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Nonarchimedean geometry, tropicalization,

and metrics on curves

Matthew Baker, Sam Payne and Joseph Rabinoff

Abstract

We develop a number of general techniques for comparing analytifications and tro-
picalizations of algebraic varieties. Our basic results include a projection formula for
tropical multiplicities and a generalization of the Sturmfels–Tevelev multiplicity for-
mula in tropical elimination theory to the case of a nontrivial valuation. For curves,
we explore in detail the relationship between skeletal metrics and lattice lengths on
tropicalizations and show that the maps from the analytification of a curve to the trop-
icalizations of its toric embeddings stabilize to isometries on finite subgraphs. Other
applications include generalizations of Speyer’s well-spacedness condition and the Katz–
Markwig–Markwig results on tropical j-invariants.

1. Introduction

The recent work of Gubler [Gub07a, Gub07b], in addition to earlier work of Bieri–Groves [BG84],
Berkovich [Ber90, Ber99, Ber04], and others, has revealed close connections between nonarchime-
dean analytic spaces (in Berkovich’s sense) and tropical geometry. One such connection is given
by the second author’s theorem that ‘analytification is the inverse limit of all tropicalizations’
(see Theorem 1.2). This result is purely topological, providing a natural homeomorphism between
the nonarchimedean analytification Xan of a quasiprojective variety X and the inverse limit of all
‘extended tropicalizations’ of X coming from closed immersions of X into quasiprojective toric
varieties that meet the dense torus. In this paper, we develop a number of general techniques
for comparing finer properties of analytifications and tropicalizations of algebraic varieties and
apply these techniques to explore in detail the relationship between the natural metrics on
analytifications and tropicalizations of curves. The proofs of our main results rely on the geometry
of formal models and initial degenerations as well as Berkovich’s theory of nonarchimedean
analytic spaces.

LetK be an algebraically closed field that is complete with respect to a nontrivial nonarchime-
dean valuation val : K → R∪{∞}. Let X be a nonsingular curve defined over K. The underlying
topological space of Xan can be endowed with a ‘polyhedral’ structure locally modeled on an
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R-tree. The leaves of Xan are the K-points, together with the ‘type 4 points’ in Berkovich’s
classification (see Section 3.5). The nonleaves are exactly those points that are contained in an
embedded open segment, and the space H◦(X

an) of nonleaves carries a canonical metric which,
like the polyhedral structure, is defined using semistable models for X. Our primary reference
for these results is [BPR13]; see also [Ber90, § 4], [Thu05], and [Bak08, § 5].

Suppose that X is embedded in a toric variety Y∆ and meets the dense torus T. The tropical-
ization Trop(X∩T) is a 1-dimensional polyhedral complex with no leaves in the real vector space
spanned by the lattice of 1-parameter subgroups of T. All edges of Trop(X ∩T) have slopes that
are rational with respect to the lattice of 1-parameter subgroups, so there is a natural metric
on Trop(X ∩ T) given locally by lattice length on each edge, and globally by shortest paths.
The metric space H◦(X

an) naturally surjects onto Trop(X ∩T), but this map is far from being
an isometry since infinitely many embedded segments in H◦(X

an) are contracted. Furthermore,
even when an edge of H◦(X

an) maps homeomorphically onto an edge of Trop(X∩T), this home-
omorphism need not be an isometry; see Section 2.5. Nevertheless, each embedded subgraph in
H◦(X

an) maps isometrically onto its image in all ‘sufficiently large’ tropicalizations.

Theorem 1.1. Let Γ be a finite embedded subgraph in H◦(X
an). Then there is a closed embed-

ding of X into a quasiprojective toric variety such that X meets the dense torus and Γ maps
isometrically onto its image in Trop(X∩T). Furthermore, the set of all such embeddings is stable
and hence cofinal in the system of all embeddings of X into quasiprojective toric varieties whose
images meet T.

Here if ι : X →֒ Y∆ and ι′ : X →֒ Y∆′ are closed embeddings into quasiprojective toric varieties
such that X meets the dense tori T and T′, then we say that ι′ dominates ι and we write ι′ > ι
if there exists an equivariant morphism of toric varieties ψ : Y∆′ → Y∆ such that ψ ◦ ι′ = ι
(see Section 5.15). In this case we have an induced map Trop(X ∩ T′) → Trop(X ∩ T); the
above theorem says in particular that if Γ maps isometrically onto its image in Trop(X ∩ T),
then the same is true for Γ → Trop(X ∩ T′). In other words, the maps from H◦(X

an) to the
tropicalizations of toric embeddings of X stabilize to isometries on every finite subgraph.

Both the analytification and the tropicalization constructions described above for subvarieties
of tori globalize in natural ways. The analytification functor extends to arbitrary finite-type
K-schemes (see [Ber90, Chapters 2 and 3] or [Ber93]), and tropicalization extends to closed
subvarieties of toric varieties as follows. If ∆ is a fan in NR and Y∆ is the associated toric
variety, then there is a natural ‘partial compactification’ NR(∆) of NR which is, set theoretically,
the disjoint union of the tropicalizations of all torus orbits in Y∆. The topology on NR(∆) is
such that the natural map from Y∆(K) extends to a continuous, proper, and surjective map
trop: Y an

∆ → NR(∆). As in the case where Y∆ is the torus T, the tropicalization Trop(X) of a
closed subvarietyX in Y∆ is the closure of trop(X(K)) inNR(∆), and the extended tropicalization
map extends to a continuous, proper, surjective map from Xan onto Trop(X). See [Pay09a,
Rab12] and Section 4.2 for further details.

Theorem 1.2 (Payne). Let X be an irreducible quasiprojective variety over K. Then the inverse
limit of the extended tropicalizations Trop(ι(X)) over all closed immersions ι : X →֒ Y∆ into
quasiprojective toric varieties is canonically homeomorphic to the analytification Xan.

The inverse limit in Theorem 1.2 can be restricted to those closed immersions ι whose images
meet the dense torus Tι, and then the homeomorphism maps XanrX(K) homeomorphically
onto the inverse limit of the ordinary tropicalizations Trop(ι(X) ∩ Tι).
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WhenX is a curve, our Theorem 1.1 says that the metric structures on trop(ι(X)∩Tι) stabilize
to a metric on the subset H◦(X

an) of the inverse limit, and the restriction of this homeomorphism
is an isometry. In general, each sufficiently small segment e in H◦(X

an) is mapped via an affine
linear transformation with integer slope onto a (possibly degenerate) segment e′ in Trop(X).
We write mrel(e) for the absolute value of the slope of this map, so if e has length ℓ, then its
image e′ has lattice length mrel(e) · ℓ. In Corollary 5.9, we relate these ‘expansion factors’ to
tropical multiplicities of edges in Trop(X). The notation is meant to suggest that mrel(e) may
be thought of in this context as the relative multiplicity of e over e′. By definition, the tropical
multiplicity mTrop(e

′) of an edge e′ in a suitable polyhedral structure on Trop(X) is the number
of irreducible components, counted with multiplicities, in the initial degeneration inw(X ∩T) for
any w in the relative interior of e′. These tropical multiplicities are fundamental invariants in
tropical geometry and play a key role in the balancing formula. See Section 2.1 for a definition
of the initial degeneration inw(X ∩T) and further discussion of tropical multiplicities.

Theorem 1.3. There is a polyhedral structure on Trop(X ∩T) with the following properties:

(i) For each edge e′ in Trop(X ∩T), there are finitely many embedded segments e1, . . . , er in
H◦(X

an) mapping homeomorphically onto e′.

(ii) Any embedded segment in the preimage of e′ that is disjoint from e1 ∪ · · · ∪ er is contracted
to a point.

(iii) The tropical multiplicity of e′ is the sum of the corresponding expansion factors:

mTrop(e
′) = mrel(e1) + · · ·+mrel(er) .

The properties above are preserved by subdivision, so they hold for any sufficiently fine
polyhedral structure on Trop(X ∩T). See Proposition 5.4 and Corollary 5.9.

The tropical multiplicity formula in the above theorem gives an important connection to
nonarchimedean analytic spaces that is not visible from the definitions. The formula shows,
for example, that if e′ is a small segment in Trop(X ∩ T) whose tropical multiplicity is equal
to 1, then there is a unique segment e in H◦(X

an) mapping homeomorphically onto e′, and
the length of e is equal to the tropical length of e′. It is well known that the skeleton of the
analytification of an elliptic curve with bad reduction is a loop of length equal to minus the
valuation of the j-invariant (see for example [BPR13, Remark 4.24]), so these formulas explain
earlier results of Katz, Markwig, and Markwig on tropical j-invariants of genus 1 curves in toric
surfaces [KMM08, KMM09]. See, for instance, Example 2.8. The following theorem also provides
natural generalizations for genus 1 curves in higher-dimensional toric varieties, as well as curves
of arbitrary genus.

Theorem 1.4. Let Γ′ be a finite embedded subgraph of Trop(X∩T), and suppose that inw(X∩T)
is irreducible and generically reduced for every w in Γ′. Then there is a unique embedded sub-
graph Γ inH◦(X

an)mapping homeomorphically onto Γ′, and this homeomorphism is an isometry.

See Section 6 for details on deducing the tropical j-invariant results of Katz, Markwig, and
Markwig from this theorem.

The expansion factors mrel(e) in our tropical multiplicity formula are often computable in
practice. If X is an affine curve embedded in the torus Gn

m via an n-tuple of invertible regular
functions f1, . . . , fn, then

mrel(e) = gcd(s1(e), . . . , sn(e)) ,
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where si(e) is the absolute value of the slope of the integer-affine function log |fi| along the edge e.
See Remark 5.6. The quantities si(e) are easily calculated from the divisors of f1, . . . , fn using
the ‘slope formula’ of [BPR13, Theorem 5.15].

In concrete situations, it is useful to be able to certify that a given tropicalization map
faithfully represents a large piece of the nonarchimedean analytification Xan (for example, the
‘minimal skeleton’ Σ of Xan in the sense of Berkovich [Ber90] or [BPR13, Corollary 4.23]) us-
ing only ‘tropical’ computations (for example, Gröbner complex computations which have been
implemented in computer algebra packages such as Singular or Macaulay2), as opposed to
calculations with formal models that have not been implemented in a systematic way in any
existing software package. We prove that a tropicalization map represents Σ faithfully, meaning
that the map is an isometry on Σ, provided that certain combinatorial and topological condi-
tions are satisfied. Our results on faithful representations are presented in conjunction with some
observations about initial degenerations which help explain the special role played by trivalent
graphs in the literature on tropical curves (cf. Theorem 5.25 and Remark 5.27).

We explore tropicalizations of elliptic curves in detail as a concrete illustration of our methods
and results. We are able to say some rather precise things in this case; for example, we show that
every elliptic curve E/K with multiplicative reduction admits a closed embedding in P2 whose
tropicalization faithfully (and certifiably) represents the minimal skeleton of Ean. Furthermore,
we interpret Speyer’s ‘well-spacedness condition’ for trivalent tropicalizations of totally dege-
nerate genus 1 curves [Spe14] as a statement about rational functions on the analytification of
the curve, and prove generalizations of this condition for nontrivalent tropicalizations, and for
genus 1 curves with good reduction.

The paper concludes with a generalization of the important Sturmfels–Tevelev multiplicity
formula, which calculates Trop(α(X)) (as a weighted polyhedral complex) in terms of Trop(X)
when α : T → T′ is a homomorphism of tori which induces a generically finite map from a sub-
variety X in T onto its image. The multiplicity formula in [ST08] is formulated and proved in
the ‘constant coefficient’ setting, where K is the field of Puiseux series over an algebraically
closed coefficient field k of characteristic 0 and X is defined over k. We use the methods of this
paper to generalize the Sturmfels–Tevelev formula to the case where X is any closed subvariety
of a torus T defined over a complete and algebraically closed nonarchimedean field K.

Philosophically speaking, there are at least two long-term goals to this paper. On the one
hand, we believe that the systematic use of modern tools from nonarchimedean geometry is
extremely useful for understanding and proving theorems in tropical geometry. This paper takes
several steps in that direction, establishing some new results in tropical geometry via Berkovich’s
theory and the Bosch–Lütkebohmert–Raynaud theory of admissible formal schemes. On the
other hand, much of this paper can be viewed as a comparison between two different ways of
approximating nonarchimedean analytic spaces. Nonarchimedean analytic spaces have proved
to be useful in many different contexts, but the topological spaces underlying them are wildly
branching infinite complexes which are difficult to study directly, so one usually approximates
them with finite polyhedral complexes. One such approximation goes through skeleta of nice (for
example, semistable) formal models (cf. [BPR13, Theorem 5.2]), another through (extended)
tropicalizations (cf. Theorem 1.2). Our Theorem 5.21 shows that, in the case of curves, these two
approximations have the same metric structure in the limit (though the metrics may be different
at any given finite level).

For further details and examples, we refer the reader to the expanded, earlier preprint version
of this paper, arxiv:1104.0320v2. This final version differs from that one in several respects. The
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numbering (of equations, paragraphs, sections, theorems, etc.) has changed. The former Sec-
tion 5, The structure theory of analytic curves, was extracted and published separately [BPR13].
Furthermore, much expository material and many examples in the remaining sections have been
omitted. The earlier preprint version remains available on the arXiv.

Since this paper was written, there have been a large number of follow-up articles: the reader
may also want to read [GRW14], in which many of the results in this article are extended
to higher dimensions; [CHW14, DP14, CS13], in which several interesting examples of faithful
tropicalizations are given; and [ABBR15a, ABBR15b], in which ‘relative’ versions of some of the
results in this paper are used to prove tropical lifting theorems.

2. Basic notions and examples

Here we give a brief overview of the basic notions necessary to understand the theorems stated in
the introduction, followed by a few key examples illustrating these results. Throughout this paper,
K is an algebraically closed field that is complete with respect to a nontrivial nonarchimedean
valuation

val : K → R ∪ {∞} .

We let G = val(K×) be its value group, R = val−1([0,∞]) its valuation ring, m ⊂ R the maximal
ideal, and k = R/m its residue field (which is algebraically closed by [Rob00, § 2.1, Proposition 3]).
Let | · | = exp(− val(·)) be the absolute value on K associated with the valuation.

2.1 Tropicalization

Let M be a free abelian group of rank n, let T = Spec(K[M ]) be the K-torus with character
group M , and let N = Hom(M,Z) be the dual lattice. If X is a closed subscheme of T, there is
a natural tropicalization map

trop: X(K) → NR ,

where NR = Hom(M,R). The image of a point x in X(K) is the linear function taking u ∈ M
to the valuation of the corresponding character evaluated at x. Then Trop(X) is the closure of
trop(X(K)) in the Euclidean topology on NR. Note that the choice of an isomorphism M ∼= Zn

induces an identification ofT withGn
m. In such coordinates, the tropicalization map sends a point

(x1, . . . , xn) in X(K) to (val(x1), . . . , val(xn)) in Rn.

One of the basic results in tropical geometry says that if X is an integral subscheme of T
of dimension d, then Trop(X) is the underlying set of a connected ‘balanced weighted integral
G-affine polyhedral complex’ of pure dimension d. We do not define all of these terms here, but
briefly recall how one gets a polyhedral complex and defines weights on the maximal faces of this
complex. Let w be a point in NG = Hom(M,G). The ‘tilted group ring’ R[M ]w is the subring
of K[M ] consisting of Laurent polynomials a1x

u1 + · · ·+ arx
ur such that

val(ai) + 〈ui, w〉 > 0

for all i. The R-scheme Tw = SpecR[M ]w is a torsor for the torus SpecR[M ], and its generic fiber
is canonically isomorphic to T. If X is a closed subscheme of T defined by an ideal a ⊂ K[M ],
then

Xw = Spec
(
R[M ]w/

(
a ∩R[M ]w

))

is a flat R-scheme with generic fiber X, which we call the tropical integral model associated
with w. It is exactly the closure of X in Tw. The special fiber inw(X) of Xw is called the initial
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degeneration of X with respect to w and is the subscheme of the special fiber of Tw cut out by
the w-initial forms of Laurent polynomials in a, in the sense of generalized Gröbner theory.

The scheme Tw is not proper, so points in X(K) may fail to have limits in the special fiber.
Indeed, the special fiber inw(X) is often empty. One of the fundamental theorems in tropical
geometry says that w is in Trop(X) if and only if inw(X) is not empty.1 Moreover, Trop(X)
can be given the structure of a finite polyhedral complex in such a way that whenever w and w′

belong to the relative interior of the same face, the corresponding initial degenerations inw(X)
and inw′(X) are T-affinely equivalent.

We define the multiplicity mTrop(w) of a point w in Trop(X) to be the number of irreducible
components of inw(X), counted with multiplicities. In particular, mTrop(w) = 1 if and only
if inw(X) is irreducible and generically reduced. These tropical multiplicities are constant on
the relative interior of each face F of Trop(X), and we define the multiplicity mTrop(F ) to
be mTrop(w) for any w in the relative interior of F . The multiplicities for maximal faces are
the ‘weights’ mentioned above that appear in the balancing condition. These weights have the
following simple interpretation for hypersurfaces.

Remark 2.2. If X = V (f) is a hypersurface, then Trop(X) is the corner locus of the con-
vex piecewise-linear function associated with a defining equation f [EKL06, § 2.1]. In this case,
Trop(X) has a unique minimal polyhedral structure, and the initial degenerations are essentially
constant on the relative interior of each face. There is a natural inclusion reversing bijection
between the faces of Trop(X) in this minimal polyhedral structure and the positive-dimensional
faces of the Newton polytopal complex (or Newton complex ) of f : a face of Trop(X) corresponds to
the convex hull of the monomials whose associated affine linear function is minimal on that face.
In particular, the maximal faces of Trop(X) correspond to the edges of this Newton complex.
In this special case, the multiplicity of a maximal face is the lattice length of the correspond-
ing edge.2 The relationship between the tropical hypersurface and the Newton complex is also
explained in more detail in [Rab12, § 8].

2.3 Analytification

Let A be a finite-type K-algebra. The Berkovich spectrum of A, denoted M (A), is defined to
be the set of multiplicative seminorms ‖ · ‖ on A extending the absolute value | · | on K. The
Berkovich spectrum M (A) is the underlying set of the nonarchimedean analytification Xan of
X = Spec(A). The topology on Xan is the coarsest such that the map ‖ · ‖ 7→ ‖f‖ is continuous
for every f ∈ A; this coincides with the subspace topology induced by the inclusion of Xan in RA.

Remark. We will often write A1
an for A1,an and P1

an for P1,an, etc.

If X is connected, then Xan is a path-connected locally compact Hausdorff space that nat-
urally contains X(K) as a dense subset; a point x ∈ X(K) corresponds to the seminorm ‖ · ‖x
given by ‖f‖x = |f(x)|. The analytification procedure X 7→ Xan gives a covariant functor from
the category of locally finite-type K-schemes to the category of topological spaces.3

1In the special case where T has dimension 1 and X is the zero locus of a Laurent polynomial f , this is equivalent
to the statement that f has a root with valuation s if and only if −s is a slope of the Newton polygon of f .
2This is explained in [ST08, Example 3.16] in the special case where X is irreducible, K is the field of Puiseux
series over k, and X is defined over k. The arguments given there work in full generality.
3The analytification Xan has additional structure, including a structure sheaf, and X 7→ Xan may also be seen as
a functor from locally finite-type K-schemes to locally ringed spaces. See [Ber90, §§ 2.3, 3.1, 3.4] for more details.
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If X is a closed subvariety of T, then the tropicalization map described in the previous section
extends from X(K) to a continuous and proper map

trop: Xan → NR

taking a seminorm ‖ · ‖ to the linear function u 7→ − log ‖xu‖, and the image of this map is
exactly Trop(X). In other words, trop(Xan) is the closure of the image of X(K) in NR.

2.4 Metric structure of analytic curves

There is a natural metric on P1
anrP1(K); see [BPR13] for details. We write H(P1

an) to denote
P1
anrP1(K) with this metric structure. It is important to note that the metric topology onH(P1

an)
is much finer than the subspace topology on P1

anrP1(K). Our notation follows [BR10] and reflects
the fact that the metric on H(P1

an) is 0-hyperbolic in the sense of Gromov.

The metric on H(P1
an) has the important property that, roughly speaking, log |f | is piecewise

affine with integer slopes for any nonzero rational function f ∈ K(T ). More precisely, suppose
that f is nonconstant and that Σ̂ is the minimal closed connected subset of P1

an containing the
set S of zeros and poles of f . Let Σ = Σ̂rS. Then:

(i) The subspace Σ of H(P1
an) is a metric graph with finitely many edges, in which the edges

whose closures meet K have infinite length.

(ii) The restriction of log |f | to Σ is piecewise affine with integer slopes.

(iii) There is a natural retraction map from P1
an onto Σ̂.

(iv) The function log |f | from P1
an to R∪{±∞} factors through the retraction onto Σ̂, and hence

is determined by its restriction to Σ.

The metric on the complement of the set of K-points in the analytification of an arbitrary
algebraic curve is induced by the metric on P1

anrP1(K) via semistable decomposition; see [BPR13]
for details.

There is also a notion of a skeleton of a smooth and connected but not necessarily complete
curveX. Let X̂ be the smooth compactification ofX, and letD = X̂rX be the set of ‘punctures’.
Choose a semistable model X of X̂ such that the punctures reduce to distinct smooth points
of the special fiber X . Then there is unique minimal closed connected subset Σ of Xan which
contains the skeleton ΣX of X̂ and whose closure in X̂an contains D. We call Σ the skeleton of X
associated with X . As above, there is a canonical retraction map τΣ : Xan ։ Σ. If X ⊂ T, then
the tropicalization map trop: X → NR factors through τΣ. There is a skeleton which is minimal
over all models X if 2− 2g(X̂)−#D 6 0. See [BPR13] for a complete discussion of the skeleta
of a curve.

2.5 Examples

To illustrate our main results concerning the relationship between analytification and tropical-
ization in the case of curves, taking into account the metric structure on both sides, we present
the following examples. In each example, we fix a specific coefficient field for concreteness.

Our first example shows how a loop in the analytification of a genus 1 curve can be collapsed
onto a segment of multiplicity greater than 1.

Example 2.6. Let K be the completion of the field of Puiseux series C{{t}}. Consider the genus 1
curve Ê ⊂ P2 over K defined by the Weierstrass equation y2 = x3+x2+ t4, and let E = Ê∩G2

m.
The j-invariant of Ê has valuation −4, so Ê has multiplicative reduction and the minimal skeleton
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Figure 1. The minimal skeleton Γ ⊂ Ean and the tropicalization Trop(E) from Example 2.6. The
points Pi, Qj are defined as follows: the rational function x on Ê has divisor (Q1)+(Q2)−2(∞),
where Q1 = (0, t2) and Q2 = (0,−t2), and y has divisor (P1) + (P2) + (P3) − 3(∞), where
val(x(P1)) = val(x(P2)) = 2 and val(x(P3)) = 0.

Σ of Ê is isometric to a circle of circumference 4. In this example, Trop(E) does not have a cycle
even though Êan does; it is interesting to examine exactly what tropicalization is doing to Êan.
Let Γ be the minimal skeleton of E; as above, trop factors through the retraction of Ean onto Γ.
Figure 1 shows the restriction of trop to Γ.

The tropicalization map sends Σ two-to-one onto its image in Trop(E), which is a segment of
tropical length 2 and tropical multiplicity 2. Locally on Σ the tropicalization map is an isometry.
Each of the rays of Γ emanating from Σ maps isometrically onto its image. The two rays in
Trop(E) with multiplicity 1 have unique preimages in Γ, while there are two distinct rays in Γ
mapping onto each of the two rays in Trop(E) of multiplicity 2.

The following example illustrates a different kind of collapse, where a segment e in the minimal
skeleton of the analytification is collapsed to a point, that is, the relative multiplicty mrel(e) is 0.

Example 2.7. Let p > 5 be a prime, let K = Cp, and let k ∼= Fp be its residue field. Let X ⊂ G2
m

be the affine curve overK defined by the equation f(x, y) = x3y−x2y2−2xy3−3x2y+2xy−p = 0.
The curve X̂ ⊂ P2 defined by the homogenization f̂(x, y, z) = x3y−x2y2−2xy3−3x2yz+2xyz2−
pz4 = 0 is a smooth plane quartic of genus 3, and the given equation f̂(x, y, z) = 0 defines the
minimal regular proper semistable model X for X̂ over Qp. The special fiber X of X consists of

four (reduced) lines in general position in P2
k, since f̂ mod p factors as xy(x+y−z)(x−2y−2z).

The tropicalization Trop(X) ⊂ R2 consists of a triangle with vertices (0, 0), (1, 0), (0, 1) together
with three rays emanating from these three vertices in the directions of (−1,−1), (3,−1), (−1, 3)
respectively. The three bounded edges/rays incident to (0, 0) all have tropical multiplicity 2, and
all other bounded edges/rays in Trop(X) have tropical multiplicity 1. Let Σ be the skeleton ΣX

of X̂, and let Γ be the minimal skeleton ofX. Then Σ is a tetrahedron (with vertices corresponding
to the four irreducible components of X ) with six edges of length 1, because this is the dual graph
of a regular semistable model defined over Zp, and Γ is obtained from Σ by adding a ray emanating
from each vertex of Σ toward the zeros and poles of x and y, namely toward the points (0 : 1 : 0),
(1 : 0 : 0), (2 : 1 : 0), (−1 : 1 : 0). The tropicalization map trop: Xan → Trop(X) ⊂ R2 factors
though the retraction map Xan → Γ. See Figure 2.

The points of Σ corresponding to the irreducible components x+y = z and x−2y = 2z of X ,
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Figure 2. The skeleton Γ ⊂ Xan and the tropicalization Trop(X), where X is the curve from
Example 2.7. Here x has divisor 3(P1) − (P2) − (Q1) − (Q2) and y has divisor 3(P2) − (P1) −
(Q1)− (Q2) on X̂, where P1 = (0 : 1 : 0), P2 = (1 : 0 : 0), Q1 = (2 : 1 : 0), and Q2 = (−1 : 1 : 0).
The points A,B,C,D ∈ Γ correspond to the irreducible components x = 0, x + y = z, y = 0,
and x− 2y = 2z, respectively, of X . The collapsed segment is BD.

as well as the entire edge of Σ connecting these two points, get mapped by trop to the point
(0, 0) ∈ Trop(X). This edge therefore has expansion factor 0 with respect to trop. The other five
bounded edges of Σ ⊂ Γ map isometrically (that is, with expansion factor 1) onto their images
in Trop(X). In fact, the tropicalization map is a local isometry everywhere on Γ except along
the bounded edge which is contracted to the origin.

Our final example, which is meant to illustrate Theorem 1.4, is a genus 1 curve with mul-
tiplicative reduction for which the tropicalization map takes the minimal skeleton isometrically
onto its image. This example is also discussed in [KMM09, Example 5.2].

Example 2.8. Let K be the completion of the field C{{t}} of Puiseux series. Consider the
curve E′ in G2

m cut out by the equation f(x, y) = x2y + xy2 + 1
txy + x+ y. Its closure in P2 is

the smooth projective genus 1 curve Ê′ defined by f̂(x, y, z) = x2y + xy2 + 1
txyz + xz2 + yz2.

Using the description of Trop(E′) as the corner locus of the convex piecewise-linear function
associated with f , one sees that Trop(E′) consists of a square with side length 2 plus one ray
emanating from each corner of the square; see Figure 3. By restricting f to faces of the New-
ton complex (see Remark 2.2), one checks that inw(E

′) is reduced and irreducible for every w
in Trop(E′). Therefore, by Theorem 1.4 there is a unique graph Γ in the analytification of E′

mapping isometrically onto Trop(X).

In particular, the analytification of E′ contains a loop of length 8. One can check by an explicit
computation that val(j(Ê′)) = −8, which is consistent with the fact that the analytification of a
smooth projective genus 1 curve is either contractible (if the curve has good reduction) or else
contains a unique loop of length − val(j) (if the curve has multiplicative reduction).

3. Admissible algebras and nonarchimedean analytic spaces

Recall that K is an algebraically closed field that is complete with respect to a nontrivial nonar-
chimedean valuation val : K → R∪{∞}. Let | · | = exp(− val(·)) be the associated absolute value.
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Figure 3. The tropicalization of the elliptic curve Ê′ from Example 2.8. The edges in the square
each have lattice length 2.

Let R be the valuation ring of K, let m ⊂ R be its maximal ideal, and let k = R/m be its residue
field. Choose a nonzero element ̟ ∈ m (as R is not noetherian, it has no uniformizer), so R is
̟-adically complete. Let G = val(K×) ⊂ R be the value group, which is divisible.

In this section we define some notation and collect some results about admissible R-algebras
and Raynaud’s generic fiber functor that will be needed in the sequel. We refer the reader
to [BL93] and [Bos14] for a detailed discussion of admissible formal schemes and the Raynaud
generic fiber functor.

3.1 Admissible formal schemes

An admissible R-algebra is a topological R-algebra A which is flat and topologically of finite
presentation. A formal scheme X over Spf(R) which is locally isomorphic to the formal spec-
trum of an admissible R-algebra (in its ̟-adic topology) is called an admissible formal scheme.
All admissible formal schemes appearing in this paper will be assumed to be quasi-compact
and separated. If X = Spf(A), then we write Xan for the K-affinoid Berkovich analytic space
M (A⊗R K). This construction globalizes to give a functor from admissible formal schemes to
Berkovich analytic spaces that is compatible with fiber products. The image of a formal scheme
under this functor is called the Raynaud generic fiber.

An admissible formal scheme X with reduced special fiber is called a formal analytic variety.
If Spf(A) is a formal affine open subset of a formal analytic variety, then A is reduced and A
is equal to the full ring of power-bounded elements in AK := A⊗R K by Proposition 3.13. The
canonical reduction ÃK of AK therefore coincides with A ⊗R k, so if Spf(B) is a formal affine
open subset of Spf(A), then Spec(B̃K) is an affine open subset of Spec(ÃK). (Our definition of
a formal analytic variety differs from the original one given in [BL85], but the above argument
shows that the two definitions are equivalent in our situation.)

Notation. Let X be an R-scheme or a formal R-scheme. We denote the special fiber X⊗R k of
X by X.

3.2 Reductions of analytic spaces

Let A be a K-affinoid algebra. We denote by Å, Ǎ, and Ã = Å/Ǎ the subring of power-
bounded elements, the ideal of topologically nilpotent elements, and the canonical reduction,
respectively. Setting X = M (A), there is a reduction map red: X → X̃ := Spec(Ã). By [Ber90,
Corollary 2.4.2 and Proposition 2.4.4] this map is surjective and anti-continuous, in the sense that
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the inverse image of an open subset is closed. Similarly, if X is an admissible formal scheme over
Spf(R), then there is a canonical surjective and anti-continuous reduction map red: Xan → X

which coincides with the map defined above when X = Spf(Å). In particular, X is connected
if Xan is connected. The inverse image of a closed point of X under the reduction map is called
a formal fiber.

3.3 Shilov points

The Shilov boundary of a K-affinoid space X = M (A) is defined to be the smallest closed subset
Γ(X ) ⊂ X such that every function |f | for f ∈ A attains its maximum at a point of Γ(X ).
Let X be a formal analytic variety over Spf(R) with Raynaud generic fiber X . If η is a generic
point of X, then there is a unique preimage of η under red which we call the Shilov point xη

associated with η. The residue field of η is isomorphic to H̃ (xη). If X = M (A) is affinoid,
then Γ(X ) is the set of Shilov points of X = Spf(Å).

3.4 Analytic curves

Following [Thu05, § 2.1.3], we define a (strictly) analytic curve over K to be a (good) K-analytic
space which is paracompact, of pure dimension 1, and without boundary. The analytification of
an algebraic curve over K (by which we mean a 1-dimensional separated integral scheme of finite
type over K) is always an analytic curve in this sense.

If X is an analytic curve and V ⊂ X is an affinoid domain, then by [Ber90, Proposition 3.1.3]
and [Thu05, Proposition 2.1.12] the following three (finite) sets coincide: (i) the topological
boundary ∂topV of V in X , (ii) the boundary ∂V of V in the sense of [Ber90, § 2.5.7], and
(iii) the Shilov boundary Γ(V ) of V .

3.5 Types of points in an analytic curve

Let x be a point in a K-analytic curve X , and let H (x) be its completed residue field. The

extension H̃ (x)/k has transcendence degree s(x) 6 1, and the abelian group |H (x)×|/|K×|
has rank t(x) 6 1. Moreover, the integers s(x) and t(x) must satisfy the Abhyankar inequality

[Vaq00, Theorem 9.2]

s(x) + t(x) 6 1 .

Using the terminology from [Ber90] and [Ber93] (see also [Thu05, § 2.1]), we say that x is type 2
if s(x) = 1 and type 3 if t(x) = 1. If s(x) = t(x) = 0, then x is called type 1 if H (x) = K and
type 4 otherwise. Points of type 4 will not play any significant role in this paper. We define

H◦(X ) = {all points of X of types 2 and 3} ,

H(X ) = {all points of X of types 2, 3, and 4} .

We call H◦(X ) the set of skeletal points, because it is the union of all skeleta of admissible formal
models of X (see [BPR13, Corollary 5.1]), and H(X ) the set of norm points of X , because it
is the set of all points corresponding to norms on the function field K(X) that extend the given
norm on K. If X = Xan is the analytification of an algebraic curve X over K, then X(K) ⊂ Xan

is naturally identified with the set of type 1 points of Xan, so H(Xan) = XanrX(K). (Recall
that we are assuming throughout this discussion that K is algebraically closed.)

3.6 Some facts about admissible R-algebras

The following fact is standard and is easily proved using the results of [BL93, § 1].

73



M. Baker, S. Payne and J. Rabinoff

Proposition 3.7. (i) If A is a finitely presented and flat R-algebra, then its ̟-adic comple-
tion Â is an admissible R-algebra.

(ii) If f : A։ B is a surjective homomorphism of finitely presented and flat R-algebras with
kernel a, then f̂ : Â→ B̂ is a surjection of admissible R-algebras with kernel aÂ.

We set the following notation, which we will use until Section 3.15: A and B will denote
admissible R-algebras, A = A ⊗R k and B = B ⊗R k their reductions, and AK = A ⊗R K and
BK = B⊗RK the associated K-affinoid algebras. We let X = Spf(A), Y = Spf(B), X = Spec(A),
and Y = Spec(B). Let f : A→ B be a homomorphism, let f : A→ B and fK : AK → BK be the
induced homomorphisms, and let φ : Y → X and φ : Y → X be the induced morphisms.

Proposition 3.8. (i) The homomorphism f is flat if and only if f : A→ B is flat.

(ii) The homomorphism f is finite if and only if fK : AK → BK is finite.

Proof. The ‘only if’ directions are clear. Suppose that f is flat. By [BL93, Lemma 1.6], it suffices
to show that fn : An → Bn is flat for all n > 0, where An = A/̟n+1A and Bn = B/̟n+1B.
But An and Bn are of finite presentation and flat over Rn = R/̟n+1R, so fn is flat by the fibral
flatness criterion [GD66, Corollaire 11.3.1].

Now suppose that fK is finite. Choose a surjection T̊n ։ A. The induced homomorphism
Tn ։ A ⊗R K → B ⊗R K is finite, so by [BGR84, Theorem 6.3.5/1] the composition T̊n ։

A → (B ⊗R K)◦ is integral. Hence A → (B ⊗R K)◦ is integral, so A → B is integral since
B ⊂ (B ⊗R K)◦. Then fn : A/̟

n+1A → B/̟n+1B is of finite type and integral for all n > 0,
so fn is finite, and therefore f is finite by [BL93, Lemma 1.5].

Corollary 3.9. Suppose that fK : AK → BK is finite and dominant, that is, that ker(fK) is
nilpotent. Then f : A→ B is finite and φ : Y → X is surjective.

Proof. Since A ⊂ AK and B ⊂ BK , we have that ker(f) is nilpotent, and f is finite by Proposi-
tion 3.8. Hence Spec(B) → Spec(A) is surjective, so Y → X is surjective. Finiteness of f implies
finiteness of f .

We say that a ring is equidimensional of dimension d provided that every maximal ideal
has height d. Let A be a K-affinoid algebra, and let X = M (A). Then A is equidimensional
of dimension d if and only if dim(OX ,x) = d for every x ∈ MaxSpec(A) by [BGR84, Proposi-
tion 7.3.2/8]. In particular, if M (B) is an affinoid domain in M (A) and A is equidimensional of
dimension d, then so is B.

Proposition 3.10. If AK is equidimensional of dimension d, then A is equidimensional of di-
mension d.

Proof. Replacing X with an irreducible formal affine open subset, we may assume that X is
irreducible. Let R〈x1, . . . , xn〉 ։ A be a presentation of A. By Noether normalization [BGR84,
Theorem 6.1.2/1] we can choose the xi such that K〈x1, . . . , xd〉 → AK is finite and injective,
where d = dim(AK). Then X → Adk is finite and surjective by Corollary 3.9.

Corollary 3.11. Suppose that fK : AK → BK is finite and dominant, and that AK and BK
are equidimensional (necessarily of the same dimension). Then φ : Y → X is finite and surjective,
and the image of an irreducible component of Y is an irreducible component of X.

Proof. This follows immediately from Proposition 3.10 and Corollary 3.9.

The following theorem uses the fact that K is algebraically closed in an essential way. It can
be found in [BL85, Proposition 1.1].
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Theorem 3.12. Let A be a K-affinoid algebra. Then Å is admissible if and only if A is reduced.

Proof. Since Å is always R-flat, by [BL93, Proposition 1.1(c)] the issue is whether Å is topo-
logically finitely generated. Suppose that A is reduced. By [BGR84, Theorem 6.4.3/1] there is
a surjection Tn ։ A such that the residue norm on A agrees with the supremum norm; then
by Proposition 6.4.3/3(i) of [BGR84] the induced homomorphism T̊n → Å is surjective. The
converse follows in a similar way from Theorem 6.4.3/1 and Corollary 6.4.3/6 of [BGR84].

Proposition 3.13. The ring A is reduced if and only if A = ÅK , in which case A is reduced.

Proof. If A = ÅK , then A is reduced by Theorem 3.12, so A = ÃK is reduced. Conversely, suppose
that A is reduced. Let α : T̊n ։ A be a surjection. Since the T̊n-ideal Ťn+ker(α) = mT̊n+ker(α) is
the kernel of the composite homomorphism T̊n → A→ A, it is a reduced ideal; hence by [BGR84,
Propositions 6.4.3/4, 6.4.3/3(i)] we have A = α(T̊n) = ÅK .

Corollary 3.14. If A is an integral domain, then AK is an integral domain and | · |sup is
multiplicative.

Proof. By Proposition 3.13 we have ÃK = A, so the result follows from [BGR84, Proposi-
tion 6.2.3/5].

3.15 Finite morphisms of pure degree

In general there is not a good notion of the ‘degree’ of a finite morphism Y → X between noethe-
rian schemes when X is not irreducible, since the degree of the induced map on an irreducible
component of X can vary from component to component. The notion of a morphism having
‘pure degree’ essentially means that the degree is the same on every irreducible component of X.
This notion is quite well behaved in that it respects analytification of algebraic varieties and of
admissible formal schemes. The definition of a morphism of pure degree is best formulated in
the language of fundamental cycles. We refer to [Tho90] for a review of the theory of cycles on
a noetherian scheme which is not necessarily of finite type over a field.

3.16 Let X be a noetherian scheme. A cycle on X is a finite formal sum
∑

W nW ·W , where
nW ∈ Z and W ranges over the irreducible closed subsets of X. The group of cycles on X is
denoted C(X). The fundamental cycle of X is the cycle

[X] =
∑

ζ

lengthOX,ζ
(OX,ζ) · {ζ} ,

where the sum is taken over all generic points of X. We define pushforwards and pullbacks as in
intersection theory. These satisfy the usual properties; see [Tho90, Lemmas 2.4, 2.5, and 4.8].

Definition 3.17. Let f : Y → X be a finite morphism of noetherian schemes. We say that f
has pure degree δ and we write [Y : X] = δ provided that f∗[Y ] = δ[X]; here δ ∈ Q need not be
an integer.

Remark 3.18. Let f : Y → X be a finite morphism of noetherian schemes.

(i) If X is irreducible and every generic point of Y maps to the generic point of X, then f
automatically has a pure degree, which we simply call the degree of f . Moreover, if X is integral
with generic point ζ, then the degree of f is the dimension of Γ(f−1(ζ),Of−1(ζ)) as a vector space
over the function field OX,ζ . In particular, if f is a finite and dominant morphism of integral
schemes, then the (pure) degree of f is the degree of the extension of function fields.
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(ii) Let ζ be a generic point of X, and let C = {ζ} be the corresponding irreducible compo-
nent. Define the multiplicity of C in X to be the quantity

multX(C) = lengthOX,ζ
(OX,ζ) ,

so [X] =
∑

C multX(C) · C. It follows that f has pure degree δ if and only if (i) every irre-
ducible component D of Y maps to an irreducible component of X, and (ii) for every irreducible
component C of X we have

δmultX(C) =
∑

D։C

multY (D)[D : C] , (3.18.1)

where [D : C] is the usual degree of a finite morphism of integral schemes.

(iii) Let g : X → Z be another finite morphism of noetherian schemes. Suppose that f has
pure degree δ and g has pure degree ǫ. Then g ◦ f has pure degree δǫ.

Proposition 3.19. Let X, Y , X ′ be noetherian schemes, let f : Y → X be a finite morphism,
let g : X ′ → X be a flat morphism, let Y ′ = Y ×X X ′, and let f ′ : Y ′ → X ′ be the projection.

(i) If f has pure degree δ, then f ′ has pure degree δ.

(ii) If g is surjective, then f has pure degree δ if and only if f ′ has pure degree δ.

Proof. Let h : Y ′ → Y be the other projection, so h is flat. We have

f ′∗[Y
′] = f ′∗h

∗[Y ] = g∗f∗[Y ] = δg∗[X] = δ[X ′] ,

which proves part (i). Conversely, suppose that g is surjective (and flat) and that f ′∗[Y
′] = δ [X ′].

Then

g∗f∗[Y ] = f ′∗h
∗[Y ] = f ′∗[Y

′] = δ[X ′] = g∗(δ[X]) ,

so we are done because g∗ is visibly injective in this situation.

3.20 Next we will define pure-degree morphisms of analytic spaces. As above, we must first
review the notion of the fundamental cycle of an analytic space, as defined by Gubler [Gub98, § 2].

Let X be a K-analytic space (assumed from now on to be Hausdorff and paracompact).
A Zariski-closed subspace of X is by definition an isomorphism class of closed immersions
V →֒ X . A Zariski-closed subspace of X is irreducible if it cannot be expressed as a union
of two proper Zariski-closed subspaces. Gubler [Gub98, § 2] defines a cycle on X to be a locally
finite formal sum

∑
V
nV V , where nV ∈ Z and V ranges over the irreducible Zariski-closed

subspaces of X ; ‘locally finite’ means that there exists an admissible covering of X by affinoid
domains intersecting only finitely many V with nV 6= 0. Let C(X ) denote the group of cycles
on X .

3.20.1 If X = M (A) is affinoid, then the Zariski-closed subspaces of X are in natural
inclusion-reversing bijection with the ideals of A; therefore we have an identification C(X ) =
C(Spec(A)), which we will make implicitly from now on.

3.20.2 There are natural proper pushforward and flat pullback homomorphisms for cycles on
analytic spaces, which satisfy the expected properties. There is a canonical fundamental cycle

[X ] ∈ C(X ) which is uniquely determined by the property that for every affinoid domain
ι : M (A) →֒ X , we have ι∗[X ] = [M (A)] = [Spec(A)]. See [Gub98, §§ 2.6, 2.7, 2.8, and Propo-
sition 2.12].
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Definition 3.21. Let f : Y → X be a finite morphism of K-analytic spaces. We say that f has
pure degree δ and we write [Y : X ] = δ provided that f∗[Y ] = δ[X ]. Again δ ∈ Q need not be
an integer.

Remark 3.22. Let f : Y → X be a finite morphism of K-analytic spaces.

(i) If X = M (A) and Y = M (B) are affinoid, then f : M (B) → M (A) has pure degree δ
if and only if the map of affine schemes Spec(B) → Spec(A) has pure degree δ.

(ii) If f has pure degree δ and g : X → Z is a finite morphism of analytic spaces of pure
degree ǫ, then g ◦ f has pure degree δǫ.

Proposition 3.23. Let f : Y → X be a finite morphism of K-analytic spaces.

(i) If f has pure degree δ, M (A) ⊂ X is an affinoid domain, and M (B) = f−1(M (A)),
then M (B) → M (A) has pure degree δ.

(ii) If there exists an admissible cover X =
⋃
i M (Ai) of X by affinoid domains such that

M (Bi) = f−1(M (Ai)) → M (Ai) has pure degree δ for each i, then f has pure degree δ.

Proof. Since the inclusion M (A) →֒ X is flat, the first part follows as in the proof of Propo-
sition 3.19(i). In situation (ii), let fi = f |M (Bi) : M (Bi) → M (Ai), and assume (fi)∗[M (Bi)] =
δ[M (Ai)] for all i. Arguing as in the proof of Proposition 3.19(i), we see that the pullback of
f∗[Y ] to M (Ai) is equal to δ [M (Ai)] for all i; since [X ] is the unique cycle which pulls back
to [M (Ai)] for all i, this shows f∗[Y ] = δ[X ].

The property of being a finite morphism of pure degree is compatible with analytification.

Proposition 3.24. Let f : Y → X be a morphism of finite-type K-schemes. Then f is finite of
pure degree δ if and only if fan : Y an → Xan is finite of pure degree δ.

Proof. By [Con99, Theorem A.2.1], f is finite if and only if fan is finite. Hence we may assume
that X = Spec(A) and Y = Spec(B) are affine. If M (A) ⊂ Xan is an affinoid domain, then
Spec(A) → Spec(A) is flat by Lemma A.1.2 of [Con99], and if {M (Ai)}i∈I is an admissible co-
vering of Xan, then

∐
i∈I Spec(Ai) → Spec(A) is flat and surjective. Let M (Bi) = f−1(M (Ai)).

We claim that Bi = B ⊗A Ai. Since B ⊗A Ai is finite over Ai, it is affinoid by [BGR84, Propo-
sition 6.1.1/6], so the claim follows easily from the universal property of the analytification
(see also [Con99, §A.2]). Hence by Proposition 3.19(ii), f has pure degree δ if and only if
Spec(Bi) → Spec(Ai) has pure degree δ for each i; by Remark 3.22(i), this is the case if and only
if M (Bi) → M (Ai) has pure degree δ for each i, which is equivalent to fan having pure degree δ
by Proposition 3.23(ii).

The following counterpart to Proposition 3.24 allows us to compare the degrees of the generic
and special fibers of a finite morphism of admissible formal schemes. It will play a key role
throughout this paper.

Proposition 3.25 (Projection formula). Let f : Y → X be a finite morphism of admissible
formal schemes, and let fan : Yan → Xan and f : Y → X be the induced morphisms on the
generic and special fibers, respectively. If fan has pure degree δ, then f has pure degree δ.

Proof. The theory of cycles on analytic spaces discussed above is part of Gubler’s more general
intersection theory on admissible formal schemes, and our ‘projection formula’ is in fact a special
case of Gubler’s projection formula [Gub98, Proposition 4.5]; this can be seen as follows. Choose
any ̟ ∈ K× with val(̟) ∈ (0,∞), and let D be the Cartier divisor on X defined by ̟.
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Essentially by definition (cf. (3.8) and (3.10) of [Gub98]) the intersection product D.[Xan] is
equal to val(̟)[X], and likewise (f∗D).[Yan] = val(̟)[Y]. Hence if fan∗ [Yan] = δ[Xan], then

val(̟)f∗[Y] = f∗((f
∗D).[Yan]) = D.fan∗ [Yan] = D.(δ[Xan]) = val(̟)δ[X] ,

where the second equality is by Gubler’s projection formula. Canceling the factors of val(̟)
yields Proposition 3.25.

Remark 3.26. The converse to Proposition 3.25 does not hold in general. The following example
is due to Gubler: let X = Spf(R[x]/(x(x−̟))) and Y = X ∐ Spf(R), and let f : Y → X be the
map which is the identity on X and which maps Spf(R) to X via x 7→ 0. Then fan does not have
a pure degree, but f does since X is a point.

3.27 Here we note some special cases of the projection formula:

(i) Suppose that X = Spf(A) and Y = Spf(B), and that A is an integral domain with
fraction field Q. If all generic points of Spec(B⊗RK) map to the generic point of Spec(A⊗RK),
then M (B⊗RK) → M (A⊗RK) is finite with pure degree equal to dimQ(B⊗AQ). By (3.18.1),
for every irreducible component C of X we have

dimQ(B ⊗A Q) ·multX(C) =
∑

D։C

multY(D) · [D : C] ,

where the sum is taken over all irreducible components D of Y that surject onto C.

(ii) Suppose that fan : Yan → Xan is an isomorphism. Then for every irreducible component C
of X we have

multX(C) =
∑

D։C

multY(D) · [D : C] ,

where the sum is taken over all irreducible components D of Y that surject onto C, because an
isomorphism has pure degree 1.

4. Tropical integral models

We continue to assume that K is an algebraically closed field which is complete with respect to
a nontrivial nonarchimedean valuation.

Notation 4.1. Let M ∼= Zn be a lattice, with dual lattice N = Hom(M,Z). If H is an additive
subgroup of R, we write MH for M ⊗Z H, so NH is naturally identified with Hom(M,H). We
write 〈·, ·〉 to denote the canonical pairings M ×N → Z and MR ×NR → R.

Let T = SpecK[M ] be the torus over K with character lattice M . For u in M , we write xu

for the corresponding character, considered as a function in K[M ].

4.2 Extended tropicalization

A point ‖ ·‖ in Tan naturally determines a real-valued linear function on the character latticeM ,
taking u to − log ‖xu‖. The induced tropicalization map trop: Tan → NR is continuous, proper,
and surjective [Pay09a]. The image of T(K) is exactly NG, which is dense in NR because G is
nontrivial and divisible.

More generally, if σ is a pointed rational polyhedral cone in NR and Yσ = SpecK[σ∨ ∩M ]
is the associated affine toric variety with dense torus T, then there is a natural tropicalization
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map from Yσ to the space of additive semigroup homomorphisms Hom(σ∨ ∩M,R∪{∞}) taking
a point ‖ · ‖ to the semigroup map u 7→ − log ‖xu‖, where − log(0) is defined to be ∞. See
[Pay09a, Rab12] for further details. We write NR(σ) for the image of Y an

σ under this extended
tropicalization map.

Definition 4.3. We say that a point in NR(σ) is G-rational if it is in the subspace Hom(σ∨∩M ,
G ∪ {∞}). Note that the image of any K-rational point of Yσ is G-rational.

For any toric variety Y∆, the tropicalizationNR(∆) is the union of the spacesNR(σ) for σ in ∆,
glued along the open inclusions NR(τ) ⊂ NR(σ) for τ � σ. The tropicalization maps on torus-
invariant affine opens are compatible with this gluing, and together give a natural continuous,
proper, and surjective map of topological spaces trop: Y an

∆ → NR(∆). Note that the vector space
NR, which is the tropicalization of the dense torus T ⊂ Y∆, is open and dense in NR(∆). For the
purpose of constructing tropical integral models of toric varieties and their subvarieties, it will
generally suffice to study polyhedral complexes in NR.

Let X be a closed subscheme of Y∆. The tropicalization Trop(X) is the image of Xan under
trop. Since X(K) is dense in Xan, its image is dense in Trop(X). Furthermore, every G-rational
point of Trop(X) is the image of a point of X(K), and if X is irreducible, then the preimage
of any point in Trop(X) ∩ NG is Zariski dense in X. See [Pay09b, Corollary 4.2] and [Pay12,
Remark 2], [Gub13, Proposition 4.14], or [OP13, Theorem 4.2.5].

4.4 Polyhedral domains

Recall that the recession cone σP of a nonempty polyhedron P ⊂ NR is the set of those v in NR

such that w+ v is in P whenever w is in P . If P is the intersection of the halfspaces 〈u1, v〉 > a1,
. . . , 〈ur, v〉 > ar, then σP is the dual of the cone in MR spanned by u1, . . . , ur. In particular, if P
is an integral G-affine polyhedron, then these halfspaces can be chosen with each ui in M , so the
recession cone σP is a rational polyhedral cone. The recession cone can also be characterized as
the intersection with NR × {0} of the closure in NR × R of the cone spanned by P × {1}.

Let P be an integral G-affine polyhedron inNR that does not contain any positive-dimensional
affine linear subspace, so its recession cone σ = σP is pointed.

Definition 4.5. The polyhedral domain associated with P is the inverse image of the closure of
P in NR(σ) under trop: Y

an
σ → NR(σ) and is denoted U P .

These polyhedral domains, introduced in [Rab12], directly generalize the polytopal domains
studied by Gubler in [Gub07b]. Indeed, a polytopal domain is the preimage in Tan of an integral
G-affine polytope in NR. Since the recession cone of a polytope in NR is the zero cone, whose
associated toric variety is T, Gubler’s polytopal domains are exactly the special case of these
polyhedral domains where P is bounded.

By [Rab12, § 6] the polyhedral domain U P is an affinoid domain in Y an
σ with coordinate ring

K〈U P 〉 =

{
∑

u∈σ∨∩M

aux
u : lim(val(au) + 〈u, v〉) = ∞ for all v ∈ P

}
,

where the limit is taken over all complements of finite sets. Its supremum norm is given by
∣∣∣
∑

aux
u
∣∣∣
sup

= sup
u∈σ∨∩M
v∈P

|au| exp(−〈u, v〉) .
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Since the recession cone σ is pointed, the polyhedron P contains no linear subspace and hence
has vertices. The supremum above is always achieved at one of the vertices of P , so the ring of
power-bounded regular functions on U P is

K〈U P 〉◦ =

{
∑

u∈σ∨∩M

aux
u ∈ K〈U P 〉 : val(au) + 〈u, v〉 > 0 for all v ∈ vert(P )

}
.

Since K〈U P 〉 is reduced, Theorem 3.12 implies that UP = Spf(K〈U P 〉◦) is an admissible formal
scheme with analytic generic fiber U P .

Remark 4.6. If P is integral affine but not G-affine, then the inverse image U P of the closure of P
under trop is a nonstrict affinoid domain. Indeed, if K ′ is a complete valued field extension of K
whose value group G′ is large enough that P is G′-affine, then U P ⊗̂KK

′ is strictly K ′-affinoid.

4.7 Polyhedral integral models

Let P be an integral G-affine polyhedron in NR whose recession cone σ = σP is pointed. As
usual, we let Yσ = SpecK[σ∨ ∩M ] denote the associated affine toric variety with dense torus T.

Definition 4.8. We define R[Y P ] ⊂ K[σ∨ ∩M ] to be the subring consisting of those Laurent
polynomials

∑
aux

u such that val(au) + 〈u, v〉 > 0 for all v ∈ P and all u. The scheme Y P :=
Spec(R[Y P ]) is called a polyhedral integral model of Yσ.

In other words, R[Y P ] is the intersection of K〈U P 〉◦ with K[M ]. It is clear that K〈U P 〉◦ is
the ̟-adic completion of R[Y P ]. Note that R[Y P ] is torsion-free and hence flat over R.

Lemma 4.9. The tensor product R[Y P ]⊗R K is equal to K[Yσ].

Proof. By definition we have R[Y P ] ⊗R K ⊂ K[Yσ]. For the other inclusion, note that if g =∑
bux

u is in K[Yσ], then the minimum over v in P of val(bu) + 〈u, v〉 is achieved at some vertex
of P . It follows that some sufficiently high power of ̟ times g is in R[Y P ], and hence g is in
R[Y P ]⊗R K.

Remark 4.10. One could equivalently define R[Y P ] to be the subring of K[M ] satisfying the same
inequalities. Since P is closed under addition of points in σ, any Laurent polynomial satisfying
these inequalities for all v in P must be supported in σ∨.

We will use the following notation in the proof of Proposition 4.11. For each face F 6 P , let
σ(F ) be the cone in NR spanned by P − v for any v in the relative interior of F . In other words,
σ(F ) = StarP (F ). We fix a labeling v1, . . . , vr for the vertices of P , and write σi for σ(vi). The
dual cone σ∨i is

σ∨i =
{
u ∈ σ∨P : 〈u, vi〉 6 〈u, vj〉 for all j

}
.

The cones σ∨1 , . . . , σ
∨
r are the maximal cones of the (possibly degenerate) inner normal fan of P ,

and their union is σ∨P .

Proposition 4.11. Let P be a G-rational polyhedron in NR. Then R[Y
P ] is finitely presented

over R.

Proof. By [RG71, Corollary 3.4.7], any finitely-generated and flat algebra over an integral domain
is automatically of finite presentation, so it suffices to show that R[Y P ] is finitely generated.

The cones σ∨1 , . . . , σ
∨
r cover σ∨, so R[Y P ] is generated by the subrings

Aj = R
[
Y P

]
∩K[σ∨j ∩M ]
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for 1 6 j 6 r. Therefore, it will suffice to show that each Aj is finitely generated over R.

The semigroup σ∨j ∩M is finitely generated by Gordan’s lemma [Ful93, § 1.2, Proposition 1].
Let u1, . . . , us be generators, and choose a1, . . . , as in K

× such that val(ai) + 〈ui, vj〉 = 0. Then
each monomial in Aj can be written as an element of R times a monomial in the aix

ui . It follows
that Aj is finitely generated over R, as required, with generating set {a1x

u1 , . . . , asx
us}.

In particular, Y P is a flat and finitely-presented R-model of the affine toric variety Yσ.

Remark 4.12. As in Remark 4.6, one can construct an algebraic model Y P of Yσ associated with
an integral affine but not G-affine polyhedron P ; when P is a point this is done in [OP13]. This
model is not of finite type.

4.13 Polyhedral integral and formal models of subschemes

Let P be an integral G-affine polyhedron with pointed recession cone σ. Let X be the closed
subscheme of the affine toric variety Yσ over K defined by an ideal a ⊂ K[Yσ].

Definition 4.14. (i) Let X P = Xan ∩U P . This is the Zariski-closed subspace of U P defined
by aK〈U P 〉.

(ii) The polyhedral integral model of X is the scheme-theoretic closure XP of X in Y P . It is
defined by the ideal aP = a ∩R[Y P ].

(iii) The polyhedral formal model of X P is the ̟-adic completion XP of XP . We will show
in Proposition 4.17 that XP is an admissible formal scheme with generic fiber X P .

(iv) The canonical model of X P is

XPcan = Spf
((
K〈U P 〉/aK〈U P 〉

)◦)
.

By Theorem 3.12, the canonical model is admissible if and only if X P is reduced.

Notation 4.15. The P -initial degeneration of X is defined to be

inP (X) = XP ⊗R k = XP ⊗R k .

As usual we write XPcan = XPcan ⊗R k. This coincides with the canonical reduction of X P

when X P is reduced. In the case where P is a single point w ∈ NG we write X w, Xw, inw(X),
etc. In this case, inw(X) is the w-initial degeneration of X in the sense generally used in the
literature (and in the introduction).

Lemma 4.16. The ideal aP is finitely generated.

Proof. Since XP is the closure of its generic fiber, it is flat over SpecR, and its coordinate ring
is a quotient of the finitely-generated R-algebra R[M ]. Since any finitely-generated flat algebra
over an integral domain is finitely presented [RG71, Corollary 3.4.7], it follows that aP is finitely
generated.

Proposition 4.17. The formal scheme XP is the formal closed subscheme of UP defined by
aPK〈U P 〉◦. It is an admissible formal scheme with generic fiber X P and special fiber inP (X).

Proof. The admissibility of XP is a consequence of Proposition 3.7(i). If A = R[Y P ]/a, then
by definition XP = Spec(A) and XP = Spf(Â), where Â is the ̟-adic completion of A. By
Proposition 3.7(ii) the sequence

0 −→ aPK〈U P 〉◦ −→ K〈U P 〉◦ −→ Â −→ 0
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is exact; it follows that XP is the closed subscheme of UP defined by aPK〈U P 〉◦. We have
(
K〈U P 〉◦/aPK〈U P 〉◦

)
⊗R K = K〈U P 〉/aK〈U P 〉

since KaP = a, so XP ⊗R K = X P . The special fiber of XP agrees with the special fiber of XP

by construction.

The canonical inclusion

K〈U P 〉◦/aPK〈U P 〉◦ →֒
(
K〈U P 〉/aK〈U P 〉

)◦

induces a map of formal schemes

XPcan −→ XP .

As this morphism induces an isomorphism on analytic generic fibers, it is finite when X P is
reduced by Proposition 3.8(ii). Its special fiber is a morphism XPcan → inP (X). Many of the results
of this paper are proved by using this morphism and the results of Section 3 (in particular the
projection formula, Proposition 3.25) to compare these two models.

4.18 Compatibility with extension of the ground field

We continue to use the notation of Section 4.13. Let K ′ be an algebraically closed complete
valued field extension of K, with valuation ring R′ and residue field k′. Let P be an integral
G-affine polyhedron in NR with pointed recession cone σ. Let Y ′

σ = Yσ ⊗K K
′, so Y ′

σ is the affine
toric variety defined over K ′ with dense torus T′ := T ⊗K K ′ associated with the cone σ. The
triangle

(Y ′
σ)

an //

trop %%

Y an
σ

tropzz

NR(σ)

commutes, so U P ⊗̂KK
′ is the polyhedral domain in (Y ′

σ)
an associated with P . Likewise the

polyhedral integral model (Y ′)P of Y ′
σ associated with P is naturally identified with Y P ⊗R R

′.
Indeed, as an R-module we have

R
[
Y P

]
=

⊕

u∈σ∨∩M

Ru · x
u ⊂ K[σ∨ ∩M ] , where Ru =

{
a ∈ R : val(a) > max

v∈vert(P )
−〈u, v〉

}
.

Since 〈u, v〉 ∈ G for all u ∈ M and v ∈ vert(P ), each Ru is a free R-module of rank 1, so the
image of Ru ⊗R R

′ in K ′ is exactly R′
u.

Let X ⊂ Yσ be the closed subscheme defined by an ideal a ⊂ K[σ∨ ∩ M ], and let X ′ =
X ⊗K K ′ ⊂ Y ′

σ, so X
′ is defined by aK ′[σ∨ ∩M ]. Since the above triangle is commutative, we

have Trop(X) = Trop(X ′) ⊂ NR(σ), and trop: (X ′)an → Trop(X) factors through the natural
map (X ′)an → Xan. Hence

(X ′)P = trop−1(P ) ∩ (X ′)an = X
P ⊗̂KK

′ .

Since schematic closure commutes with flat base change, the polyhedral integral model (X ′)P

of X ′ coincides with XP ⊗R R
′; hence if aP = a ∩R[Y P ] is the ideal defining XP , then (X ′)P is

defined by aPR′[(Y ′)P ]. It follows from this and Proposition 4.17 that (X′)P = XP ⊗̂RR
′, and in

particular that inP (X
′) = inP (X)⊗k k

′. As for the canonical models, suppose that X is reduced,
so X ′ is reduced as well. Then (X′)Pcan = XPcan⊗̂RR

′ because (XPcan⊗̂RR
′)⊗R′ k′ = (XPcan⊗Rk)⊗kk

′

is reduced; cf. Proposition 3.13.
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Below we will make various definitions by passing to a valued field extension K ′ of K. In
order for these definitions to be independent of the choice of K ′, we will need the following fact,
proven in [Duc09, § 0.3.2] or [Con08, § 4].

Lemma 4.19. Let K1 and K2 be complete valued field extensions of K. Then there is a complete
valued field extension K ′ of K admitting isometric embeddings K1 →֒ K ′ and K2 →֒ K ′ over K.

4.20 Relative multiplicities and tropical multiplicities

Recall Section 3.3 that if X = M (A) is an affinoid space, then the reduction map induces
a one-to-one correspondence between the Shilov boundary points of X an and the generic points
of the canonical reduction Spec(Ã). This leads to the following definition.

Definition 4.21. Let X ⊂ T be a reduced and equidimensional closed subscheme, let x ∈ Xan,
let w = trop(x), and suppose w ∈ NG. Define the relative multiplicity mrel(x) of x in trop−1(w)
as follows. If x is not a Shilov boundary point of trop−1(w), then we define its multiplicity to
be 0. Otherwise red(x) is the generic point of an irreducible component C of Xwcan; we define the
multiplicity of x to be [C : im(C)], where im(C) is the image of C in inw(X) (this is an irreducible
component by Corollary 3.11).

Now suppose w /∈ NG. Let K
′ be an algebraically closed complete valued field extension

of K such that w ∈ NG′ , where G′ is the value group of K ′. Let X ′ = X ⊗K K ′, and let
φ : (X ′)an → Xan be the natural morphism. We define

mrel(x) =
∑

x′∈φ−1(x)

mrel(x
′) .

In order for this definition to make sense, by Lemma 4.19 we only have to show that if
K ⊂ K ′ ⊂ K ′′ are algebraically closed complete valued field extensions, then we can calculate
mrel(x) with respect to either K ′ or K ′′. Replacing K with K ′, we are reduced to showing the
following.

Lemma 4.22. LetK ′ be an algebraically closed complete valued field extension ofK, and letX ′ =
X ⊗K K ′. Let x ∈ Xan, let w = trop(x), and suppose w ∈ NG. Then the natural map (X ′)w →
X w induces a bijection of Shilov boundary points which preserves relative multiplicities.

Proof. Let k′ be the residue field of K ′. As discussed in Section 4.18, we have (X′)wcan = Xwcan⊗kk
′

and inw(X
′)=inw(X)⊗kk

′, so the first assertion follows from the fact that Xwcan ⊗k k
′ → Xwcan

induces a bijection on irreducible components. Let C be an irreducible component of Xwcan, and
let D be its image in Xw. Then [C : D] = [C⊗k k

′ : D⊗k k
′], so relative multiplicities are preserved

as well.

Later we will relate mrel(x) to other geometrically-defined notions of multiplicity; see Propo-
sition 4.31 and Theorem 5.8. For the moment we relate relative multiplicities to tropical multi-
plicities, defined as follows.

Definition 4.23. Let X ⊂ T be a closed subscheme, and let w ∈ Trop(X). If w ∈ NG, then the
tropical multiplicity of X at w is defined to be

mTrop(w) =
∑

C⊂inw(X)

multinw(X)(C) ,

where the sum is taken over all irreducible components C of inw(X). If w /∈ NG, then let K ′ be
an algebraically closed complete valued field extension of K such that w ∈ NG′ , where G′ is the
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value group of K ′. Let X ′ = X ⊗K K ′. We define mTrop(w) to be the tropical multiplicity of w
relative to trop: (X ′)an → Trop(X).

The fact that mTrop(w) is independent of the choice of K ′ is proved in [OP13, Remark A.5].
It is also one of the consequences of the following proposition.

Proposition 4.24. Let X ⊂ T be a reduced and equidimensional closed subscheme, and let
w ∈ Trop(X). Then

mTrop(w) =
∑

x∈trop−1(w)

mrel(x) .

Proof. We immediately reduce to the case where w ∈ NG by extending the ground field if
necessary. By definition we have

∑

x∈trop−1(w)

mrel(x) =
∑

C⊂Xw
can

[C : im(C)] ,

where the sum is taken over all irreducible components C of Xwcan; the image im(C) of C in inw(X)
is an irreducible component by Corollary 3.11. Also by definition,

mTrop(w) =
∑

C⊂inw(X)

multinw(X)(C) ,

where the sum is taken over all irreducible components C of inw(X). By Proposition 3.25, for
every irreducible component C of inw(X) we have

multinw(X)(C) =
∑

C։C

[C : C] ,

where the sum is taken over all irreducible components C of Xwcan mapping onto C (for any such C

we have multXw
can

(C) = 1 since Xwcan is reduced). Therefore

mTrop(w) =
∑

C⊂inw(X)

multinw(X)(C) =
∑

C⊂inw(X)

∑

C։C

[C : C] =
∑

C⊂Xw
can

[C : im(C)] .

Example 4.25. In Example 2.6, we have mrel(ξ) = 1 for all ξ ∈ Γ and mrel(ξ) = 0 for all
ξ 6∈ Γ. This follows from Proposition 4.24 and the concrete description of the tropicaliza-
tion map in Example 2.6, together with the observation that mTrop(0, 0) = mTrop(2, 2) = 1
(since the initial degenerations in(0,0)(E) ∼= Spec k[x, y, x−1, y−1]/(y2 − x3 − x2) and in(2,2)(E) ∼=
Spec k[x, y, x−1, y−1]/(y2 − x2 − 1) are both integral schemes over k). Note that mrel(ξ) > 0 for
all ξ ∈ Γ because ξ is contained in the topological boundary of trop−1(trop(ξ)) in Ean, hence in
the Shilov boundary; see Section 3.4.

4.26 Polyhedral structures on tropicalizations

Let W be a G-rational affine space in NR, and let W0 be the linear space under W , so W0 is
spanned by W0 ∩ N . Set N ′ = N/(W0 ∩ N) and M ′ = W⊥

0 ∩M ⊂ M , and let T′ be the torus
Spec(K[M ′]). We call T′ the torus transverse to W . Let w′ ∈ N ′

G be the image of any point
of W . Then

R[(T′)w
′

] =

{ ∑

u∈M ′

aux
u ∈ K[M ′] : val(au) + 〈u,w′〉 > 0

}
,

so for all w ∈ NG∩W we have R[(T′)w
′

] ⊂ R[Tw]. Hence we have a natural morphism πw : T
w →

(T′)w
′

for all w ∈ NG ∩W .
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Remark 4.27. Let N ′′ = ker(N → N ′) =W0 ∩N , and let M ′′ = HomZ(N
′′,Z), so we have exact

sequences

0 −→ N ′′ −→ N −→ N ′ −→ 0 and 0 −→M ′ −→M −→M ′′ −→ 0

inducing an exact sequence of tori

0 −→ T′′ −→ T −→ T′ −→ 0 ,

where T′′ = Spec(K[M ′′]). We call T′′ the torus parallel to W . Choosing a splitting of N ։ N ′

splits all three exact sequences, and in particular furnishes an isomorphism T ∼= T′ × T′′. Let
w ∈W ∩NG, and let w′′ be its image in N ′′

R. Then we have an isomorphism Tw ∼= (T′)w
′

×(T′′)w
′′

under which πw corresponds to the projection onto the first factor.

Theorem 4.28. Let X ⊂ T be an equidimensional subscheme of dimension d. The set Trop(X)
admits a polyhedral complex structure of pure dimension d with the following properties:

(i) The tropical multiplicities are constant along the relative interior of every maximal face.

(ii) Let w be contained in the relative interior of a maximal face τ of Trop(X), letW = span(τ),
let T′ be the torus transverse to W , and let πw : T

w → (T′)w
′

be the natural map. Then
inw(X) ∼= π−1

w (Y ) for some dimension 0 subscheme Y of (T′)w
′

.

Proof. The first part is a basic result in tropical geometry; it is proved in [MS15, § 3.3].4 Let
T′′ ⊂ T be the torus parallel to W and write T′′ = (T′′)0, so (T′)w

′

is the quotient of Tw by T′′.
By [Spe05, Proposition 2.2.4], the initial degeneration inw(X) is invariant under the action of T′′.
Therefore inw(X) is the inverse image of a closed subscheme Y of (T′)w

′

(in fact Y is the quotient
inw(X)/T′′ ⊂ (T′)w

′

); counting dimensions, we see that dim(Y ) = 0. See [MFK94, Theorem 1.1.1
and Amplification 1.1.3] for basic existence results about geometric quotients of affine schemes
over a field by a free action of a reductive group.

In the situation of Theorem 4.28(ii), let T′′ be the torus parallel to W , and choose a splitting
T ∼= T′ ×T′′ as in Remark 4.27. Then inw(X) ∼= Y × (T′′)w

′′

.

4.29 The tropical projection formula

Let X ⊂ T be a reduced and equidimensional closed subscheme of dimension d, and let P be
an integral G-affine polytope contained in the relative interior of a maximal (d-dimensional)
face τ of a polyhedral complex decomposition of Trop(X) as in Theorem 4.28. Let W be the
affine span of τ , let T′ be the torus transverse to W (Section 4.26), let T′′ be the torus parallel
to W (Remark 4.27), and choose a splitting T → T′′. Note that dim(T′′) = d. Let P ′′ be the
image of P in N ′′

R, so U P ′′

is a polytopal domain in (T′′)an. The map U P → U P ′′

induces
a morphism ψP : X P → U P ′′

.

Theorem 4.30. The morphism ψP : X P → U P ′′

is finite, and every irreducible component
of X P surjects onto U P ′′

.

Proof. For dimension reasons it suffices to show that ψP is finite. Since X P = M (A) and
U P = M (K〈U P ′′

〉) are both affinoid, by the rigid-analytic direct image theorem [BGR84,

4The proofs in [MS15, § 3.3] assume that there is a section to the valuation map val : K× → G. Such a section
always exists when K is an algebraically closed nonarchimedean field; the following short proof was communicated
to us by Speyer. If G = {0}, then there is nothing to prove. Otherwise, consider the short exact sequence 0 →
U → K× → G → 0. Since K is algebraically closed, the group U is divisible. Thus U is injective as a Z-module,
so Ext1(A,U) = 0 and the valuation map splits.
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Theorem 9.6.3/1] it suffices to show that X P → U P ′′

is proper in the sense of [BGR84, § 9.6.2].
In fact we will show that X P ⋐

U P ′′ X P , that is, that there exist affinoid generators f1, . . . , fr
for A over K〈U P ′′

〉 such that |f1|sup, . . . , |fr|sup < 1.

Choosing bases for N ′ and N ′′, we obtain isomorphisms N ′
R

∼= Rn
′

, N ′′
R

∼= Rd, and NR
∼=

Rn
′

× Rd. Translating by an element of T(K), we may and do assume that P ⊂ {0} × N ′′
R (so

P = P ′′). For ǫ ∈ G with ǫ > 0 we let Iǫ ⊂ N ′
R be the cube [−ǫ, ǫ]n

′

, so Iǫ is an integral G-
affine polytope in N ′

R, and Pǫ := Iǫ × P ′′ is an integral G-affine polytope in NR = N ′
R × N ′′

R

containing P . Since τ is a maximal face, we have Pǫ ∩ Trop(X) = P for small ǫ; we fix such
an ǫ as well as an element e ∈ K with val(e) = ǫ. The polytopal subdomain U Iǫ ⊂ (T′)an is
a product of annuli of inner radius |e| and outer radius |e|−1, so if u1, . . . , un′ is a basis for M ′,
then {ex±u1 , . . . , ex±un′} is a set of affinoid generators for K〈U Iǫ〉. Since U Pǫ = U Iǫ ×K U P ′′

,
it follows that {ex±u1 , . . . , ex±un′} is a set of affinoid generators for K〈U Pǫ〉 over K〈U P ′′

〉. Since
Pǫ ∩ Trop(X) = P , we have Xan ∩ U Pǫ = X P , so {ex±u1 , . . . , ex±un′} can be regarded as a set
of affinoid generators for A over K〈U P ′′

〉. But by construction |xui(x)| = 1 for all x ∈ X P and
all i = 1, . . . , n′, so |exui(x)| = |e| < 1. This proves that ψP is finite.

It follows from Theorem 4.30 and Remarks 3.18(i) and 3.22(i) that ψP has a (pure) degree.

Proposition 4.31. In the situation of Section 4.29, let Y ⊂ X P be a union of connected
components, and let w ∈ P . Then

[Y : U
P ′′

] =
∑

x∈Y ∩trop−1(w)

mrel(x) .

Proof. Extending the ground field if necessary, we assume w ∈ NG. Let w
′′ be the image of w

in N ′′
G. Since Y ∩ X w → U w′′

is obtained by flat base change from Y → U P ′′

, we may
replace P by w and P ′′ by w′′ to assume Y ⊂ X w (cf. Proposition 3.23(i)). Let Y be the
canonical model of Y . The canonical reduction Y of Y is a union of connected components
of Xwcan, so for x ∈ Y the relative multiplicity mrel(x) is nonzero if and only if red(x) is the
generic point of an irreducible component C of Y, in which case mrel(x) = [C : im(C)], where
im(C) is the image of C in inw(X). Noting that Uw

′′

is an integral domain and Y is reduced,
applying Proposition 3.25 to Y → Uw

′′

yields

[Y : U
w′′

] =
∑

C⊂Y

[C : Uw
′′

] .

Since Uw
′′

= (T′′)w
′′

and inw(X) ∼= D × (T′′)w
′′

for some dimension 0 scheme D ⊂ (T′)w
′

(cf.
Remark 4.27), the reduced space underlying any irreducible component of inw(X) is isomorphic
to (T′′)w

′′

. Therefore [im(C) : Uw
′′

] = 1 for any irreducible component C ⊂ Y, so [C : Uw
′′

] = [C :
im(C)] and the proposition follows.

Corollary 4.32 (Tropical projection formula). In the situation of Theorem 4.30, the degree of
ψP : X P → U P ′′

is equal to mTrop(w) for any w ∈ P .

Proof. Assuming P = w and P ′′ = w′′ as in the proof of Proposition 4.31, the result follows
immediately from Propositions 4.31 and 4.24.

Remark 4.33. The tropical projection formula is an equality of the degree of the morphism
X P → U P ′′

(a morphism on the generic fiber) with the degree of a morphism Xw → Uw
′′

(a morphism on the special fiber). It is conceptually very close to the projection formula as
stated in Proposition 3.25, as indeed that is the main tool used in its proof; it is for this reason
that we call it the tropical projection formula.
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5. The tropicalization of a nonarchimedean analytic curve

In this section we freely use the definitions and notation from [BPR13]. In particular, for
a, b ∈ K× we have S(a, b) = {t ∈ Gan

m : |a| 6 |t| 6 |b|}, a closed annulus; we also set S(a) =
S(a, 1) and S(1) = {t ∈ Gan

m : |t| = 1}, the closed annulus of modulus 0.

5.1 The setup

Throughout this section X denotes a smooth connected algebraic curve realized as a closed
subscheme of a torus T, X̂ is the smooth completion of X, and D = X̂(K)rX(K) is the set of
punctures. We will denote a choice of semistable vertex set for X by V , and we let Σ = Σ(X,V )
be the associated skeleton. See [BPR13, § 3].

If we choose a basis for M , then we obtain isomorphisms NR
∼= Rn and K[T] ∼= K[x±1

1 , . . .,
x±1
n ]; if fi ∈ K[X]× is the image of xi, then

trop(‖ · ‖) = (− log ‖f1‖, . . . ,− log ‖fn‖) . (5.1.1)

5.2 Compatible polyhedral structures

The tropicalization of X is a polyhedral complex of pure dimension 1 in NR. We can regard
Trop(X) as a dimension 1 abstract G-rational polyhedral complex where the metric on the edges
is given by the lattice length, that is, the length in the direction of a primitive lattice vector
in N .

Recall the following consequence of the slope formula [BPR13, Theorem 5.15].

Lemma 5.3. Let e be an edge of Σ, and let f ∈ K[X]×. The map ‖ · ‖ 7→ − log ‖f‖ : Xan → R

restricts to a G-affine linear function from e to R with integer slope.

Since the G-rational points of an edge e of Σ are exactly the type 2 points of Xan contained
in e (cf. [BPR13, § 3.12]), it follows from (5.1.1) and the G-rationality of − log ‖f‖ as above that
trop maps type 2 points into NG.

Proposition 5.4. (i) The tropicalization map trop: Xan ։ Trop(X) factors through the re-
traction τΣ : Xan ։ Σ.

(ii) We can choose V and a polyhedral complex structure on Trop(X) as in Theorem 4.28
such that trop: Σ → Trop(X) is a morphism of dimension 1 abstract G-rational polyhedral
complexes.

Proof. The first part follows from (5.1.1) and the slope formula [BPR13, Theorem 5.15]. Let e
be an edge of Σ. It follows from Lemma 5.3 as applied to f1, . . . , fn that trop restricts to an
expansion by an integer multiple with respect to the intrinsic metric on e and the lattice length on
its image. Hence there exist refinements of the polyhedral structures on Σ and on Trop(X) such
that trop: Σ → Trop(X) becomes a morphism of dimension 1 abstract G-rational polyhedral
complexes. By [BPR13, Proposition 3.13(2)], any refinement of Σ is also a skeleton of X.

From now on we assume that our skeleton Σ of X and our choice of polyhedral structure
on Trop(X) are compatible in the sense of Proposition 5.4(ii). If e ⊂ Σ is an interval contained
in an edge, we let ℓan(e) be its length with respect to the skeletal metric, and if e′ ⊂ Trop(X)
is an interval contained in an edge, we let ℓTrop(e

′) be its lattice length. As a consequence of
Proposition 5.4(ii), if trop(e) = e′, then ℓTrop(e

′) is an integer multiple of ℓan(e).
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Definition 5.5. Let e ⊂ Σ be an edge, and let e′ ⊂ Trop(X) be its image. We define the
expansion factor of e to be the unique integer mrel(e) ∈ Z>0 such that

ℓTrop(trop(ẽ)) = mrel(e) · ℓan(ẽ)

for any finite-length segment ẽ contained in e.

Remark 5.6. For u ∈ M let fu ∈ K[X]× be the image of the character xu ∈ K[M ]. Let e be an
edge of Σ, and let su ∈ Z>0 be the absolute value of the slope of − log ‖fu‖ on e. It follows easily
from the definitions that mrel(e) = gcd{su : u ∈ M}. More concretely, let u1, . . . , un be a basis
for M , and let fi ∈ K[X]× be the image of xui , so trop(‖ · ‖) = (− log ‖f1‖, . . . ,− log ‖fn‖). Let
si ∈ Z>0 be the absolute value of the slope of − log ‖fi‖ on e. Then

mrel(e) = gcd(s1, . . . , sn) . (5.6.1)

5.7 We now come to one of the key results of this section. Let e ⊂ Σ be a bounded edge,5

and assume that e′ = trop(e) is an edge of Trop(X) (as opposed to a vertex). The inverse
image of the interior of e′ under trop is a disjoint union of open annuli, one of whose skeleta
is the interior of e. Hence if x ∈ e is the unique point mapping to some w ∈ relint(e′) ∩ NG,
then Yx := τ−1

Σ (x) ∼= S(1) is a connected component of X w = U w ∩ Xan (Definition 4.14).
Let W be the affine span of e′, let T′ be the torus transverse to W (Section 4.26), let T′′ be the
torus parallel to W (Remark 4.27), and choose a splitting T → T′′. We have a finite surjective
morphism X w → U w′′

by Theorem 4.30, where w′′ is the image of w in N ′′
G.

For y ∈ e the relative multiplicity mrel(y) was defined in Definition 4.21.

Theorem 5.8 (Compatibility of multiplicities). With the above notation,

mrel(e) = [Yx : U
w′′

] = mrel(x) .

Moreover, mrel(e) = mrel(y) for any y in the interior of e (even if trop(y) /∈ NG).

Proof. Let P be a G-rational closed interval contained in the interior of e′ and containing w.
Then

Y := τ−1
Σ (trop−1(P ) ∩ e) ∼= S(a, b)

is a connected component of X P ; it is a closed annulus of nonzero modulus with skeleton
trop−1(P ) ∩ e. Let P ′′ be the image of P in N ′′

G, so ℓTrop(P
′′) = ℓTrop(P ). By Theorem 4.30 the

morphism Y → U P ′′

is finite and surjective, and [Y : U P ′′

] = [Yx : U w′′

] by Proposition 3.23(i).
The torus T′′ is 1-dimensional, so U P ′′

= trop−1(P ′′) is an annulus and P ′′ is by definition the
skeleton of U P ′′

. We have

mrel(e) · ℓan
(
trop−1(P ) ∩ e

)
= ℓTrop(P ) = ℓTrop(P

′′) = [Y : U
P ′′

] · ℓan
(
trop−1(P ) ∩ e

)
,

where the final equality is by [BPR13, Corollary 2.6]. Since x is the unique Shilov boundary
point of Yx

∼= S(1), the equality [Yx : U w′′

] = mrel(x) is a consequence of Proposition 4.31.

By a standard argument involving extension of the ground field (cf. Lemma 4.22 and Sec-
tion 4.18), the second statement follows from the first.

5If e is an infinite ray, we can compute mrel(e) by refining the polyhedral structure on Σ so that mrel(e) coin-
cides with mrel(ẽ) for some bounded edge ẽ in the refinement. Thus we can assume without loss of generality in
Theorem 5.8 that e is bounded.
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Corollary 5.9. Fix an edge e′ of Trop(X), and let e1, . . . , er be the edges of Σ mapping ho-
meomorphically onto e′. Then

mTrop(e
′) =

r∑

i=1

mrel(ei) .

Proof. This follows immediately from Theorem 5.8 and Proposition 4.24.

Remark 5.10. With the notation in Corollary 5.9, let w be a G-rational point contained in the
relative interior of e′. The affinoid space trop−1(w) is isomorphic to

∐r
i=1 S(1) as in Section 5.7.

Since the canonical reduction of S(1) is isomorphic to Gm, the integer r is equal to the number
of irreducible components in the canonical reduction of X w.

Corollary 5.11. If e′ is an edge of Trop(X) and mTrop(e
′) = 1, then there is a unique edge e

in Σ such that trop maps e homeomorphically and isometrically onto e′. The edge e is in fact the
unique geodesic segment (or ray) in Xan which is mapped homeomorphically by trop onto e′.

Corollary 5.12. Let x ∈ H(Xan). Then mrel(x) > 0 if and only if x belongs to an edge of Σ
mapping homeomorphically onto its image via trop.

Proof. Suppose that x is contained in an edge e ⊂ Σ mapping homeomorphically onto its image
e′ = trop(e). If x is in the interior of e, then mrel(x) = mrel(e) > 0 by Theorem 5.8. Otherwise
w = trop(x) ∈ NG, and x is contained in the limit boundary ∂limX w of X w = trop−1(w)
because it is a limit of points of e which are not contained in X w. Since ∂limX w is the Shilov
boundary of X w, by definition we have mrel(x) > 0.

Now suppose that x is not contained in an edge of Σ mapping homeomorphically onto its
image. If x has type 4, then mrel(x) = 0 by definition. Otherwise by [BPR13, Corollary 5.1] we
can enlarge Σ if necessary to assume x ∈ Σ . Recall that every edge of Σ maps homeomorphically
onto its image or is crushed to a vertex of Trop(X). By hypothesis all edges containing x are
crushed to a vertex of Trop(X), so w = trop(x) ∈ NG. Hence there is an open neighborhood U
of x in Σ contained in X w. Then τ−1

Σ (U) is a neighborhood of x in Xan contained in X w, so
x /∈ ∂X w, and hence mrel(x) = 0.

5.13 Slopes as orders of vanishing

The slope formula [BPR13, Theorem 5.15] provides a useful interpretation of the quantities si
appearing in Remark 5.6 in terms of orders of vanishing. Assume that V is a strongly semistable
vertex set [BPR13, § 3] of X̂ (in addition to being a semistable vertex set of X). Let X be the
strongly semistable formal model of X̂ associated with V , let x ∈ V , and let C be the irreducible
component of X whose generic point is red(x). Let e be an edge of Σ adjacent to x, and let
ξ ∈ C(k) be the reduction of the interior of e. The slope formula [BPR13, Theorem 5.15] says
that if f is a nonzero rational function on X̂, then the slope s of − log |f | along e (in the direction
away from x) is equal to ordξ(f̃x). One can use this fact to give a simple proof of the well-known
balancing formula for tropical curves.

Theorem 5.14 (Balancing formula for tropical curves). Let w be a vertex of Trop(X), and let
~v1, . . . , ~vt be the primitive integer tangent directions at w corresponding to the various edges
e′1, . . . , e

′
t incident to w. Then

∑t
j=1mTrop(e

′
j)~vj = 0.

Proof. We use the setup of Section 5.13. Let f1, . . . , fn ∈ K[X]× be the coordinate functions
as in Remark 5.6, and let Fi = − log |fi|. Let x ∈ Σ ∩ trop−1(w) be a vertex. By the slope

89



M. Baker, S. Payne and J. Rabinoff

formula [BPR13, Theorem 5.15] we have 0 =
∑

v∈Tx
dvFi(x) for each i = 1, . . . , n. Since we are

assuming that V is a strongly semistable vertex set, each tangent direction v ∈ Tx along which
some Fi has nonzero slope is represented by a unique edge ev = [x, yv] of Σ adjoining x, and
dvFi(x) is just the slope of − log |fi| along ev. If trop(ev) = {w}, then dvFi(x) = 0 for all i, and
otherwise

dvFi(x) =
log |fi(x)| − log |fi(yv)|

ℓan(ev)
= mrel(ev)

log |fi(x)| − log |fi(yv)|

ℓTrop(trop(ev))
.

By Corollary 5.9, for each i we have

t∑

j=1

mTrop(e
′
j)(~vj)i =

t∑

j=1

( ∑

e=[x,y]
∼
−→e′j

mrel(e)

)
log |fi(x)| − log |fi(y)|

ℓTrop(e′j)
=

∑

x 7→w

∑

v∈Tx

dvFi(x) = 0 ,

which implies the result.

5.15 Faithful representations

If Y∆ is a proper toric variety with dense torus T, then X →֒ T extends in a unique way to
a morphism ι : X̂ → Y∆, which is a closed immersion for suitable Y∆. The intersection X̂an ∩
(Y an

∆ rTan) is the finite set of type 1 points D = X̂anrXan. We write trop(ι) : X̂an → NR(∆) for

the induced tropicalization map, and we set Trop(X̂, ι) = trop(ι)(X̂an) ⊂ NR(∆).

5.15.1 Let Y∆ and Y∆′ be toric varieties with dense tori T and T′, respectively, and let ι : X̂ →֒
Y∆ and ι′ : X̂ →֒ Y∆′ be closed immersions whose images meet the dense torus. We say that ι′

dominates ι and we write ι′ > ι provided that there exists a morphism ψ : Y∆′ → Y∆ of toric
varieties such that ψ ◦ ι′ = ι. In this case we have an induced morphism Trop(ψ) : Trop(X̂, ι′) →
Trop(X̂, ι) making the triangle

X̂an

trop(ι′)

xx

trop(ι)

&&

Trop(X̂, ι′)
Trop(ψ)

// Trop(X̂, ι)

commute. Since trop(ι) and trop(ι′) are surjective, the map Trop(ψ) is independent of the choice
of ψ, so the set of ‘tropicalizations of toric embeddings’ is a filtered inverse system.

5.15.2 By a finite subgraph of X̂an we mean a connected compact subgraph of a skeleton of X̂.
Any finite union of geodesic segments in H◦(X̂

an) is contained in a skeleton by [BPR13, Corol-
lary 5.10], so we can equivalently define a finite subgraph of X̂an to be an isometric embedding
of a finite connected metric graph Γ into H◦(X̂

an). Let X̂ →֒ Y∆ be a closed immersion into
a toric variety with dense torus T such that X̂∩T 6= ∅. We say that a finite subgraph Γ of X̂an is
faithfully represented by trop: X̂an → NR(∆) if trop maps Γ homeomorphically and isometrically
onto its image Γ′ (which is contained in NR). We say that trop is faithful if it faithfully represents
a skeleton Σ of X̂.

Remark 5.16. When considering a closed connected subset Γ of H(Xan) or Γ′ of Trop(X), we will
always implicitly endow it with the shortest-path metric. In general this is not the same as the
metric on Γ (respectively, Γ′) induced by the (shortest-path) metric on H(Xan) (respectively,
Trop(X)). With this convention, Γ (respectively, Γ′) is a length space in the sense of [Pap05,
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Definition 2.1.2], so any homeomorphism Γ → Γ′ which is a local isometry is automatically an
isometry by Corollary 3.4.6 of [Pap05]. This will be used several times in what follows.

The following result shows that if Γ is faithfully represented by a given tropicalization, then
it is also faithfully represented by all ‘larger’ tropicalizations.

Lemma 5.17. Let ι : X̂ →֒ Y∆ and ι′ : X̂ →֒ Y∆′ be closed immersions of X̂ into toric vari-
eties whose images meet the dense torus and which satisfy ι′ > ι. If a finite subgraph Γ of
X̂an is faithfully represented by trop(ι) : X̂an → NR(∆), then Γ is faithfully represented by
trop(ι′) : X̂an → NR(∆

′).

Proof. Without loss of generality, we may replace X̂ by X = X̂rD and assume that Y∆′ and Y∆
are tori with ι = (f1, . . . , fn) and ι′ = (f1, . . . , fm) for some m > n. The result is now clear
from (5.6.1).

We will show in Theorem 5.20 that any finite subgraph of X̂an is faithfully represented by
some tropicalization. First we need two lemmas.

Lemma 5.18. Let e be an edge of a skeleton Σ of X̂ with distinct endpoints x and y. There exists
a nonzero meromorphic function f on X̂ such that F = − log |f | has the following properties:

(i) We have F > 0 on e, and F (x) = F (y) = 0.

(ii) There exist (not necessarily distinct) type 2 points x′ and y′ in the interior e◦ of e such
that ρ(x, x′) = ρ(y, y′), such that F has slope ±1 on [x, x′] and [y, y′], and such that F is
constant on [x′, y′], as shown in Figure 4.

Figure 4. The graph of the function F = − log |f | : e→ R>0 constructed in Lemma 5.18.

Proof. Without loss of generality, we may assume Σ = Σ(X̂, V (X)) for a strongly semistable
formal model X of X̂ [BPR13, § 4]. For each irreducible component Cν of X, a simple argument
using the Riemann–Roch theorem allows us to choose a rational function f̃ν on Cν which vanishes
to order 1 at every singular point of X lying on Cν . By [BL85, Corollary 3.8] there exists a nonzero
rational function f on X̂ whose poles all reduce to smooth points of X and which induces the
rational function f̃ν on each irreducible component Cν of X (the gluing condition from loc. cit.
is trivial in this situation). The function f constructed in the proof of loc. cit. is defined on an
affinoid domain U of X̂an containing x and y, and f̃x and f̃y are the restrictions of the residue
of f in the canonical reduction of U . Therefore we have |f(x)| = |f(y)| = 1. Since {x, y} is the
Shilov boundary of τ−1

Σ (e), this proves part (i).

By [BPR13, Theorem 5.15(3)] the outgoing slope of F at x or y in the direction of e is 1.
Let ξ be the singular point of X whose formal fiber is τ−1

Σ (e◦). Since f has no poles on the formal
fibers above singular points, f restricts to an analytic function on the open annulus τ−1

Σ (e◦).
Part (ii) now follows from part (i) and [BPR13, Proposition 2.10(1)].
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Lemma 5.19. Let A ⊂ X̂an be an affinoid domain isomorphic to a closed annulus S(a) with
nonzero modulus. There exists a nonzero meromorphic function f on X̂ such that F = − log |f |
is linear with slope ±1 on Σ(A).

Proof. Choose an identification of A with S(a) = M (K〈at−1, t〉). By [FM86, Théorème 4, § 2.4]
the ring of meromorphic functions on X̂ which are regular on A is dense in K〈at−1, t〉. Hence
there exists a meromorphic function f on X̂ such that f ∈ K〈at−1, t〉 and |f − t|sup < 1. It
follows from [BPR13, Proposition 2.2] that f is also a parameter for the annulus A, so − log |f |
is linear with slope ±1 on Σ(A).

Theorem 5.20. If Γ is any finite subgraph of X̂an, then there is a closed immersion X̂ →֒ Y∆
of X̂ into a quasiprojective toric variety Y∆ such that trop: X̂an → NR(∆) faithfully represents Γ.
In particular, there exists a faithful tropicalization.

Proof. Since Γ is by definition contained in a skeleton Σ, we may assume Γ = Σ. Taking a re-
finement of Σ if necessary, we assume without loss of generality that Σ does not have any loop
edges. We claim that after possibly refining Σ further, for each edge e ⊂ Σ there exists a nonzero
meromorphic function f on X̂ such that log |f | has slope ±1 on e.

Let e = [x, y] be an edge of Σ, and let f and x′, y′ ∈ e◦ be as in Lemma 5.18. Then [x, x′]
and [y′, y] are edges in a refinement of Σ, and log |f | has slope ±1 on [x, x′] and [y′, y]. If x′ = y′,
then we are done with e; otherwise we let e′ = [x′, y′]. By construction e′ ⊂ e◦, so τ−1

Σ (e′) is
a closed annulus of nonzero modulus, and we may apply Lemma 5.19 to find f ′ such that log |f ′|
has slope ±1 on e′. This proves the claim.

By (5.6.1), if Φ = {f1, . . . , fr} is any collection of meromorphic functions on X such that (i)
for each edge e of Σ there is an i such that log |fi| has slope ±1 on e, and (ii) φ = (f1, . . . , fr)
induces a closed immersion of a dense open subscheme X of X̂ into a torus T ∼= Gr

m, then
trop ◦φ maps each edge of Σ isometrically onto its image. Since φ extends to a closed immersion
X̂ →֒ Y∆ into a suitable compactification Y∆ of T, it only remains to show that we can enlarge
Φ so that φ|Σ is injective; then trop ◦φ maps Σ isometrically onto its image by Remark 5.16.

Let e be an edge of Σ. Since Σ has at least two edges, the proof of [BPR13, Theorem 4.11]
(specifically case 1 in (4.15.1) of [BPR13]) shows that τ−1

Σ (e) is an affinoid domain in X̂an.

By [FM86, Théorème 1, § 1.4], there is a meromorphic function f on X̂ such that τ−1
Σ (e) = {x ∈

X̂an : |f(x)| 6 1}. Adding such an f to Φ for every edge e, we may assume that trop ◦φ is injective
on ΣrV , that is, that if trop(φ(x)) = trop(φ(y)) for x, y ∈ Σ, then x and y are vertices. By the
definition of X̂an, if x, y ∈ X̂an are distinct points, then there exists a meromorphic function f
on X̂an such that |f(x)| 6= |f(y)|. Adding such f to Φ for every pair of vertices yields a faithful
tropicalization.

We obtain the following theorem as a consequence.

Theorem 5.21. Let Γ be a finite subgraph of X̂. Then there exists a quasiprojective toric embed-
ding ι : X̂ →֒ Y∆ such that for every quasiprojective toric embedding ι′ : X̂ →֒ Y∆′ with ι′ > ι,
the tropicalization map trop(ι′) : X̂an → NR(∆

′) maps Γ homeomorphically and isometrically
onto its image.

Proof. By Theorem 5.20, there exists a closed embedding ι such that trop(ι) maps Γ homeo-
morphically and isometrically onto its image. By Lemma 5.17, the same property holds for any
closed embedding ι′ > ι.
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As mentioned in the introduction, Theorem 5.21 can be interpreted colloquially as saying
that the homeomorphism in Theorem 1.2 is an isometry.

With a little more work, we obtain the following strengthening of Theorem 5.21 in which the
finite metric graph Γ is replaced by an arbitrary skeleton of X (which is no longer required to
be compact or of finite length).

Theorem 5.22. Let Σ be any skeleton of X. Then there exists a quasiprojective toric embedding
ι : X →֒ Y∆ such that for every quasiprojective toric embedding ι′ : X →֒ Y∆′ with ι′ > ι, the
tropicalization map trop(ι′) : X̂an → NR(∆

′) maps Σ homeomorphically and isometrically onto
its image.

Proof. Using Lemma 5.17, it suffices to prove that there exists a closed embedding ι such that
trop(ι) maps Σ homeomorphically and isometrically onto its image.

For each point p ∈ D = X̂rX, choose a pair of relatively prime integers m1(p), m2(p)
greater than 2g, where g is the genus of X̂. By the Riemann–Roch theorem, there are rational

functions f
(p)
1 and f

(p)
2 on X̂ such that f

(p)
i has a pole of exact order mi(p) at p and no other

poles for i = 1, 2. Let Up be an (analytic) open neighborhood of p on which f
(p)
1 and f

(p)
2 have

no zeros, and let U be the union of Up for all p ∈ D.

Let Γ = Σr(Σ ∩ U). Then Γ is a finite subgraph of X, hence by Theorem 5.20 there exists
a closed embedding ι0 such that trop(ι0) maps Γ homeomorphically and isometrically onto its
image. We can choose the Up such that the complement ΣrΓ consists of finitely many open
infinite rays rp, one for each point p ∈ D. By the slope formula, the absolute value of the

slope of log |f
(p)
i | along rp is mi(p). Since gcd(m1(p),m2(p)) = 1 for all p ∈ D, if we enhance

the embedding ι0 to a larger embedding ι by adding the coordinate functions f
(p)
1 and f

(p)
2

for all p ∈ D, trop(ι) has multiplicity 1 along each ray rp by Remark 5.6. By Lemma 5.17,
trop(ι) also has multiplicity 1 at every edge of Γ. It follows easily (as in the proof of The-
orem 5.20) that trop(ι) maps Σ homeomorphically and isometrically onto its image, as de-
sired.

5.23 Certifying faithfulness

It is useful to be able to certify that a given tropicalization map is faithful using only ‘tropical’
computations.

Theorem 5.24. Let Γ′ be a compact connected subset of Trop(X), and suppose thatmTrop(w)=1
for all w ∈ Γ′∩NG. Then there is a unique closed subset Γ ⊂ H◦(X

an)mapping homeomorphically
onto Γ′, and this homeomorphism is an isometry.

Proof. Since mTrop is constant along the interior of each edge of Trop(X) by Theorem 4.28(i)
(for points not contained in NG this is proved by a standard ground-field extension argument)
and Γ′ is a finite union of closed intervals, we have mTrop(w) = 1 for all w ∈ Γ′. By Proposi-
tion 4.24, for each w ∈ Γ′ there is a unique point x = xw ∈ H◦(X

an) such that trop(x) = w
and mrel(x) > 0. Let Γ = {xw : w ∈ Γ′}. The natural continuous map trop: Γ → Γ′ is bijective.
It follows from Corollaries 5.11 and 5.12 that Γ is also a finite union of closed intervals, hence
compact. Thus trop: Γ → Γ′, being a continuous bijection between compact Hausdorff spaces, is
a homeomorphism. By Corollary 5.11 this homeomorphism is an isometry.

As for the uniqueness of Γ, let Γ̃ be any closed subset of H◦(X
an) mapping homeomorphically

onto Γ′. Fix w ∈ Γ′, and let x be the point in Γ̃ with trop(x) = w. Since x belongs to a closed
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segment of Xan mapping homeomorphically onto its image via trop (namely the inverse image
in Γ̃ of an edge in Trop(X) containing w), it follows from Corollary 5.12 that mrel(x) > 0. Hence
x = xw, so Γ̃ = Γ.

In order to apply Theorem 5.24, it is useful to know that one can sometimes determine the
multiplicity at a point w ∈ Trop(X)∩NG just from the local structure of Trop(X) at w, that is,
from the combinatorics of Star(w). Recall that if ~v1, . . . , ~vr are the primitive generators of the
edge directions in Trop(X) at w, and ai is the tropical multiplicity of the edge corresponding
to ~vi, then the balancing condition says that a1~v1 + · · · + ar~vr = 0. Now, if Z1, . . . , Zs are
the irreducible components of inw(X), then the tropicalization of each Zj (as a subscheme of
the torus torsor Tw over the trivially valued field k) is a union of rays spanned by a subset
of {~v1, . . . , ~vr}. If bij is the multiplicity of the ray spanned by ~vi in Trop(Zj) and mi is the
multiplicity of Zi in inw(X), then the balancing condition implies b1j~v1+ · · ·+ brj~vr = 0, and we
also have m1bi1 + · · · +msbis = ai, since Trop(inw(X)) = Starw(Trop(X)) by [Spe14, Proposi-
tion 10.1].

Theorem 5.25. Let w ∈ Trop(X) ∩ NG. If Trop(X) is trivalent at w and one of the edges
adjacent to w has multiplicity 1, then w has multiplicity 1.

Proof. Let ~v1, ~v2, ~v3 be the primitive generators of the edge directions in Trop(X) at w, and let ai
be the multiplicity of the edge in direction ~vi. The linear span 〈~v1, ~v2, ~v3〉 is 2-dimensional, since
the ~vi are distinct and satisfy the balancing condition, so any relation among them is a scalar
multiple of the relation a1~v1 + a2~v2 + a3~v3 = 0.

Let Z be an irreducible component of inw(X), and let bi be the multiplicity of the ray spanned
by ~vi in Trop(Z). Then bi is a nonnegative integer bounded above by ai and b1~v1+b2~v2+b3~v3 = 0.
This relation must be a scalar multiple of the relations given by the ai, so there is a positive
rational number λ 6 1 such that bi = λai for all i. If some ai is 1, then λ must also be 1
and bi = ai for all i. Since ai is the sum of the multiplicities of the ray spanned by ~vi in the
tropicalizations of the components of inw(X), it follows that inw(X) has no other components,
and w has multiplicity 1.

Remark 5.26. Initial degenerations at interior points of an edge of multiplicity 1 are always
smooth, since they are isomorphic to Gm by Theorem 4.28.

Remark 5.27. There are other natural combinatorial conditions which can guarantee multiplic-
ity 1 at a point w ∈ NG of Trop(X) or smoothness of the corresponding initial degeneration. In
the case of curves, for example, the argument above works more generally if Trop(X) is r-valent,
the linear span of the edge directions at w has dimension r − 1, and the multiplicities of the
edges at w have no nontrivial common factor.

Combining the previous two results and the discussion of tropical hypersurfaces in Section 2.1,
we obtain the following. Recall that a leaf in a graph is a vertex of valence 1.

Corollary 5.28. Suppose g(X̂) > 1, and let Σ be the minimal skeleton of X̂an.

(i) If all vertices of Trop(X) are trivalent, all edges of Trop(X) have multiplicity 1, the
minimal skeleton Σ has no leaves,6 and dimH1(Σ,R) = dimH1(Trop(X),R), then trop: Σ →
Trop(X) is an isometry onto its image.

6In earlier versions of this paper, the skeleton Σ was assumed to be bridgeless; however, the proof only used that Σ
has no leaves.
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(ii) If X ⊂ G2
m is defined by a polynomial f ∈ K[x, y] whose Newton complex (see Re-

mark 2.2) is a unimodular triangulation, then X̂ has totally degenerate reduction and trop: Σ →
Trop(X) induces an isometry from Σ onto its image.

Proof. Let g′ = dimH1(Σ,R) = dimH1(Trop(X),R). Choose a compact, connected subgraph
Σ′ ⊂ Trop(X) with g′ = dimH1(Σ

′,R). By Theorem 5.25, all w ∈ Trop(X) ∩ NG have multi-
plicity 1, so according to Theorem 5.24, there is a (unique) finite subgraph Σ̃ of Xan mapping
homeomorphically and isometrically onto Σ′. Since Σ is the minimal skeleton of Xan and Σ has
no leaves, any subgraph of Xan whose first homology has dimension at least g′ must contain Σ.
In particular, Σ ⊂ Σ̃, so Σ maps isometrically onto its image, which proves part (i).

We now prove part (ii). By Section 2.1, Trop(X) is trivalent with all edges of multiplicity 1. By
Baker’s theorem [Bak93] (see also [Bee09]), the genus g(X̂) is bounded by the number of internal
vertices in the Newton polytope of f . Since the Newton complex is dual to the tropicalization,
each internal vertex corresponds to a region in R2rTrop(X); from this and the above, one
sees that g(X̂) 6 dimH1(Trop(X),R). With Σ′ as above, by Theorem 5.24, there is a (unique)
finite subgraph Σ̃ of Xan mapping homeomorphically onto Σ′ via trop. Since dimH1(Σ,R) >

dimH1(Σ̃,R) > g(X̂) in any case, it follows from the genus formula [BPR13, Remark 4.18] that
dimH1(Σ,R) = g(X̂) and that X̂ has totally degenerate reduction. In particular, the minimal
skeleton Σ has no leaves. By part (i), trop: Σ → Trop(X) is an isometry onto its image.

Corollary 5.28 will be important for applications to Tate curves in Section 6.

Example 5.29. As an example where the hypotheses of Corollary 5.28 are satisfied, consider the
genus 3 curve X = V (f) with

f = t4
(
x4 + y4 + z4

)
+ t2

(
x3y + x3z + xy3 + xz3 + y3z + yz3

)

+ t
(
x2y2 + x2z2 + y2z2

)
+ x2yz + xy2z + xyz2 .

See Figure 5.

Figure 5. The Newton complex and tropicalization of the curve X defined by the polynomial f
from Example 5.29. The tropicalization faithfully represents the minimal skeleton of Xan.

Example 5.30. The following example shows that it is possible, even under the hypotheses
of Theorem 5.24, for the tropicalization map to fail to be faithful. Let K be the completion
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of C{{t}}, let X̂ ⊂ P2 be defined by the equation

(y − 1)2 = (x− 1)2(y + 1) + t · xy

over C{{t}}, and let X = X̂ ∩ G2
m. The above equation degenerates to a nodal rational curve

when t = 0, the node being [1 : 1 : 0], so it defines a (not strongly) semistable algebraic integral
model X of X̂—in fact, X is a minimal stable model for X̂, and the associated semistable vertex
set only contains one point, so it is minimal as well (see [BPR13, Corollary 4.23]). Therefore X̂
is an elliptic curve with bad reduction and in0(X) ∼= X ∩G2

m,k is reduced and irreducible. The
points in the set of punctures

D := X̂(K)rX(K) = {[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], [0 : 3 : 1], [2 : 0 : 1]}

reduce to distinct smooth points of X , so if Σ is the minimal skeleton of X̂an and τΣ : X̂an → Σ is
the retraction, then τΣ(x) reduces to the generic point of X for all x ∈ D. Therefore the minimal
skeleton Γ of X and the tropicalization of X are as shown in Figure 6. We see that Trop(X) is
contractible and has everywhere multiplicity 1 but the image of the section does not contain the
loop in Xan (the loop is contracted to the origin). In particular, trop is not faithful despite the
fact that all points in Trop(X) have multiplicity 1.

Figure 6. The skeleton, tropicalization, and Newton complex of the curve X from Example 5.30.
One sees from the Newton complex that the initial degenerations are all of multiplicity 1 away
from 0, and in0(X) is a rational nodal curve. However, the tropicalization crushes the loop in Xan

to the origin.

6. Elliptic curves

Let Ê/K be an elliptic curve. If Ê has good reduction, then the minimal skeleton Σ of Êan is
a point, while if Ê has multiplicative reduction, then the minimal skeleton Σ of Êan is homeomor-
phic to a circle of length − val(j

Ê
) = val(q

Ê
), where Êan ∼= Gan

m /q
Z

Ê
is the Tate uniformization

of Ê (see [BPR13, Remark 4.24]). In this section, we use our results on nonarchimedean analytic
curves and their tropicalizations to prove some new results (and reinterpret some old results)
about tropicalizations of elliptic curves.

6.1 Faithful tropicalization of elliptic curves

As noted in [KMM08, KMM09], a curve in G2
m given by a Weierstrass equation y2 = x3+ ax2+

bx + c cannot have a cycle in its tropicalization, because the Newton complex of a Weierstrass
equation does not have an interior vertex. Thus Weierstrass equations are always ‘bad’ from the
point of view of tropical geometry. On the other hand, the following result shows that there do
always exist ‘good’ plane embeddings of elliptic curves with multiplicative reduction.
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Figure 7. The skeleton Γ of E, the tropicalization of E, and the Newton complex of the equation
ax2y + bxy2 + cxyz = dz3 defining E, where E is as in the proof of Theorem 6.2. The minimal
skeleton Σ of Ê is the circle contained in Γ. The tropicalization faithfully represents Σ, so
ℓTrop(Trop(Σ)) = ℓan(Σ).

Theorem 6.2. Let Ê/K be an elliptic curve with multiplicative reduction. Then there is a closed
embedding of Ê in P2, given by a projective plane equation of the form ax2y+bxy2+cxyz = dz3,
such that (letting E be the open affine subset of Ê mapping into the torus G2

m) Trop(E) is
a trivalent graph, every point of Trop(E) has a smooth and irreducible initial degeneration
(hence tropical multiplicity 1), and the minimal skeleton of Ê is faithfully represented by the
tropicalization map. In particular, Trop(E) contains a cycle of length − val(j

Ê
).

Proof. Let q = q
Ê

be the Tate parameter, so that Êan ∼= Gan
m /q

Z. Choose a cube root q1/3 ∈

K× of q, and let α, β ∈ Ê(K) correspond under the Tate isomorphism to the classes of q1/3

and (q1/3)2, respectively. Recall that a divisor D =
∑
aP (P ) on an elliptic curve is principal if

and only if
∑
aP = 0 and

∑
aPP = 0 in the group law on the curve. In particular, there exist

rational functions f and g on Ê (unique up to multiplication by a nonzero constant) such that
div(f) = 2(α)−(β)−(0) and div(g) = 2(β)−(α)−(0). Let ψ : Ê → P2 be the morphism associated
with the rational map [f : g : 1]. Since 1, f , g form a basis for L(D) with D = (α) + (β) + (0)
and D is very ample [Har77, Corollary IV.3.2(b)], we see that ψ is a closed immersion.

Let Γ be the minimal skeleton of E, that is, the smallest closed connected subset of Êan

containing the skeleton Σ of Êan and the three points α, β, 0, with those three points removed.
Recall that Σ is isometric to a circle of circumference ℓan(Σ) = − val(j

Ê
) = val(q). The natural

map

K×
։ Ê(K) →֒ Êan

։ Σ
∼

−→ R/ℓZ

is given by z 7→ [val(z)]; in particular, if τΣ : Êan ։ Σ denotes the canonical retraction, we have
τΣ(0) = [0], τΣ(α) = [13 val(q)], and τΣ(β) = [23 val(q)]. Thus Γ is a circle with an infinite ray
emanating from each of three equally spaced points O = τΣ(0), A = τΣ(α), B = τΣ(β) along the
circle (see Figure 7). The tropicalization map trop: E = Êanr{0, α, β} → R2 corresponding to
the embedding E →֒ G2

m given by (f, g) factors through the retraction onto Γ.

The map trop: Γ → R2 can be determined (up to an additive translation) using the slope
formula [BPR13, Theorem 5.15] by solving an elementary graph potential problem. The result is
as follows. The function val(f) = − log |f | has slope −1 along the ray from O to 0, slope 2 along
the ray from A to α, and slope −1 along the ray from B to β. On Σ, it has slope 1 along the
segment from O to A, slope −1 along the segment from A to B, and slope 0 along the segment
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from B to O. Similarly, the function val(g) = − log |g| has slope −1 along the ray from O to 0,
slope −1 along the ray from A to α, and slope 2 along the ray from B to β. On Σ, it has slope 0
along the segment from O to A, slope 1 along the segment from A to B, and slope −1 along the
segment from B to O. Thus (up to a translation on R2) Trop(E) is a trivalent graph consisting
of a triangle with an infinite ray emanating from each of the vertices, as in Figure 7.

Since the expansion factor along every edge of Γ is equal to 1 by (5.6.1), it follows from
Corollary 5.9 that the tropical multiplicity of every edge of Trop(E) is 1. By Theorem 5.25,
the multiplicity at every vertex of Trop(E) is 1 as well, and in fact the initial degenerations
are smooth and irreducible since the Newton complex is unimodular (see Figure 7). Since the
expansion factor is 1 along every edge of Σ and trop |Σ is a homeomorphism, it follows that Σ
is faithfully represented. The bounded edges of Trop(E) form a triangle each of whose sides has
lattice length val(q)/3.

The only thing which remains to be proved is that ψ(Ê) ⊂ P2 is cut out by an equation
of the form indicated in the statement of the theorem. This follows from the Riemann–Roch
theorem: the functions 1, fg, f2g, fg2 all belong to the 3-dimensional vector space L(3(0)) and
hence there is a nonzero linear relation between them. (This argument is similar to [Har77,
Proposition IV.4.6].)

We can also use our theorems to give more conceptual proofs of many of the results from
[KMM08, KMM09]. For example, we have the following theorem which was proved in [KMM09]
by a brute-force computation.

Theorem 6.3. Let E ⊂ G2
m be the intersection of an elliptic curve Ê ⊂ P2 with G2

m. Assume
that (i) Trop(E) contains a cycle C, (ii) all edges of Trop(E) have multiplicity 1, and (iii) Trop(E)
is trivalent. Then ℓTrop(C) = − val(j

Ê
).

Proof. This follows immediately from Corollary 5.28(i).

Remark 6.4. Conditions (i)–(iii) from Theorem 6.3 are automatically satisfied if the Newton
complex of the defining polynomial for E is a unimodular triangulation with a vertex lying
in the interior of the Newton polygon, as in Figure 7. Varying the valuation of the coefficient
corresponding to the interior vertex while keeping all other coefficients fixed gives a natural map
from an annulus in Gm to the j-line, which is finite and flat onto an annulus in the j-line, by
[BPR13, Proposition 2.2(2)]. In particular, given a tropical plane curve dual to such a Newton
complex and an elliptic curve E with j-invariant equal to minus the length of the loop, there is
an embedding of E into a toric variety such that the tropicalization of the intersection with G2

m

is faithful and equal to the given tropical curve. See [CS13] for explicit constructions of such
embeddings for tropical curves of ‘honeycomb normal form’, including an algorithm for finding
the honeycomb form of an elliptic curve, paramaterization by theta functions, the tropicalization
of the inflection points, and relations to the group law.

Remark 6.5. A different (but related) conceptual explanation for Theorem 6.3 is given in [HK12,
Proposition 7.7].

Let us say that a closed embedding of an elliptic curve Ê/K in some toric variety is certifiably
of genus 1 if Trop(E) satisfies conditions (i)–(iii) from Theorem 6.3. Note that the cycle C in
any such embedding satisfies ℓTrop(C) = − val(j

Ê
), by Theorem 6.3. Combining Theorems 6.2

and 6.3, we obtain the following result.

Corollary 6.6. An elliptic curve Ê/K has multiplicative reduction if and only if it has a closed
embedding in P2 which is certifiably of genus 1.

98



Nonarchimedean geometry and tropicalization

6.7 Speyer’s well-spacedness condition

In this section we explain how Speyer’s well-spacedness condition [Spe14] follows from a more ge-
neral result (possibly of independent interest) about the analytification of an elliptic curve Ê/K.

Let Σ be the minimal skeleton of Ê. For P,Q ∈ Ê(K), define i(P,Q) ∈ R>0∪{∞} as follows:

i(P,Q) =

{
0 if τΣ(P ) 6= τΣ(Q) ,

dist(P ∨Q,Σ) if τΣ(P ) = τΣ(Q) ,

where τΣ : Êan ։ Σ is the retraction map, P∨Q is the first point where the geodesic paths from P
to Σ and Q to Σ meet, and dist(x,Σ) is the distance (in the natural metric on H(Êan)) from
x ∈ Êan to its retraction τΣ(x) ∈ Σ. By convention we set i(P, P ) = +∞. Since translation by
a point P ∈ Ê(K) is an automorphism of Ê, it induces an isometry on H(Êan); therefore i(P,Q)
only depends on the difference P −Q in Ê(K); that is, i(P,Q) = ι(P −Q) with ι(R) = i(R, 0).

The following lemma shows that ‖P,Q‖ := exp(−i(P,Q)) is an ultrametric on Ê(K).

Lemma 6.8. (i) For any points P,Q,R ∈ Ê(K) we have i(P,Q) > min{i(P,R), i(Q,R)}, with
equality if i(P,R) 6= i(Q,R).

(ii) If m ∈ Z is an integer such that |m| = 1 in K, then i(mP,mQ) = i(P,Q) for any
P,Q ∈ Ê(K) such that i(P,Q) > 0.

Proof. We begin by proving part (i). If either i(P,R) = 0 or i(Q,R) = 0, then the inequality
is trivial. Moreover, by translation invariance of i we may assume R = 0. So we are reduced to
showing that if ι(P ) > 0 and ι(Q) > 0, then ι(P −Q) > min{ι(P ), ι(Q)}.

Let E be the semistable formal model of Ê corresponding to the semistable vertex set
{τΣ(0)} (see [BPR13, Remark 4.24]); note that Σ = Σ(Ê, {τΣ(0)})). Then E is a nodal ra-
tional curve, and the smooth locus Esm is a group scheme isomorphic to Gm,k. The subset

Ê1(K) := {P ∈ Ê(K) : ι(P ) > 0} is the formal fiber over the identity element of Esm, hence is
a subgroup. In fact, Ê1(K) is isomorphic to the group m = {z ∈ K : |z| < 1} with the law of
composition given by a 1-parameter formal group law F over R [Sil09, Proposition VII.2.1], and
the restriction of ι to Ê1(K) corresponds to the valuation on m under this identification. The
desired inequality follows since a group law on m given by a power series with coefficients in R
is obviously ultrametric.

In the situation of part (ii), as above we are reduced to showing that ι(mP ) = ι(P ) when
ι(P ) > 0. This is true because m is the coefficient of the linear term of the power series for multi-
plication bym under F [Sil09, Proposition IV.2.3], and all other terms have greater valuation.

Since ι(P ) = ι(−P ), an equivalent formulation of Lemma 6.8(i) is that for any P,Q ∈ Ê(K)
we have ι(P +Q) > min{ι(P ), ι(Q)}, with strict inequality if ι(P ) 6= ι(Q).

If f is a nonconstant rational function on Ê, define Nf to be the set of all x ∈ H(Êan)

such that log |f | is nonconstant in every open neighborhood of x. Equivalently, for x ∈ H(Êan)
let Tx(f) be the (finite) set of tangent directions at x along which the derivative of log |f | is
nonzero. Then Nf is the set of all x ∈ Êan such that Tx(f) 6= ∅. By [BPR13, Theorem 5.15(1,2)],

Nf is a union of finitely many edges of the minimal skeleton Γf of the curve obtained from Êan

by removing all zeros and poles of f .

Theorem 6.9. Suppose that K has residue characteristic 0. Let f be a nonconstant rational
function on Ê, and assume that there exists an x ∈ Nf such that dist(x,Σ) < dist(y,Σ) for all
y ∈ Nf with y 6= x. Assume also Σ ∩Nf = ∅. Then |Tx(f)| > 3.
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In other words, either the minimum distance from Nf to the skeleton is achieved at two
distinct points, or else the minimum is achieved at a unique point at which log |f | has nonzero
slope in at least three different tangent directions.

Proof. By the slope formula [BPR13, Theorem 5.15], the sum of the outgoing slopes of log |f | at
x is 0, so |Tx(f)| > 2. For the sake of contradiction, assume |Tx(f)| = 2 and write Tx(f) = {v, v′}.
Our hypotheses imply x 6∈ Σ and that Σ lies in a single connected component of Êanr{x}.

Let B(x, v) (respectively, B(x, v′)) be the open set consisting of all z ∈ Êan lying in the
tangent direction v (respectively, v′), so that B(x, v) and B(x, v′) are connected components of
Êanr{x} which are disjoint from Σ. Let Dv be the restriction of div(f) to B(x, v), and let Dv′ be
the restriction of div(f) to B(x, v′). By the slope formula, we havem = deg(Dv) = − deg(Dv′) for
some nonzero integerm. Without loss of generality, we may assumem > 0. Let δ = dist(x,Σ) > 0.

We claim that div(f) can be written as

div(f) = m
(
(P )− (Q)

)
+
∑

j

(
(Aj)− (Bj)

)

with i(P,Q) = δ and i(Aj , Bj) > δ for all j. Because we have assumed that K has residue cha-
racteristic 0, we have |m| = 1, and therefore i(m(P ),m(Q)) = i(P,Q) = δ by Lemma 6.8(ii). Since
mP −mQ =

∑
(Bj −Aj) in the group law on Ê(K), we obtain a contradiction to Lemma 6.8(i).

To prove the claim, we use a trick due to Speyer. Suppose Dv = (P1) + · · · + (Pr) − (Q1) −
· · ·− (Qs) and Dv′ = (P ′

1)+ · · ·+(P ′
r′)− (Q′

1)−· · ·− (Q′
s′) with r− s = m and s′− r′ = m. Then

Dv +Dv′ = m
(
(P1)− (Q′

1)
)
+

s∑

j=1

(
(Pj)− (Qj)

)
+

r∑

j=s+1

(
(Pj)− (P1)

)

+

r′∑

j=1

(
(P ′

j)− (Q′
j)
)
+

s′∑

j=r′+1

(
(Q′

1)− (Q′
j)
)
.

Note that i(P1, Q
′
1) = δ but that i(Pj , Qj) > δ for all j = 1, . . . , s; i(Pj , P1) > δ for all j =

s+ 1, . . . , r; i(P ′
j , Q

′
j) > δ for all j = 1, . . . , r′; and i(Q′

1, Q
′
j) > δ for all j = r′ + 1, . . . , s′.

Let C1, . . . , Ct be the connected components of Nf , labeled so that C1 is the component
containing x. By the slope formula [BPR13, Theorem 5.15], for each j the restriction Dj of div(f)

to Cj is a nonzero divisor of degree 0 and div(f) =
∑

j Dj . Moreover, if A,B ∈ Ê(K)∩Cj , then
the unique geodesic paths from A to Σ and B to Σ must pass through the unique point xj of Cj
closest to Σ, so for j > 2 we have i(A,B) > δ. The claim now follows since D1 = Dv +Dv′ can
be written as above, and by what we have just said we can write each Dj for j > 2 as a sum of
divisors of the form (A)− (B) with i(A,B) > δ.

In particular, we obtain the necessity of Speyer’s well-spacedness condition for a genus 1
tropical curve to lift.

Corollary 6.10 (Speyer). Suppose that K has residue characteristic 0. Let E be a dense open
subset of an elliptic curve Ê over K with multiplicative reduction and let ψ : E →֒ T be a closed
embedding of E in a torus T. Assume that (i) every vertex of Trop(E) is trivalent, (ii) every
edge of Trop(E) has multiplicity 1, and (iii) Trop(E) contains a cycle Σ′ which is contained in a
hyperplane H. If WH denotes the closure in NR of the set of points of Trop(E) not lying in H,
then there is no single point of WH which is closest to Σ′.
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In other words, ‘the minimum distance from points of Trop(E) not lying in H to the cycle
must be achieved twice’.

Proof. We may assume that ψ : E → T ∼= Gn
m is given by (f1, . . . , fn) with log |fn| equal to

a constant c on Σ and that H is the hyperplane xn = c. Let Γ be the minimal skeleton of E. By
Corollary 5.28(i), we see that trop: Γ → Trop(E) is an isometry. Since Nfn ⊂ Γ, the result now
follows from Theorem 6.9.

Remark 6.11. Katz [Kat12] and Nishinou [Nis09] have recently obtained other kinds of gene-
ralizations of Speyer’s well-spacedness condition. Their generalized conditions apply to curves of
higher genus.

7. A generalization of the Sturmfels–Tevelev multiplicity formula

As an illustration of the tools developed in this paper, we conclude with a generalization of the
Sturmfels–Tevelev multiplicity formula [ST08, Theorem 1.1] to the nonconstant coefficient case
(and also to nonsmooth points). A different proof is given in an appendix to [OP13].

Let X ⊂ T be a closed subvariety, that is, a reduced and irreducible closed subscheme. Let
α : T → T′ be a homomorphism of tori that induces a generically finite map of degree δ from X
to X ′, where X ′ is the closure of α(X). Then, set theoretically, Trop(X ′) is the image of Trop(X)
under the induced linear map A : NR → N ′

R [Tev07, Proposition 3]. The fundamental problem of
tropical elimination theory is to determine the multiplicities on the maximal faces of Trop(X ′)
from those on the maximal faces of Trop(X).

Theorem 7.1. Let α : T → T′ be a homomorphism of algebraic tori over K, and let X be
a closed subvariety of T. Let X ′ be the schematic image of X in T′, let f : X → X ′ be the
restriction of α to X, and let F = trop(f) : Trop(X) → Trop(X ′) be the restriction of the linear
map A : NR → N ′

R induced by α. Suppose that f is generically finite of degree δ. Then for any
point w′ ∈ Trop(X ′) ∩N ′

G such that |F−1(w′)| <∞, we have

mTrop(w
′) =

1

δ

∑

w∈F−1(w′)

∑

C⊂Xw

multXw(C)[C : im(C)] , (7.1.1)

where the second sum runs over all irreducible components C of Xw and where im(C) is the image
of C in (X′)w

′

.

In order to use the projection formula (Proposition 3.25), we will need the following lemma.

Lemma 7.2. Let X and X ′ be integral finite-type K-schemes, and let f : X → X ′ be a generically
finite dominant morphism of degree δ. Let U ′ ⊂ (X ′)an be an analytic domain, and let U =
(fan)−1(U ′). If fan|U : U → U ′ is finite, then it has pure degree δ (Section 3.15).

Proof. By [Har77, Exercise II.3.7], there is a dense open subscheme U ′ ⊂ X ′ such that U :=
f−1(U ′) → U ′ is finite. Shrinking U ′ if necessary, we assume that U ′ is smooth. By Proposi-
tion 3.24 the morphism Uan → (U ′)an is pure of degree δ. Let U and U ′ be as in the statement
of the lemma. By Proposition 3.23(ii), we may assume that U = M (A) and U ′ = M (A′) are
affinoid. By [Con99, Lemma A.1.2(2)], U and U ′ are equidimensional of the same dimension
as X and X ′, respectively. Therefore U ′ ∩ (X ′rU ′)an is nowhere dense in U ′. If V ′ = M (B′)
is any connected affinoid subdomain of U ′ ∩ (U ′)an, then B′ is a domain because V ′ is smooth,
and V := (fan)−1(V ′) → V ′ has (pure) degree δ because V ′ ⊂ (U ′)an. Since U ′ ∩ (X ′rU ′)an is
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nowhere dense in U ′, we can choose V ′ such that Spec(B′) → Spec(A′) takes the generic point
of Spec(B′) to any given generic point of Spec(A′). Hence U → U ′ has pure degree δ.

Proof of Theorem 7.1. Let w′ ∈ Trop(X ′) ∩N ′
G be a point with finite preimage under F . Let

X
w′

= trop−1
(
F−1(w′)

)
∩Xan =

∐

w∈F−1(w′)

X
w .

This is an affinoid domain inXan because it is a closed subspace of the affinoid trop−1(F−1(w′)) =∐
w∈F−1(w′) U w. We claim that X w′

→ (X ′)w
′

is a finite morphism. It suffices to show that the

composite X w′

→ U w′

is a finite morphism, where U w′

= trop−1(w′) ⊂ (T′)an. This follows
exactly as in the proof of Theorem 4.30: Since F−1(w′) is bounded, there is an affinoid domain
of Tan contained in (αan)−1(U w′

) and containing X w′

in its relative interior. This means that
the morphism X w′

→ (X ′)w
′

is proper, thus finite because both spaces are affinoid. Hence
by Lemma 7.2 the morphism X w′

→ (X ′)w
′

has pure degree δ. Let Xw
′

:=
∐
w∈F−1(w′)X

w.

The generic fiber of Xw
′

is X w′

, and the natural morphism Xw
′

→ (X′)w
′

is finite by Proposi-
tion 3.8(ii) and takes generic points to generic points by Proposition 3.10. By Proposition 3.25
the induced morphism Xw

′

→ (X′)w
′

has pure degree δ, so summing (3.18.1) over all irreducible
components C′ of (X′)w

′

yields

δ ·mTrop(w
′) = δ

∑

C′⊂(X′)w
′

mult(X′)w
′ (C′) =

∑

C⊂Xw′

multXw′ (C) [C : im(C)] .

Since Xw
′

=
∐
w∈F−1(w′)X

w, this is the desired multiplicity formula.

As a consequence of Theorem 7.1, we obtain the following result.

Corollary 7.3. Let α : T → T′ be a homomorphism of algebraic tori over K, and let A =
trop(α) : NR → N ′

R be the natural linear map. Let X be a closed subvariety of T, and suppose
that α induces a generically finite morphism of degree δ from X onto its schematic image X ′

in T′. After subdividing, we may assume that A maps each face of Trop(X) onto a face of
Trop(X ′). Let σ′ be a maximal face of Trop(X ′). Then

m(σ′) =
1

δ

∑

A(σ)=σ′

m(σ) · [N ′
σ′ : A(Nσ)] .

(Here Nσ and N ′
σ′ are the sublattices of N and N ′ parallel to σ and σ′, respectively.)

Proof. If w′ is a smooth point of Trop(X ′) and w is a smooth point of Trop(X) with A(w) = w′,
then (X′)w

′ ∼= Y ′ × T ′(w′) and Xw ∼= Y × T (w), where Y and Y ′ are 0-dimensional schemes of
lengthmTrop(w) andmTrop(w

′), respectively, and T (w) and T ′(w′) are algebraic tori of dimension
dim(X) = dim(X ′) (cf. Remark 4.27). Moreover, α induces a finite homomorphism T (w) →
T ′(w′) of degree [N ′

σ′ : A(Nσ)]. In this situation, the quantity [C : im(C)] appearing in (7.1.1) is
equal to [T (w) : T ′(w′)] = [N ′

σ′ : A(Nσ)], and mTrop(w) =
∑

C⊂Xw multXw(C), so we are reduced
to Theorem 7.1.

Remark 7.4. The original Sturmfels–Tevelev multiplicity formula is the special case of Corol-
lary 7.3 in which K = k{{T}} and X is defined over k.
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schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. (1966),
no. 28, 5–248; http://dx.doi.org/10.1007/BF02684343, http://www.numdam.org/item?
id=PMIHES_1966__28__5_0.

GRW14 W. Gubler, J. Rabinoff, and A. Werner, Skeletons and tropicalizations, arXiv:1404.7044.

Gub98 W. Gubler, Local heights of subvarieties over non-Archimedean fields, J. reine angew. Math.
498 (1998), 61–113; http://dx.doi.org/10.1515/crll.1998.054.

Gub07a , The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math. 169
(2007), no. 2, 377–400; http://dx.doi.org/10.1007/s00222-007-0049-y.

Gub07b , Tropical varieties for non-Archimedean analytic spaces, Invent. Math. 169 (2007),
no. 2, 321–376; http://dx.doi.org/10.1007/s00222-007-0048-z.

Gub13 , A guide to tropicalizations, in Algebraic and Combinatorial Aspects of Tropical Geo-

metry, Contemp. Math., vol. 589 (Amer. Math. Soc., Providence, RI, 2013), 125–189; http:
//dx.doi.org/10.1090/conm/589/11745.

Har77 R. Hartshorne, Algebraic geometry, Grad. Texts in Math., vol. 52 (Springer-Verlag, New York –
Heidelberg, 1977); http://dx.doi.org/10.1007/978-1-4757-3849-0.

HK12 D. Helm and E. Katz, Monodromy filtrations and the topology of tropical varieties, Canad. J.
Math. 64 (2012), no. 4, 845–868; http://dx.doi.org/10.4153/CJM-2011-067-9.

Kat12 E. Katz, Lifting tropical curves in space and linear systems on graphs, Adv. Math. 230 (2012),
no. 3, 853–875; http://dx.doi.org/10.1016/j.aim.2012.03.017.

KMM08 E. Katz, H. Markwig, and T. Markwig, The j-invariant of a plane tropical cubic, J. Algebra
320 (2008), no. 10, 3832–3848; http://dx.doi.org/10.1016/j.jalgebra.2008.08.018.

KMM09 , The tropical j-invariant, LMS J. Comput. Math. 12 (2009), 275–294; http://dx.
doi.org/10.1112/S1461157000001522.

MFK94 D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergeb.
Math. Grenzgeb. (2), vol. 34 (Springer-Verlag, Berlin, 1994); http://dx.doi.org/10.1007/
978-3-642-57916-5.

104

http://dx.doi.org/10.1007/s00208-014-1037-3
http://dx.doi.org/10.1007/s00208-014-1037-3
http://dx.doi.org/10.5802/aif.1681
http://dx.doi.org/10.1090/ulect/045/02
http://dx.doi.org/10.1090/ulect/045/02
http://dx.doi.org/10.1090/conm/589/11743
http://arxiv.org/abs/1404.4715
http://dx.doi.org/10.5802/aif.2470
http://dx.doi.org/10.1515/CRELLE.2006.097
http://dx.doi.org/10.1515/CRELLE.2006.097
http://dx.doi.org/10.1007/BF01790541
http://dx.doi.org/10.1007/BF01790541
http://dx.doi.org/10.1007/BF02684343
http://www.numdam.org/item?id=PMIHES_1966__28__5_0
http://www.numdam.org/item?id=PMIHES_1966__28__5_0
http://arxiv.org/abs/1404.7044
http://dx.doi.org/10.1515/crll.1998.054
http://dx.doi.org/10.1007/s00222-007-0049-y
http://dx.doi.org/10.1007/s00222-007-0048-z
http://dx.doi.org/10.1090/conm/589/11745
http://dx.doi.org/10.1090/conm/589/11745
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://dx.doi.org/10.4153/CJM-2011-067-9
http://dx.doi.org/10.1016/j.aim.2012.03.017
http://dx.doi.org/10.1016/j.jalgebra.2008.08.018
http://dx.doi.org/10.1112/S1461157000001522
http://dx.doi.org/10.1112/S1461157000001522
http://dx.doi.org/10.1007/978-3-642-57916-5
http://dx.doi.org/10.1007/978-3-642-57916-5


Nonarchimedean geometry and tropicalization

MS15 D. Maclagan and B. Sturmfels, Introduction to tropical geometry, Grad. Stud. Math., vol. 161
(Amer. Math. Soc., Providence, RI, 2015).

Nis09 T. Nishinou, Correspondence theorems for tropical curves, arXiv:0912.5090.

OP13 B. Osserman and S. Payne, Lifting tropical intersections, Doc. Math. 18 (2013), 121–175.

Pap05 A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA Lect. Math.
Theor. Phys., vol. 6, (European Mathematical Society, Zürich, 2005); http://dx.doi.org/
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