within coffee 

confers hepatoprotection. More broadly, among 

coffee drinkers, a lower mortality and HCC rate 

has been well documented in patients with cir-

rhosis across a range of chronic liver disease 

etiologies (133). As a result, coffee consumption is 

often recommended for patients with chronic liver 

disease while recognizing the need for randomized 

controlled trials and further investigation into the 

threshold levels of coffee consumption required 

for benefit.

Pathogenesis of NAFLD

Development of hepatic steatosis—a multiorgan 

disease

Intrahepatic fat accumulation 

Intrahepatic free fatty acids (FFA) can be esterified 

with glycerol and stored in the form triglyceride 

(TAG), the predominant lipid accumulating in 

patients with NAFLD. Alternatively, FFA can un-

dergo β-oxidation, or TAG can be exported from 

the liver in very low-density lipoprotein (VLDL). 

Steatosis in NAFLD represents an inherent imbal-

ance in these processes of lipid influx and synthesis 

versus disposal. There are 3 sources of FFA that con-

tribute to liver TAG in NAFLD: 59% comes from cir-

culating FFA; 26%, from the generation of FFA from 

nonlipid precursors (including glucose and fructose) 

through DNL; and 14%, from the diet (140).

Adipose tissue dysfunction 

Under normal conditions, adipose tissue is ex-

tremely insulin responsive, storing lipid and 

inhibiting TAG lipolysis. Conversely, with devel-

oping insulin resistance, increased circulating FFA 

are made available for hepatic uptake and storage, at 

least in part through the impaired ability of insulin to 

suppress lipolysis (141). Adipose dysfunction has a 

major role in modulating severity of liver injury and 

cardiometabolic risk in NASH (142–144). Targeting 

adipose insulin resistance with weight loss (145) or 

thiazolidinediones (146) is likely therefore to be of 

therapeutic benefit (see Peroxisome proliferator-

activated receptor gamma agonists section). In turn, 
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NASH itself drives hepatic and peripheral insulin re-

sistance, thereby setting up a vicious cycle of insulin 

resistance, hepatic FFA flux, steatosis, and inflam-

mation (141, 147) (Fig. 1).

While obesity is a major determinant of the 

high global prevalence of NAFLD, the precise con-

nection between adiposity and NAFLD remains 

unclear. Expansion of the peripheral adipose depot 

may provide a buffering capacity, protecting the 

liver from excessive FFA flux. This is exemplified 

in those patients with lipodystrophy, a group of 

syndromes characterized by partial or complete 

absence of adipose tissue but severe insulin resist-

ance, ectopic fat accumulation, NAFL, and NASH 

(148). However, even metabolically healthy obese 

patients, who may be expected to be relatively 

protected from steatosis, are still at significant 

increased risk of NAFLD (149), suggesting that obe-

sity per se is a risk factor for NAFLD independent 

of insulin sensitivity. Dysfunctional adipose tissue 

also leads to reduced secretion of adiponectin, 

an insulin-sensitizing adipokine paradoxically 

reduced in obesity. Adiponectin has wide-ranging 

hepatoprotective effects increasing FFA oxidation 

and decreasing FFA influx, gluconeogenesis, and 

DNL (150–152). It also has hepatic anti-inflam-

matory and antifibrotic properties through the 

suppression of proinflammatory cytokines (eg, 

tumor necrosis factor alpha and interleukin [IL]-

6) (153, 154) and reduced activation and prolifer-

ation of hepatic stellate cells (HSC), respectively 

(155–157). Levels of circulating adiponectin are 

significantly reduced in patients with NAFLD and 

NASH and correlate with the degree of hepatic ste-

atosis, necroinflammation, and fibrosis (158–160). 

Furthermore, plasma levels have been found to be 

the best indicator of histological improvement of 

NASH with pioglitazone (161). Adiponectin treat-

ment has been shown to ameliorate NASH in ro-

dent models (162), but human data are currently 

lacking.

Intrahepatic de novo lipogenesis 

The second major source of intrahepatic FFA 

is synthesized from nonlipid precursors, pre-

dominantly glucose and fructose, through DNL. 

Upregulation of DNL is a hallmark of NAFLD 

with stable isotope infusion studies showing up 

to a 3.5-fold increase in patients with NAFLD 

compared with healthy controls (163, 164). 

Furthermore, while adipose-derived FFA ac-

counts for the majority of liver TAG, the con-

tribution from this source is less upregulated in 

NAFLD compared with marked increase in DNL 

that is seen in NAFLD (163). DNL is a multistep, 

highly regulated process during which acetyl-co-

enzyme A (CoA), derived from carbohydrate 

glycolysis, is converted to malonyl-CoA and, ulti-

mately, palmitic acid under the control of several 

key enzymes and transcription factors (including 

sterol regulatory element-binding protein-1c, 

fatty acid synthase, and acetyl-CoA carboxylase 

1), all of which are overexpressed in NAFLD (165, 

166). Insulin promotes lipogenesis through the 

transcription and activation of sterol regulatory 

element-binding protein-1c, a master regulator 

of lipogenesis (167), and even in insulin-resistant 

conditions such as T2D, obesity, and NAFLD, in-

sulin continues to selectively support DNL while 

failing to reduce hepatic gluconeogenesis (168, 

169). Deciphering the precise mechanisms for this 

differential regulation of hepatic lipid and glu-

cose metabolism has proven difficult with studies 

implicating a range of insulin-dependent (170–

172) and independent molecular pathways (173). 

Dietary sugars form a major source of substrate 

for hepatic DNL (169, 174) and even short-term 

hypercaloric diet, overfeeding with simple carbo-

hydrate markedly increases liver fat through DNL 

(174). The postprandial surge of intrahepatic car-

bohydrate via the portal circulation contrasts with 

dietary lipid, which is absorbed as chylomicrons 

via lymphatics into the systemic circulation where 

it is distributed to all metabolically active tissues. 

This explains the relatively small direct contribu-

tion of dietary lipid to intrahepatic TAG found 

in patients with NAFLD (140). Dietary fructose 

is particularly lipogenic and a better substrate for 

DNL than glucose and its increasing consumption 

has been implicated in the rising global burden 

of NAFLD (see Fructose in NAFLD section). 

Furthermore, fructose metabolism is highly en-

ergy dependent, which can compound liver injury 

through a cascade of impaired protein synthesis 

(126), oxidative stress, and mitochondrial dys-

function (127, 128). Skeletal muscle insulin resist-

ance may also contribute to steatosis by causing a 

redistribution of postprandial glucose away from 

peripheral glycogen storage and toward hepatic 

DNL (175, 176) (Fig. 1). A large population study 

has also demonstrated skeletal muscle mass to be 

inversely correlated with NAFLD incidence and 

positively associated with the resolution of base-

line NAFLD (177).

Triglyceride as an epiphenomenon alongside liver 

injury 

Although TAG is the most conspicuous intrahepatic 

lipid in NAFLD, there are widespread changes in 

liver lipid composition including diacylglycerol, 
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ceramides, TAG/diacylglycerol ratio, free choles-

terol, and phospholipids, which are likely to be 

of greater pathogenic significance, and these have 

been reviewed previously (178–180). Indeed, TAG 

per se is not hepatotoxic, despite its accumulation 

traditionally being the basis for the clinical grading 

of NAFLD “severity.” For example, inhibition of 

TAG incorporation into VLDL leads to increased 

TAG accumulation but without liver injury and 

inhibition of diacylglycerol acyltransferase 2 

(DGAT2), an enzyme involved in TAG forma-

tion, results in a reduction of intrahepatic TAG 

and worsening of steatohepatitis in mouse models 

(181). TAG accumulation can therefore be seen as a 

protective response to the increased burden of hep-

atotoxic FFA and an epiphenomenon occurring 

alongside liver injury (181).

The transition to NASH and the development of 

fibrosis

Hepatic inflammation, immune cells, and 

inflammasome activation 

In NAFLD, the convergence of multiple toxic insults 

on the liver including FFAs, insulin resistance, gut 

derived endotoxins and adipose tissue dysfunction 

culminates in a profound proinflammatory state 

ultimately propagating NASH and fibrosis. As an 

example, patients with NASH having increased he-

patic and adipose tissue concentrations of tumor 

necrosis factor-alpha (TNF-α) compared with 

obese controls, which positively correlates with 

fibrosis severity (182). Furthermore, the persis-

tent activation or overexpression of transcription 

factor, nuclear factor kappa light chain enhancer 

of activated B cells, a crucial regulator of the acute 

inflammatory response has been found in animal 

models of NAFLD and insulin resistance (183) as 

well as patients with NASH (184) (Fig. 1).

The immune response plays a crucial role in 

triggering and amplifying hepatic inflammation 

(185). With hepatocyte injury, host biomolecules 

called damage-associated molecular patterns 

(DAMPs) are released. These are able to drive in-

flammation by activating resident macrophages, 

Kupffer cells (KC) acting via pattern recognition 

receptors, the best characterized of which are 

the toll-like receptor (TLR) family. Activated KC 

then drive the production of proinflammatory 

cytokines including TNF-α, IL-1b, IL-6, and C–C 

motif ligand 2 and 5, which exacerbate hepatocyte 

injury and cell death, predominantly through ap-

optosis (184). KC also secrete tumor growth factor 

beta and platelet-derived growth factor, providing 

additional stimulation to HSC, which promote 

fibrosis through up-regulation of smooth muscle 

actin, desmin and type I collagen. KC and HSC can 

also be activated directly by gut-derived bacterial 

products, including lipopolysaccharide (LPS), col-

lectively known as pathogen-associated molecular 

patterns (PAMPs). Suppression of TLR-4, the re-

ceptor for LPS, and TLR-9, which binds bacterial 

deoxyribonucleic acid, have been shown to reduce 

liver inflammation in experimental rodent models 

of NASH (186, 187).

DAMPs, PAMPs, and KC also have an im-

portant role in the activation of inflammasomes, 

which are multiprotein intracellular complexes 

assembled in response to cell damage or pathogens 

to produce proinflammatory cytokines IL-1β and 

IL-18. Inflammasomes have a pivotal role in fine 

tuning the host inflammatory response and have 

been implicated in a range of acute and chronic 

liver diseases including NASH (188). Expression of 

inflammasome-associated proteins are significantly 

elevated in patients with NASH compared to those 

with simple steatosis (189), and FFA were found to 

directly upregulate inflammasome activation and 

sensitize hepatocytes to the effects of LPS in rodent 

models of NASH (190). Conversely, inflammasome 

deficient mice are relatively protected from diet-

induced NASH and fibrosis (189).

Neutrophil infiltration is often seen in the livers 

of patients with NASH and contributes to macro-

phage recruitment and cell damage through the 

release of reactive oxygen species (ROS) and in-

flammatory mediators such as myeloperoxidase 

and elastase (191). Deficiency of these enzymes 

in knockout mice attenuates the development 

of NASH (192) and insulin resistance (193) and 

diminishes adipose tissue inflammation in re-

sponse to a high fat diet (192). Neutrophil acti-

vation may also contribute to NASH progression 

with secreted extracellular hepatic neutrophil 

peptides enhancing liver fibrosis via HSC acti-

vation in steatotic mice (194). Beyond KC and 

neutrophils, however, the role of other innate im-

mune cells is less clear. Natural killer cells have a 

complex role in cell damage detection having the 

ability to both enhance and limit the magnitude 

of inflammation (195). As such, disentangling 

their involvement in NASH has proven difficult 

with discrepant data showing both pathogenic and 

protective influences (196, 197). The role of den-

dritic cells (DC) is similarly controversial; despite 

these cells assuming an activated immune pheno-

type in NASH with increased expression of TNF-α 

and IL-6, ablation of DC populations is paradoxi-

cally associated with worse hepatic inflammation 

and fibrosis (198). The adaptive immune response 
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is also mobilized in parallel with the innate re-

sponse with lymphocytes, along with macrophages 

representing the most abundant inflammatory cells 

in the lobular and periportal infiltrates of NASH. 

Experiments in mice demonstrate that activated 

CD4+ and CD8+ T-lymphocytes are recruited 

within the liver through DC maturation (198) and 

upregulated vascular adhesion protein-1 (199) and 

their prevalence parallels worsening parenchymal 

injury and lobular inflammation (200). This is anal-

ogous to findings in obesity where adipose tissue 

CD4+/CD8+ T lymphocytes have an important 

role in supporting macrophages and generating 

proinflammatory mediators in the cascade toward 

insulin resistance (201). Data regarding the role of 

B-lymphocytes is relatively lacking. While studies 

have shown elevated titers of IgG to antigens 

originating from oxidative stress in methionine-

choline deficient mice (200), further investigation 

is needed to better clarify the role of humoral im-

munity in NASH.

Mitochondrial dysfunction

Mitochondria are responsible for the intrahepatic 

β-oxidation of FFA as well as coordinating the tricar-

boxylic acid cycle, ATP synthesis through oxidative 

phosphorylation, and the generation of ROS (202). 

In patients with NAFLD, mitochondrial biogen-

esis, mitochondrial mass, and maximal respiratory 

rates are all upregulated to cope with the increased 

lipid burden compared with healthy controls 

(203). Over time, this “mitochondrial flexibility” 

can become exhausted, leading to uncoupling, 

enhanced ROS formation, and oxidative stress 

culminating in NASH and impaired hepatic in-

sulin resistance (203–205). Mitochondrial-derived 

ROS have a central role in propagating hepato-

cyte injury by generating both lipid peroxidation 

products (206) and TNF-α, both of which induce 

further mitochondrial damage, permeability, and 

uncoupling (203). Enhanced hepatocellular sen-

sitivity to TNF-α conferred by mitochondrial 

accumulation of cholesterol and subsequent glu-

tathione depletion may then help the precipitation 

of NASH (207). Impaired mitophagy, the selective 

autophagic removal of damaged mitochondria, 

may also have a pathogenic role in NASH. Under 

physiological conditions mitophagy helps pre-

vent cell death by reducing oxidative stress and 

preserving mitochondrial bioenergetics whereas 

this function is diminished by most features of the 

metabolic syndrome including obesity, insulin re-

sistance, and dyslipidemia (208, 209). Autophagy 

has been shown to be significantly inhibited in 

patients with NASH as compared with steatosis 

alone and correlates with severity of liver disease 

and markers of oxidative stress (210).

Bile acids and the pathogenesis of NAFLD

There is an increasing recognition that bile acids 

are potent signaling molecules with important cell 

functions over and above their role to facilitate 

lipid absorption. Primary bile acids (cholic acid 

and chenodeoxycholic acid) are synthesized within 

the liver, secreted into the bile and delivered to the 

intestine where the actions of the gut microbiota 

generate secondary bile acids that are reabsorbed 

(>90%), largely in the small intestine into the 

portal circulation. A smaller proportion enters the 

systemic circulation.

Bile acids act via a variety of receptors including 

the farnesoid X receptor (FXR), takeda G-protein-

coupled, pregnane X receptor, and the constitutive 

androstane receptor. Activation of these receptors 

is dependent upon the individual bile acid, and 

therefore the impact of alteration of the total bile 

acid pool depends upon both on changes in quan-

tity and composition.

There is an extensive literature that has 

examined the impact of genetic manipulation of 

bile acid receptors (most commonly FXR using 

rodent models) in the development of NAFLD. 

Global FXR deletion appears to worsen metabolic 

phenotype (211), however, alterations in tissue-

specific expression are important. Intestinal FXR 

activation is able to promote NAFLD (212), and ac-

tivation of these receptors leads to fibroblast factor 

19 secretion (FGF19) secretion, which, in addition 

to being a potent negative regulator of bile acid 

synthesis, has also been linked to the development 

of an adverse metabolic phenotype. FGF19 analogs 

are currently being trialed in the context of NASH 

(see Fibroblast growth factor 19 analogs section).

Data are conflicting with regards to total fasting 

and postprandial bile acid levels in obese patients 

and those with T2D; studies have shown un-

changed, decreased, or elevated levels (recently 

reviewed in (213)). Many small studies have also 

specifically looked at bile acid levels in the context 

of NAFLD (using serum, plasma, fecal, and liver 

samples) (213). In the majority of studies, bile acid 

levels are elevated in NAFLD and there are some 

specific associations of individual bile acids with 

hepatic inflammation (eg, high levels of circulating 

glychololic acid were associated with lobular in-

flammation on liver biopsy) (214).

The mechanisms driving the changes in the 

bile acid pool are not fully determined. Changes 

in hepatic expression of key enzymes involved in 

bile acid synthesis have been described (214–216), 
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and, importantly, the changes observed in the 

gut microbiome will have implications for the 

generation of secondary bile acids (see The gut 

microbiome section).

The relevance of bile acids and their receptor ac-

tivation in the pathogenesis of NALFD is reflected in 

the fact that several pharmaceutical agents currently 

under investigation are targeting these signaling 

pathways, and it is likely that the first therapies li-

censed for NALFD will be specific FXR agonists (see 

section Farnesoid X receptor agonists section).

The gut microbiome

The gut microbiome is increasingly recognized 

in the pathogenesis and progression of a range of 

diseases including NAFLD/NASH, through the 

so-called gut–liver axis. Seminal findings initially 

demonstrated the existence of an “obese micro-

biota” with an increased capacity to harvest energy 

from the diet (217). Furthermore, this trait was 

transmissible, with germfree mice transplanted 

with feces from an obese donor accumulating more 

total body fat as compared to germfree mice re-

ceiving feces from a lean donor (217). A similar 

study of microbiota transplantation from human 

lean donors increased insulin sensitivity in obese 

individuals with metabolic syndrome (218). This 

ability of the microbiota to transmit a particular 

phenotype has also been demonstrated in rodent 

models of NASH with hepatic steatosis and in-

flammation being exacerbated in wild-type mice 

co-housed with mice with inflammasome-mediated 

liver injury (219). Developing gut dysbiosis (an un-

healthy gut microbiome) is complex and highly 

variable between individuals with multiple envi-

ronmental influences including diet, lifestyle, an-

tibiotic exposure, and perinatal conditions (220). 

Due to difficulties in controlling for these variables, 

alongside small sample sizes and variation in labo-

ratory techniques, microbiota composition studies 

in NAFLD/NASH are sparse and inconclusive 

(221). Nevertheless, several studies support an in-

verse correlation between Bacteroidetes and pres-

ence of NAFLD, NASH, and obesity (216, 217, 222). 

Bacteroidetes are relatively inefficient at dietary en-

ergy extraction and their reduction may allow more 

efficient species to dominate (eg, Firmiculates). 

Indeed, a 20% increase in Firmicutes and corre-

sponding decrease in Bacteroidetes were associated 

with an approximate 150 kcal increase in energy 

nutrient absorption (223). Specific patterns of 

microbiome composition have also been implicated 

in fibrosis progression (224, 225) and the pathogen-

esis of HCC (226, 227). Not only do patients with 

NAFLD/NASH have compositional differences in 

microbiota compared to controls, but they also have 

a greater microbiota volume with the prevalence 

of small intestinal bacterial overgrowth (SIBO) 

ranging from 50% to 77% (228, 229). SIBO is asso-

ciated with several of the pathogenic mechanisms 

thought to implicate the microbiota in NASH in-

cluding increased gut permeability through loss 

of tight-junction integrity (230), enhanced TLR 

expression, and a greater burden of circulating 

proinflammatory cytokines (eg, IL-8 and TNF-α) 

(228, 229). Additional pathways by which dysbiosis 

and SIBO may adversely impact the liver in NASH 

include endogenous ethanol production (231) and 

disruption of both choline (232) and bile acid me-

tabolism (233). The microbiome has also become 

a potential therapeutic target in the pharmacolog-

ical treatment of NAFLD. Only data from small 

studies have been published, and studies are cur-

rently actively recruiting (see Modulation of the gut 

microbiome section).

Genetic predisposition to NAFLD and disease 

progression

Despite shared environmental risk factors, there 

remains considerable interindividual variation 

across the spectrum of NAFLD. For example, 

normal liver histology can be found even in those 

with morbid obesity (234), and only a minority of 

those with NAFLD will progress to NASH, fibrosis, 

and HCC. These phenotypic inconsistencies 

suggest a genetic contribution to the disease. 

Compared with the general population, first-de-

gree relatives of patients with NAFLD have up to 3 

times the risk of developing the disease themselves 

(235). Prospective studies have also demonstrated 

strong NAFLD concordance between monozy-

gotic versus dizygotic twins and that heritability 

(the degree of phenotypic variation accounted for 

by genetics) of steatosis and fibrosis are both ~50% 

after controlling for age, sex, and ethnicity (236). 

Several common gene variants have emerged out 

of genome-wide association studies, which show 

an association with the development and pro-

gression of NAFLD. The most significant and re-

producible of which is the PNPLA3 isoleucine to 

methionine substitution at position 148 (rs738409 

C>G encoding for PNPLA3 I148M). Through 

screening ethnically diverse adults from the Dallas 

Heart Study, Romeo and colleagues were the first 

of many to describe a significant association be-

tween PNPLA3 I148M and hepatic fat without 

impacting on components of the metabolic syn-

drome (11). Since then the association has ex-

tended to histological severity, including NASH 

(odds ratio [OR] 3.24, 95% CI 2.79–3.76) (237), 
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fibrosis (OR 3.11, 95% CI 2.66–3.65) (238), cir-

rhosis (OR 1.86, 95% CI 1.64–2.12) (239) and HCC 

(OR 2.32, 95% CI 1.76–3.06) (240). The mecha-

nistic basis of PNPLA3’s relationship with NAFLD 

is yet to be fully characterized. While wild-type 

PNPLA3 seems to mediate TAG turnover, deletion 

of PNPLA3 in knockout mice confers no obvious 

hepatic phenotype (241). The loss-of-function 

148M variant protein, however, manages to escape 

degradation and its accumulation appears to result 

in entrapment of TAG in lipid droplets (242) and 

increased fibrosis through HSC activation (243). 

Furthermore, reduced expression of PNPLA3 

148M due to the co-presence of the 434K variant 

ameliorates liver damage (244) highlighting 148M 

downregulation as a potential treatment target in 

NAFLD (245). The second most important gene 

variant is the TM6SF2 guanine to adenine substi-

tution at position 167 (rs58542926 E>K encoding 

for TM6SF2 E167K), which promotes steatosis by 

interrupting the enrichment of TAG in secreted 

VLDL (246) while simultaneously conferring pro-

tection against circulating dyslipidemia and CVD 

(247). Other variants with moderate effect size 

include loss-of-function polymorphisms in mem-

brane bound O-acyltransferase domain containing 

7 (MBOAT7) rs641738 and glucokinase regulator 

(GCKR) rs1260326. Downregulated MBOAT7 

appears to mediate steatosis (248, 249), inflamma-

tion (249), fibrosis (248, 249), and carcinogenesis 

(250) through the toxic accumulation of polyun-

saturated fatty acids following impaired incorpora-

tion into hepatocyte phospholipids while reduced 

GCKR causes hepatic fat accumulation through 

constitutive activation of hepatic glucose uptake 

and increased DNL (251, 252). Finally, it is impor-

tant to note that NAFLD is a complex condition 

with a high degree of gene–environment interac-

tion. For example, adiposity has been shown to 

significantly amplify the genetic risk conferred by 

common gene variants across the full spectrum of 

NAFLD (253). There is also evidence that dietary 

factors, particularly carbohydrate and fructose in-

take augment the impact of PNPLA3 I148M (254, 

255).

More recently, polymorphisms within 

17β-hydroxysteroid dehydrogenase type 13 

(HSD17B13) have been identified that are associ-

ated with NAFLD (although not when adjusted for 

BMI), as well as with NASH, fibrosis, and cirrhosis 

(256, 257). HSD17B13 is a lipid associated droplet 

protein that appears to possess retinol dehydro-

genase enzyme activity (258), although its true 

functional role is yet to be determined. Most re-

cently, a loss of function variant has been shown to 

protect from the development of HCC in patients 

with alcohol-related liver disease (259).

Further work is needed to interrogate the pre-

cise molecular mechanisms underpinning the as-

sociation between gene variants and progressive 

liver disease to identify novel and personalized 

therapeutic targets.

Clinical determinants of NAFLD progression and 

prognosis

There are many putative factors that may drive 

NAFLD progression to the more advanced stages of 

disease, many of which (eg, genotype, microbiome, 

mitochondrial function, immune response) are 

not easily or routinely assessed in clinical prac-

tice. As a result, we must look to natural history 

studies to help provide clinical, biochemical, and 

histological variables that can be used to help pre-

dict which patients will develop severe disease with 

poorer outcomes. Regarding clinical features, in a 

paired biopsy study McPherson et al. highlight the 

impact of insulin resistance on NAFL with 80% of 

those with fibrosis progression developing T2D at 

the time of follow-up biopsy compared with 25% 

of nonprogressors (260). Angulo et al. also showed 

that diabetes at baseline was associated with overall 

mortality in NAFLD alongside smoking, age, and 

absence of statin use (261). Data for biochemical 

predictors are relatively lacking although in patients 

with biopsy-proven NAFLD and compensated cir-

rhosis, lower levels of serum cholesterol, ALT, and 

platelets were shown to be independently associ-

ated with liver-related complications (development 

of varices, ascites, encephalopathy, and HCC) and 

higher aspartate aminotransferase (AST)/ALT 

ratio with overall mortality (262). A serial biopsy 

study of 320 NAFLD patients presented in abstract 

form showed that Fib-4 score (comprising ALT, 

AST, platelet count and age) was the only baseline 

nonhistological factor associated with fibrosis pro-

gression but had inadequate discriminative preci-

sion for use in clinical practice with an area under 

the receiver operator curve (AUROC) of 0.62 (263). 

Baseline histology provides good prognostic value 

in NAFLD. Systematic review and meta-analysis 

of paired biopsy studies has shown that a third 

of NAFLD patients will have fibrosis progression 

with overall annual fibrosis progression rate of 0.07 

stages for NAFL and 0.14 stages for NASH, corre-

sponding to one stage of fibrosis progression over 

a median of 14.3 and 7.1 years, respectively (264). 

Furthermore, several epidemiological studies have 

now confirmed the presence and severity of fibrosis 

as the most robust marker for future mortality and 

liver specific morbidity and have de-emphasized 
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the presence of NASH, which adds very little prog-

nostic value (261, 265, 266).

Clinical Consequences and Outcomes

Cardiovascular risk and mortality in NAFLD

Cardiovascular disease and NAFLD have shared 

risk factors including insulin resistance, T2D, 

obesity, hypertension, and dyslipidemia (267). 

Even after adjusting for conventional risk factors, 

NAFLD remains an independent risk factor for 

the development of CVD (27, 268, 269). In their 

global epidemiology study of NAFLD, Younossi 

et al. estimated the association between NAFLD 

and co-existing CVD risk factors including obesity 

(51%), T2D (23%), hyperlipidemia (69%), hyper-

tension (39%), and metabolic syndrome (43%) (1).

Once CVD is established, there is also strong 

evidence suggesting that those patients with 

NAFLD have an increased severity of CVD burden 

(270). This may be related to the observation that 

those patients with NASH have additional risk and 

have a greater degree of endothelial dysfunction, 

impaired left and right ventricular function, and 

carotid artery disease increasing the risk of cerebro-

vascular disease and stroke (271). NASH, through 

its proinflammatory state, has systemic effects on 

multiple organ systems and appears to exacerbate 

insulin resistance and promote dyslipidemia, thus 

exacerbating the development of CVD (272).

Body fat distribution (over and above obesity 

and measurements of BMI) is also an important 

consideration; those patients with greater visceral 

adipose tissue, which has higher metabolic ac-

tivity, are more likely to have NAFLD, and have 

a higher risk of developing cardio-metabolic 

complications (268).

A recent systematic review and meta-analysis 

has demonstrated that patients with NAFLD have 

a greater prevalence of coronary artery disease 

7.5% versus 1.4% and stroke 0.9% versus 0.2% 

when compared to those without NAFLD. The 

risk of cardiovascular morbidity was 77% higher 

compared to controls (defined as those patients 

without NAFLD) and cardiovascular mortality 

was 46% higher (273). Similarly, a further meta-

analysis has shown that the presence of NAFLD is 

associated with a 64% increase in the risk of both 

fatal and nonfatal cardiovascular events compared 

to patients without NAFLD (272). These figures are 

similar to a recent retrospective study of patients 

with both NAFLD and T2DM in which the risk 

of cardiovascular events was 70% higher, and all-

cause mortality was 60% higher when compared 

to those without liver disease (274). In addition to 

these associations, patients with more advanced 

NAFLD have worse 10-year cardiovascular risk 

profiles (269) with poorer cardiovascular outcomes 

and are approximately 4 times more likely to suffer 

a fatal CVD event and twice as likely to have a 

nonfatal CVD event (265, 272).

NAFLD has a bidirectional relationship with 

T2D; it is a risk factor for the development of 

T2D with studies showing that those with NAFLD 

have a 1.5- to 2-fold increased risk of developing 

T2D. Similarly, those patients with T2D are more 

likely to develop NAFLD (267, 275). Indeed, the 

strongest predictor of fibrosis progression in those 

with NAFLD is the development of incident T2D 

(260). The presence of NASH is also an important 

factor with these individuals having an additional 

up to 3-fold risk of developing T2D (276). In turn, 

the presence of T2D worsens the course of liver fi-

brosis, is also more likely to lead to the develop-

ment of NASH, is a predictor of the development 

of HCC, and is associated with increased all-cause 

and cardiovascular mortality (270). Finally, the 

combination of both T2D and NASH together 

leads to even worse outcomes, both with respect to 

CVD and liver-related outcomes.

Patients with NAFLD are also at increased risk 

of chronic kidney disease (CKD) where the prev-

alence has been shown to be as high as 55% in 

some studies even after adjustment for other causal 

factors including T2D and hypertension. Patients 

with NASH and advanced fibrosis both have a 

higher prevalence and incidence of CKD (267, 

277, 278). Understanding the precise mechanisms 

that link CKD and NAFLD remains challenging, 

but several mechanisms have been postulated in-

cluding the role of inflamed adipose tissue, cir-

culating proinflammatory cytokines, and FFA 

that may comprise renal endothelial cell function 

and induce oxidative stress leading to end-organ 

damage (279).

All-cause morbidity and mortality in NAFLD

After CVD, cancer is the second clinical en-

tity through which NAFLD exerts its morbidity 

and mortality, and this is manifested via both 

nonhepatic and hepatic malignancies. Cancers 

of the gastrointestinal tract are most closely as-

sociated with NAFLD; the strongest association 

being increased colorectal cancer. Studies have 

shown a 2- to 3-fold increase in the occurrence 

of adenomatous polyps or adenocarcinoma of 

the colon (280), and the risk of colorectal cancer 

is also influenced by the presence of NASH with 

this group having both an increased absolute risk 
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as well as relatively higher grade of dysplasia. As 

such, mathematical modelling has suggested that 

targeted colorectal cancer screening in NAFLD 

patients may be cost-effective although further 

studies regarding patient acceptability and feasi-

bility are required (281).

Though the evidence is less well established, 

other gastrointestinal cancers are associated with 

NAFLD including esophageal, stomach, and pan-

creatic cancer. For nongastrointestinal cancers, 

those associated with NAFLD include kidney and 

breast cancer as well as melanoma (280). Of addi-

tional note, the development of some cancers may 

also be gender specific, for example, a preponder-

ance of breast cancer in females and of colorectal 

cancer in males (280, 282).

Liver-specific morbidity and mortality

Liver failure, including end-stage liver disease 

is the third clinical scenario through which 

NAFLD exerts its morbidity and mortality. 

Consequentially, accurate staging of liver disease 

is crucially important, allowing for both risk strat-

ification and appropriate monitoring for disease 

progression and complication development. In 

this regard, liver biopsy remains the gold standard 

diagnostic tool allowing for both assessment of 

liver inflammation and liver fibrosis. Scoring 

systems used to grade liver biopsy tissue include 

the NAFLD Activity Score (NAS) to quantify his-

tological features associated with a diagnosis of 

NASH (283) and the NASH CRN system used to 

stage fibrosis and to determine early fibrosis (F1–

F2) from advanced (clinically significant) fibrosis 

(F3–F4), with F4 fibrosis being cirrhosis (284) (see 

Role of liver histology in diagnosis and Risk strat-

ification sections).

Fibrosis progression in NAFLD has been 

estimated in 30% to 40% of patients with NAFLD 

(1, 264). Traditionally, it has been assumed that 

NAFL was an indolent disease with relatively slow 

progression compared to NASH, which progresses 

faster to advanced fibrosis. Indeed, it is NASH, 

which is the predominant form of NAFLD, that is 

thought to progress to advanced fibrotic disease 

with estimates suggesting that 10% to 15% of those 

with NASH progress on to cirrhosis with higher 

rates of decompensated liver disease and HCC de-

velopment (27, 285). Furthermore, the presence 

of T2D in patients with NASH is an independent 

predictor of liver-related mortality, and, similarly, 

advanced fibrosis in those with NASH is an inde-

pendent risk factor for predicting mortality (27).

Nevertheless, recent studies have shown that a 

significant proportion of those with simple NAFL 

do progress to advanced fibrosis. McPherson et al. 

reported that 44% of patients progressed to NASH, 

37% progressed to fibrosis, and 22% to advanced 

fibrosis (260, 264, 286). Although this means that 

the majority of those with NAFLD have stable 

disease and do not progress, Singh et al. in their 

meta-analysis showed rate of progression in those 

with NAFL at 1 stage of fibrosis progression ap-

proximately every 14 years and double this rate for 

those with NASH at 1 fibrosis stage every 7 years 

(264).

Previously, it had been thought that only 

those with advanced liver fibrosis were at risk of 

increased all-cause mortality (265, 287). However, 

there is now convincing data indicating that even 

those patients with early (F1) fibrosis have an 

increased all-cause mortality compared to refer-

ence populations without fibrosis. Furthermore, 

liver-specific mortality rises exponentially with 

each increase of fibrosis stage (261, 288). Although 

still a keenly debated issue, these more recent data 

also suggest that fibrosis stage, irrespective of the 

presence of NASH, appears to be the most impor-

tant determinant of outcomes in patients (265, 266, 

289) and that the presence of other risk factors, in-

cluding but not limited to age, T2D, and smoking 

appear to accelerate fibrosis progression and the 

potential development of liver failure. As expected, 

patients with NASH cirrhosis have worse liver-

related and cardiovascular outcomes compared to 

those patients without cirrhosis; liver-related mor-

tality is estimated at 24% in F3, compared with 59% 

in those with cirrhosis (F4) (288).

NAFLD and HCC

Between 2004 and 2009, there was an approxi-

mate 10% increase in NAFLD associated HCC 

incidence in the United States (1). NAFLD HCC 

patients were older, had a reduced life expectancy 

with more cardiovascular complications, and were 

more likely to die from their liver malignancy 

compared with other HCC etiologies. Similarly, 

in Europe, Dyson et al. (6) reported a 10-fold in-

crease in HCC associated with NAFLD between 

2000 and 2010 with patients again being older on 

average and experiencing greater cardio-metabolic 

complications, although survival in this cohort was 

similar to other etiologies of HCC (see Gender and 

age in NAFLD, NASH and HCC section).

The incidence of HCC is significantly higher in 

those with NASH compared to those without NASH 

(1). This is in agreement with data demonstrating 

that the incidence of HCC in patients with NAFLD 

cirrhosis is higher than those without cirrhosis. In 

patients with NAFLD cirrhosis, the incidence of 
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HCC is estimated at 6.7% to 15% over a 5- to 10-year 

period (290). Studies estimate the incidence of HCC 

in patients without cirrhosis to be much lower; one 

large study showing a rate of 2.7% at 10 years, with 

the highest risk in older patients aged >55 years 

(291). Cardio-metabolic disease appears to be im-

portant in driving the development of HCC in 

patients both with and without cirrhosis (292, 293). 

A recent study has shown that patients with NAFLD 

and T2D were >19 times more likely to develop 

HCC and >6 times more likely to die from HCC 

compared to people without liver disease (274).

Current clinical consensus remains that 

screening for HCC in patients with NAFLD is only 

advocated for patients with established liver cir-

rhosis (290).

NAFLD and liver transplantation

NAFLD principally leads to the need for liver 

transplantation through hepatic decompensation 

as a consequence of cirrhosis, which affects 15% to 

25% of those with NASH, and or the development 

of HCC in those with established cirrhosis (1).

The first liver transplant worldwide was 

performed in 1963 at a time when NAFLD/NASH 

was not a fully appreciated or recognized clinical 

entity. Indeed, NAFLD/NASH remained an in-

significant etiology for liver transplantation until 

the mid-2000s. Since that time, its prominence 

and prevalence have risen to mirror the rise of the 

global obesity and T2D epidemic. NAFLD/NASH 

is currently the fastest growing etiology for liver 

failure. It is currently the second leading cause of 

liver transplantation worldwide and is predicted 

to be the commonest cause for liver transplanta-

tion within the next few years (294, 295). Indeed, 

the waiting list of entrants with NAFLD on the 

US transplant register increased by 170% between 

2004 and 2013 (296). Importantly, the prevalence 

of “cryptogenic cirrhosis” was historically up to 

30% in those with “all-cause cirrhosis,” of which 

a substantial number would have undergone liver 

transplantation. A large number of studies have 

subsequently demonstrated strong associations 

between the prevalence of metabolic conditions 

such as obesity and T2D in those with crypto-

genic cirrhosis, which makes it likely that NAFLD 

accounted for a significant proportion, if not the 

majority etiology of these cases (297). As diag-

nostic advances in hepatology have improved, 

the proportion of cryptogenic cirrhosis diagnoses 

made has reduced to around 5% (296, 298).

The age of those undergoing liver transplanta-

tion for NASH has fallen significantly over the last 

15 years. Analysis of transplant registrants in the 

United Network for Organ Sharing (1995–2015), 

which has profiled over 180 000 individuals, has 

shown a marked upward trend in NASH with and 

without HCC since 2005. Those aged between 35 

and 55 years have shown the greatest increase in 

registration rates for liver transplantation (299). 

The authors termed this the “adipose wave effect” as 

it is line with data that show obesity and metabolic 

diseases continue to affect people at increasingly 

younger ages. Data from both the United States and 

Europe demonstrate the prevalence of childhood 

obesity to be approximately 20% or higher (300) 

with this trend continuing to increase. Children 

who are obese tend to remain obese into adulthood 

and this prolonged “exposure to obesity” is likely to 

be an important factor in the development of liver 

failure and HCC that require transplantation.

As the need and rate of transplantation for 

patients with NAFLD rises, the need for clear 

guidance as to how to manage and select suitable 

candidates has grown. The United Kingdom was one 

of the first countries to publish detailed guidance on 

NAFLD and liver transplantation in 2012, a signif-

icant proportion of which was based on consensus 

statements (301). As a large number of questions 

concerning transplantation in NAFLD and NASH 

continue to remain unanswered, such as natural 

history and management of co-morbidities in 

those undergoing transplantation, the International 

Liver Transplantation Society published the first 

International Consensus Statement on NAFLD and 

NASH in the setting of liver transplantation in early 

2019 (302). This reviewed the available evidence 

with the aim of answering both important prac-

tical considerations and questions regarding NASH 

outcomes and natural history. Important aspects in 

this regard include risk assessment for patients listed 

for transplant, cardiovascular risk, and manage-

ment of medical co-morbidities including cardio-

metabolic diseases and obesity. Other considerations 

include the impact on the donor pool (296) and 

whether there is a need for a specific approach to 

donor steatosis in those donating organs.

Analysis of outcomes for patients with NASH 

undergoing liver transplantation is important 

as numbers of procedures performed continue 

to rise. Recently reported data from Europe has 

shown that survival for patients with NASH is sim-

ilar to those transplanted for other liver diseases 

(302, 303). These results are consistent with other 

studies including data from the United States, 

some of which have suggested a survival advan-

tage for those transplanted for NAFLD compared, 

for example, to HCV (295, 297, 304, 305). As 

may be expected, infection and sepsis were the 

commonest causes of death (~24%) in those with 

NASH without HCC, followed by cardio-metabolic 
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complications (~5%), with higher age, severity of 

liver disease, and extremes of BMI (low or high) 

being predictors of death (303).

Data from a meta-analysis by Wang et al. con-

firmed that patients with NASH had greater 

risk of death from sepsis and cardiovascular 

complications (305), with additional evidence 

suggesting a lower risk of graft failure posttransplant 

compared to other liver failure etiologies (302). 

Additional studies have also demonstrated that 

patients with extremes of BMI are more at risk 

from postoperative complications (306), as well as 

increased cardio-metabolic complications pre- and 

posttransplantation compared with other non-

NAFLD indications for transplantation.

There is evidence demonstrating that 

complications of cardio-metabolic diseases (eg, 

mild renal dysfunction around the time of trans-

plant) are linked with adverse all-cause and car-

diovascular outcomes (307). Immunosuppressive 

therapy is used in patients undergoing transplanta-

tion. Their role to prevent organ rejection is essen-

tial; however, it is well recognized that these agents 

also have adverse cardio-metabolic effects and po-

tentially could contribute to the de novo develop-

ment NAFLD or cardio-metabolic disease.

NAFLD recurrence posttransplantation is 

common and affects at least one-third of patients, 

although the true number is likely to be higher 

(296). De novo NAFLD posttransplantation is 

thought to affect around 18% to 33% of patients 

(308). This condition remains poorly understood, 

and longer-term studies are required to fully under-

stand and characterize differences from recurrent 

NAFLD (eg, whether it is more aggressive in na-

ture). Nevertheless, regular surveillance and aggres-

sive management of NAFLD recurrence, de novo 

NAFLD, and cardio-metabolic disease is required 

posttransplantation. In this regard, work is ongoing 

to assess how patients with NAFLD in need of liver 

transplantation may be better managed in the future 

with additional targeted interventions (eg, bariatric 

surgery) where work is underway to establish the 

optimal timing and nature of such procedures (302).

Clinical Evaluation and Approach to 

Management

Establishing the diagnosis

Clinical 

A diagnosis of NAFLD may be suspected in 

patients with mildly elevated liver biochemistry 

and/or echogenic liver on US scanning in the pres-

ence of one or more cardio-metabolic risk factors, 

such as (abdominal) obesity, T2D or impaired glu-

cose tolerance, and hypertension and dyslipidemia 

and in the absence of other causes of hepatic 

steatosis and chronic liver diseases (115, 285). 

Typically, patients with NAFLD are asymptomatic, 

although fatigue and dull ache or discomfort in the 

right upper quadrant of the abdomen are not un-

common. More usually, abnormalities in imaging 

or liver biochemistry are discovered incidentally, 

such as the appearance of fatty liver on US scan-

ning or computed tomography imaging performed 

because of abdominal symptoms or the finding of 

elevated liver biochemistry in patients undergoing 

blood test monitoring for other conditions (309).

A clinical history is required to exclude exces-

sive alcohol consumption, which is defined by the 

EASL as ≥20 g/day for a woman or ≥30 g/day for a 

man (115) and medications that may cause hepatic 

steatosis, such as corticosteroids, amiodarone, and 

tamoxifen. Physical examination is required to de-

termine the presence of abdominal obesity (waist 

circumference ≥94 cm for Europoid men and ≥80 

cm for Europoid women), hypertension (≥130/85 

mmHg or treated for hypertension), and any signs 

of chronic liver disease that might indicate ad-

vanced disease or portal hypertension.

Blood testing should include a full/complete 

blood count, liver biochemistry (including ALT), 

and AST; renal function; fasting blood glucose 

and/or glycosylated hemoglobin (HbA1c); blood 

lipid profile; serum ferritin and transferrin satura-

tion; thyroid function; viral hepatitis B and C se-

rology; liver autoantibodies (antinuclear antibody, 

antimitochondrial antibody, antismooth muscle 

antibody, antiliver kidney microsomal antibody); 

immunoglobulins (A, G, M); and α-1 antitrypsin 

levels. Other tests that may be required include 

serum ceruloplasmin and celiac serology in 

selected cases. Normal liver enzymes and normal 

liver US do not exclude NAFLD; indeed, of 103 

patients with T2D and normal ALT, 51 had NAFLD 

as defined by proton MRS (1H MRS) (310).

Noninvasive assessments for diagnosis of hepatic 

steatosis 

Imaging, particularly B-mode US, is often used 

for the diagnosis of NAFLD to look for evidence 

of hepatic steatosis (115). Typically this is a subjec-

tive assessment of increased hepatic echogenicity 

compared with the parenchyma of the adjacent 

right kidney. In a meta-analysis of studies including 

4720 patients comparing US to liver histology, US 
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was sensitive for the detection of moderate to se-

vere steatosis (approximating to steatosis in >33% 

of hepatocytes) with a sensitivity of 84.8% (95% CI 

79.5–88.9) and specificity of 93.6% (95% CI 87.2–

97.0) (252, 311) but did not reliably detect steatosis 

of <20% (312). Ultrasound is unable to quan-

tify hepatic steatosis, although the severity may 

be assessed and scored subjectively. Ultrasound 

is also used to exclude structural hepato-biliary 

co-morbidity such as gallstones and to look for 

evidence of macro-nodular cirrhosis and signs of 

portal hypertension including splenomegaly and 

the presence of ascites.

No single blood test can diagnose NAFLD, but 

there are a number of indices based on simple clin-

ical assessments and blood tests that can predict the 

presence of significant hepatic steatosis. One such 

test is the Fatty Liver Index, which incorporates 

BMI with waist circumference, gamma-glutamyl 

transferase, and plasma TAG levels (313). Is was 

validated against hepatic steatosis as defined by ul-

trasonography, itself a surrogate reference marker 

and may be used in patients with metabolic risk 

factors to assess for the presence of NAFLD in the 

absence of US scanning (115). While other simple 

indices to diagnose hepatic steatosis have been 

evaluated against reference standards, including 

histology, 1H-MRS (314) and US, the diagnostic 

accuracy of three indices, the Fatty Liver Index, 

NAFLD Liver Fat Score, and Hepatic Steatosis 

Index were validated retrospectively with a cohort 

of patients with histologically defined NAFLD and 

the AUROC varied from 80% to 83% (315). The 

utility of such markers is unclear given the wide-

spread availability of US, the high prevalence of 

steatosis in the general population (1), and that he-

patic steatosis is frequently detected through other 

means. Such indices may be helpful in identifying 

cohorts of patients at high risk of NAFLD in whom 

further investigation would be indicated or in epi-

demiological studies.

Role of liver histology in diagnosis 

Liver histology obtained by liver biopsy can be helpful 

diagnostically where the cause of abnormal liver bi-

ochemistry is unclear despite having performed a 

noninvasive liver disease screen. In such cases, in the 

absence of excessive alcohol intake or steatogenic 

drugs, the presence of intrahepatocellular lipid 

droplets in >5% of hepatocytes would be indicative 

of NAFL. NASH is diagnosed by global histolog-

ical assessment. Characteristic features include the 

presence of lobular inflammation and ballooning 

of hepatocytes with or without fibrosis. Scoring 

systems for NASH including the NASH CRN score 

and the SAF (steatosis, activity, fibrosis) score have 

been derived and are widely used (284, 316). These 

scoring systems have been developed to standardize 

assessment of histological lesions seen in NASH and 

are not intended to be diagnostic, rather to provide 

a semiquantitative scoring system to improve agree-

ment between histopathologists and assessment of 

change over time, predominantly in the context of 

clinical trials. Other histological features that are fre-

quently seen in NASH include portal inflammatory 

infiltrate, Mallory–Denk bodies (Mallory’s hyaline), 

and megamitochondria (115). These features may 

also be seen in alcohol-related liver disease and al-

coholic hepatitis so an accurate history of alcohol 

consumption is crucial to the interpretation of the 

histology.

Risk stratification

Severity of hepatic fibrosis is the strongest pre-

dictor of overall and liver-related outcome in 

patients with NAFLD (see Clinical determinants of 

NAFLD progression and prognosis section) (261, 

265, 288). Establishing the severity of fibrosis in 

patients with NAFLD is therefore central to risk 

stratification. Diagnosis of NASH per se is not im-

portant for risk stratification (see Liver–specific 

morbidity and mortality section) but remains an 

endpoint in phase 3 clinical trials, given the cur-

rent understanding of the pathogenesis of the 

condition (317, 318). Histological fibrosis staging 

remains the reference standard for gauging the se-

verity of fibrosis in clinical practice and as a clin-

ical trial endpoint. The NASH CRN system for 

fibrosis staging is widely used and employs a scale 

of 0 to 4 (284, 319). These stages correspond de-

scriptively to mild fibrosis (stage 1a, 1b, 1c), sig-

nificant fibrosis (presence of pericellular fibrosis; 

stage 2), advanced fibrosis (presence of bridging 

fibrosis; stage 3) and cirrhosis (bridging fibrosis 

with nodule formation; stage 4). The stages are 

descriptive of the pattern of fibrosis and the ex-

tent of fibrosis can vary substantially within each 

stage. Quantitation of fibrosis in histological liver 

samples has been developed by assessment of the 

collagen proportionate area (CPA) by digital image 

analysis of liver sections stained with Sirius red for 

collagen. In a cohort of 437 patients with NAFLD 

with retrospective follow-up over a median of 103 

months, the CPA was an independent predictor of 

hepatic decompensation and, being a continuous 

variable, may be a useful surrogate marker for di-

sease severity, particularly in the context of clinical 

trials (320).
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Clinical, routine imaging, and laboratory 

measurements 

Routine liver biochemical tests include measure-

ment of ALT and/or AST, alkaline phosphatase, 

serum bilirubin, and gamma glutamyl transferase 

values. Elevations in ALT values are a common 

finding in patients with NAFLD, but they do not 

indicate the presence or absence of advanced di-

sease. Importantly, a normal ALT value does not 

always indicate the absence of NAFLD. A study 

of 222 patients with NAFLD of whom 23% had 

elevated ALT and 77% had T2D found that the 

proportions of those with advanced fibrosis did 

not differ according to whether or not they had el-

evated ALT (321). There was a significantly lower 

proportion of people with NASH in the group with 

normal ALT compared to the group with elevated 

ALT making it more likely that NASH is present in 

the context of elevated ALT.

Noninvasive biomarkers of liver disease severity 

Histological assessment through liver biopsy is 

associated with established risks to the patient 

(322), sampling variability, as well as inter- and 

intraobserver variation (323). Considerable prog-

ress has been made in the development of nonin-

vasive markers of liver disease severity applied to 

NAFLD in the last 20 years with a number that are 

now routinely used in clinical practice. Markers 

can broadly be divided into “biological” markers 

(typically blood, but also other biological material) 

and “physical” markers (typically imaging-based 

technologies) (324). The performance of these 

modalities to accurately stage liver disease and 

therefore provide accurate risk stratification has 

been reviewed in detail (325) and a summary of 

their key features is provided next.

Biological markers.  Blood markers can be 

categorized into simple, usually inexpensive, blood 

tests, markers or indices based on routine bio-

chemical and hematological tests or more com-

plex, usually proprietary, panels of tests including 

intermediates of fibrogenesis. These have been 

reviewed recently and extensively (325–327).

Simple blood marker indices of disease severity 

are based on routine blood tests, and many have 

been derived from cohorts of patients with other 

chronic liver diseases, notably HCV. Central to 

these is the ratio of AST to ALT to which other 

components are appended. Examples include the 

AST/ALT ratio (328); the Fib-4 score, which also 

includes age and platelet count (329); the NAFLD 

Fibrosis Score (NFS), which includes platelet count; 

albumin concentration; BMI and the presence or 

absence of T2D or impaired fasting glucose (330); 

and the BARD score, which includes BMI and 

presence or absence of T2D or impaired fasting 

glucose (331). A number of these indices employ 

2 thresholds or cut-off values, a lower value below 

which there is a high negative predictive value for 

the exclusion of advanced fibrosis and a higher 

value above which the specificity and positive 

predictive value is maximized (332). The choice 

of the thresholds to be used depends on how the 

test is to be employed in clinical practice. These in-

dices were independently validated in a cohorts of 

patients with biopsy-proven NAFLD and found to 

have similar performance characteristics, notably 

for their high negative predictive value excluding 

advanced fibrosis/cirrhosis in 92% to 95% of cases 

(332). However, any clinical study validated against 

liver biopsy is prone to selection bias with a higher 

proportion of more severe disease stages than is 

represented in most primary care populations, 

which would be predicted to improve the negative 

predictive value of the test at the risk of including 

many false positive results (lower positive predic-

tive value).

More complex proprietary panel markers have 

been developed using a number of biochemical 

tests in combination. The Enhanced Liver Fibrosis 

(ELF) score is designed to model matrix (including 

collagen) turnover, combining assays for hyalu-

ronic acid, the amino terminal of procollagenase 

3, and tissue inhibitor of metalloproteinase 1, and 

the diagnostic accuracy (AUROC) for advanced 

fibrosis in NAFLD was 93% (333). Other propri-

etary panel tests include FibroTest, which includes 

serum α2-macroglobulin, apolipoprotein A1, hap-

toglobin, total bilirubin, and gamma-glutamyl 

transpeptidase, adjusted for age and gender (334), 

which performed similarly to, but not better than, 

the NFS compared to histological fibrosis staging 

for the diagnostic accuracy across all fibrosis stages 

in an analysis of 574 patients (335).

Physical markers.  Physical markers are based 

on assessment of the physical properties of the 

liver parenchyma and include imaging-based 

technologies. Elastography is based on the meas-

urement of vibration-induced shear waves through 

the liver tissue and include a means of generating 

a pulse or vibration and a means of detecting the 

velocity of the shear wave generated by the pulse. 

Broadly these are divided into US-based and mag-

netic resonance elastography (MRE). The most 

widely validated and used of these techniques is 

vibration-controlled transient elastography (TE), 

marketed as FibroScan®, which employs a probe 

placed against the skin between the ribs over-

lying the right lobe of the liver and generates a 
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liver stiffness measurement (LSM) (336). As pre-

viously reported (324), there is published evidence 

in 25 studies and approximately 4000 patients with 

NAFLD using TE and a review of 10 recent studies 

comparing TE to histology, using either medium 

or large probes indicated AUCs for prediction of 

advanced fibrosis or cirrhosis (F0–F2 vs. F3–F4) of 

between 0.83 and 0.93. The sensitivity and speci-

ficity vary according to the cut-off values used, 

which may be set according to the disease state 

being sought, the tolerance of the local service for 

false positive and false negative results, and setting 

in which the technique is used. LSM by TE has a 

significant failure rate, either through an inability 

to obtain a reading or a technically inadequate 

reading. It is contraindicated in patients with car-

diac pacemakers and implantable defibrillators 

and in pregnancy. A review of recent studies of 

TE in patients with NAFLD described inadequate 

readings (failure to obtain or unreliable) in be-

tween 5% and 23% of cases (324). However, a pro-

spective, multicenter study of TE in more than 400 

patients with NAFLD found that, when an appro-

priate probe size was used for each patient, only 3% 

of readings were invalid (337).

Other US techniques that allow elastography 

measurement include acoustic radiation force im-

aging and 2-dimensional shear wave elastography, 

which are applications integrated on US scanning 

machines. These techniques have increasingly been 

validated with similar performance characteristics, 

but on fewer patients than TE (324).

Magnetic resonance (MR) technologies have 

been applied in the context of NAFLD. While 1H-

MRS (338) and the proton density fat fraction 

(PDFF) (339, 340) can sensitively quantify hepatic 

steatosis; however, their use in risk stratification of 

disease severity is limited, although a recent study 

suggested that increased liver fat as assessed by 

PDFF was associated with increased risk of disease 

progression (341). Magnetic resonance elastography 

applies the same concept of liver stiffness or elasticity 

measurement as US-based techniques and has been 

validated in patients with NAFLD (342) with high 

diagnostic accuracy for advanced fibrosis; pooled 

sensitivity was 86% and specificity was 91% in a 

recent comprehensive meta-analysis (343). MRE 

requires dedicated hardware and standardization 

of protocols between centers. A multi-parametric 

MR imaging (MRI) technique has been developed 

that incorporates an iron-corrected T1 (longitu-

dinal relaxation time) sequence, which correlates 

inversely with disease severity in NAFLD (344). As 

it is a software analysis of predefined sequences, it 

has the benefits of not requiring specific hardware; 

is available across different scanner makes, models, 

and field strengths; and provides reproducible 

and standardized assessments. Magnetic reso-

nance scanning applications are contraindicated 

in patients whose bodies contain ferrous mate-

rial (penetrating eye injuries, shrapnel injuries, 

and certain implants) and cardiac devices such as 

pacemakers and implantable defibrillators and also 

may not be acceptable in patients with anxiety and 

claustrophobia.

The place of MR techniques in practice is, as yet, 

unclear. They are unlikely to form standard of care 

as first-line assessments in resource-constrained 

environments, but the detail and reproducibility of 

the data obtained lend them to use in clinical trials 

and longitudinal observational studies.

Putting risk stratification into practice

With the plethora of options now available for non-

invasive risk stratification, attention has turned to 

development of pragmatic strategies for their use in 

practice. The low cost and performance character-

istics of simple nonproprietary indices such as the 

Fib-4 and NFS make them an attractive first line 

for community-based risk stratification to enrich 

the population for whom more involved second-

line tests can be employed.

A study of a UK primary care population of 1118 

patients in Birmingham, UK, with elevated liver 

biochemistry looked at the prevalence of chronic 

liver diseases, and, after exclusion of other chronic 

liver diseases, a diagnosis of NAFLD was made in 

295 (26.4%) (345). The NFS was used retrospec-

tively to risk stratify these patients: 57% fell into 

the low risk category for advanced fibrosis, nearly 

7.6% in the high-risk category, while the remaining 

35% were classified as indeterminate, in whom ad-

ditional risk stratification by other means was indi-

cated. This study is notable in being one of the first 

to risk stratify patients in the community by non-

invasive means and to establish the prevalence of 

advanced NAFLD in the population. However, the 

cause of abnormal liver tests was unclear in 45% de-

spite use of a chronic liver disease screen of blood 

tests, and US scanning and risk stratification was 

not performed in these patients. Of the patients, 

30.5% were obese, 19% had diabetes, and 41% were 

hypertensive, so a proportion are likely to have had 

NAFLD given that US scanning is not sensitive for 

mild hepatic steatosis, when the patient is obese or 

in advanced fibrosis where the degree of steatosis 

can decrease. Conversely, Koehler et al. conducted 

a population study of older people (mean age, 76 

years) in the Netherlands. 3205 people underwent 

abdominal US scanning, of whom 2811 did not 
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have risk factors for secondary steatosis (346). Of 

these, 35.1% had evidence of NAFLD, but, impor-

tantly, 88% had normal ALT value. This suggests 

that the prevalence of NAFLD and NAFLD with 

advanced fibrosis in the Birmingham study may 

have been underestimated.

In Nottingham, UK, TE was used in primary 

care for patients at risk of chronic liver disease 

(347). Risk factors for chronic liver disease were 

examined in the primary electronic medical record 

of over 20 000 patients. Those with hazardous al-

cohol intake or T2D were invited for TE and those 

without exclusion criteria (n = 2022) were invited 

for TE, of whom 919 underwent the test. Of these 

patients, 669 had normal liver stiffness (<8 kPa), 

and follow-up was arranged in primary care; 230 

patients had elevated liver stiffness (≥8 kPa) and 

were seen in the hepatology clinic, of whom, 27 

were diagnosed with cirrhosis (and of whom 16 

had NAFLD as the underlying etiology, 3 had 

alcohol-related liver disease, and 8 had a combi-

nation of risk factors). A total of 23 patients with 

cirrhosis had been identified prior to the use of TE 

for those at increased risk, indicating a doubling of 

the pick-up of cirrhosis using this strategy. In an-

other study, among 705 patients with T2D (348), 

the estimated prevalence of significant fibrosis, 

advanced fibrosis, and cirrhosis was estimated at 

12.7%, 7.3%, and 2.1%, respectively, using prede-

fined liver stiffness thresholds.

Despite extensive validation of simple markers 

in secondary care, a primary care based study 

in Edinburgh, UK, examined a cohort of 831 

patients with T2D using US scanning followed 

by a number of simple blood markers (349). The 

correlation between different classes of biomarker 

was poor for the prediction of advanced fibrosis, 

including among those with NAFLD. However, 

in keeping with the good negative predictive 

value for advanced fibrosis seen in other studies, 

there was good agreement for the absence of ad-

vanced fibrosis among those patients with values 

in the lower 95 percentiles for each test. This study 

illustrates the potential pitfalls of rolling out risk 

stratification in primary care by extrapolating bi-

omarker data from secondary care, particularly as 

the “true” disease state of those identified as “low-

risk” in a primary care cohort cannot be estab-

lished easily as liver biopsy cannot be justified in 

such patients. Nevertheless, on a population basis, 

these tests serve to enrich the population for those 

at risk of advanced liver disease and the negative 

predictive value should improve as the population 

prevalence of advanced disease decreases from sec-

ondary care to primary care populations.

The Birmingham study indicated that when 

using NFS, 35% of patients with NAFLD in the pri-

mary care cohort were classed neither in the high- 

or low-risk groups and so required further testing 

(345). This concept underlines the British Society of 

Gastroenterology’s guidance that, in patients with 

presumed NAFLD, a simple panel test (eg, Fib-4 or 

NFS), should in those with indeterminate values be 

followed by a second line test such as the ELF score 

or LSM (350). The lack of correlation between ELF 

or LSM and Fib-4 as determined by Morling et al. 

may thus be harnessed in sequential testing (349). 

This was tested retrospectively by Petta et al. in a 

cohort of 741 patients with biopsy-defined NAFLD 

(351). Simple biological panel markers including 

NFS, Fib-4, and LSM with FibroScan were tested 

against histology using published cut-off values. 

The markers were evaluated singly and in combi-

nation. Combination of Fib-4 or NFS with LSM 

in all cases led to very low false positive results 

(1.5%–2.1%) and false negative rates (3.8%–5.5%) 

for inclusion or exclusion of advanced fibrosis. 

There was, however, a large range of uncertainty 

(indeterminate) results comprising more than half 

of cases, leading to low accuracy in the region of 

39% to 43% overall. If tests were employed serially 

(Fib-4 or NFS first, and then LSM only in those 

with indeterminate scores) the number of cases in 

the “uncertainty area” reduced to 6.4% to 8% and 

the overall accuracy increased to 76.0% to 77.8%, 

but at the expense of a higher number of false posi-

tive and false negative results. Care should be taken 

when extrapolating these results to a primary care 

setting as it was a retrospective study against liver 

biopsy adding selection bias and making it likely 

that the study population was enriched for ad-

vanced fibrosis and with less mild disease. Such a 

strategy in primary care where the prevalence of 

advanced disease is lower might be expected to 

have fewer false negative results, but more false 

positive results.

A sequential testing strategy was used by in 

London, UK, by the Camden and Islington care 

commissioning group and the Royal Free hospital 

and evaluated from March 2014 to May 2016 (352). 

The pathway consisted firstly of Fib-4 testing by ge-

neral practitioners, then those considered low-risk 

(Fib-4 < 1.3) continued to be managed in primary 

care. Those with a high-risk Fib-4 test (Fib-4 > 

3.25) were referred to the hepatology clinic, while 

those with an indeterminate result (Fib-4 > 1.3 < 

3.25) were advised to undergo second line ELF 

testing. Of 1452 patients entering this pathway, 

1022 fell into the low-risk category and 43 into 

the high-risk category, while 387 at indeterminate 
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risk underwent ELF testing, of whom 155 had ELF 

<9.5 and were considered low risk and remained in 

primary care, while 232 had ELF >9.5 and referral 

to the liver clinic was recommended. The authors 

compared referrals before and after the initiative 

and from practices that had adopted the pathway 

with those that had not and reported a 5-fold in-

crease in detection of advanced fibrosis, a 3-fold 

increase in detection of cirrhosis, and an 81% re-

duction in unnecessary referrals.

Assessment of cardio-metabolic risk

While the focus of this section has been on the risk 

assessment of the liver disease, CVD remains the 

chief cause of death among patients with NAFLD. 

We advocate the use of cardiovascular risk scores 

in the clinic setting for objective assessment of car-

diovascular mortality risk so as to guide optimiza-

tion of cardio-metabolic risk factors. Examples of 

cardiovascular risk scores include QRisk3 (353) 

with an online calculator (https://qrisk.org/three), 

the closely related JBS3 calculator (http://www.

jbs3risk.com) and the Framingham risk score 

(354). QRisk2 and Framingham risk score were 

compared retrospectively in a cohort of patients 

with NAFLD and a further score was derived 

that included the mean platelet volume and was 

validated prospectively (355). AUROCs for the 

prediction of major acute cardiovascular events in 

the subsequent year were 0.83 for the NAFLD CV 

score, 0.73 for QRisk2, and 0.64 for Framingham.

Practical considerations in the assessment of 

NAFLD

Any strategy for risk stratification of NAFLD needs 

to include consideration of the practicalities of 

delivering the service beyond the absolute perfor-

mance characteristics of the tests.

Confounding factors 

Any noninvasive test or biomarker is likely to 

be affected by clinical confounding factors and 

awareness of these factors is related to how widely 

studied and validated a given test is. For example, 

well-known factors that increase liver stiffness 

and can lead to false positive results include the 

presence of severe hepatocellular inflammation, 

high right-sided heart pressures, and recent meals 

(356). However, when controlling for the degree of 

fibrosis in an analysis of patients with NAFLD, the 

degree of steatosis or inflammation was not found 

to influence the liver stiffness significantly (337). 

The components of the ELF test can be increased 

in extra-hepatic fibro-inflammatory conditions, 

while simple panels such as Fib-4 and NFS may be 

affected by any condition or concomitant medica-

tion that affects the platelet count (such as chronic 

inflammation, iron deficiency) or the ALT to AST 

ratio (alcohol use, medications, muscular damage, 

or inflammation). Future prospective studies 

should investigate the factors associated with false 

positive and false negative results, particularly in 

real-world and primary care cohorts where there 

are more likely to be co-morbidities present than 

in the well-characterized secondary care deriva-

tion and validation cohorts reported in the initial 

publications.

Resources, experience, acceptability 

The diagnostic performance of risk stratification 

pathways should be considered in the context of 

the patient pathway, whereby, typically, patients 

are detected in primary care, undergo risk strati-

fication and then those considered to be at higher 

risk undergo further evaluation and treatment 

in secondary or tertiary care (115). Simple blood 

markers (Fib-4, NFS) are cheap, available rou-

tinely, and can exclude advanced fibrosis with an 

excellent negative predictive value in the majority 

of patients. Using a cut-off value for Fib-4 of 1.3 

in a UK primary care population, 70% of NAFLD 

patients were placed in the category at low risk 

for advanced fibrosis (352), while using a cut-off 

value for NFS of <1.455 in a UK primary care pop-

ulation, 57% of patients with NAFLD were placed 

in the category at low risk (345). The availability 

of resources in secondary care will determine the 

proportion of patients that can be assessed and 

treated in the clinic setting, the tolerance of false 

positive and false negative results and thus the 

thresholds used for risk stratification. As awareness 

of NAFLD increases, referrals to secondary care in-

crease, which increases the need for effective risk 

stratification tools (352). In the absence of effec-

tive, discrete interventions in NAFLD, the cost-ef-

fectiveness of such pathways is unclear, although 

an analysis based on TE in primary care and nu-

merous assumptions about disease progression and 

outcomes suggested that such a risk stratification 

pathway was likely to be cost-effective (357). The 

future availability of cost-effective treatments for 

NAFLD will also influence the need for risk strati-

fication, and the thresholds employed as risk strati-

fication will be required to determine eligibility for 

therapies.

Given the good performance characteristics of 

many tests for the detection or exclusion of ad-

vanced fibrosis, the decision to employ a given 

strategy will depend on local resources and the 

set-up of local services. For example, simple blood 
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markers (Fib-4, NFS) are easily used in primary 

care. Second line risk stratification could be by 

complex panel markers (ELF, FibroTest), US-based 

elastography (TE, shear wave elastography) or 

MR techniques (MRE, multiparametric MRI). 

Complex blood markers can be sent from primary 

care, while TE is available in some primary care 

settings, but more often in secondary care, so ge-

ographical and travel considerations are also rele-

vant to the choice of test. Typically, MR techniques 

for risk stratification are still confined to tertiary 

centers.

As most patients with NAFLD are asympto-

matic, and there is widespread lack of awareness 

among healthcare professionals treating patients 

with diabetes (358), so the number of tests and 

visits required for risk stratification should be 

minimized to increase uptake. Of those assessed 

as high-risk by the Camden and Islington pathway, 

45% were not seen in secondary care (352), but a 

sequential risk stratification pathway in Oxford, 

UK, used automated reflex testing of ELF in those 

with an indeterminate Fib-4, and resulted in 80% 

of those patients with high risk scores being seen 

in secondary care (J Cobbold, personal commu-

nication, June 2019). It may be postulated that 

comprehensive roll out and monitoring of a robust 

and acceptable system is more important than the 

minor differences in diagnostic accuracy of the 

particular technique(s) used, and recent UK guid-

ance acknowledges the different preferences and 

experience of risk stratification markers among 

different clinicians by presenting alternative tools 

in the sequential testing strategy (350). Publication 

of further experience in clinical practice of dif-

ferent strategies is awaited.

Towards screening in high-risk groups? 

NAFLD is usually asymptomatic and the prev-

alence of NAFLD is very high in certain groups 

(see Epidemiology of NAFLD section). Screening 

of high-risk groups is advocated (115), but the 

practicalities of such initiatives have not been 

established. Given that the majority of patients 

with NAFLD have normal ALT, ALT cannot be 

used for screening. If the prevalence of NAFLD 

in high-risk groups (including those with obe-

sity and T2D) may exceed 90%, is US scanning or 

use of a steatosis-detection algorithm such as the 

FLI necessary? Alternatively, risk stratification for 

advanced fibrosis could be employed directly in 

high-risk groups. Examples include TE in patients 

with obesity, T2D (or hazardous alcohol intake) 

(347), and Fib-4 and TE in patients with T2D in 

secondary care (358, 359). Whether a systematic 

approach is warranted will rely on the benefit 

and cost-effectiveness of interventions in NAFLD 

and related conditions. Novel therapies and man-

agement approaches will need to be evaluated to 

establish their impact (360). Similarly, the per-

formance characteristics of tests will vary by the 

prevalence of advanced disease in the populations 

concerned. Both of these issues need to be factored 

in before widespread screening can be advocated 

in resource-constrained environments.

A multidisciplinary approach to management

Given that NAFLD is typically diagnosed in 

patients with abnormal liver biochemistry 

and/or an echogenic liver on US scanning, 

gastroenterologists and hepatologists have been the 

specialists who have managed most incident cases 

in secondary and tertiary care. Yet, natural history 

studies demonstrate a diverse range of outcomes 

for patients diagnosed with NAFLD.

As discussed in the Clinical consequences and 

outcomes section, it is important to note that 

CVD is the principal cause of death affecting ap-

proximately 40% of patients, while malignant 

and nonmalignant liver diseases account for the 

deaths in less than 10% of patients (261, 265). 

Furthermore, more than 50% of patients attending 

secondary/tertiary care NAFLD clinics in the 

United Kingdom have T2D (360, 361). The role of 

the clinician caring for patients with NAFLD is to 

reduce the morbidity and mortality associated with 

the condition, so a “hepato-centric” management 

approach is insufficient and a multidisciplinary, 

holistic approach is required. While the personnel 

required in the multidisciplinary team may vary, 

the skill sets required are consistent (361):

 •  Diagnosis and risk stratification of liver  disease

 •  Assessment and optimization of cardio-metabolic 

risk factors

 • Therapeutic optimization of T2D

 • Lifestyle and dietary assessment

 •  Lifestyle education and intervention (including 

diet, exercise and smoking  cessation)

 •   Application of novel liver-directed  therapies in 

NAFLD and recruitment into clinical trials

A suggested model for a multidisciplinary ap-

proach to management of NAFLD is shown in Fig. 

2. Management of NAFLD in a multidisciplinary 

setting is widely advocated, (115, 362, 363), but 

there are very few data to demonstrate the utility 

of such an approach in routine clinical practice.

Cobbold et al. analyzed an ethnically diverse 

cohort of 180 patients with NAFLD in London, 

UK, of whom 92 had T2D and who had been 

seen in a multidisciplinary NAFLD clinic and 
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followed up for a median of 19.5 months (361). 

From baseline to latest visit, there were signifi-

cant improvements in median ALT (18%), weight 

(3.5%), and total cholesterol (2.5%). Twenty-seven 

percent of patients achieved ≥5% weight loss, 

and among the patients with diabetes, there was 

a significant 1.9% reduction in HbA1c. Another 

study from Birmingham, UK, analyzed data from 

65 patients with NAFLD seen in a multidiscipli-

nary NAFLD clinic, of whom 32 had T2D. Over 

a short median follow-up of 98 days, significant 

improvements in weight, ALT, and total choles-

terol were also seen, and 22% achieved ≥5% weight 

loss (359). Most recently, Moolla et al. reported 

experience of a multidisciplinary NAFLD clinic 

in Oxford, UK, where 165 patients were analyzed 

of whom 97 had T2D over a median period of 13 

months (Fig. 2) (360). As in previous studies, there 

were significant improvements in ALT, weight, 

total cholesterol, and HbA1c, but also in this study 

significant improvements were demonstrated in 

liver stiffness by TE as a validated marker of fi-

brosis severity in NAFLD (difference in median 

values of 1.3 kPa, or 14%) and also the QRisk3 rel-

ative risk (difference in median values of 0.1, or 

5%). This study highlighted the benefits, particu-

larly in the management of patients with T2D (dif-

ference in median HbA1c of 4 mmol/mol, or 7%), 

with increased use of hypoglycemic agents associ-

ated with weight loss such as glucagon-like pep-

tide 1 (GLP-1) agonists and reduced use of agents 

associated with weight gain such as insulins and 

sulfonylureas. There was evidence of cost-effec-

tiveness of this approach, particularly in patients 

Figure 2. Schematic representation of the structure of a metabolic hepatology clinic (a). Adopting a multidisciplinary approach to 

nonalcoholic fatty liver disease has the potential to improve cardiovascular health and reduce liver stiffness (b), improve glycemic con-

trol in those patients with type 2 diabetes (c) and promote significant weight loss (d). From Moolla A, Motohashi K, Marjot T, Shard 

A, Ainsworth M, Gray A, Holman R, Pavlides M, Ryan JD, Tomlinson JW, Cobbold JF. A multidisciplinary approach to the management 

of NAFLD is associated with improvement in markers of liver and cardio-metabolic health. Frontline Gastroenterol. 2019;10:337–346. 

doi:10.1136/flgastro-2018-101155.
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with poorly controlled T2D, but the analysis in-

cluded a number of assumptions. A further UK 

center has reported in conference proceedings the 

change in cardio-metabolic endpoints associated 

with attendance in a multidisciplinary NAFLD 

clinic (364). Of the 120 patients included, 26 had 

diabetes at baseline while another 13 cases of dia-

betes were detected and treated. They reported a 

median reduction in QRisk-3 score of 5.2% over 

the follow-up period, similar to that reported by 

Moolla et al.

None of these studies included a control in-

tervention group, and accordingly they were sus-

ceptible to bias. Moreover, the benefit of such 

approaches are not clear on an “intention to treat” 

basis. However, these studies serve as a bench-

mark as to what can be achieved in the clinic and 

to which novel interventions and methods of care 

delivery may be compared.

In conclusion, given the high prevalence of 

NAFLD, noninvasive risk stratification should be 

performed to determine those at increased risk of 

morbidity and mortality. The presence of advanced 

fibrosis in patients with NAFLD confers increased 

risk of all-cause mortality and numerous strategies 

are available to include or exclude this group. We 

advocate sequential testing strategies starting with 

a low-cost simple blood marker such as Fib-4 or 

NFS, followed by a second-line test such as TE or 

ELF to risk stratify those in the “gray zone” from the 

first test. Those at higher risk should be referred to 

a secondary care liver clinic. Consideration should 

be paid to the implementation of any risk stratifica-

tion pathway to ensure engagement of stakeholders 

so as to maximize uptake and minimize dropout. 

A multidisciplinary NAFLD clinic to address 

liver-related and cardio-metabolic aspects of the 

condition, particularly diabetes, is recommended 

and data demonstrating the utility of such clinic 

models are emerging.

Lifestyle and Surgical Approaches to the 

Management of NAFLD

Commonly, the first-line recommendation in the 

management of patients with NAFLD is 7% to 10% 

weight loss, achieved through lifestyle changes (ie, 

changes in diet and exercise). While this may be 

a desirable goal, in practice, implementing and 

maintaining such a change can be challenging.

Exercise interventions

Physical activity is defined as any body movement 

generated by the contraction of skeletal muscles 

that raises energy expenditure above metabolic 

rate. It is characterized by modality, frequency, 

intensity, duration, and context of practice (365). 

Exercise is a subcategory of physical activity that 

is planned, structured, repetitive, and favors 

physical fitness maintenance or development 

(365). Thus, physical inactivity represents the 

nonachievement of physical activity guidelines; 

sedentary behaviors are waking behaviors 

characterized by an energy expenditure ≤1.5 met-

abolic equivalent while in sitting, reclining, or 

lying position, with screen time and sitting time 

typically being the 2 main indicators used to 

quantify sedentary behaviors (365). Physical ac-

tivity and sedentary behaviors are not opposites, 

rather individuals are considered physically active 

when they achieve the guidelines but that does not 

preclude them from having a significant propor-

tion of their day in sedentary behaviors (365). The 

effects of sedentary behaviors have been focused 

on recently with increasing evidence linking ex-

cessive sedentary behaviors and adverse health 

outcomes (365). Observational studies have 

suggested a strong positive association between 

sedentary behavior/decreased physical activity 

and prevalence of NAFLD (366). In support of 

these observations, Palve et al. reported that obese 

individuals classified as fit (based on their meas-

ured cardiorespiratory fitness through a peak ox-

ygen uptake test) were at a significantly lower risk 

of NAFLD than participants classified as obese 

and unfit (367). As physical activity/exercise has 

the potential to lower NAFLD risk, a number 

of interventional studies have been undertaken 

using various physical activity/exercise regimens. 

Typically, studies have measured change in liver 

fat content assessed by imaging techniques such 

as MRI, 1H-MRS, or US. Other studies have used 

the less specific and sensitive change in blood 

liver enzymes as their outcome measure.

The effect of aerobic exercise on liver fat con-

tent was first highlight by Johnson et al. (368). 

They reported that 4-weeks of aerobic exercise 

reduced liver fat content by 21% (as measured by 
1H-MRS) in the absence of significant weight loss 

in obese individuals. A number of other studies 

then followed including work by Sullivan et al. 

(369) who evaluated the weight loss-independent 

effects following the physical activity guidelines 

recommended by the United States Department 

of Health and Human Services on liver fat content 

and VLDL kinetics in sedentary, obese individuals 

with NAFLD (n = 18). Study participants were 

randomized to either 16 weeks of exercise training 

(45%–55% VO
2 peak

, 30–60 mins, 5 days/week; n 
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= 12) or to continue usual behavior (control, n = 

6). Overall they found exercising training signifi-

cantly decreased liver fat content (on average, by 

10.3%), did not change body weight or body fat, 

and did not alter hepatic VLDL-TG or VLDL-

ApoB100 secretion rates. These findings have 

been corroborated by a systematic review and 

meta-analysis investigating the effects of aerobic 

exercise on liver fat content. They concluded that 

when comparing interventions that combined ex-

ercise with diet to diet alone (omitting studies that 

achieved substantial weight loss), 30 to 60 minutes 

of moderate to high-intensity exercise performed 

on 2 to 5 days/week for 1 to 10 months resulted 

in a small, but significant reduction in liver fat 

content despite minimal or no weight loss (370). 

Notably, this benefit was achieved at exercise levels 

below the current recommendations for obesity 

management.

Subsequently, a number of studies have been 

undertaken investigating the effect of different 

types of structured exercise on liver fat content. 

The efficacy of 8 weeks of commonly prescribed 

aerobic exercise on liver fat content in a group of 

inactive and overweight/obese adults, independent 

of dietary intervention or weight loss has also been 

investigated (371). Participants were randomized 

to 1 of 4 groups: (i) low- to moderate-intensity, 

high-volume aerobic exercise 60 minutes, 4 days/

week (LO:HI, n = 12); (ii) high-intensity, low-

volume aerobic exercise 45 minutes, 3 days/week 

(HI:LO, n = 12); (iii) low- to moderate-intensity, 

low-volume aerobic exercise 45 minutes, 3 days/

week (LO:LO, n = 12); or (iv) placebo (n = 12). At 

the end of 8 weeks there was a significant change 

in group × time interaction (P = .04) in liver fat 

content which decreased by 2.38 ± 0.73% (mean 

± standard error of the mean), 2.62 ± 1.0%, and 

0.84 ± 0.47% in the HI:LO, LO:HI, and LO:LO 

groups respectively, and was independent of weight 

loss. These findings suggest that aerobic exercise 

reduces liver fat, and this can occur with either an 

emphasis on intensity over volume or volume over 

intensity, and even minimal engagement with ex-

ercise (LO:LO group) can lower liver fat in some, 

but not all, individuals (371). Therefore, it would 

seem that both the duration of exercise and its in-

tensity are important, allowing individuals to have 

a more personalized regimen (potentially aiding 

long-term compliance) to achieve similar results. 

A recent systematic review and meta-analysis by 

Smart et al. found that participants in interventions 

consisting of exercise alone typically had a liver fat 

content ~3.5% lower than controls subjects (372). 

Taken together, the evidence suggests that aerobic 

exercise has a beneficial effect on liver fat content, 

even when weight loss is not achieved.

Resistance training

Although many studies have investigated the 

effects of aerobic exercise on liver fat content, 

population-based studies have also suggested that 

individuals who engage in resistance training have 

a lower liver fat content than individuals who don’t. 

Interventional studies support this suggestion; for 

example, Hallsworth et al. (373) was one of the first 

to report that when sedentary adults (n = 11) with 

NAFLD underwent 8 weeks of resistance exercise 

(performed 3 times/week consisting of 8 exercises 

with each session lasting 45–60 minutes) despite 

no change in body weight or fat mass, there was 

a relative reduction in liver fat content of 13%, 

alongside improvements in lipid oxidation, glu-

cose control, and insulin resistance. Subsequently, 

a number of other studies investigating the effects 

of resistance training on liver fat content have been 

reported. For example, Zelber-Sagi et al. (374) 

randomized patients with NAFLD to either resist-

ance training (3 times/week; n = 31) or the control 

group of stretching (n = 31) for 3 months. They 

found the hepato-renal US index to be significantly 

reduced in the resistance training group, compared 

to the control group: total, trunk and android fat 

significantly decreased while lean mass body mass 

significantly increased in the resistance training 

group; there was no change in the control group. 

Although the current data are limited, it would ap-

pear that as with aerobic exercise, resistance exer-

cise has a beneficial effect on liver fat content even 

when weight loss is not achieved.

Comparing aerobic and resistance exercise

Recently, a systematic review compared the 

effects of aerobic versus resistance exercise on 

liver fat content and found that of the 18 studies 

identified as using aerobic exercise, liver fat con-

tent decreased in 17 of them while in 7 studies 

that were identified as resistance training, liver fat 

content was reported to decrease in 6 (375). In the 

study where liver fat did not change with aerobic 

training, a plausible explanation is that despite the 

intensity and duration being higher than other 

studies, the length of the study intervention was 7 

consecutive days, which was notably shorter than 

other studies (375). Why liver fat content did not 

change in the resistance training study remains 

unclear and cannot be explained by differences in 

study participants, intervention intensity, duration 

or length (375). Taken together either aerobic or 

resistance training, when performed regularly over 
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a periods of longer than 7 days, appear to be bene-

ficial in decreasing liver fat content.

High-intensity interval training

In recent years, high-intensity interval training 

(HIIT) has become popular. HIIT involves high-

intensity exercise divided into bouts and recover 

periods and has been suggested to provide com-

parable or greater benefits to cardiorespiratory fit-

ness than continuous moderate-intensity training 

of longer duration (376). By using a modified HIIT 

program, that was considered realistic and safe for 

participants with low baseline fitness, Hallsworth 

et al. (377) demonstrated that modified HIIT 

training 3 times/week for 12 weeks resulted in a sig-

nificant decrease (relative change ~26%) in liver fat 

content, along with significant decreases in body 

mass and fat mass, with no change in the control 

group. Twelve weeks of HIIT training has also been 

reported to significantly decrease liver fat content 

(39% relative reduction) in individuals with T2D 

(metformin and diet controlled) compared to 

those randomized to standard care (378).

Mechanisms linking exercise interventions and 

improvements in NAFLD

The mechanisms by which exercise reduces liver fat 

content appear to have received little attention. It 

has been demonstrated that a single bout of exercise 

stimulation increases adipose tissue blood flow and 

fat mobilization, resulting in the delivery of fatty 

acids to other organs, such as skeletal muscle (379). 

It remains unclear if exercise leads to fat mobiliza-

tion with in the liver, but it could be speculated that 

fatty acids are liberated from stored TAG during ex-

ercise and then these fatty acids, along with those 

liberated from adipose tissue that enter the liver, are 

utilized in oxidation, rather than the esterification 

pathways (379). Indeed, the study by Hallsworth 

et al. (373) supports this concept as they found an 

increase in fat oxidation during a submaximal ex-

ercise test in individuals who did 8 weeks of resist-

ance training compared to no change in the control 

group; there was no change in fasting fat oxidation 

in either group. By investigating VLDL kinetics be-

fore and after 16 weeks of moderate-intensity aer-

obic exercise, Shojaee-Moradie et al. (380) found 

that although exercise had no effect on VLDL pro-

duction rates, the clearance rate of VLDL was sig-

nificantly increased, and this may have contributed 

to the significant decrease in liver fat that was 

observed. More work investigating changes in he-

patic fatty acid uptake, synthesis, and disposal is re-

quired to understand the effect exercise may have 

on these pathways.

Overall, there is clear evidence demonstrating 

that exercise, be it aerobic, resistance, or modified 

HITT training, has the ability to lower liver fat 

content to a similar degree, even when in the ab-

sence of weight loss, which suggests that exercise 

can be personalized to achieve the best results. For 

example, in individuals who are unable to under-

take aerobic exercise (due to contraindications) 

then a program of resistance exercise would be of 

benefit. Equally combining exercise with calorie 

restriction to achieve weight loss may have an ad-

ditive effect.

Calorie restriction

A consistent finding in the literature is that a 

significant reduction in body weight is associ-

ated with a significant reduction in liver fat con-

tent, highlighting the effectiveness of weight loss 

as prevention or treatment strategy for NAFLD. 

Therefore, weight reduction is recommended by 

all the scientific societies worldwide (381) and is 

suggested to be achieved through a calorie deficit 

of between 500 and 1600 kcal/day. With regards to 

the precise type of diet that should be consumed, 

there is no consensus in what is suggested; a va-

riety of dietary regimens have been advocated 

including low to moderate fat and moderate to 

high carbohydrate intakes; low-carbohydrate, 

ketogenic diets; and high-protein Mediterranean 

diets. Currently, very low calorie diets (VLCDs) are 

not recommended by the Asia-Pacific guidelines 

as they are considered unsustainable (381), but 

there is growing interest in their use as a treatment 

strategy in metabolic disease.

A number of studies have been undertaken 

investigating the effect of a hypocaloric diet on liver 

fat content, which we have previously reviewed 

(382). Briefly, studies have been undertaken 

with calorie restriction (between 600–1500 kcal/

day) for periods between 2 weeks and 2 years, 

using a variety of dietary regimes including high-

carbohydrate, low-fat and low-carbohydrate; high-

fat diets. Regardless of the dietary intervention, all 

studies found a significant decrease in liver fat con-

tent to varying degrees, which will be influenced by 

the phenotype of the participants (these studies are 

typically undertaken in individuals with a BMI > 

25 kg/m2), the length and possibly composition of 

the dietary intervention and the actual calorie def-

icit achieved (382). With the hypocaloric diets that 

have been used, there are 2 different approaches: a 

relatively modest reduction in energy intake of 600 

to 800 kcal/day for longer periods (6–11 months) 

(383–385) or a more severe reduction in energy in-

take so that the participant is consuming a VLCD 
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of 450 to 800 kcal/day for period of 6 to 8 weeks 

(386–388). When compared, the changes in body 

mass and liver fat content are greater on the VLCD 

compared to the more modest changes; however, 

whether these changes are maintained long-term 

remains to be determined. In the study by Lim et 

al. (389) where individuals with T2D consumed a 

VLCD for 8 weeks, they identified rapid and sig-

nificant changes in liver fat content. During the 

first week of the intervention, liver fat decreased 

by 30% and continued to decline to achieve a total 

reduction of 70% (along with a 15% reduction in 

body mass), with the liver fat content then being 

comparable to control subjects (liver fat content 

2.9%) (389). These data demonstrate how rapidly 

a decrease in liver fat content can be achieved with 

aggressive calorie restriction. Following on from 

this observation, the Diabetes Remission Clinical 

Trial (DiRECT) utilized a VLCD for an average of 4 

months and found that although some individuals 

achieved remission of their diabetes (“responders”) 

and some did not (“nonresponders”), both groups 

achieved comparable decreases in body mass of 16 

kg and 13 kg, respectively, and in liver fat content 

of 13% and 12%, respectively (388). After 4 months 

of VLCD, participants in DiRECT went through a 

stepped food reintroduction program and entered 

a weight maintenance diet for a further 8 months. 

At 12 months, the decrease in liver fat content was 

maintained in the responders and had increased 

slightly in the nonresponders; the authors noted 

that the increase in liver fat content during the 

weight maintenance period was related to degree 

of weight gain (388).

Recently, Schwenger et al. (390) determined 

the effect of the prebariatric VLCD in 139 obese 

individuals (median BMI 47 kg/m2) and found that 

with a median duration on a VLCD of 3 weeks, the 

median weight loss was approximately 7 kg, and 

when liver histology was assessed the prevalence 

with normal histology, simple steatosis, and NASH 

was 24%, 81%, and 19%, respectively. As the authors 

noted, prevalence was lower than predicted, which 

may be due to the fact that individuals had followed 

the VLCD prior to having the liver biopsy (390). It 

is currently unclear as to why some individuals re-

spond to a VLCD and others don’t and how these 

diets influence NASH. A calorie deficit is impor-

tant for weight loss as well as decreasing liver fat 

content, and this is achieved rapidly using a VLCD; 

however, what remains to be determined is how 

well weight loss and the reduction in liver fat con-

tent are maintained longer term.

Aside from recommending calorie restric-

tion, there is no consensus between the difference 

guidelines on the precise gold standard dietary 

intervention (381). For example, the EASL rec-

ommend low- to moderate-fat and mod-

erate- to high-carbohydrate diets along with 

low-carbohydrate ketogenic diets and high-

protein Mediterranean diets while the Italian 

Association for the Study of the Liver recommends 

a Mediterranean diet, and others make no spe-

cific recommendations (381). Taking the available 

evidence, findings are mixed as to whether in the 

context of a hypocaloric diet, macronutrient com-

position has an effect of the decrease in liver fat 

content achieved. For example, Haufe et al. (384) 

observed a similar reduction in liver fat content 

of approximate 45% when comparing diets that 

achieved a calorie deficit by reducing either fat or 

carbohydrate. Thus, it would seem that in the con-

text of a hypocaloric diet, the macronutrient com-

position has little effect on the achieved decrease in 

liver fat content, and it is likely that the key factor 

to achieve a decrease in liver fat content is total cal-

orie deficit. Although the mechanisms related to 

these changes are not well described, it would be 

reasonable to assume that changes are mediated 

through the following: decreased substrate for 

intrahepatic TAG production due to a reduction in 

fatty acids entering the liver either from diet or ad-

ipose tissue lipolysis, decreased intrahepatic DNL 

due to decreased substrate availability, which would 

lead to a repartitioning of intrahepatocellular fatty 

acids away from esterification and toward oxi-

dation pathways (391). Overall, negative energy 

balance leading to weight loss is associated with 

a reduction in liver fat content, and this remains 

true irrespective of whether the calorie deficit is 

achieved by acute, VLCD interventions, or more 

modest reductions in calorie intake over an ex-

tended period.

Bariatric surgery

In 1978, bariatric surgery was defined as being 

metabolic surgery by Varco and Buchwald (392). 

Indeed, metabolic surgery is broadly the capability 

of surgery to contribute to proactive health care of 

which indeed bariatric surgery is only one aspect 

(392). A meta-analysis undertaken by Buchwald 

et al. in 2004 (393) found that bariatric operations 

were effective for weight loss in morbidly obese 

patients, and in the majority of patients with T2D, 

hyperlipidemia, hypertension, and OSA, there was 

either resolution or improvement.

Historically, the 6 dominant procedures in 

bariatric surgery are jejunoileal bypass, Roux-

en-Y gastric bypass (RYGB), vertical banded 

gastroplasty, biliopancreatic diversion (and the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/4

1
/1

/6
6
/5

6
0
1
1
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



93doi: 10.1210/endrev/bnz009 https://academic.oup.com/edrv

REVIEW

related duodenal switch), adjustable gastric 

banding (AGB), and sleeve gastrectomy (SG), of 

which RYGB has been suggested to be the most 

effective treatment for obesity as it achieves 

greater weight loss than other procedures; SG and 

AGB are alternative surgical approaches that min-

imally alter upper gastrointestinal tract anatomy 

and reduce gastric volume but still achieve weight 

loss (394). Maciejewski et al. (395) compared the 

10-year weight change in a large, multisite, clin-

ical cohort of veterans who underwent RYGB 

compared with nonsurgical matches, along with 

the 4-year weight change in veterans who under-

went RYGB, AGB, or SG and found patients who 

underwent RYGB lost 21% more of their baseline 

weight at 10 years than nonsurgical matches. At 

4 years, the decrease from baseline weight was 

16.9% greater in patients who underwent RYGB 

than patients undergoing AGB, who lost 9.7% 

more than patients undergoing SG.

Due to the dramatic effects on body weight and 

also the evidence for substantial improvement in 

obesity-related metabolic diseases, some, but not 

all, scientific societies worldwide recommend con-

sidering bariatric surgery an option for NAFLD 

in patients unresponsive to lifestyle changes 

(and pharmacotherapy) for reducing weight 

and complications (381). In a recent system-

atic review and meta-analysis by Lee et al. (396), 

they concluded that bariatric surgery resulted in 

biopsy-confirmed resolution of steatosis in 66% 

of patients, inflammation in 50% of patients, bal-

looning degeneration in 76% of patients, and fi-

brosis in 40% of patients. Although these findings 

clearly highlight the resolution of NAFLD in a 

large proportion of patients who undergo bari-

atric surgery, the authors also found that bariatric 

surgery was related to new or worsening features 

of NAFLD (eg, fibrosis) in 12% of patients (396). 

It remains unclear why some patients may have 

worsening of conditions, and it has been suggested 

that this may be related to the precise bariatric pro-

cedure that was performed and the extent of mal-

nutrition and malabsorption experienced (397). 

Although there are a vast number of papers now 

investigating the effects of bariatric surgery on 

NAFLD and they all show, to varying degrees, that 

bariatric surgery leads to resolution in NAFLD in 

obese patients when measured histologically using 

imaging methods or blood markers (eg, fibrosis 

score, NAFLD activity score), it is difficult to deter-

mine if one surgical procedure has benefit over an-

other due to a lack of randomized trials. Although 

a number of studies have compared the effects of 

different bariatric procedures, few have compared 

the different bariatric procedures on liver-specific 

parameters. One such study that attempted to do 

this compared liver parameters (using ultrasonog-

raphy and blood markers) before and then 1 year 

after individuals had undergone either RYGB or 

SG (398). Weight loss at 1-year postoperatively 

was significantly greater in the RYGB group when 

compared to those who underwent SG. In addi-

tion, there were also differences in other meta-

bolic markers including cholesterol and insulin. 

However, blood transaminase levels were signifi-

cantly higher in the RYGB group compared the SG 

group. Clearly more studies robustly comparing 

the different bariatric procedures are required. 

Moreover, there are no randomized clinical trials 

in this area nor are there studies that have assessed 

patients at a similar point of weight loss, rather 

than time after surgery, so that the effect of the 

procedures cannot be robustly compared. It is 

clear that RYGB results in a more rapid weight loss, 

however, whether the longer-term effects on liver 

metabolism are similar needs to be determined. 

In addition, the mechanisms by which bariatric 

surgery alters liver fat content (and presumably 

metabolism) need to be elucidated. Although it is 

assumed that the change in liver fat after bariatric 

surgery is due to food restriction or malabsorption 

or a combination, it is plausible that changes in gut 

hormones or changes in other metabolic tissues, 

such as adipose tissue, also play a role (399).

Pharmacotherapy to Treat NAFLD

The therapeutic landscape in NAFLD is rapidly 

evolving. There are still no currently licensed 

therapies although several treatment modalities are 

currently in phase 3 development, and it is likely 

that within the next few years we will see the first 

therapies granted a license specifically for the treat-

ment of NAFLD. A summary of agents currently 

being evaluated for the treatment of NAFLD are 

presented in Tables 1–3.

Glucose lowering agents in the treatment of 

NAFLD

While there are many agents currently at various 

stages of development, there are many studies 

that have used established glucose lowering, 

antidiabetic agents with an existing license for glu-

cose control as potential treatments for NAFLD 

(Table 1). The use of these agents can, therefore, be 

considered not only to optimize glycemic control, 

but also potentially to convey a beneficial impact 

on the liver.
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Table 1. The Impact of Anti-Diabetic, Glucose Lowering Agents as Pharmacotherapy to Treat NAFLD

Agent

Mechanism of 

action

Impact on liver biochem-

istry and / or non-invasive 

assessments of NAFLD 

disease status Impact on liver histology Comments References

Metformin Multiple 

mechanisms 

including 

AMPKinase 

activation

Some but not all studies,  

have shown improvements 

in liver chemistry and 

 hepatic steatosis

Meta-analyses have shown 

no significant benefit on 

liver histology

Remains the first line pharmacotherapy for 

patients with T2D. Its use specifically for the 

treatment of NAFLD is not recommended.

(400, 401)

Pioglitazone PPARγ agonist Consistent improvements 

in liver chemistry and 

reductions in hepatic 

steatosis.

Decreased steatosis and 

inflammation, with res-

olution of NASH. Some 

evidence to suggest that 

fibrosis may improve

Despite the histological benefits, widespread 

use is currently limited, potentially by 

concerns over adverse effects including 

weight gain, bone fracture risk and fluid 

retention.

(402–407)

Liraglutide GLP-1 analog Improved liver chemistry  and 

decreased hepatic steatosis.

Decreased steatosis, inflam-

mation and resolution of 

NASH without worsening 

of fibrosis

To date, only data from small studies have 

been published and the relative contribu-

tion of weight loss and improvement in 

glycaemic control to the observed benefits 

in NASH are yet to be determined.

(408–415)

Exenatide GLP-1 analog Improvements in liver chem-

istry and fatty liver index

n/a  (416–418)

Lixisenatide GLP-1 analog Improvement in ALT in obese 

and overweight individuals

n/a  (419)

Semaglutide GLP-1 analog n/a n/a Phase 2 studies currently recruiting (420)

Dulaglutide Long acting GLP-1 

analog

Improved liver chemistry Histological report of im-

provement in a single case

No dedicated histological studies performed 

to date. Phase 2 studies are recruiting.

(421, 422)

HM1522 GLP-1/GIP/ 

Glucagon triple 

agonist

n/a n/a Early phase 2 studies currently recruiting. (423)

Sitagliptin DPPIV inhibitor Inconsistent results and some 

studies have failed to show 

improvements in liver 

chemistry or liver TAG 

content.

Limited histological evidence 

of benefit with incon-

sistent results; improve-

ment in NAS in some 

studies but not all.

Overall the data do not suggest that there 

is significant benefit when used as a 

 treatment for NAFLD.

(412, 424, 425)

Vildagliptin DPPIV inhibitor Improved liver chemistry 

and decreased liver TAG 

content

n/a  (426)

Empagliflozin SGLT2 inhibitor Improvements in liver 

 chemistry and decreased 

hepatic TAG content

Some evidence for histolog-

ical improvement in an 

open label study.

 (427–429)

Canagliflozin SGLT2 inhibitor Some evidence of 

improvements in liver 

chemistry and surrogate 

markers of fibrosis in very 

small numbers of patients. 

Reduction in liver TAG con-

tent and increased hepatic 

insulin sensitivity

Improvement in inflamma-

tion and steatosis in a 

single biopsy study.

Uncontrolled liver biopsy study, with very 

small numbers (n = 9) with no placebo or 

other comparator arm

(430, 431)

Ipragliflozin SGLT2 inhibitor Some evidence for improve-

ment in liver chemistry 

with variable changes in 

markers of fibrosis.

Single case report of histo-

logical improvement in 

steatosis, inflammation 

and ballooning

 (406, 432, 433)
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Agent

Mechanism of 

action

Impact on liver biochem-

istry and / or non-invasive 

assessments of NAFLD 

disease status Impact on liver histology Comments References

Dapagliflozin SGLT2 inhibitor Improvements in liver chem-

istry and reduction in liver 

TAG content. No impact 

on increased hepatic in-

sulin sensitivity

n/a  (434, 435)

Licogliflozin Dual SGLT1 and 2 

inhibitor

n/a n/a Early phase 2 studies currently recruiting. (436)

Abbreviations: ALT, alanine aminotransferase; AMPKinase, adenosine 5' adenosine monophosphate-activated protein kinase; DPPIV, dipeptidyl peptidase-4; GIP, gastric inhibitory 

polypeptide; GLP-1, glucagon‐like peptide‐1, NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; PPARγ, peroxisome proliferator-activated receptor gamma; 

SGLT1, sodium-dependent glucose co-transporter 1; SGLT2, sodium-dependent glucose co-transporter 2; T2D, type 2 diabetes mellitus; TAG, triglyceride.

Table 1. Continued

Table 2. Liver-Targeted Therapies Currently in Development for the Treatment of NAFLD

Agent Mechanism of action

Impact on liver biochem-

istry and / or non-invasive 

assessments of NAFLD di-

sease status Impact on liver histology Comments References

Liver-targeted therapies (anti-inflammatory and antifibrotic)

Obeticholic acid FXR agonist Improvements in liver chem-

istry

Resolution of NASH and 

improvements in fibrosis

Phase 3 studies are currently 

recruiting (including patients 

with NASH cirrhosis).

(437)

GS-9674 FXR agonist n/a n/a Biochemical improvements 

in patients with PSC, ded-

icated studies in patients 

with NAFLD are currently 

recruiting.

(438)

Tropifexor 

(LJN452)

Non-bile acid FXR agonist n/a n/a Phase 2 studies currently 

recruiting

(439)

Elafibranor Dual PPAR α/δ agonist Improvements in liver chem-

istry as well as lipid profiles 

and glucose homeostasis in 

patients with T2D.

Resolution of NASH without 

worsening in fibrosis

Phase 3 studies are currently 

recruiting

(440)

Lanifibranor 

(IVA337)

Pan-PPAR agonist n/a n/a Phase 2 studies are currently 

actively recruiting

(441)

Saroglitazar Dual PPARα/γ agonist n/a n/a Phase 2 studies are currently 

actively recruiting

(442)

Cenicriviroc Dual CCR2/5 antagonist No changes in liver chemistry 

or steatosis

Primary end point for resolu-

tion of NASH was not met 

in the phase 2 studies, but 

improvements in fibrosis 

were observed.

Some improvement in systemic 

markers of inflammation. 

A large phase 3 is currently 

recruiting

(443)

Vitamin E Multiple mechanisms  in-

cluding anti-oxidant actions

Inconsistent improvements in 

liver chemistry and steatosis

Resolution of NASH in some 

studies, but not all; no im-

pact on fibrosis

 (432, 444)

GR-MD-02 Glactin-3 protein inhibition No changes in liver chemistry 

in the early phase studies 

published to date.

No significant change in 

NASH, although ballooning 

decreased. No change in 

fibrosis

Liver biopsy studies performed 

in patients with NASH 

cirrhosis.

(445, 446)
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Agent Mechanism of action

Impact on liver biochem-

istry and / or non-invasive 

assessments of NAFLD di-

sease status Impact on liver histology Comments References

NGM282 FGF19 analog Improvements in liver chem-

istry and steatosis

Early phase 2 study has 

demonstrated improvements 

in steatosis, inflammation 

and fibrosis

A larger phase 2 study is actively 

recruiting.

(447, 448)

LY2405319 FGF21 analog n/a n/a Evidence for lipid lowering in 

patients with type 2 diabetes

(449)

Pegbelfermin 

(BMS-986036)

FGF21 analog Decreased hepatic steatosis n/a A series of phase 2 studies are 

currently recruiting.

(450)

Resmetirom, 

MGL-3196

Thyroid Hormone Receptor-β 

agonist

Decreased hepatic steatosis Resolution of NASH and 

decreased steatosis

A phase 3 study is actively 

recruiting

(50, 451)

Selonsertib Apoptosis signal-regulating 

kinase 1 inhibitor

Improvements in liver chem-

istry.

Improved fibrosis at the highest 

doses.

 (452)

Simtuzumab lysl oxidase-like-2 inhibition No significant changes in liver 

biochemistry.

No improvement in NASH or 

fibrosis.

No benefit on histological anal-

ysis or on clinical outcomes

(453)

Pentoxifylline Multiple mechanisms including 

anti-inflammatory actions 

and reduction in free oxygen 

radial generation

No change in liver chemistry Evidence for improvement in 

NASH and fibrosis

 (454, 455)

Emricasan Pan-caspase inhibition Improved liver chemistry n/a Short duration early phase 

studies only have been 

reported

(456, 457)

SGM-1019 Inflammasome inhibition n/a n/a Safe and well tolerated in a 

phase 1 study. A phase 2 

study is actively recruiting

(458, 459)

JKB-121 Toll-like receptor 4 antagonism No impact on hepatic steatosis n/a Relatively high adverse event 

rate leading to drug with-

drawal

(460)

IMM-124E Limitation of endotoxin ex-

posure

n/a n/a Phase 2 study completed, but 

results not yet reported

(461)

Amlexanox IKKb and TANK-binding kinase 

1 inhibition

Some evidence for decreased 

hepatic steatosis in patients 

with diabetes

n/a  (462)

Tipelukast (MN-

001)

Phosphodiesterase and 

5-lipoxygenase inhibition 

and leukotriene receptor 

antagonism

n/a n/a Phase 2 studies are currently 

recruiting

(463)

DS102 5-lipoxygenase inhibition n/a n/a Phase 2 studies are currently 

recruiting

(464, 465)

BI 1467335 Vascular adhesion protein-1 

inhibition

n/a n/a Early phase 2 studies are cur-

rently recruiting

(466)

MSDC-0602K Mitochondrial pyruvate carrier 

inhibition

Evidence for improved meta-

bolic as well as surrogates of 

hepatic inflammation and 

fibrosis on interim analysis

n/a Large phase 2 study 

(EMMINENCE) currently 

recruiting

(467, 468)

Hepatic lipid metabolism

GS-0976 Acetyl-Coenzyme A Carbox-

ylase Inhibition

Improved liver chemistry and 

hepatic steatosis

n/a  (469, 470)

Table 2. Continued
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Table 3. Lipid Lowering Drugs as Pharmacotherapy to Treat NAFLD

Agent

Mechanism of 

action

Impact on liver biochemistry and / or 

non-invasive assessments of NAFLD 

disease status Impact on liver histology Comments References

Simvastatin HMG CoA 

reductase 

inhibitor

Some evidence for improved liver 

 chemistry

No evidence of benefit in a small (n 

= 16) study

Study may have been under-

powered to detect histolog-

ical improvement.

(477, 478)

Atorvastatin HMG CoA 

reductase 

inhibitor

Some evidence for improved liver 

 chemistry

No improvement on inflammation 

or fibrosis on liver histology

 (479–481)

Pitavastatin HMG CoA 

reductase 

inhibitor

Some evidence for improved liver chem-

istry

No improvement on liver histology  (482, 483)

Omega3-fatty 

acids

 Some evidence for improved liver chem-

istry and decreased steatosis

Little evidence to suggest 

 significant improvements in 

inflammation or fibrosis

 (484–488)

Fenofibrate PPARα agonist Some evidence for improved liver 

 chemistry and steatosis on ultrasound 

scanning, but no change in intra-

hepatic TAG in detailed mechanistic 

studies

n/a Some conflicting data, unlikely 

to have any significant im-

pact on liver TAG content.

(489–492)

Pemafibrate PPARα agonist n/a n/a Phase 2 studies are currently 

actively recruiting.

(493)

Abbreviations: HMG CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; NAFLD, nonalcoholic fatty liver disease; PPARα, proliferator-activated receptor alpha; TAG, triglyceride.

Agent Mechanism of action

Impact on liver biochem-

istry and / or non-invasive 

assessments of NAFLD di-

sease status Impact on liver histology Comments References

Aramchol Stearoyl coenzyme A 

desaturase 1 inhibition

No change in liver chemistry, 

but decreased hepatic 

steatosis

n/a Phase 2b completed although 

not reported.

(471)

Gut microbiome

Probiotics Alteration in gut microbiome Improvements in liver chem-

istry and steatosis

n/a  (472)

Solithromycin Macrolide antibiotic n/a Improved NAS in small proof-

of-concept study

 (473)

Fecal microbiome 

transplantation

 n/a n/a Several phase 2 studies cur-

rently recruiting

(474–476)

Abbreviations: FGF19, fibroblast growth factor 19; FGF21, fibroblast growth factor 21; FXR, farnesoid X receptor; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic 

steatohepatitis; PPARα/δ, peroxisome proliferator-activated receptor alpha/delta, PPARα/γ, peroxisome proliferator-activated receptor alpha/gamma; PSC, primary sclerosing cholangitis.

Table 2. Continued

Biguanides

Metformin  Metformin is established as the first-

line pharmacotherapy therapy in the treatment of 

T2D. It has multiple mechanisms of action including 

the activation of AMP kinase as well as altering mi-

tochondrial function and cellular redox state (494). 

Rodent studies have provided a considerable body 

of evidence to suggest that it may have utility in 

the treatment of NAFLD. However, clinical studies 

have been less convincing (495). While there was 

initially evidence to suggest that it may have a ben-

efit on lipid accumulation and inflammation, more 

recent meta-analysis of data has suggested a lack of 

convincing histological benefit and therefore as a 

therapy specifically for NAFLD, although safe, it is 

not currently advocated (400, 401).
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Peroxisome proliferator-activated receptor gamma 

agonists (thiazolidinediones) 

The thiazolidinediones are a class of glucose-

lowering agents that act predominantly, although 

not exclusively, as peroxisome proliferator-activated 

receptor gamma agonists. These agents act to im-

prove insulin sensitivity; much of their activity 

is directed toward adipose tissue where they in-

crease adiponectin expression and drive adipocyte 

differentiation. Clinical studies have consistently 

demonstrated clinical benefits including reductions 

in hepatic steatosis and resolution of NASH 

(161, 402, 403). The landmark PIVENS study (in 

patients with NASH, but without T2D) compared 

pioglitazone to vitamin E and placebo (404). While 

vitamin E appeared superior to placebo in terms of 

the primary end-point (although this was compli-

cated by the lack of hepatocyte ballooning, a defined 

part of the composite primary end-point, in many 

patients at baseline), pioglitazone reduced steatosis 

and inflammation and resolved NASH in 47% of 

patients (compared with 34% on vitamin E and 18% 

on placebo). More recent studies including patients 

with T2D have continued to demonstrate histolog-

ical benefits of pioglitazone treatment with the ad-

ditional suggestion that fibrosis may improve (161).

Despite the demonstrable benefits to liver 

histology and published clinical guidance that 

advocates consideration of its use, it remains rel-

atively underutilized as a therapeutic option. This 

may reflect concerns over its adverse effect profile, 

including fluid retention, weight gain (up to 5 kg 

over 3 years), and increased risk of bone fractures 

(405). Concerns over cardiovascular risk have been 

raised. This perhaps reflects previous studies using 

rosiglitazone suggesting increased myocardial in-

farction risk, although subsequently the RECORD 

study showed no overall impact on cardiovascular 

morbidity or mortality (496, 497). Specifically with 

regards to pioglitazone, data suggest that it may ac-

tually reduce cardiovascular and cerebrovascular 

risk as well as progression to T2D, all of which are 

important, bearing in mind the adverse cardiovas-

cular risk profile associated with NAFLD (498–500). 

Its use in patients with compromised cardiac func-

tion is contraindicated due to concerns that this 

may worsen symptoms potential due to increased 

fluid retention. The most recent analysis of data has 

been reassuring with regards to the concerns that 

had been raised about the risk of bladder cancer as-

sociated with pioglitazone use (501).

Glucagon-like peptide 1 analogs 

The incretin effect describes the augmentation 

of the insulin secretion in response to an oral, 

as opposed to intravenous, glucose load. This 

is largely mediated by GLP-1, which is released 

from the intestinal L-cells. GLP-1 agonist therapy 

is now established as a highly potent and effica-

cious glucose lowering and weight loss interven-

tion. Retrospective analysis of data from the LEAD 

series of studies demonstrated that liraglutide 

caused a dose-dependent decrease in ALT in 

those individuals in whom liver chemistry was ab-

normal at baseline (502). There was no impact in 

those with normal liver blood test. Subsequently, 

prospective studies have demonstrated histolog-

ical improvement and resolution of NASH using 

liraglutide; 36% of patients had resolution of 

NASH (compared with 9% in the placebo-treated 

arm) (408). Currently, this is the only study that 

has looked at histological outcomes, although 

other studies using liraglutide, exenatide, and 

lixisenatide have shown improvements in hepatic 

insulin sensitivity, liver biochemistry, and lipid 

content (409–414, 416, 419).

The mechanism of action of GLP-1 analogs 

to improve NAFLD remains to be clarified. 

Controversy remains as to whether the GLP-1 re-

ceptor is expressed in human hepatocytes, although 

in vitro observations have suggested that GLP-1 ag-

onism can decrease DNL in human hepatocyte pri-

mary cultures (503). However, many studies have 

failed to identify the GLP-1 receptor in human and 

rodent hepatocytes (504, 505). The confounding 

issue of weight loss and improvements in glycemic 

control remain to be disentangled from the poten-

tial direct benefits of GLP-1 analog therapy, and 

therefore a mechanism of action that indirectly 

benefits the liver remains entirely plausible.

There is now an established body of evidence 

from the SUSTAIN, LEADER, and REWIND trials 

to demonstrate deceased cardiovascular risk associ-

ated with semaglutide, liraglutide, and dulagluitde 

use (506–508). Taking into account the increased 

cardiovascular risk associated with NAFLD, there 

is a growing body of evidence to suggest that this 

class of agent has the potential to offer significant 

clinical benefit to all patients with NAFLD irre-

spective of whether they do or do not have T2D. 

A large phase 2 study in patients with NASH using 

liver biopsy endpoints is currently trialing 3 dif-

ferent doses of semaglutide versus placebo and 

is due to complete toward the end of 2019 (420). 

Long-acting, once weekly GLP-1 analog therapy is 

now widely used. Although there are no histolog-

ical data, weight and liver chemistry improve with 

treatment (421, 422) and dedicated phase 2 studies 

are currently recruiting (509, 510). More recently, 

novel compounds with multiple agonist properties 
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are being developed; for example, HM1522 is a 

GLP-1/gastric inhibitory polypeptide/glucagon 

triple agonist and is currently be trialed in the con-

text of NAFLD (423).

Dipeptidyl peptidase IV inhibitors 

The enzyme dipeptidyl peptidase IV (DPP IV) 

is responsible to the degradation of endogenous 

GLP-1. Synthetic GLP-1 analogs that are currently 

used clinically are resistant to the actions of DPP 

IV, and this is a crucial mechanism that prolongs 

their half-life and facilitates their clinical utility. 

Very few histological studies have been performed 

to examine the impact of DPP IV inhibition in 

NAFLD; in one study (without a placebo control 

arm), there was some evidence of histological im-

provement in NAS after 1 year of treatment, but 

no benefit was found in a further study (511, 512). 

Additional studies have looked at liver TAG con-

tent and biochemistry (412, 424, 425) and failed to 

demonstrate significant benefit, although a single 

study has reported improvement with vildagliptin 

(426). However, currently, there is no convincing 

evidence that this class of agent has any beneficial 

impact upon NAFLD.

Sodium glucose co-transporter 2 inhibitors 

The most recent class of glucose-lowering agents to 

gain approval for clinical use are the sodium glu-

cose co-transporter 2 (SGLT2) inhibitors. Through 

inhibition of SGLT2, they prevent the reabsorp-

tion of the vast majority (>90%) of glucose that has 

been filtered. They are highly effective as glucose-

lowering agents and cause weight loss (as a conse-

quence of glucose loss). In addition, studies have 

consistently demonstrated a significant improve-

ment in cardiovascular outcome associated with 

SGLT2 use (513–515), although the mechanisms 

that underpin this observation are yet to be deter-

mined. Controlled clinical studies in the context of 

NAFLD that have histological endpoints have not 

been completed; however, several small studies (in-

cluding open label and uncontrolled studies) have 

shown improvements in liver chemistry, improved 

glycemic control, weight loss, and reductions in 

liver TAG content as assessed using 1H-MRS, al-

though these benefits have not been observed 

in all studies that have been reported (406, 427, 

428, 430, 516, 517). Recently, double-blind pla-

cebo controlled studies have been reported using 

canagliflozin (431) and dapagliflozin (434, 435) 

in patients with T2D. Hepatic insulin sensitivity 

improved with canagliflozin, but not dapagliflozin, 

and with both treatments, there were modest re-

duction in intrahepatic TAG (431, 434). A single 

uncontrolled study has reported histological 

improvements in NAFLD severity after 24 weeks 

of treatment with canagliflozin (518). Studies in 

patients without T2D have not been reported.

While there is potential that this class of agents 

may convey significant clinical benefit (including 

cardiovascular risk reduction and weight loss), 

there is a pressing need for well-designed, pro-

spective clinical studies with relevant clinical 

outcomes. These drugs are generally well tolerated; 

genitourinary infections are reported in up to 5% 

of individuals, and there is the potential to develop 

increased urinary frequency, dehydration, and pos-

tural hypotension. Concerns have also been raised 

about the development of diabetic ketoacidosis, 

and while recent data seem to be reassuring, there 

is still a need for vigilance for potentially life-

threatening adverse events (519, 520). Licogliflozin 

is a dual SGLT1 and SGLT2 inhibitor that has 

been shown to cause weight loss in patients with 

and without T2D (521), and studies are currently 

examining its impact on hepatic steatosis (436).

Lipid-lowering drugs

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 

inhibitors 

It is well established that patients with NAFLD 

are at increased cardiovascular risk. Furthermore, 

in patients with T2D, the use of lipid-lowering 

therapy, usually in the form of 3-hydroxy-3-

methyl-glutaryl-coenzyme A (HMG-CoA) reduc-

tase inhibitors (statins) is regarded as best clinical 

practice. Statins are known to have multiple effects 

that might be beneficial to patients with NAFLD 

including anti-inflammatory actions as well as 

reducing oxidative stress. Statin therapy can be 

associated with elevated liver enzymes in some 

individuals. However, establishing a temporal rela-

tionship is important as elevations in liver enzymes 

may reflect underlying NAFLD and may not be re-

lated to the initiation of statin therapy.

Only a relatively small number of studies 

have specifically tested the hypothesis that statin 

therapy may alter the natural history of NAFLD, 

and many of these have been open label and 

lacking appropriate controls. Short-duration 

studies have suggested that liver chemistry may 

improve in those individuals with elevated liver 

blood tests at baseline and in those with evidence 

of elevated hepatic TAG content (482). In addition, 

there is some evidence to suggest improvements 

in liver chemistry as well as histological NAS as-

sessment without alteration in fibrosis (479), but 

study design was compromised by the lack of a 
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suitable placebo control group. Additional very 

small open label studies using pitavastatin and 

rosuvastatin have also shown improvements in 

liver chemistry, but not in liver histology (477, 

480, 483). In a single, small, prospective placebo-

controlled study, simvastatin (40 mg) used for 12 

months failed to show any histological benefit or 

any impact on liver chemistry (478). However, 

the study had very small numbers (simvastatin n 

= 10, placebo n = 6) and may well have been un-

derpowered to detect biochemical or histological 

changes.

Overall, while statins appear to be safe and rea-

sonably well tolerated (522), there is a lack of ap-

propriately designed clinical studies that have been 

able to determine if they have a beneficial impact, 

specifically upon the natural history of NAFLD. 

However, they have established proven efficacy to 

improve cardiovascular outcome, and therefore 

their use in patients with NAFLD should not nec-

essarily be aimed at disease modification within 

the liver, but rather at more holistic cardiovascular 

reduction (523).

Omega-3 poly-unsaturated fatty acids 

The beneficial effects of the omega-3 long chain 

fatty acids on circulating hypertriglyceridemia are 

well established. Many studies have been performed 

investigating whether these agents may have utility 

as a treatment for NAFLD, although relatively few 

have had histological primary end-points. The 

largest study included 243 patients with biopsy-

proven NASH. Treatment did not impact upon 

liver steatosis, fibrosis, or inflammation (484, 485). 

Other studies have shown similar results (486), al-

though a very small number of studies have shown 

modest improvements in NAFLD severity (487). 

Overall, there seems little compelling evidence that 

these agents significantly alter the natural history 

and progression of the more advanced stages of 

NAFLD but may have a role to limit hepatic TAG 

accumulation (488).

Peroxisome proliferator-activated receptor alpha 

agonists 

Fibrates are widely used as lipid-lowering therapy, 

acting through a peroxisome proliferator-activated 

receptor alpha (PPARα)-dependent mechanism 

to drive lipid oxidation and utilization. There 

are very few clinical data that have systemat-

ically examined the impact of fibrate therapy 

in the context of NAFLD. An open label study 

compared fibrate therapy (fenofibrate 200 mg 

daily) to atorvastatin 20 mg/day or combination 

therapy and demonstrated improvements in liver 

biochemistry and ultrasonographic appearance of 

the liver (489). A further open label, randomized 

study has also shown improvements in liver bio-

chemistry in comparison with pioglitazone treat-

ment (490). However, detailed mechanistic studies 

performed as part of a randomized controlled trail 

(including a nicotinic acid treatment arm), failed 

to show any improvement in intrahepatic TAG 

content by either nicotinic acid or fenofibrate. 

However, both treatments decreased VLDL TAG 

levels—fenofibrate through increased clearance 

and nicotinic acid through decreased secretion. In 

addition, fenofibrate had no impact on peripheral, 

hepatic, or adipose tissue insulin sensitivity (491, 

492). There are currently no published histological 

data from clinical studies. As a result, it is hard to 

draw any significant conclusion as to the utility of 

fibrates in the treatment of NAFLD. Pemafibrate 

is a novel selective PPARα agonist with evidence 

from preclinical models to suggest that it can im-

prove NASH (524). It is currently being used in 

phase 2 clinical studies in patients with NAFLD 

(493).

Proprotein convertase subtilisin kexin type 9 

inhibitors 

Proprotein convertase subtilisin kexin type 9 

(PCSK9) is a fundamental regulator of lipid homeo-

stasis. It is secreted from the liver into the circulation 

where it binds to the low-density lipoprotein (LDL) 

receptor and enhances its lysosomal degradation 

and, as a consequence, raises plasma LDL choles-

terol levels. PCSK9 inhibitors disrupt this pathway, 

lower LDL cholesterol, and decrease cardiovascular 

events (525). The relationship of PCSK9 with the 

pathogenesis of NAFLD and NASH is yet to be fully 

elucidated, and some studies have suggested a pos-

itive correlation of circulating PCSK9 levels with 

markers of NASH severity (526), while other have 

found no relationship with either liver expression or 

circulating levels (527). The question as to whether 

this class of agent can improve the histological 

features of NASH has not been addressed in clin-

ical studies. However, PCSK9 inhibitors seem well 

tolerated, and there is no evidence that they cause 

deterioration in liver chemistry (525, 528) although 

dedicated studies to examine the impact of NAFLD/

NASH have not been performed.

Liver-targeted therapies

Farnesoid X receptor agonists

Obeticholic acid  Signaling through FXR 

regulates multiple processes within the liver, in-

cluding carbohydrate and lipid metabolisms as 
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well as regeneration and repair. There is an ex-

tensive body of preclinical literature suggesting 

that FXR agonism may have beneficial effects in 

human NAFLD. Obeticholic acid (OCA) is a syn-

thetic FXR agonist that is already licensed for the 

treatment of primary biliary cholangitis, where it 

has been shown to decrease bilirubin and alkaline 

phosphatase levels (529).

Proof-of-concept and phase 2b studies using 

OCA have been completed and shown improvements 

in liver histology in 45% of individuals (compared to 

21% in the placebo arm) and resolution of NASH in 

22% (vs. 13% in the placebo arm). Thirty-five per-

cent of patents had improvements in liver fibrosis 

(vs. 19% in the placebo arm) (437). A post hoc anal-

ysis suggested that most benefit of OCA was derived 

in those patients who also lost weight (530). These 

encouraging data led to the initiation of a global, 

multicenter phase 3 study that is currently recruiting 

(REGENERATE) (531). A recent planned interim 

analysis after 18 months of therapy including the 

931 patients recruited so far has suggested that the 

study has met the primary end-point of improve-

ment in fibrosis, and the adverse effect profile has 

not identified anything unexpected. Cardiovascular 

events reported to date are no difference across the 2 

active treatment arms or placebo (532).

The REGERATE study is recruiting patients 

with mild to moderate fibrosis (F2–F3). A fur-

ther phase 3 study (REVERSE) has also been 

initiated in which OCA is being trialed in patients 

with established (but fully compensated) NAFLD 

 cirrhosis (533).

Other FXR agonists Other FXR agonists are cur-

rently in development although at a much earlier 

stage. GS-9674 has passed through phase 1 studies, 

and currently a phase 2 study in the context of 

NASH is ongoing (534). Recently, published data 

have shown biochemical improvements in liver 

chemistry in patients with primary sclerosing cho-

langitis (438). Tropifexor (LJN452) is a nonbile 

acid-derived FXR agonist and is currently being tri-

aled in phase 2 studies in patients with NASH (439).

Dual and pan-peroxisome proliferator-activated 

receptor agonists

Elafibranor (PPAR α/δ dual agonist). PPARα 

and PPARδ are nuclear transcription factors that 

are potent regulators of lipid metabolism and in-

flammation in hepatocytes as well as other tissues. 

A substantial body of evidence not only implicated 

their role in the pathogenesis of NAFLD but also 

highlighted their potential role as a therapeutic 

target. The dual PPARα and PPARδ agonist, 

elafibranor, has been trialed in phase 2 studies. 

In a 52-week randomized, double-blind, placebo-

controlled study, 19% of patients in the active 

treatment arm resolved NASH compared to 13% 

in the placebo arm without worsening of fibrosis 

(440). The primary end-point was not met in this 

study, but in a post hoc analysis in those patients 

with more advanced disease, there did appear to 

be significant benefit. In addition, there were met-

abolic benefits in patients with diabetes (at the 

highest doses tested) that included reduction in 

fasting plasma glucose, circulating FFAs, C-peptide 

and glycated hemoglobin. A large phase 3 study 

(RESOLVE-IT) is currently recruiting (535).

Lanifibranor (IVA337, pan-PPAR ago-

nist) Lanifibranor is able to activate all 3 (α, δ, and 

γ) PPARs. In preclinical studies, it has been reported 

to decrease tissue fibrosis in nonliver (536, 537) as 

well as liver models (538). A phase 2, randomized, 

double-blind, placebo-controlled study in patients 

with NASH with histological end-points is cur-

rently recruiting (441).

Saroglitazar (dual α/γ agonist)  Dual PPARα/γ 

agonism using saroglitazar has been shown to im-

prove liver histology in preclinical rodent models 

(539). Clinical studies have shown benefits on 

circulating lipid profiles in those patients inad-

equately treated on atorvastatin therapy (442). 

Currently, an early phase 2 study in patients with 

NAFLD looking at changes in liver biochemistry 

with 3 doses of saroglitazar versus placebo is ac-

tively recruiting (540).

C–C chemokine receptor type 2 and type 5 dual 

antagonist

Cenicriviroc Targeting the inflammatory re-

sponse within the liver has been proposed as a 

strategy to limit cellular damage that may ulti-

mately drive fibrosis. In response to hepatocyte 

injury or insult, KCs within in the liver secrete 

C–C chemokine ligand 2 (CCR2; also known as 

monocyte chemo-attractant protein 1), which 

can lead to monocyte recruitment driving the 

inflammatory response and, as a consequence, 

causing HSC activation and the resulting fibrotic 

response. The key signaling receptors mediating 

these actions appear to be CCR2 and CCR5, and 

dual antagonism in preclinical rodent models 

validated this strategy as a therapeutic target. 

In a phase 2b study including 289 patients with 

biopsy-proven NASH (51% with T2D), after 48 

weeks of treatment with the dual CCR2/CCR5 

antagonist, cenicriviroc (150 mg once daily), 

the primary end-point was not met (2-point im-

provement in NAS score without worsening of fi-

brosis); however, there was a significant increase 
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in the proportion of patients who demonstrated 

improvements in liver fibrosis on biopsy (20.0% 

vs. 10.4%, P = .023) (443). There were no changes 

in steatosis, liver biochemistry, or metabolic 

variables, but systemic markers of inflammation 

(including C-reactive protein and IL-6) were 

decreased. The drug was well tolerated with few 

significant side effects.

Despite the modest benefits that were observed 

in the phase 2b study, a phase 3 study (AURORA) 

is currently underway with the aim of recruiting 

2000 patients with a primary completion date 

during 2021 (541).

Vitamin E 

Vitamin E is a potent antioxidant with the po-

tential to exert anti-inflammatory actions. In the 

PIVENS trial (patients without T2D or cirrhosis), 

vitamin E, at a dose of 800 mg/ day, was superior 

to pioglitazone (at the intermediate dose of 30 mg/

day) in terms of the predefined primary end-point 

of the study leading to an improvement in NASH 

in 43% versus 19% in the placebo arm) (404). 

Using end-points that have adopted in recent 

studies (NASH resolution), vitamin E achieved 

borderline significance over placebo (36% vs. 21%, 

P = .05) but was inferior to pioglitazone, There 

was no impact on fibrosis. In the TONIC trial, in 

which children and adolescents were treated with 

300 mg/day, there was no overall benefit in terms 

of improvements in liver chemistry, steatosis, in-

flammation, or fibrosis (444). Concerns have 

been raised with respect to the long-term safety of 

higher doses of vitamin E (542), although this re-

mains a contentious area with continued debate in 

the published literature with regards to the precise 

methodologies that have been used in the analyses 

(543). There is some evidence to suggest increased 

all-cause mortality, increased risk of hemorrhagic 

stroke although the data on the relationship to 

prostate cancer risk are less clear (544, 545).

Galectin-3 protein inhibitors

GR-MD-02  Galectin-3 protein is believed to play 

a crucial role in orchestrating the fibrotic response 

to inflammation with in the liver. The evidence 

base for its role as a therapeutic target is relatively 

limited; rodent models with genetic deletion have 

shown increased lipid accumulation, but either 

increased or decreased inflammation and fibrosis 

is dependent upon the precise model used. The 

GT-020 study was a first-in-class, phase 1 study 

using the galectin-3 inhibitor, GR-MD-02 (445); 

the drug was well tolerated with no major treat-

ment emergent adverse effects. An early phase 2 

study has been completed (NASH-CX) in patients 

with NASH cirrhosis. The primary end-point was 

a reduction in portal pressure, but liver biopsies 

were taken. The data are not formally published 

in the peer-reviewed literature (446), but there was 

no significant change in NAS assessment (although 

decreased hepatocyte ballooning was observed), 

and no change was observed in fibrosis score or 

collagen content on morphometric analysis.

Fibroblast growth factor 19 analogs

NGM282 . FGF19 has been implicated in the 

pathogenesis of NAFLD. It has a crucial role in bile 

acid synthesis as well as having important meta-

bolic actions and in rodents administration has 

been shown to enhance energy expenditure, pro-

mote weight loss and improve lipid profiles (546). 

Transgenic over expression limits lipid synthesis 

(547).

NGM282 is a potent FGF19 analog, and in a phase 

2 study including 166 patients with biopsy-proven 

NASH, the impact of 2 different doses of NGM282 

were examined (3 mg or 6 mg administered sub-

cutaneously) (447). Over the 12-week duration of 

the study, there was a significant reduction in liver 

fat (48% reduction with 3 mg and 60% reduction 

with 6 mg) as well as improvements in liver bio-

chemistry. Adverse events were relatively common 

with injection site reactions as well as gastrointes-

tinal disturbance being reported. Serum LDL cho-

lesterol also increased (with a parallel decrease in 

high-density lipoprotein [HDL]-cholesterol), but 

recent data have shown that this can be lowered 

by co-administration with rosuvastatin without 

significant additional adverse effects (548). More 

recently, liver biopsy findings from an open label, 

12-week study (doses 1mg and 3 mg) have been 

reported demonstrating significant reductions in 

steatosis, inflammation, and fibrosis (448). A larger 

phase 2 study aiming to recruit 250 participants 

with biopsy-proven NASH is currently actively 

recruiting (549).

FGF21 analogs 

Fibroblast growth factor 21 is highly expressed 

in the liver, and it has an established role in the 

regulation of many metabolic features including 

weight, energy expenditure, and insulin sensi-

tivity. The relationship between circulating levels 

of FGF21 and metabolic phenotype are complex, 

and there is evidence to suggest that levels rise with 

worsening metabolic phenotype that is consistent 

to resistance to the effects of FGF21. Specifically, 

in the context of NAFLD, recently published data 

suggest that FGF21 levels correlated most closely 
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with adipose and skeletal muscle insulin resistance 

(but not hepatic) and that levels were positively as-

sociated with inflammation and ballooning (but 

not steatosis) as well as fibrosis stage (550). In a 

proof-of-concept study, 4 weeks of treatment with 

LY240531, a variant of FGF21, in patients with 

obesity and T2D, improved circuiting lipid profiles 

(decreased LDL cholesterol and TAG and increased 

in HDL cholesterol) (449).

More recently, pegbelfermin (BMS-986036), 

a PEGylated human FGF21 analog has been tri-

aled in 80 overweight/obese individuals with 

NASH. Patients were recruited into a dou-

ble-blind, randomized, placebo-controlled study 

investigating 2 doses of BMS-986036 (10 and 

20 mg). The study was terminated early due to a 

larger than anticipated impact on the primary end-

point at the planned interim analysis after 8 weeks 

of treatment. There was a significant reduction in 

hepatic steatosis as measured by MRI PDFF, and 

the drug was well tolerated with no serious ad-

verse events or treatment-related drug withdrawals 

(450). A series of phase 2 studies are currently ac-

tively recruiting (551–558).

Thyroid hormone receptor-β agonists

MGL-3196 (Resmetirom)  MGL-3196 was devel-

oped as a liver-specific agonist of the thyroid hor-

mone receptor-β (THR-β). Original studies aimed 

to explore its role in the treatment of hyperlipi-

demia and demonstrated improvements in LDL 

cholesterol, non-HDL cholesterol, lipoprotein(a), 

and a trend to improved circulating TAG levels im-

portantly, without alteration in circulating thyroid 

hormone levels (559, 560). A randomized double 

blind, placebo-controlled study with 36 weeks 

of treatment in 116 patients with biopsy-proven 

NASH has been reported in abstract form only. 

The primary end-point was reduction in hepatic fat 

as measured by MRI PDFF, and this was achieved 

with a relative reduction of 36.3% versus 9.6% in 

the placebo arm (451). Further, data have now been 

released (although not peer-reviewed) suggest that 

after 36 weeks of treatment, there were significant 

improvements in the resolution of NASH alongside 

a sustained improvement in steatosis (50, 561). The 

drug was well tolerated in this cohort with no se-

rious adverse events. On the basis of these results, 

a program of phase 3 studies is now being initiated.

Apoptosis signal-regulating kinase 1 inhibitors

Selonsertib. Apoptosis signal-regulating ki-

nase 1  (ASK1) is induced by cellular stress and 

is an important regulator of both inflammation 

and fibrosis. Preclinical data in rodent models has 

suggesting that inhibition of ASK1 has the poten-

tial in rodent models to modify the natural history 

and progression of NASH. Selonsertib (GS-4997) 

is a selective ASK1 inhibitor and has been used in 

an open label phase 2 study in 72 patients treated 

with 6 or 18 mg orally for 24 weeks (alone or in 

combination with simtuzumab—a monoclonal an-

tibody directed against lysl oxidase-like-2 mono-

clonal that subsequently has been shown to have 

no efficacy as monotherapy) (453). In the final 

analysis, liver histology comparison was made with 

all selonsertib treated patients (with or without 

simtuzumab) versus simtuzumab alone. At the 

highest doses (18 mg), fibrosis decreased in 43% or 

patients (30% in the 6 mg dose arm and 20% in the 

simtuzmab alone treatment arm) (562). Changes 

in noninvasive markers, including imaging and 

serum tests paralleled the changes in liver his-

tology. A further analysis of the data from this 

study aimed to look at quality of life; where there 

was histological improvement in NAS assessment 

(14 out of 68 patients), there was also improvement 

in quality-of-life scores (563).

Pentoxifyline 

The mechanisms by which pentoxifylline may im-

prove NASH are not fully understood, although 

it has an inhibitory action on proinflammatory 

cytokines as well as reducing the generation of free 

oxygen radicals. Treatment with pentoxifylline 

for 1 year resulted in histological improvement in 

NAS assessment as well as fibrosis (454). A fur-

ther study also showed histological improvements, 

but without significant changes in liver chemistry 

(455). Currently, there are no actively recruiting 

studies registered on clinicaltrials.gov investigating 

the role of pentoxifylline in the treatment of NASH.

Caspase inhibition

Emricasan.  Emricasan is a pan-caspase inhib-

itor that has been reported to decrease apoptosis 

and inflammation in liver disease. In patients with 

cirrhosis (due to NASH and HCV), there was 

improved liver function after 3 months of treat-

ment that was observed not only in the whole co-

hort, but in a subgroup analysis, the improvement 

was statistically significant in those patients with 

NASH cirrhosis, although the numbers treated 

were very small (placebo n = 9; emricasan n = 11) 

(456). Specifically in NAFLD patients without cir-

rhosis, but with elevated ALT, emricasan decreased 

ALT and AST as well as reducing circulating 

cleaved and full-length cytokeratin-18. The most 

dramatic effects were seen within 7 days of treat-

ment and some, but not all, of the effects persisted 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/4

1
/1

/6
6
/5

6
0
1
1
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://doi.org/10.1210/endrev/bnz009


104 Endocrine Reviews, February 2020, 41(1):66–117Marjot et al. NAFLD: Current Concepts

REVIEW

throughout the full 28 days of treatment (457). 

Further studies in NASH are planned although 

currently not actively recruiting (564).

Targeting hepatic lipid metabolism

Acetyl-coenzyme A carboxylase inhibition

GS-0976. Acetyl-coenzyme A carboxylase (ACC) 

is the rate-limiting step in DNL and has there-

fore become a target to limit hepatic TAG accu-

mulation and potentially enhance lipid oxidation. 

GS-0976 is a small molecular inhibitor of ACC and 

has been investigated in a small number of clinical 

studies. In an open label, uncontrolled, prospective 

study in 10 individuals treated for 12 weeks, DNL 

(measured by deuterated water incorporation into 

palmitate) was reduced by 22%. Hepatic steatosis 

measured by MRI PDFF decreased as did ALT and 

liver stiffness (469). In a much larger, randomized, 

placebo-controlled study (n = 126), GS-0976 at 

the highest doses only (20 mg) decreased hepatic 

steatosis, but there was no change in liver stiffness 

although tissue inhibitor of metalloproteinase 1 

levels decreased (470). The drug was safe and well 

tolerated, although serum TAG levels increased in 

all groups treated with GS-0976.

Stearoyl coenzyme A desaturase 1 inhibition

Aramchol. Aramchol is a novel fatty acid–bile acid 

conjugate molecule (3β-arachidyl-amido, 7α-12α-

dihydroxy, 5β-cholan-24-oic acid). Its mechanism 

of action is likely to be through inhibition of 

stearoyl coenzyme A desaturase 1, which is an im-

portant regulatory step in lipid synthesis within the 

liver. In an early phase 2 trial for 3 months, there 

was a significant reduction in liver fat as measured 

by 1H-MRS when compared to placebo (only in the 

higher 300 mg/day dose). There were no significant 

changes in liver chemistry when compared to pla-

cebo (471). The drug was safe and well tolerated, 

and a larger phase 2b study has been completed 

although data are not formally reported in the 

peer-reviewed literature. There were significant im-

provement in liver chemistry as well as resolution of 

NASH, but no significant change in fibrosis (565).

Modulation of the gut microbiome

It is now established that the gut microbiome has 

the potential to have a profound regulatory im-

pact upon metabolic phenotype (see The gut 

microbiome section). Therefore, various strategies 

have been employed to try and modify the 

microbiome composition in such a way as to pro-

mote a beneficial metabolic phenotype. A small 

number of randomized, controlled trials have 

been performed that have administered differing 

probiotics. Improvements in liver chemistry as 

well as markers of inflammation and insulin sen-

sitivity have improved; however, additional studies 

are clearly required with demonstrable histolog-

ical benefit before their widespread use can be 

recommended in patients with NAFLD (472).

A very small (n = 6) proof-of-concept study has 

been performed using solithromycin, a macrolide 

antibiotic. After 13 weeks of treatment, there was 

histological improvement in NAS in all patients 

as well as improvements in liver chemistry in al-

most all individuals (473). However, treatment of 

patients with biopsy-proven NASH and elevated 

aminotransferases (n = 15) with rifaximin (400 

mg twice daily for 6 weeks) had no impact on ALT 

levels, hepatic insulin sensitivity, or liver TAG con-

tent (566). Ongoing studies are also looking at the 

potential of fecal microbiome transplantation as a 

therapeutic strategy in NAFLD (474–476, 567, 568).

Other treatments in early development

Several other treatment targets are at the very 

early stages of development and have yet to be 

formally trialed with dedicated histological or ro-

bust and meaningful clinical end points. SGM-

1019 is an inflammasome inhibitor and has been 

hypothesized to limit hepatocyte injury. Early 

phase clinical studies have been performed, and it 

is safe and well tolerated; phase 2 studies are cur-

rently in progress (458, 459).

Additional modulation and limitation of the in-

flammatory response could be mediated through 

antagonism of the TLR-4. JKB-121 is a weak mo-

lecular antagonist of TLR-4 receptor and while 

preclinical data suggest promise in its ability to 

prevent the development of NASH, an early phase 

2 study has shown no difference when compared to 

placebo in reductions in liver fat content and rel-

atively high (dose-dependent) adverse events that 

lead to drug withdrawal (460).

IMM-124E is a product derived from bovine 

colostrum that contains high levels of anti-E.coli-

LPS IgG. It has been suggested that this may limit 

exposure to bacterial endotoxins and has been 

shown to limit acute colitis in preclinical models 

(569). A phase 2 study in 133 patients with NASH 

has been completed using an oral preparation at 2 

different doses although results have not yet been 

reported (461).

Amlexanox is an inhibitor of IKKb and TANK-

binding kinase 1 both of which are important 

signaling molecules that coordinate the inflamma-

tory response. In a small proof-of-concept study in 

patients with T2D, there was improvement in gly-

cemic control as well as evidence for decreased he-

patic steatosis (462).
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