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Abstract

We extend to a theory of nonassociative geometric flows a string-inspired model of nonassociative gravity
determined by star product and R-flux deformations. The nonassociative Ricci tensor and curvature scalar
defined by (non) symmetric metric structures and generalized (non) linear connections are used for defining
nonassociative versions of Grigori Perelman F- and W-functionals for Ricci flows and computing associ-
ated thermodynamic variables. We develop and apply the anholonomic frame and connection deformation
method, AFCDM, which allows us to construct exact and parametric solutions describing nonassociative
geometric flow evolution scenarios and modified Ricci soliton configurations with quasi-stationary generic
off-diagonal metrics. There are provided explicit examples of solutions modelling geometric and statistical
thermodynamic evolution on a temperature-like parameter of modified black hole configurations encoding
nonassociative star-product and R-flux deformation data. Further perspectives of the paper are motivated
by nonassociative off-diagonal geometric flow extensions of the swampland program, related conjectures
and claims on geometric and physical properties of new classes of quasi-stationary Ricci flow and black hole
solutions.
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1 Introduction, preliminaries, and motivations

1.1 On nonassociative geometric flows, gravity, new methods of constructing exact/
parametric
solutions, and the swampland program

One of the most important results in modern mathematics consists from the proof of the Poincaré-Thurston
conjecture due to Grigori Perelman [1, 2, 3]. The approach involved a study of geometric flow evolution
equations of Riemannian metrics introduced independently by R. Hamilton [4], in mathematics, and D. Friedan
[5]), in physics. We note that a new concept of W-entropy and a respective statistical thermodynamic model for
geometric flows [1] were elaborated, when the thermodynamic variables are defined in terms of the Riemannian
metric volume forms with a normalizing function and using the Ricci tensor and scalar curvature. Such
ideas and geometric methods are very important for elaborating new directions and applications in modern
physics, cosmology and astrophysics, and quantum information theory; see new results, research programs
and references from [6, 7, 8]. Comprehensive reviews of advanced topological and geometric analysis methods
involved in the Ricci flow theory can be found in monographs [9, 10, 11].1

A challenging problem in modern particle physics and gravity is to develop the fundamental mathematical
results on geometric flows and G. Perelman’s thermodynamics in a relativistic form, for metrics with Lorentz
signature and/or for non-Riemannian geometric objects derived, for instance, for string modifications of Ein-
stein gravity. There is a substantial difference between the original mathematical methods with Riemannian
metrics and the directions for elaborating new methods and research on relativistic geometric flows, supersym-
metric and (non) commutative generalizations, and recent applications [14, 15, 7], see also references therein.2

Even, at present, certain variants of the Poincaré-Thurston conjecture for pseudo-Riemannian metrics and/or
generalized connections were not formulated and proven, we can elaborate on self-consistent causal geometric
flow evolution models in physics and information theory if we apply the anholonomic frame and connection
deformation methods, AFCDM, and construct/select more general classes of solutions with well-defined and
verifiable classical and quantum properties [16, 17].

1Readers may familiarize themselves with the outstanding scientific and social impact of such results presented, respectively,
in a magazine article and a YouTube clip: S. Nasar and D. Gruber, Manifold Destiny – A legendary problem and the battle over
who solved it. The New Yorker, Annals of Mathematics, August 28, 2006,
https://www.newyorker.com/magazine/2006/08/28/manifold-destiny ; and "Grigory Perelman documentary" [Russian with En-
glish subtitles] https://www.youtube.com/watch?v=Ng1W2KUHI2s

2Some hundred of works devoted to possible implications in modern physics of the Ricci flow theory were published during the
last 15 years and it is not possible to analyse all new and original results in this research article. We cite and discuss only a series
of most relevant papers which motivate our research program on "nonassociative geometric flows and applications in physics and
information theory" stated in [12, 13] and allow to develop the geometric and analytic methods which are used for constructing
new classes of exact and parametric solutions of geometric evolution and modified gravity field equations.
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Geometric flow theories are closely related to the RG flow models and underlying nonlinear sigma-models
with beta-functions computed in a framework of string gravity theory, or a modified/quantum gravity model
with ultraviolet, UV, completion and UV/ IR correspondence (IR, from infrared) [18]. In connection to
this, we note the swampland program [19, 20, 21] which main goal is to elaborate rigorous criteria how to
distinguish the low-energy effective field theories that can be completed in the UV from those that cannot.
The swampland hypothesis in quantum gravity, QG, the infinite distance conjecture and various other someway
related conjectures, were revisited recently in a series of works [22, 23, 24, 25, 26, 27] using (non) commutative
geometric flow, exact solutions in gravity theories, and quantum field methods. Here we emphasize that
to elaborate on rigorous algebraic and geometric approaches to mathematical particle physics and QG, we
have to consider models of nonassociative quantum mechanics, QM, [30, 31] and further developments with
nonassicative and noncommutative algebras [32, 33, 15, 34, 35, 36]. We cite [37, 38, 39, 12, 13, 40, 41] for
reviews and recent results on nonassociative and noncommutative geometry and physics. An important task
in string and M-theory, and modern quantum field theory, QFT, and QG, is to extend the swampland program
in a form incorporating geometric and physical models with nonassociative/ noncommutative structures. A
general scope of this work is to investigate how exact and parametric solutions in nonassociative gravity can be
correlated to the infinite distance conjecture and corresponding criteria/conjectures/ claims involving nontrivial
running cosmological constants, non-Riemannian and pseudo-Riemannian geometric flows, and modified gravity
theories, MGTs. From a plethora of above mentioned nonassociative and noncommutative geometric and
field theories, we study an explicit class of models with nonassociative twist deformations defined by R-flux
deformations in string theory. In such an approach, we are able to elaborate on physically well-defined geometric
flow evolution and gravity theories encoding nonassociative data, when the results are verifiable in linear order
on a small deformation parameter. Various classes of new parametric solutions and applications in modern
cosmology, astrophysics, information thermodynamics etc. can be also considered. At the end of subsection 7.2,
we discuss the validity of our methods and claims and further perspectives for general nonassociative theories.
We argue that fundamental geometric flow equations and important statistical thermodynamic functionals can
be always postulated in abstract geometric form and then all order decompositions on deformation parameter
can be performed. In the linear approximation, certain additional variational principles can be formulated and
then recurrently extended to higher order decompositions on a small deformation parameter.

In [38, 39], two quite similar and self-consistent approaches to nonassociative gravity (defined by star prod-
uct R-flux deformations in string theory) were elaborated up to levels of definition and parametric computation
of the nonassociative Ricci tensor Ric⋆[∇⋆] and corresponding curvature scalar Rs⋆[∇⋆].3 Such nonassociative
geometric objects are determined by a nonassociative Levi-Civita, LC, connection ∇⋆[g⋆], constructed as a
nonlinear functional using nonassociative symmetric, g⋆, and nonsymmetric, ǧ⋆, components of a star-metric,
⋆-metric, g

⋆ = (g⋆, ǧ⋆). As in string gravity and M-theory [34, 35, 36], the nonassociative geometric con-
structions and (vacuum) gravity theories involve nonassociative star, ⋆, product deformations computed for a
prescribed Moyal–Weyl tensor product and determined by non-geometric fluxes (R-fluxes). Such a ⋆–product
allows us to define and compute nonassociative deformations of the LC-connection in (pseudo) Riemannian
geometry, ∇ → ∇⋆, and (for more general constructions) to elaborate on various models of nonassociative
non-Riemannian geometry with nontrivial torsion and non-metricity involving nonsymmetric metric tensors.

We follow in nonassociative geometry and gravity a symbolic abstract geometric formalism [39, 12, 13]
which is similar to that for GR [43] but (in our approach) is more formalized and adapted to nonassociative

3Formulas of type ...[∇⋆] state a functional dependence involving possible (star) products, partial derivations etc. We follow
the notations and conventions from [12, 13] generalizing for arbitrary nonholonomic frames the formulas from [38, 39]. This allows
us to use in the Introduction section certain abstract nonassociative formulas if they are analogs of associative and commutative
ones. In result, the motivations and purposes of the work can be formulated in a more compact form. Of course, in index and
coordinate/frame forms, which are necessary for finding solutions of physically important systems of PDEs, the formulas for
nonassociative geometry/gravity are more sophisticate because they involve terms from star product and R-flux deformations.
Such computations will be considered in next sections. In Appendix A, there are provided necessary details and explanations. We
recommend readers to study the mentioned works and summaries of previous results before reading the main part of the article.

4



and noncommutative geometric structures. It simplifies the geometric constructions which in many cases are
formal re-definitions and more sophisticate transforms/ deformations of certain fundamental geometric objects
and formulas into similar ones with star labels. The nonassociative vacuum gravitations equations can be
postulated/ derived, and computed in abstract geometric form, or using cumbersome nonholonomic frame /
coordinate formulas, as respective star product R-flux deformations of some standard commutative ones. In
abstract (non) associative geometric form, we can postulate the ⋆–deformed vacuum Einstein equations:

pRic⋆[ p∇⋆] = pΛ0
p
g
⋆, (1)

where pΛ0 is a conventional cosmological constant. The nonassociative geometric objects in these equations
(i.e. p

g
⋆, p∇⋆, and pRic⋆) are defined on a ⋆-product deformed phase space pM = T ∗V → pM⋆, where T ∗V

is the cotangent bundle of a Lorentz manifold V .4

Similar assumptions and a respective abstract geometric formalism for star product R-flux deformations
can be used in order to postulate nonassociative generalizations of the R. Hamilton equations [4, 5, 1],

∂ p
g
⋆

∂τ
= −2 pRic⋆[ p∇⋆] + ..., (2)

describing the flow evolution on pM of a family of nonassociative metrics p
g
⋆(τ) parameterized by a positive

parameter 0 ≤ τ ≤ τ0. In these formulas, dots are used for additional terms which can be defined/computed
for respective star product R-flux deformations of a corresponding variational calculus [1, 9, 10, 11, 7], see
references therein and details in section 2.3.5

The coefficients of geometric objects, effective and matter field sources, and respective physically important
geometric evolution/ dynamical equations in such theories can be decomposed into real and complex terms and
parametric forms using decompositions on ~, the Planck constant, and κ := ℓ3s/6~, the string constant, were ℓs
is a length parameter [39].6 In [12, 13], the AFCDM was generalized for finding exact and parametric solutions
of systems of nonlinear partial differential equations, PDEs, of type (1). We proved a general splitting and
integration property for quasi-stationary configurations (with Killing symmetry on a time like coordinate) of
such nonassociative nonlinear dynamical systems and shown how to construct nonassociative four dimensional,
4-d, and 8-d, black hole, BH, and black ellipsoid, BE, solutions in [13, 40, 41]. Generic off-diagonal quasi-
stationary solutions can be generated for κ-linear parametric decompositions transforming the real part of (1)
into associative and commutative modified Einstein equations (see appendix 2.1.1),

pR̂βs
γs = δβsγs

p
sK. (3)

4To elaborate on nonassociative star product and R-flux deformations of the Einstein equations in general relativity, GR, we
consider a basic associative and commutative spacetime manifold V, of dimension dimV = 4, for instance, enabled with metrics
of signature (+ + +−). We suppose that readers are familiar with the basic concepts from the mathematical relativity, and
methods of constructing exact solutions, as well with the formalism of (non) linear connections in (co) vector/ tangent bundle
geometry [43, 44, 45, 46, 12, 13]. Here we note that the label " p" is used in order to emphasize that the geometric objects are
defined on cotangent bundles and not on usual tangent bundles M = TV, when respective geometric/physical objects are written
Ric⋆[∇⋆] = Λ0 g

⋆.
5Any point pu = (x, p) = { puα = (xi, pa)} in a phase space pM is parameterized by spacetime coordinates x = (xi) and

cofiber (momentum like) coordinates p = (pa), which are dual to conventional velocities v = (va), for indices i, j, k, ... = 1, 2, 3, 4
and a, b, c, ... = 5, 6, 7, 8. In a similar form, we label a point u = (x, v) = {uα = (xi, va)} in M. In this work, small Greek indices
run values α, β, ... = 1, 2, ...8, but they may take values up to 10, 11, ... for a corresponding modified gravity theory, MGT, (super)
string/ gravity models etc.

6Nonassociative geometric and physical theories can be formulated in certain forms encoding quasi-Hopf [42, 39, 12] and/or ex-
ceptional algebraic structures, for instance, with octonionic and Clifford configurations [32, 33, 36, 37]. For different nonassociative
algebraic and geometric configurations and respective generalized nonassocitative and noncommutative differential and integral
calculi, we can elaborate on different types of classical and quantum physical theories. In our works on nonassociative geometry
and physics, we follow an explicit approach with quasi-Hopf nonholonomic geometric structures determined by nonassociative star
products and R-fluxes [38, 39, 12, 13, 40, 41].
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In this formula, the canonical Ricci s-tensor pR̂ic = { pR̂
βs
γs} is a tensor adapted to a so-called nonholonomic

shell structure, s-structure, with a conventional (2+2)+(2+2)-splitting containing 2-d shells labeled in abstract
form by s = 1, 2, 3, 4. It is defined by a respective canonical s-connection

pD̂γs = p∇γs +
pẐγs , (4)

where the distortion s-tensor pẐγs is such way chosen that the system of nonlinear PDEs (3) can be decoupled
and integrated in general form with respect to a correspondingly defined nonholonomic s-frames peγs , see details
in [13].7 The effective sources in (3) encodes contributions from nonassociative ⋆-product with nontrivial R-flux
terms, R··

· ∼ Rτsξs
α2 , being parameterized in s-adapted form as pK

βs
γs = δβsγs

p
sK(κ, ~,R··

·,
p
su). General

classes of solutions (they are generic off-diagonal because such solutions can’t be diagonalized in a general form
in a finite phase space region via coordinate transforms) are determined by s-metrics

g = p
sg = (h1

pg, v2
pg, c3

pg,c4
pg) ∈ TT∗V ⊗ TT∗V (5)

= pgαsβs(
p
su)

peαs ⊗s
peβs = { pgαsβs = ( pgi1j1 ,

pga2b2 ,
pga3b3 , pga4b4)}.

adapted to a corresponding nonlinear connection, N-connection, structure and for respective s-adapted tensor
products ⊗s, see geometric preliminaries in next section.

The AFCDM allows us to construct/find various classes of quasi-stationary solutions of (3), and of (1),
when the coefficients of (5) are computed as functionals

pgαsβs(
p
su) = pgαsβs [

p
sK, p

sΨ ] = pgαsβs [
p
sK, p

sΦ,
p
sΛ0 ] (6)

determined by effective sources p
sK and generating functions p

sΨ(κ, ~,R··
·,

p
su), or p

sΦ(κ, ~,R··
·,

p
su).

8 In
general, such solutions depend also on integration functions and constants, effective sources, broken (non) linear
symmetries etc., which should be prescribed/defined from certain experimental/ observational data, boundary
conditions etc. A very important property of the functionals for s-metrics (6) is that they posses certain general
nonlinear symmetries for generating functions and effective sources and give possibilities to introduce into
consideration some effective cosmological constants p

sΛ0 on any shell s = 1, 2, 3, 4. For nonassociative vacuum
gravitational equations, such a proof is provided in section 5.4 of [13]. Here, we present, for simplicity, only the
formulas for the spacetime shell s = 2, for changing the generating data, ( 2Ψ(~, κ, xi1 , y3), p

2K(~, κ, xi1 , y3)) ↔
( 2Φ(~, κ, x

i1 , y3), 2Λ0), (see appendix A.2 with formulas for all shells s = 1, 2, 3, 4),

∂3[( 2Ψ)2]
p

2K
=

∂3[( 2Φ)
2]

2Λ0
, which can be integrated as

(2Φ)
2 = 2Λ0

∫
dy3( p

2K)−1∂3[( 2Ψ)2] and/or ( 2Ψ)2 = ( 2Λ0)
−1

∫
dy3( p

2K)∂3[( 2Φ)
2]. (7)

We can chose in such formulas p
sΛ0 = Λ0 = const, or to study running cosmological constants p

sΛ(τ), for
instance, on a geometric flow parameter τ ; and phase space polarizations via p

sΛ0 → p
sΛ(τ,

p
su) for more

general considerations. Such nonlinear transforms allow us to rewrite equivalently the nonassociative modified

7In s-adapted form, we follow such a convention of indices and local coordinates: For instance, β2 = (j1, b2), where j1 =
1, 2; b2 = 3, 4, for the shell s = 2 and the coordinate u4 = y4 = t considered as a time like one, t, but uβ2 = (xi1 , y3, y4), for
(xi1 , y3) being space like coordinates. In a similar form, we split the indices and coordinates, for instance, on the shall s = 4,
when β4 = (j3, b4), for j3 = 1, 2, ...6 and b47, 8; and coordinates p

4u = { puβ4 = (xi1 , y3, y4 = t, p5, p6, p7, p8 = E)}, with E
being a conventional energy type coordinate for a relativistic phase space pM. Here we note also that nonholonomic frames
p

eγs = p

e
γ′

s
γs

p∂γ′

s
can be related via frame transforms, using matrices p

e
γ;s
γs , to local coordinate bases p∂γ′

s
, when the Einstein

convention on repeating "up-low" indices is applied. In a similar form, we can consider s-splitting of dual frames p

e
βs , when p

e
βs

p

eγs = δβs

γs , with δβs

γs being the Kronecker symbol.
8we note that in this work there are used for explicit computations certain real co-fiber coordinates with labels " p

s" even in
nonassociative gravity [39, 12, 13] it is necessary to consider for various purposes complex coordinates with labels "q

s”
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vacuum gravitational equations (3) in a form with effective constants in the right part and redefined functional
dependence of the s-metrics in the Ricci s-tensor

pR̂βs
γs [ p

sK(κ, ~,R··
·,

p
su),

p
sΦ(κ, ~,R··

·,
p
su)] = δβsγs

p
sΛ0. (8)

These equations define a particular class of nonholonomic Ricci solitons encoding nonassociative data, see
section 2.3.

We emphasize that using a class of quasi-stationary solutions pgαsβs [
p
sK, p

sΦ,
p
sΛ0 ] (6) we can compute

in general functional form respective components of a nonassociative ⋆-metric, g⋆[...] = (g⋆[...], ǧ⋆[...]) as it is
explained in [13] and, for respective 4-d and 8-d BH/BE solutions, in [40, 41]. In result, we generate parametric
solutions for nonassociative vacuum Einstein equations (1) if we restrict the geometric constructions for a
subclass of generating functions when the distortion s-tensor pẐγs (4) is constrained to zero and pD̂γs → p∇γs .

9

1.2 The structure, aims, and the main hypothesis of the paper

This work is a natural and logical development of a series of articles on nonassociative geometry and
physics [37, 38, 39] and a new research program on nonassociative geometric and quantum information flows
and gravity [12, 13, 40, 41]. It is related to the swampland program [19, 20, 21] and revised conjectures
[23, 24, 25, 26, 27] following such five aims:

The first aim stated for section 2 is to prove that using nonassociative star products determined by R-
flux deformations we can formulate and provide a physical motivation for the generalized nonassociative R.
Hamilton equations (2). In general, such nonassociative geometric flow equations can be derived for certain

canonical data
[

p
sg
⋆(τ), p

sD̂
⋆(τ)

]
stated for generalized nonassociative G. Perelman F- and W-functionals,

p
sF̂⋆(τ) and p

sŴ⋆(τ). Formulas (54) in [41] present κ-linear parametric versions of such functionals encoding
string star product R-flux data which, in this work, are generalized to describe nonassociative geometric flow
evolution and/or nonholonomic Ricci solitons (8) (in particular, they include nonassociative modified vacuum
equations).

The second aim, for section 3, is to elaborate on statistical thermodynamic models for nonassociative geo-
metric flows with thermodynamic variables derived from the W-entropy pŴ⋆(τ). We extend the constructions
from [41] and provide general formulas and respective κ-linear parametric versions of effective canonical energy,
p
sÊ⋆(τ) → p

sÊ(τ); entropy, p
sŜ⋆(τ) → p

sŜ(τ); and quadratic fluctuations, p
sσ̂
⋆(τ) → p

sσ̂(τ), all encoding nonas-
sociative star and R-flux deformed data. We emphasize that the off-diagonal quasi-stationary and BH/ BE
solutions in nonassociative gravity are not described, in general, in the framework of the Bekenstein-Hawking
thermodynamics paradigm for BHs [47, 48, 49, 50, 43, 44, 45] if there are not defined certain hypersurface
horizons, duality and holography conditions. Contrary to this, modified versions of G. Perelman W-entropy
pŴ(τ) and geometric-statistic thermodynamic entropy p

sŜ(τ) can be defined and computed for any class of
exact/ parametric solutions in GR and MGTs.

Then, the third aim, in section 4, is to extend the AFCDM [16, 17, 13, 40, 41] in such forms which allows
us to decouple and integrate the nonassociative R. Hamilton equations in certain generalized forms describing
the geometric evolution of quasi-stationary Ricci soliton and vacuum gravitational structures (with effective
sources encoding star product and R-flux deformations). We analyze a class of nonlinear symmetries relating
different types of generating functions, generating (effective) sources and cosmological constants running on

9Here we note that in a similar (in certain sense) dual form one can be constructed nonassociative locally anisotropic and
inhomogeneous cosmological solutions with Killing symmetry, for instance, on ∂3, when the s-metrics in certain s-adapted frame
do not depend on coordinate y3 but depend on y4 = t and other space and (co) fiber coordinates. In associative and commutative
forms, such solutions are discussed in [17, 8, 6], see references therein. Cosmological models encoding nonassociative star product
R-flux deformed data will be studied in our future works as it was stated in [12], see also query Q5 at the end of conclusion
section.
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temperature like geometric flow parameter. There are provided explicit formulas for quadratic linear elements
for nonassociative geometric evolution in κ-linear parametric forms of quasi-stationary generic off-diagonal
metrics and gravitational polarization functions.

The forth aim, in section 5, is to elaborate on parametric geometric flows and related thermodynamics
models of quasi-stationary solutions describing nonassociative evolution of star R-flux deformed BHs. Ad-
ditionally to the classes of nonassociative BH solutions of Tangherlini and double BH phase space solutions
studied in [41], we construct two other types nonassociative generic off-diagonal κ-linear parametric BHs sub-
jected to geometric evolution. There are analyzed nonassociative phase space double Schwarzschild–AdS black
ellipsoid, BE, configurations and nonassociative flows of phase space Reisner-Nordström BHs. We show also
how to compute G. Perelman thermodynamic variables for generic off-diagonal solutions related via nonlinear
symmetries (7) to effective running on temperature τ cosmological constants p

sΛ(τ). Then, there are stated
the conditions when the concept Bekenstein-Hawking entropy can be applied for certain particular examples
of such nonassociative BHs and their deformations which may have different physical interpretations.

The fifth aim, in section 6, is to study how the swampland program should be generalized/modified in order
to include nonassociative geometric flows and related exact/ parametric solutions. We note that the main goal
of the swampland program is to elaborate certain criteria which allow to distinguish low-energy effective field
theories which can be completed into QG in the UV from those theories that cannot. In fact, for the AdS spaces,
the Ricci flow swampland conjecture is equivalent to the anti- de Sitter distance conjecture (ADS) [20, 23, 24].
Swampland conjectures were studied recently in connection to BH physics, extra dimensions and geometric flow
conjectures, when the concept of Bekenstein-Hawking entropy was applied [25, 26, 27]. A modern approach to
QG and string and M-theory involves models with nonassocitative structures for QM, QFT and MGTs. This
modifies substantially the mathematical formalism and methods for constructing exact/parametric solutions
and quantization and providing a physical interpretation of nonassociative geometric flows and gravity. The
Bekenstein–Hawking thermodynamic paradigm should be completed with a more general one which is based on
the concept of G. Perelman W-entropy and derived (non) associative/ commutative geometric thermodynamics.

In section 7, we discuss and conclude the main results based on:
The Main Hypothesis, MH, of this work is that the Swampland Program and related conjectures have to be
generalized and modified following above Aims 1-5 (objectives of this work) with the purpose to formulate well-
defined criteria how to include nonassociative and noncommutative geometric flows, QM, QFTs, and MGTs in
elaborating QG theories related to M-theory and string gravity. Self-consistent geometric and physical models
and solutions should encode at least in parametric form certain nonassociative star product and R-flux data in
low-energy limits of corresponding effective geometric flow evolution and field theories which can be completed
into QG in the UV forms and distinguished from another classes of theories which do not have such properties.

In section 2.1, we outline the main concepts and most important formulas on nonassociative differential
geometry with symmetric and nonsymmetric metrics and (non) linear connections [38, 39, 12, 13, 40, 41].
Finally, in Appendix A, we summarize the main ideas and steps for constructing generic off-diagonal quasi-
stationary and BH solutions using the AFCDM [16, 17, 13, 40, 41]. Such formulas describe as particular cases
exact/parametric solutions for nonassociative Ricci solitons and quasi-stationary gravitational polarizations
for κ-linear geometric flows studied in the main text of the paper.

2 A model of nonassociative Ricci flows with star product R-flux deforma-

tions

G. Perelman elaborated his approach to the Ricci flow theory [1] by introducing (postulating) the concepts
of F- and W-functionals for a familiy of geometric flows of of Riemannian metrics ng(τ) = {gij(τ) ≃ gij(τ, x

k)}
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on a closed manifold nV, dim nV = n (in this work, we can consider n = 3),

F (τ) ≃ F [τ, nRsc(τ), n∇(τ), ng(τ), f(τ)] and W (τ) =W [τ, nRsc(τ), n∇(τ), ng(τ), f(τ)]. (9)

In such formulas, it is used a flow parameter τ, 0 ≤ τ ≤ τ0, which can be treated as temperature; the
scalar curvatures nRsc(τ) = nRsc(τ, xk) are determined by a corresponding family of LC–connections
n∇(τ) = n∇(τ, xk). A normalizing function f(τ) ≃ f(τ, xk) is used for defining integration measures
(4πτ)−n/2 e− fdVol(τ) with volume elements dVol(τ) =

√
| ng(τ)| dn xi. It should be emphasized that a

type of f(τ) may have different implications and interpretations in topology and/or geometric analysis, and
differential geometry theories.10

Using a (3+1) splitting on 4-d, Lorentz manifolds, the functionals (9) can be generalized in relativistic form,
which allows us to prove (using standard variational procedures, or abstract geometric methods) respective
generalizations of the R. Hamilton equations [4] and elaborate on relativistic geometric thermodynamic models.
This does not results in a formulation and proof of a relativistic version of the Poincaré–Thorston conjecture.
Nevertheless, we can elaborate on important physical models for certain classes of solutions of relativistic flow
equations with well-defined causal evolution and describing important physical processed. Such solutions can
be found in nonassociative geometric (flow) and gravity theories using the AFCDM [13, 40, 41].

In [38, 39], the nonassociative geometry and gravity with star product and R-flux deformations were
formulated up to defining and computing nonassociative versions and for κ-parametric decompositions of
respective Ricci tensors and scalar curvatures defined by nonassociative Levi Civita, LC, connections. In
principle, those constructions allow to elaborated on nonassociative versions of G. Perelmans functionals (9).
Applying rigorous geometric methods and respective variational procedures generalizing the geometric analysis
formalism from [1, 9, 10, 11, 7], we can derive respective nonassociative geometric flow equaitons. Such star
deformed R. Hamilton equations and, in particular nonassociative Ricci solitons and/or nonassociative vacuum
Einstein equations consists very sophisticate systems of nonlinear partial differential equations, PDEs. It is
a very difficult technical problem to solve and analyse possible physical implications of such nonassociative
geometric evolution and/or star deformed dynamical gravitational field equations. In [13], we proved that
nonassociative vacuum Einstein equations can be decoupled and intergrated in very general forms for the
so-called canonical s-connection structure. The same geometric methods can be generalized for generating
solutions of nonassociative geometric flow equations. We shall study such applications of the AFCDM in
section 4. The goal of this section is to outline necessary geometric methods and formulate a nonassociative
generalization of F- and W-functionals (9) is some forms which allow to derive nonassociative versions of R.
Hamilton equations which can be solved in certain general off-diagonal forms of nonassociative metrics and
(non) linear connections which can be nonholonomically constrained to LC-configurations.

2.1 Nonassociative differential geometry with (non) linear connections

The nonassociative differential geometry on phase spaces enabled with a nonholonomic dyadic shell adapted
(s-adapted) star product and R-flux deformations and respective symmetric and nonsymmetric metric and
(non) linear connection structures [12, 13] is reviewed. Some necessary definitions and constructions from [38,
39] are also considered but in a form which will allow extensions to so-called exactly and κ-parametric solvable
nonassociative geometric flow models. We follow both an abstract (index and coordinate free) description
of nonassociative geometric objects and formulas and present certain s-adapted frame (co) bases and index
formulas which are used for providing exact/ parametric solutions and swampland conjectures in the sections
4-6. It is supposed that readers are familiar with the main concepts on mathematical relativity and (non)

10We can fix it, for instance, in order to elaborate certain geometric/ thermodynamic models for some prescribed topological
configurations, or to simplify the procedure of finding exact/parametric solutions of respective geometric flow/ Ricci soliton
equations and associated thermodynamic values [17, 7, 8, 6, 41]. In a series of recent works [23, 24, 25, 26, 27], respective physical
applications are elaborated for f(τ, xk) considered as scalar/Higgs/moduli fields.

9



linear connection formalism described in [43, 44, 45, 17]. The notations and definitions were stated in partner
works [12, 13, 40, 41].11

2.1.1 Associative and commutative dyadic and nonlinear connection formalism

The associative and commutative geometric arena consists from a phase space modeled as a cotangent
Lorentz bundle M = T ∗V on a spacetime manifold V of signature (+ + +−). Such a phase space can be en-
abled with conventional (2+2)+(2+2) splitting determined by a nonholonomic (equivalently, anholonomic/non-
integrable) dyadic, 2-d, decomposition into four oriented shells s = 1, 2, 3, 4 (in brief, s-decomposition). A
s-splitting is defined by a nonlinear connection, N-connection (equivalently, s-connection), structure:

p
sN : sTT

∗V = 1hT ∗V ⊕ 2vT ∗V ⊕ 3cT ∗V ⊕ 4cT ∗V, which is dual to

sN : sTTV = 1hTV ⊕ 2vTV ⊕ 3vTV ⊕ 4vTV, for s = 1, 2, 3, 4. (10)

We use 1h for a conventional 2-d shell (dyadic) splitting on cotangent bundle, with xi1 local coordinates; then
2v for a 2-d vertical like splitting with ya2 coordinates on the shell s = 2; at the next shell s = 3, the splitting
is convetional co-vertical, we write 3c and use local coordinates pa3 ; for the 4th shell s = 4, the respective
symbols are 4c and pa4 . Such s-splitting will allow to decouple and integrate in general off-diagonal form
nonassociative geometric and physically important systems of nonlinear PDEs. In a local coordinate basis (see
conventions from footnotes 7, 8, and 9), a nonlinear s-connection defined by a Whitney sum ⊕ as in (10), for
instance, is characterized by coefficients p

sN = { pN isas(
pu)}, for u = (x, p) = pu = ( 1x, 2y, 3p, 4p). Such

coefficients allow us to construct N-elongated bases (N-/ s-adapted bases) as linear N-operators:

peαs [
pN isas ] = ( peis =

∂

∂xis
− pN isas

∂

∂pas
, pebs =

∂

∂pbs
) on sTT

∗
p V, (11)

and, dual s-adapted bases, s-cobases,

peαs [ pN isas ] = ( peis = dxis , peas = d pas +
pN isasdx

is) on sT
∗T∗

p V. (12)

Such s-frames are not integrable, i.e. nonholonomic (equivalently, anholonomic) because, in general, they
satisfy certain anholonomy conditions, peβs

peγs − peγs
peβs = pwτsβsγs

peτs , see details in [12, 13]. For a 4+4

splitting, we write, for instance, pN = { pN ia(x
j, pb)}, and use the term N-connection. We shall put a left label

s for corresponding spaces and geometric objects (labeled with bold letters if they are written in a N-adapted
form) if, for instance, a phase space is enabled with a s-adapted dyadic structure, sM, and use terms like
s-tensor, s-metric, s-connection etc.

The geometric s-objects and respective formulas (10)-(12) can be generalized for additional running on a
geometric flow evolution parameter τ, for instance, writting pN(τ) ≃ pN(τ, pu) = { pN ia(τ)≃ pN ia(τ, x

j , pb)}
and, respectively, peαs(τ),

peαs(τ), etc. For running of geometric/ physical objects, we shall write only the
τ -dependence if that will not result in ambiguities. Here, we note that in a similar form we can introduce and
write formulas for geometric objects on sTTV, i.e. when the total space coordinates are of spacetime-velocity
type. In such case, we omit the labels " p” and write, for instance, eαs(τ) and eαs(τ), for local coordinates

11Unfortunately, it is not possible to simplify such notations because we have to distinguish various abstract and frame construc-
tions in associative/ commutative nonholonomic geometry, their nonassociative and nonassociative generalizations, κ-parametric
decompostions and generating solutions with dependences on spacetime and momentum type coordinates (which in nonassociative
geometry can be complex, or almost complex), star product and R-flux deformations of certain prime metrics into noncommu-
tative ones with symmetric and nonsymmetric components, consider nonlinear symmetries etc. Here we also note that there
are different styles/ traditions for notations in geometric and statistical thermodynamics, MGTs, nonassociative geometry and
coventions for constructing solutions in the theory of nonlinear PDEs. We have to use various abstract left/write, up/low labels,
boldface symbols and shell coordinates in orde to show how the AFCDM can be applied and physically important thermodynamic
variables can be computed.
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u = (x, v) = pu = ( 1x, 2y, 3v, 4v). In general, such coordinates are not just dual like fibe and co-fiber ones
but may include certain Legendre transforms [70, 8]. In this work, we shall work on nonassociative phase
spaces as in [38, 39] and [12, 13, 40, 41] using labels " p” in order to follow an unified system of notations which
will allow in furthe partner works to elaborate on nonassociative models of Finsler-Lagrange spaces, which are
important in quantum information theory.

A metric field in a phase space M is a second rank symmetric tensor pg = { pgαβ} ∈ TT ∗V ⊗ TT ∗V of
local signature (+,+,+,−; +,+,+,−). It can be written in equivalent form as a s-metric p

sg = { pgαsβs} (5).
For τ -families of pahse space metric and s-metrics , we shall use notations of type pg(τ) = { pgαβ(τ)} and,
respectively, p

sg(τ) = { pgαsβs(τ)}
Another important geometric concept is that of s-connection with a (2+2)+(2+2) splitting (we use the

term distinguished connection, d-connection, for a (4+4)-splitting), which is a linear connection preserving
under parallel transports a respective N-connection splitting (10):

p
sD = (h1

pD, v2
pD, c3

pD, c4
pD) = { pΓαs

βsγs
}, (13)

where indices split into respective dyadic components of a respective h1, v2, c3, c4 decomposition. Using stan-
dard definitions from differential geometry, we can introduce and compute in standard form12 as for any linear
connection but for s-adapted p

sD such fundamental geometric s-objects:

p
sT = { pTαs

βsγs
}, the s-torsion ; (14)

p
sR = { pRαs

βsγsδs
}, the Riemannian s-curvature ;

p
sRic = { pR βsγs :=

pRαs
βsγsαs

6= pR γsβs}, the Ricci s-tensor;
p
sRsc = { pgβsγs pR βsγs}, the Riemannian scalar .

Geometric data ( p
sg,

p
sD) of type (5) and (13) enable a sM with a dyadic metric-affine s-structure which is

a N-adapted phase space version of metric-affine geometry [43, 46]. Additionally to geometric s-objects (14),
such spaces are characterized by a nonmetricity s-tensor, p

sQ = { pQγsαsβs = pDγs
pgαsβs}. Above formulas

for d-/ s-connections and respective geometric s-objects, can be defined and computed for geometric flows, for
insance, in the forms p

sD(τ) = { pΓαs
βsγs

(τ)}, p
sRic(τ) etc. We have to keep a s-label for indices or abstract

geometric s-objects in order to emphasize that the goemetric constructions are performed for a nonholonomic
dyadic formalism. For splitting of type (4+4), the nonholonomic geometry is different and such decompositions
do not allow general decoupling and integration of fundamenta geometric and physical systems of PDEs.

Using a s-metric pg = p
sg (5), we can define and compute in abstract and component forms two important

linear connection structures (the Levi-Civita, LC, connection and the canonical s-connection):

( p
sg,

p
sN) →





p∇ : p∇ p
sg = 0; p

∇T = 0, LC–connection ;

p
sD̂ :

p
sQ̂ = 0; h1

pT̂ = 0, v2
pT̂ = 0, c3

pT̂ = 0, c4
pT̂ = 0,

h1v2
pT̂ 6= 0, h1cs

pT̂ 6= 0, v2cs
pT̂ 6= 0, c3c4

pT̂ 6= 0,

canonical
s-connection .

(15)

In this work, "hat" labels are used for geometric s-objects written in canonical form, for instance, p
sD̂,

p
sR̂ = { pR̂αs

βsγsδs
} etc. There are canonical distortion relations for linear connections (of type (4)) which allow

to compute canonical distortions of fundamental geometric objects (14) and relate, for instance, two different
curvature tensors, for instance, p

∇R = { p

∇R
αs
βsγsδs

} and p
sR̂ = { pR̂αs

βsγsδs
}; p

∇Ric and p
sR̂ic etc. For τ -families

such formulas can written, for instance, p∇(τ), psD̂(τ), p
sR̂(τ) = { pR̂αs

βsγsδs
(τ)}, p

∇Ric(τ), etc.

The modified Einstein equations for p
sD̂ (15) can be derived in abstract geometric form as in GR [43] but

on phase space sM,
pR̂icαsβs =

pΥαsβs , (16)

12see details, proofs, and references in [17, 7, 8, 6], when the coefficient formulas are provided in s-adapted forms with respect to
s-frames (11) and (12); a number of important abstract and coefficient formulas with nonassociative generalizations are contained
in [12, 13, 40, 41]
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where the s-tensor for effective and/or matter field sources can be postulated in the forms

pΥ
βsγs

=





p
sΛ0

pgαsβs =
1
2

pgαsβs
p
sR̂sc+

p
sλ

pgαsβs , vacuum with shell cosmological constants p
sΛ0 or p

sλ;
p
sΛ(τ,

pu) pgαsβs , for polarized constants from geometric flow/ string / quantum theories;
pY

βsγs
, from variational/ geometric principles of interactions on sM;

pK
βsγs

⌈~, κ⌉ , for effective parametric star R-flux corrections, in this work and [13, 40, 41] .
(17)

The gravitational field equations (16) can be written in terms of the LC-connection ∇α if we consider distortion
relations (4). Imposing additional zero s-torsion conditions,

p
sẐ = 0, which is equivalent to p

sD̂| p

sT̂=0
= p∇, (18)

we can extract LC-configurations from various classes of solutions of nonholonomic phase space generalized
Einstein equations. Conservation laws can be formulated as in GR using p∇ on M, for instance,

p∇( p

∇Ricαsβs −
1

2
pgαsβs

p

∇Rsc) = 0,

but such laws are written in a more cumbersome forms if we distort the geometrical objects and this equations
in terms of p

sD̂ using formulas (4). This is a typical property of nonholonomic systems in geometric mechanics
and gravity theories. Here we note that notations for nonholonomic constraints of type p

sD̂| p

sT̂=0 (18) are used

in our parner works [12, 13, 40] even the editors of some journals request a symplified version for notations like
p
sD̂ = p∇ for p

sT̂ = 0, when the zero s-torsion conditions are considered as certain nonholonomic constraints
on a class of some generic off-diagonal soluions.

The main motivation to use the canonical s-connection p
sD̂ and respective phase space equations (16)

with nonholonomic 2+2+2+2 splitting is that in such geometric variables we can decouple and integrate in
very general forms various classes of (modified) geometric flow and gravitational field equations. Using the
AFCDM, this is proven in [8, 13] and references therein, see a summary of results in Appendix A. Here we note
that it is not possible to decouple such systems of nonlinear PDEs written in terms of ∇α. The main idea is to
use p

sD̂ in order to find explicit exact/parametric solutions and then to impose additional constraints of type
(18) in order to extract LC-configurations if it is important for elaborating certain physical models. We can
model τ -evolution of families of equations of type (16)- (18) for so-called geometric evolution of nonholonomic
Einstein systems, NES, studied in [7].

2.1.2 Nonassociative vacuum Einstein equations for the canonical s-connection

The geometric constructions performed in this work are based on the concept of star product ⋆s defined in
s-adapted form in our works [12, 13] and using the previous constructions from [38, 39]:

f ⋆s q := ·[F−1
s (f, q)] (19)

= ·[exp(−1

2
i~( peis ⊗ peis − peis ⊗ peis) +

iℓ4s
12~

Risjsas(pas
peis ⊗ peja − pejs ⊗ pas

peis))]f ⊗ q

= f · q − i

2
~[( peisf)(

peisq)− ( peisf)( peisq)] +
iℓ4s
6~
Risjsaspas(

peisf)(
pejsq) + . . . .

In this formula, there are considered actions of peis on some functions f(x, p) and q(x, p), see formulas for
N-elongated derivatives and differentials (11) and (12); a constant ℓ characterizes the R-flux contributions
determined by an antisymmetric Risjsas background in string theory, when the tensor product ⊗ can be
written also in a s-adapted form ⊗s. For explicit computations and small parametric decompositions on ~ and
κ = ℓ3s/6~, the tensor products turn into usual multiplications as in the third line of above formula. A phase
space sM enabled with a star product (19) transforms into a nonassociative one, ⋆

sM, when the s-adapted
geometric objects and (physical) equations are star-deformed.
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Considering geometric flows on a parameter τ of s-frames peis(τ) (11), we obtain define respective flow
families s-adapted star product ⋆s(τ) even the functions f and q may not depend on evolution parameter.
Similar τ -dependences of geometric/ physical s-objects and structures have to be defined for evolution on
nonassociative and associative geometric models.

For sM → ⋆
sM, a ⋆s-structure transforms any symmetric metric p

sg into a general nonsymmetric one with
respective symmetric, q

⋆sg, and nonsymmetric, q
⋆sg, components. We use labels q

⋆s instead of p
s because

such metrics may contain complex terms. On (co) tangent bundles, it is always possible to elaborate almost
complex models (with real basic manifolds and real (co) fibers), or certain decompositions into pure real and
imaginary components (the last ones are not considered for geometric constructions with real variables). So,
labels p

s involve a procedure of transforming geometric constructions into certain s-objects on real manifolds
and bundle spaces. We studied in [12, 13] the nonassociative (non) symmetric and generalized connection
s-structures on ⋆

sM endowed also with quasi-Hopf s-structure determined by a nonassociative algebra A⋆
s

(generalizing the constructions from [39, 42]). A nonassociative symmetric, p
⋆sg, and nonsymmetric metric,

p
⋆gαsβs , s-tensor on a phase space sM with star and R-flux induced terms on a Lorentz base spacetime manifold
can be represented in the forms

p
⋆sg = p

⋆gαsβs ⋆s (
peαs ⊗⋆s

peβs), where p
⋆g(

peαs ,
peβs) =

p
⋆gαsβs =

p
⋆gβsαs ∈ A⋆

s

p
⋆gαsβs = p

⋆gαsβs − κRτsξs
αs

peξs
p
⋆gβsτs =

p
⋆g

[0]
αsβs

+ p
⋆g

[1]
αsβs

(κ) = p
⋆ǧαsβs +

p
⋆aαsβs , (20)

where Rτsξs
αs are related to Risjsas from (19) via certain frame transforms and multiplications on some

real/complex coefficients. In (20), we consider that p
⋆ǧαsβs is the symmetric part and p

⋆aαsβs is the anti-
symmetric part computed,

p
⋆ǧαsβs :=

1

2
( p
⋆gαsβs +

p
⋆gβsαs) =

p
⋆gαsβs −

κ

2

(
Rτsξs

βs
peξs

p
⋆gτsαs +Rτsξs

αs

peξs
p
⋆gβsτs

)
(21)

= p
⋆ǧ

[0]
αsβs

+ p
⋆ǧ

[1]
αsβs

(κ),

for p
⋆ǧ

[0]
αsβs

= p
⋆gαsβs and p

⋆ǧ
[1]
αsβs

(κ) = −κ
2

(
Rτsξs

βs
peξs

p
⋆gτsαs +Rτsξs

αs

peξs
p
⋆gβsτs

)
;

p
⋆aαsβs :=

1

2
( p
⋆gαsβs − p

⋆gβsαs) =
κ

2

(
Rτsξs

βs
peξs

p
⋆gτsαs −Rτsξs

αs

peξs
p
⋆gβsτs

)

= p
⋆a

[1]
αsβs

(κ) =
1

2
( p
⋆g

[1]
αsβs

(κ)− p
⋆g

[1]
βsαs

(κ)). (22)

Respective nonsymmetric inverse s-metrics can be parameterized in the form p
⋆g
αsβs = p

⋆ǧ
αsβs + p

⋆a
αsβs ,

when p
⋆ǧ
αsβs is not the inverse to p

⋆ǧαsβs and p
⋆a
αsβs is not inverse to p

⋆aαsβs . We emphasize that to compute
inverse metrics and s-metrics, define s-adapted geometric objects using commutators and anti-commutator, and
contractions with s-tensors and s-metrics on ⋆

sM for such nonassociative geometric models, we have to apply
more sophisticate procedures, see details in [39, 12, 13]. For modelling geometric flow evoluton of symmetric
and nonsymmetric components of star product deformed metrics, we have to consider respective families of
s-objects and their s-adapted components, for instance, p

⋆sg(τ),
p
⋆gβsαs(τ),

p
⋆gαsβs(τ) =

p
⋆ǧαsβs(τ)+

p
⋆aαsβs(τ)

etc.
Nonassociative star deformations ⋆s of respective LC- and canonical s-connections from (15), adapted to

a nonlinear s–connection structures p
sN, also involve a canonical s-splitting for nonassociative LC-connection

and canonical s-connection

p
sD̂ → p

sD̂
⋆ = (h1

pD̂⋆, v2
pD̂⋆, c3

pD̂⋆, c4
pD̂⋆) = p∇⋆ + p

⋆sẐ, (23)
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where

( p

⋆sg,
p

s
N) →





p

⋆∇ : p

⋆∇ p

⋆sg = 0; p

∇
T ⋆ = 0 star LC-connection;

p

sD̂
⋆ :

p

sD̂
⋆ p

⋆sg = 0; h1
pT̂ ⋆ = 0, v2

pT̂ ⋆ = 0, c3
pT̂ ⋆ = 0, c4

pT̂ ⋆ = 0,

h1v2
pT̂ ⋆ 6= 0, h1cs

pT̂ ⋆ 6= 0, v2cs
pT̂ ⋆ 6= 0, c3c4

pT̂ ⋆ 6= 0,
canonical s-connection .

(24)

We note that in the definition of p
sD̂

⋆ we use the s-tensor p
⋆sg. There are alternative possibilities, for instance,

to involve directly a nonsymmetric metric p
⋆gαsβs , which makes the procedure of constructing parametric

solutions more sophisticate than the variant with p
⋆sg. Working only up to κ-linear terms, such canonical

s-connections are equivalent for those configurations when p
⋆gαsβs = p

⋆ǧαsβs + p
⋆aαsβs , with p

⋆ǧαsβs =
p
⋆g αsβs and p

⋆aαsβs|κ→0 → 0, but there are non-vanishing terms for p
⋆aαsβs(κ 6= 0). Such conditions can be

always stated for certain commutative nonholonomic configurations on which the star product deformations
are applied to keep such conditions. After certain classes of physically important κ-parametric solutions
are constructed in explicitly form, we can consider general nonassociative frame and coordinate transforms.
Families of nonassociative canonical s-connections p

sD̂
⋆(τ) = p∇⋆(τ) + p

⋆sẐ(τ) have to be considered for
elaborating nonassociative geometric flow models, when all formulas from (23) and (24) are re-defined with
τ -parametric dependence.

Nonassociative LC-configurations can be extracted similarly to (18) if we impose additional zero s-torsion
conditions,

p
⋆sẐ = 0, which is equivalent to p

sD̂
⋆
| p

sT̂=0
= p

⋆∇. (25)

In general, all type of metrics on ⋆
sM, and related s-metrics p

⋆sg, subjected/ or not to some conditions of type
(25) contain certain nonzero anholonomy coefficients of frame structures. In such cases, respective symmetric
and nonsymmetric s-metrics can be written in local coordinate forms as generic off-diagonal matrices. For
τ -families, such conditions for extracting and flow evolution of LC-connections can be written p

⋆sẐ(τ) = 0 and
p
sD̂

⋆(τ) = p
⋆∇(τ) for p

sT̂(τ) = 0. Here we note that we do not obtain equalities of some linear connections
(by definition, two different linear connections have different transformation laws under frame/coordinate
transforms) but certain equalities of coefficients in certain s-adapted fromes.

To define and compute geometric and physical objects on a familiy nonassociative phase spaces ⋆
sM(τ)

defined by star product R-flux deformations, we follow:
Convention 2 (see details in [12, 13, 40, 41]; we can consider that in those works all definitions and

formulas were stated for a fixed value τ0 and in this work all results are extended for arbitrary τ): The
commutative and nonassociative geometric data derived for a star product ⋆s (19), are related by such s-
adapted transforms:

(⋆N (τ), A⋆
N (τ), p

⋆g(τ),
p

⋆g(τ),
pN(τ), peα(τ), pD

⋆
(τ)) ⇔ (⋆s(τ), A⋆

s(τ),
p

⋆sg(τ),
p

⋆sg(τ),
p

sN(τ), peαs
(τ), p

sD
⋆(τ))

⇑

( pg(τ), pN(τ), peα(τ), pD̂(τ)) ⇔ ( p

sg(τ),
p

sN(τ), peαs
(τ), p

sD̂(τ)),

(26)

for certain canonical distortions pD
⋆(τ) = p

⋆∇(τ) + pẐ⋆(τ), for respective nonholonomic splitting 4+4, and
p
sD

⋆(τ) = p
⋆∇(τ) + p

sẐ
⋆(τ), for corresponding nonholonomic s-splitting. For simplicity, hereafter we shall not

write τ -dependencies of geometric objects and structures if that will not result in ambiguities.
Applying the rule of Convention 2, we can define and compute star-product deformations of fundamental

geometric s-objects (14),
p
sT → p

sT̂ ⋆ = { pT̂αs
⋆βsγs

}, nonassociative canonical s-torsion ; (27)

p
sR → p

sR̂⋆ = { pR̂⋆αs
βsγsδs

},nonassociative canonical Riemannian s-curvature ;

p
sRic → p

sR̂ic⋆ = { pR̂⋆
βsγs :=

pR̂⋆αs
βsγsαs

6= pR̂⋆
γsβs}, nonassociative canonical Ricci s-tensor;

p
sRsc → p

sR̂sc⋆ = { pgβsγs pR̂⋆
βsγs}, nonassociative canonical Riemannian scalar ;

p
sQ → p

sQ⋆ = { pQ̂⋆
γsαsβs = pD̂⋆

γs
p
⋆gαsβs}, zero nonassociative canonical nonmetricity s-tensor .
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The nonassociative canonical Riemann s-tensor pℜ̂⋆ = { pℜ̂⋆µsαsβsγs
} from (27) can be defined and com-

puted for the data ( q
⋆sg = { q

⋆ǧαsβs =
p
⋆gαsβs}, p

sD̂
⋆ = { pΓ̂

γs
⋆αsβs

}), see details in [13, 41],

pR̂
⋆µs
αsβsγs

= p

1R̂
⋆µs
αsβsγs

+ p

2R̂
⋆µs
αsβsγs

, where (28)

p

1R̂
⋆µs
αsβsγs

= peγs
pΓ̂µs⋆αsβs

− peβs
pΓ̂µ⋆αsγs +

pΓ̂µs⋆νsτs ⋆s (δ
τs
γs

pΓ̂νs⋆αsβs
− δτsβs

pΓ̂νs⋆αsγs) +
pwτsβsγs ⋆s

pΓ̂µs⋆αsτs ,

p

2R̂
⋆µs
αsβsγs

= iκ pΓ̂µs⋆νsτs ⋆s (Rτsξs
γs

peξs
pΓ̂νs⋆αsβs

−Rτsξs
βs

peξs
pΓ̂νs⋆αsγs).

Using parametric decompositions of the star canonical s-connection in (28),

pΓ̂
γs
⋆αsβs

= p

[0]Γ̂
νs
⋆αsβs

+ iκ p

[1]Γ̂
νs
⋆αsβs

= p

[00]Γ̂
νs
∗αsβs

+ p

[01]Γ̂
νs
∗αsβs

(~) + p

[10]Γ̂
νs
∗αsβs

(κ) + p

[11]Γ̂
νs
∗αsβs

(~κ) +O(~2, κ2...),

(29)
we can compute such parametric decompositions of the nonassociative canonical curvature tensor,

pR̂
⋆µs
αsβsγs

= p

[00]R̂
⋆µs
αsβsγs

+ p

[01]R̂
⋆µs
αsβsγs

(~) + p

[10]R̂
⋆µs
αsβsγs

(κ) + p

[11]R̂
⋆µs
αsβsγs

(~κ) +O(~2, κ2, ...).

Contracting the first and forth indices of (28), we define the nonassociative canonical Ricci s-tensor,

p
sℜ̂ic⋆ = pR̂ic⋆αsβs ⋆s (

pe
αs ⊗⋆s

pe
βs), where

pR̂ic⋆αsβs :=
p
sℜ̂ic⋆( peαs ,

peβs) = 〈 pR̂ic⋆µsνs ⋆s (
pe
µs ⊗⋆s

peνs), peαs⊗⋆s
peβs〉⋆s ,

and pR̂ic⋆αsβs :=
pℜ̂⋆µsαsβsµs

= p

[00]R̂ic
⋆
αsβs +

p

[01]R̂ic
⋆
αsβs(~) +

p

[10]R̂ic
⋆
αsβs(κ)

+ p

[11]R̂ic
⋆
αsβs(~κ) +O(~2, κ2, ...),where

p

[00]R̂ic
⋆
αsβs =

p

[00]ℜ̂
⋆µs
αsβsµs

, p[01]R̂ic
⋆
αsβs =

p

[01]ℜ̂
⋆µs
αsβsµs

, (30)

p

[10]R̂ic
⋆
αsβs =

p

[10]ℜ̂
⋆µs
αsβsµs

, p

[11]R̂ic
⋆
αsβs =

p

[11]ℜ̂
⋆µs
αsβsµs

.

Because of nonholonomic structure, canonical Ricci s-tensors are not symmetric for general (non) commutative
and nonassociative cases.

Further h1-v2-c3-c4 decompositions in abstract and coefficient s-adapted forms are also possible for formulas
(28) and (30) (we omit such details in this paper).

Contracting the indices of (30) with the inverse nonassociative and nonsymmetric s-metric p
⋆g
µsνs , we

define and compute the nonassociative nonholonomic canonical Ricci scalar curvature:

p
sR̂sc

⋆ := p
⋆g
µsνs pR̂ic⋆µsνs =

(
p
⋆ǧ
µsνs + p

⋆a
µsνs

)(
pR̂ic⋆(µsνs) +

pR̂ic⋆[µsνs]

)
= p

sR̂ss
⋆ + p

sR̂sa
⋆,

where p
sR̂ss

⋆ =: p
⋆ǧ
µsνs pR̂ic⋆(µsνs) and p

sR̂sa
⋆ := p

⋆a
µsνs pR̂ic⋆[µsνs]. (31)

In (31), the respective symmetric (...) and anti-symmetric [...] operators are defined using the multiple 1/2
when, for instance, pR̂ic⋆µsνs =

pR̂ic⋆(µsνs) +
pR̂ic⋆[µsνs].

The nonassociative phase space vacuum Einstein equations with a nontrivial at least one shell cosmological
constant ( p

sλ 6= 0 for any s, or some shells) can be defined and computed for the canonical s-connection p
sD̂

⋆,

pR̂ic⋆αsβs −
1

2
p
⋆gαsβs

p
sR̂sc

⋆ = p
sλ

p
⋆gαsβs , (32)

where the nonassociative Ricci s-tensor and scalar curvature are defined respectively by formulas (30) and
(31).
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2.1.3 Parametric decomposition of nonassociative and vacuum gravitational equations

The procedure of parametric decompositions of geometric s-objects pR̂
⋆µs
αsβsγs

(28), pR̂ic⋆αsβs
(30) and

p
sR̂sc

⋆ (31) with [01, 10, 11] := ⌈~, κ⌉ components, in parametric form of the canonical s-connections (29) is
elaborated in [12, 13]. Such constructions extend the formalism for the LC-connections provided originally
in [39]. In both cases, the nonassociative and noncommutative of the Riemann and Ricci tensors contains
contributions from star product deformations which can be real or complex ones. In our approach, we can
consider nonholonomic distributions on phase space when the (almost) complex structures are separated and for
the real parts p

[00]R̂ic
⋆
αsβs

= pR̂ αsβs and such coefficients are determined by an associative and commutative

s-adapted canonical s-connection p
sD̂ (15). As a result, the star s-deformed Ricci s-tensor (30) can be expressed

in parametric form,

p
sR̂ic⋆ = { pR̂⋆

βsγs} = p
sR̂ic+ p

sK̂ic ⌈~, κ⌉ = { pR̂ βsγs +
pK̂ βsγs ⌈~, κ⌉}, (33)

there the distortion tensor

p
sK̂ic = { pK̂ βsγs ⌈~, κ⌉ = p

[01]R̂ic
⋆
βsγs +

p

[10]R̂ic
⋆
βsγs +

p

[11]R̂ic
⋆
βsγs}

encodes nonassociative parametric deformations of the canonical Ricci s-tenor.
We can adapt the nonholonomic s-structure that the nonassociative canonical Ricci scalar is conventionally

with a sum of some effective shell polarized cosmological constants sΛ( p
su) depending respectively on shell

coordinates,
pR̂sc⋆ = 1Λ( p

1u) +
2Λ( p

2u) +
3Λ( p

3u) +
4Λ( p

4u).

Choosing effective sΛ( p
su) and fixing, for simplicity, p

sλ = pλ in a form that pλ + 1
2

p
⋆gαsβs

p
sR̂sc

⋆ = 0,
when the nonsymmetric metric (20) decouple into two independent symmetric and antisymmetric computed
respectively by formulas p

⋆ǧαsβs (21) and p
⋆aαsβs (22),

p
⋆gαsβs =

p
⋆ǧαsβs +

p
⋆aαsβs =

p
⋆ǧ

[0]
αsβs

+ p
⋆a

[1]
αsβs

,

and determined in explicit form respectively by p
⋆ǧ

[0]
αsβs

= p
⋆gαsβs and p

⋆a
[1]
αsβs

= iκRτsξs
[αs

pe|ξs
pgτs|βs], where

|ξsτs| means that such indices are not involved in anti-symmetrization.
Using formulas (33), we express the nonassociative vacuum gravitational field equations (32) in the form

pR̂icαsβs = pΥαsβs (16), where pΥαsβs = − p
sK̂icαsβs . Such an effective source of type (17) encodes nonasso-

ciative star R-flux deformations,

pK
βsγs

= p

[0]Υβsγs
+ p

[1]Kβsγs
⌈~, κ⌉ , where (34)

p

[0]Υβsγs
= sΛ( puγs) p

⋆gβsγs and p

[1]Kβsγs
⌈~, κ⌉ = sΛ( puγs) p

⋆ǧ
[1]
βsγs

(κ) − pK̂ βsγs ⌈~, κ⌉ ,

is an effective parametric source with coefficients proportional to ~, κ and ~κ. For computing R-flux κ-linear
effects, it is enough to consider nonholonomic distributions and effective sources generated by data

p
⋆ǧ

[0]
αsβs

= p
⋆gαsβs =

pgαsβs ;
p
⋆ǧ

[1]
βsγs

(κ) = 0, p
⋆a

[0]
αsβs

= 0, p
⋆a

[1]
αsβs

= iκRτsξs
[αs

pe|ξs
pgτs|βs],

and pΥαsβs = − p
sK̂icαsβs = − pK̂αsβs .

The effective sources can be parameterized for nontrivial real quasi-stationary 8-d configurations13 of s-metrics
using coordinates (xk3 , pp8 = E), with p

⋆gβsγs|~,κ=0 = pgβsγs , in various forms depending on prescribed

13 A s-metric is quasi-stationary if the corresponding (non) associative phase spacetime geometric s-objects possess a Killing
symmetry on ∂4 = ∂t on shell s = 2 and on q∂7, or q∂8, for all shells up to s = 4.
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shell Killing symmetries. Nonassociative effects are determined additionally as some induced nonsymmetric
components p

⋆a
[1]
αsβs

.
In this work, we consider such quasi-stationary shell by shell adapted distributions on ⋆

sM when

pKαs
βs

= [ p

1K(κ, xk1)δj1i1 ,
p

2K(κ, xk1 , x3)δa2b2 ,
p

3K(κ, xk2 , pp6)δ
b3
a3 ,

p

4K(κ, xk3 , pp8)δ
b4
a4 ] (35)

contain as functionals certain κ-linear terms with Rτsξs
αs . Prescribing certain values for effective sources p

sK
(35) as generating sources, we constrain nonholonomically the gravitational dynamics and effective and
possible matter sources. Such generating sources can be related to conventional cosmological constants via
nonlinear symmetries, when the nonsymmetric parts of the s-metrics and the canonical Ricci s-tensors can be
computed as R-flux deformations of some off-diagonal symmetric metric configurations. Finally, we note that
using necessary types of frame s-adapted transform, pΥ̂α′

sβ
′
s
= eαs

α′
s
eβsβ′

s

pKαsβs we can transform certain

general sources into a subset of four generating soucres pK
βsγs

= { p
sK}. We use the label "̂" for such sources in

order to emphasize that they are determined by generating sources encoding in certain general nonholonomic
forms certain noncommutative data for star-product and R-flux deformations.

2.2 Nonassociative generalizations of Perelman’s F- and W-functionals

We consider families of nonassociative R-flux deformed phase spaces, sM → ⋆
sM(τ) determined by star

product ⋆s(τ) structure (19) adapted to a nonholonomic (2+2)+(2+2) decomposition (i.e. s-structure) of
a cotangent Lorentz bundle M = T ∗V,dim V = 4, as in [12, 13, 41]. Star product R-flux deformations

of fundamental geometry s-objects (27), determined by nonassociative geometric data
[

p
sg
⋆(τ), p

sD̂
⋆(τ)

]
, are

performed following Convention 2 (26) with κ-linear parametric decompositions when p
⋆ǧ

[0]
αsβs

(τ) = p
⋆gαsβs(τ) =

pgαsβs(τ). Geometric flows on a parameter τ are described in [0]-approximation (zero power on κ) by flows
of some canonical data ( p

sg(τ),
p
sD̂(τ)), star product flows ⋆s(τ), determined by s-adapted frames peis(τ) in

(19), and flows of volume elements

d pVol(τ) =
√

| pgαsβs (τ)| δ8 puγs(τ) (36)

are computed for N-elongated s-differentials δ8 puγs(τ) using pN isas (τ) as in (12).
We can elaborate on relativistic thermodynamics models and their nonassociative generalizations if

p
sg = { pgαsβs

} is adapted to a causal (3+1)+(3+1) splitting (in GR, such a formalism for Einstein manifolds
is considered, for instance, in [43]). Geometric flows of a s-metric can be parameterized in the form

p
sg(τ) = pgα′β′(τ, p

su)d
peα

′

(τ)⊗ d peβ
′

(τ)

= qi(τ, x
k)dxi ⊗ dxi + q3(τ, x

k, y3)e3(τ)⊗ e3(τ)− N̆2(τ, xk, y3)e4(τ)⊗ e4(τ)

+ pqa2(τ, xk, y3, pb2)
pea2(τ)⊗ pea2(τ)

+ pq7(τ, xk, y3, pb2 , pb3)
pe7(τ)⊗ pe7(τ)− pN̆2(τ, xk, y3, pb2 , pb3)

pe8(τ)⊗ pe8(τ).

For computations in a phase space point, such an ansatz is written as an extension of a couple of 3–d metrics,
qij = diag(qı̀) = (qi, q3) on a hyper-surface Ξ̂t and pqàb̀ = diag( pqà) = ( pqa2 , pq7) on a hyper-surface pΞ̂E, i.e.

on p
sΞ̂ =

(
Ξ̂t,

pΞ̂E

)
, when

q1 = g1, q2 = g2, q3 = g3, N̆
2 = −g4 and pq5 = pg5, pq6 = pg6, pq7 = pg7, pN̆2 = − pg8, (37)

where N̆ is a lapse function on the base manifold and pN̆2 is a lapse function in the cofiber.
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The Perelman type functionals (9) can be generalized for nonassociative canonical data
[

p
sg
⋆(τ), p

sD̂
⋆(τ)

]

following the Convention 2 (26 and using formulas (14),

p
sF̂⋆(τ) =

∫

p

sΞ̂
( p
sR̂sc

⋆ + | p
sD̂

⋆ p
sf̂ |2) ⋆ e−

p

sf̂ d pVol(τ), and (38)

p
sŴ⋆(τ) =

∫

p

sΞ̂
(4πτ)−4 [τ( p

sR̂sc
⋆ +

∑
s
| p
sD̂

⋆ ⋆ p
sf̂ |)2 + p

sf̂ − 8] ⋆ e−
p

sf̂ d pVol(τ), (39)

where the integrals and normalizing functions p
sf̂(τ,

p
su) are stated to satisfy the condition

∫

p

sΞ̂

p
sν̂ d pVol(τ) :=

∫ t2

t1

∫

Ξ̂t

∫

pΞ̂E

p
sν̂ d pVol(τ) = 1, (40)

for integration measures p
sν̂ = (4πτ)−4 e−

p

sf̂ parameterized for shells on 8-d phase spaces. The nonassocia-
tive canonical s-connection p

sD̂
⋆ (24) and respective canonical Ricci scalar p

sR̂sc
⋆ (31) are computed for a

parametrization (37).14 We can consider star-deformations of the volume form (36),

e−
p

sf̂d pVol(τ) → e−
p

sf̂d pVol⋆(τ) = e−
p

sf̂
√

| p
⋆gαsβs (τ)|δ puγs(τ),

for other types of adapted integration measures and nonholonomic s-shells with p
sg
⋆. Such transforms can be

encoded into a normalizing function p
sf̂ and respective separation of nonsymmetric components of s-metrics for

κ–linear parameterizations. We simplify further computations if the star products and integration measures,
and the orders for performing covariant derivations and integration, are stated as in functionals (38) and (39).

2.3 Nonassociative geometric flow and Ricci soliton equations

In this section, we consider two methods for deriving nonassociative geometric flow equations (using abstract
geometric methods and/or elaborating a nonassociative onholonomic s-adapted variational procedure).

2.3.1 Abstract nonassociative geometric star-deformations of R. Hamilton equations

Following abstract geometric principles as in [43], we can derive necessary type geometric/physical impor-
tant questions considering in symbolic coordinate/frame forms corresponding fundamental associative geomet-
ric objects. We can consider any variant of Ricci tensor and scalar curvature defined by respective metric and
covariant derivative structures (and, if it is important for certain constructions, nonlinear Laplace, d’Alambert
operators). This way, for instance, we can derive the Einstein equations in pure geometric form as in pseudo-
Riemannian geometry. Such gravitational filed equations can be written in terms of the Ricci tensor (the left
side) and postulating (for the right side) certain types of (effective) sources determined by corresponding phys-
ically important energy-momentum tensors. This geometric approach, can be generalized for the canonical
s-connection structure p

sD̂ (15) which results in modified phase space Einstein equations (16). Written in
"hat" variables, such nonholonomically distorted gravitational field equations can be decoupled and integrated

14It should be noted that the F- and W-functionals were postulated by G. Perelman [1] in such forms that they allowed him to
perform a variational calculus and prove certain forms of the R. Hamilton equations [4], to define an associated statistical/geometric
thermodynamics models for Ricci flows of Riemannian metrics, and to prove the Poincaré-Thurston conjecture. Those construc-
tions can be generalized on nonholonomic Lorentz manifolds and (co) tangent bundles which allow to prove relativistic variants of
geometric flows and elaborated on respective thermodynamics models even (as we emphasized in the Introduction and [6, 7, 8])
some relativistic variants of the Poincaré-Thurston conjecture were not formulated/proven in modern mathematics. The Perelman
functionals and respective thermodynamic models can be generalized for various non-Riemannian geometries including nonasso-
ciative models if the τ -parametric star product (19) and Convention 2 are considered. This allows us to elaborate on theories of
nonassociative geometric flows defined by R-flux deformations in string theory.
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in certain general forms applying the AFCDM. In terms of the LC-connection p∇ such systems of nonlinear
PDEs do not possess any general decoupling properties for generic off-diagonal metrics depending, in principle,
on all phase space coordinates.

The abstract geometric approach allows us to derive in symbolic form certain (associative and commutative)

nonholonomic geometric flow equations [14, 17, 7, 8, 6] for τ -families of geometric s-objects
(

p
sg(τ),

p
sD̂(τ)

)
.

For s-metrics p
sg(τ) = { pgαsβs(τ)} (5), we can construct nonholonomic canonical s-deformations of the the

R. Hamilton equations [4] postulated for various research in modern geometric analysis. Such equations were
originally considered in connection to string theory and condensed matter physics in [5]. Then, applying
the Convention 2 (26) we can analyze and solve the issue on deriving nonassociative geometric flow equa-

tions for the star deformed data
(

p
⋆gαsβs(τ),

p
sD̂

⋆(τ)
)
. Such equations can be postulated (using appropriate

diffeomorphysms and s-adapted frame structures) in the form

∂τ
p
⋆gαsβs(τ) = −2 pR̂⋆

αsβs(τ), (41)

∂τ
p
sf̂(τ) = p

sR̂sc
⋆(τ)− ⋆△̂(τ) ⋆ p

sf̂(τ) + ( p
sD̂

⋆(τ) ⋆ p
sf̂(τ))

2(τ),

where ⋆△̂ is the Laplace operator constructed for p
sD̂

⋆ and the nonsymmetric components of p
⋆gαsβs are

computed using κ-linear parameterizations (20)–(22).
The nonassociative geometric flow equations (41) include as associative and commutative parts (for LC-

configurations and Riemannian signatures) certain phase space variants of the evolution equations (1.3) studied
in [1]. The noncommutative part of such equations is different from that considered in [15] because that work
was devoted to a different type of noncommutative Ricci flow theory based on spectral triples following the A.
Connes approach. We postulated above nonassociative system of nonlinear PDEs in such a form that it can
be decoupled and solved in certain general forms at least in κ-linear form (see details below: in subsection 2.4,
section 4 and appendix A).

2.3.2 A s-adapted variational procedure for deriving nonassociative geometric flow equations

In paragraphs 1.1 and 1.2 of Section 1 in [1], it is considered in brief a variational procedure to prove the
associative and commutative variants of geometric flow equations (41) using Riemannian data (gαβ(τ),∇γ(τ))
for a normalizing function f(τ) on a closed manifold M of dimension, dimM = n and τ ∈ [0, τ1]. In this
work, we use our system of notations for nonholonomic manifolds and/or phase spaces, p

sM → ⋆
sM, and

perform canonical s-adapted geometric constructions on certain closed spacelike regions with respective double
(3 + 1) + (3 + 1) and (2 + 2) + (2 + 2) fibrations extended under spacetime/ phase space paths covering
such regions. We note that formal definitions of geometric s-objects and respective covariant and integral
calculus do not depend on the signature of s-metrics. Such signatures are important for providing proofs of the
Poincaré-Thurston conjecture and generalizations (which is not a goal for this work), see details in [1, 2, 3].

In nonholonomic form, certain N-adapted variational geometric flow methods were considered in [14] for
various developments and applications in [14, 17, 7, 8, 6] when ∇ → D̂ and d-metrics of arbitrary signatures
subjected to modified/ generalized R. Hamilton equations can be found by applying the AFCDM. To develop
such a N-adapted variational calculus for nonholonomic Ricci flow theories in a rigorous mathematical form
is possible (such proofs are on hundreds of pages, with respective distortions of d-connections and geometric
d-objects, like in monographs [9, 10, 11]). We omit such technical details in this work and sketch the proof in
a form similar to [1] but with respective geometric symbolic re-definitions of (non) associative nonholonomic
s-objects following the Convention 2 (26), stating formal nonholonomic measures and performing integration
on a closed region of ⋆

sM.
It should be noted that arbitrary deformations induced by a twist operator are not general compatible

with the variational principle to be used directly, for instance, in nonassociative field theory. Nevertheless, this
is not an unsolved conceptual/ technical problem if we work with star product R-flux deformations defined
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in s-adapted form as in (19). We can elaborate a well defined nonholonomic geometric flow theory (with a
self-consistent s-adapted variational calculus) on p

sM. Then, we can ⋆-deform the constructions on ⋆
sM; and,

for at least for κ-linear parametric solutions, compute respective deformations of F - and W -functionals and
their nonassociative geometric flow equations (41). In such a case, a star-functional p

sF̂⋆ (38) is constructed
for an explicit class of κ-linear solutions of nonassociative R. Hamilton equations in canonical s-variables, when
the measure and volume forms can be assumed to satisfy the condition (40). A similar assumption is used for
the proof of 1.2 Proposition and formulas (1.1) - (1.4) in [1].

So, considering p
sF̂⋆, we can define and compute a s-adapted variation δ p

sF̂⋆ for some variations
δ( p

⋆gαsβs) = δ( pgαsβs) and δ p
sf̂ as follows:

δ p
sF̂⋆(τ) =

∫

p

sΞ̂
{(− ⋆△̂[ pgαsβsδ( pgαsβs)] +

pD̂αs
⋆

pD̂βs
⋆ [δ( pgαsβs)]− pR̂αsβs

⋆ δ( pgαsβs)

−δ( pgαsβs)
pD̂αs

⋆ ( p
sf̂)

pD̂βs
⋆ ( p

sf̂) + 2 pD̂⋆
αs
( p
sf̂)

pD̂αs
⋆ (δ p

sf̂)

+( p
sR̂sc

⋆ + | p
sD̂

⋆ p
sf̂ |2)(

1

2
pgαsβsδ( pgαsβs)− δ p

sf̂)} ⋆ e−
p

sf̂

=

∫

p

sΞ̂
{−δ( pgαsβs)[

pR̂αsβs
⋆ + pD̂αs

⋆
pD̂βs

⋆ ( p
sf̂)] (42)

+(
1

2
pgαsβsδ( pgαsβs)− δ p

sf̂)[2
⋆△̂( p

sf̂) +
p
sR̂sc

⋆ − | p
sD̂

⋆ p
sf̂ |2]} ⋆ e−

p

sf̂

Here we note that 1
2

pgαsβsδ( pgαsβs) − δ p
sf̂) ≡ 0 if the measure d pV̂ : = p

sν̂ d pVol e−
p

sf̂ = const. For
such s-adapted configurations, we can prescribe the nonholonomic structure and compute (using symmetric
coordinate configurations and then re-defining for N-connections) when the symmetric s-tensor

−[ pR̂αsβs
⋆ + pD̂αs

⋆
pD̂βs

⋆ ( p
sf̂)] is the L2 gradient of the functional p

sF̂⋆[d pV̂] =
∫

p

sΞ̂
( p
sR̂sc

⋆ + | p
sD̂

⋆ p
sf̂ |2d pV̂.

In these formulas, p
sf̂ can be considered as log(d pVol/d pV̂). So, prescribing a measure d pV̂ , we can model a

nonassociative gradient flow subjected to equations

∂τ
p
⋆gαsβs = −2[ pR̂⋆

αsβs +
pD̂⋆

αs

pD̂⋆
βs(

p
sf̂)],

derived from a p
sF̂⋆[d pV̂]. Because the right part can be constructed as a nonholonomic nonsymmetric star

deformation, we can chose a corresponding p
sf̂ when p

⋆gαsβs → p
⋆gαsβs . Modifying by an appropriate diffeo-

morphism and nonholonomic s-adapted structure, we obtain this type of nonassociative geometric evolution
equation:

∂τ
p
⋆gαsβs = −2 pR̂⋆

αsβs ,

∂τ
p
sf̂ = p

sR̂sc
⋆ − ⋆△̂ p

sf̂ + | p
sD̂

⋆ p
sf̂ |2.

Such formulas are equivalent (up to certain nonholonomic transforms and re-definitions of the normalizing
functions) to the nonassociative geometric flow equations (41), which we postulated/ constructed following
abstract/ symbolic principles.

It is important to note that above formulas obtained from a s-adapted variational principle with (42) still
have a geometric symbolic character if we consider general star product R-flux deformations. Even in the
associative and commutative Riemannian case, gradient flows may not exist for general measures (see related
explanations before paragram 1.2 Proposition and formulas (1.1) - (1.4) in [1]). So, we can not prove that (non)
associative geometric flow evolution equations of type (41) can be proven in a general, or s-adapted form from a
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functional p
sF̂⋆ (38). This results in various un-determined variants of nonassociative functionals and symbolic

geometric flow equations which to not allow even to formulate certain nonassociative variants of the Poincaré-
Thurston conjecture. Nevertheless, well-defined star-deformed functionals p

sF̂⋆ and p
sŴ⋆ and related variants

of nonassociative geometric evolution equations can be introduced in a self-consistent geometric form (and with
various important implications in modern gravity and quantum information theories) if we consider κ-linear
parametric deformations. In such cases, all geometric and physical objects (and related N-adapted variational
procedures) allow to define and compute such values and finding of exact/parametric solutions in explicit forms.
This is possible when we apply the AFCDM and construct generic off-diagonal solutions for certain (associative
and commutative) nonholonomic s-adapted configurations and then subject such geometric/ physical data to
star product deformations (19). If such R-flux deformations are computed following the procedure described
in section 4 and appendix A), the s-adapted variational procedure (42) becomes well-defined mathematically
even the constructions involve a twist operator. All such tedious and technical computations are performed
using the third line of (19) and κ-parametric decompositions of geometric s-objects as in [39, 12, 13, 41]. We
may have certain undetermined values for general classes of nonholonomic bases and s-connections. But if
we chose certain canonical variables and deformations of physical important and well-defined solutions (for
instance, for BH in any nonassociative or associative variant), then the corresponding nonassociative geometric
flows can be modelled in a nonassociative gradient form with a well-defined s-adapted variational procedure.

In our series of works [12, 13, 41], we consider that for the nonassociative geometric flow theories the
abstract geometric symbolic principles are more fundamental and efficient that standard variational procedures
(similar to classical and quantum field theories) which became un-determined, for instance, for general star
product R-flux deformations. Such an assumption is based on ideas from [43] that having certain data for
a necessary set of fundamental geometric objects (metric-affine structures, nonlinear and linear connections,
respective Riemannian, Ricci tensors etc.) we can elaborate always on respective gravity/ geometric flow
models following standard geometric principles. The constructions are symbolic, but for explicit variants of
nonassociative/ noncommutative/ supersymmetric etc. generalizations we can state an equivalent variational
procedure if certain well-defined κ-parametric decompositions are stated for such models following a typical
"deformation philosophy".

Nonassociative geometric flow equations can be derived in similar forms if, for instance, a s-adapted vari-
ational procedure is performed for p

sŴ⋆(τ) (39). Such details for the LC-connection are provided in [1],
see analogous constructions for Riemannian geometric flows; all described by respective formulas 3.1 - 3.4 in
section 3 of that work. In s-adapted form, the approach was generalized in [14, 17, 7, 8, 6]. We omit such
technical details in this work because they can be derived in abstract form following geometric principles and
the Convention 2 (26). For recent applications in high energy physics, we cite [23, 24, 25, 26, 27] where the
normalizing function is postulated as a dilaton field and associative and commutative versions of metric-dilaton
Ricci flows are investigated. Certain geometric flow equations can be also motivated as star product R-flux
deformations of a two-dimensional sigma model with beta functions and dilaton field (see equations (79) and
(80) in [23]). Here we note that in section 1.4∗ of [1] it is mentioned that the F-functional and "its variation
formula can be found in the literature on the string theory ...", when f can be treated as a dilaton filed. In our
works on nonassociative geometric flows, we show that G. Perelman constructions can be generalized for star
products with R-flux deformations from string theory. The AFCDM allows to elaborate on such nonassociative
geometric flow models in explicit forms considering various classes of physically important solutions.

2.3.3 Nonassociative Ricci soliton equations in canonical s-variables

Ricci solitons are defined as self-similar configurations of gradient geometric flows for a fixed parameter τ0.
For Riemannian and Kaehler Ricci flows, such geometries are studied in details in [9, 10, 11] (where different
types of Ricci soliton equations are formulated). In [6, 7, 8] and references therein, the approach was extended
to nonholonomic s-adapted constructions. In canonical s-variables on sM, the Ricci soliton s-equations derived
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from a W-functional are of type

pR̂ αsβs +
pD̂αs

pD̂βs
p̟( p

su) = λ pgαsβs ,

where p̟ is a smooth potential function on every shell s = 1, 2, 3, 4 and λ = const. Following the Convention 2
(26), such systems of nonlinear PDEs can be deformed by star products and R-fluxes to nonassociative Ricci
solitons defined by equations

pR̂⋆
αsβs +

pD̂⋆
αs

pD̂⋆
βs

p̟( p
su) = λ p

⋆gαsβs . (43)

Similar equations (certain differences can be related to different nonholonomic structures and/or different
normalizing functions) can derived from a respective s-adapted variational calculus with τ = τ0 for p

sŴ⋆(τ) (39)
and/or from (41). We omit such technical details. Here we note that the nonassociative phase space vacuum
gravitational equations (32) defined for the canonical s-connection pD̂⋆

αs
consist an example of nonassociative

Ricci soliton ones (43).
The nonassociative geometric flow constructions provided in this section can be re-defined in terms of

respective LC-connections, p
⋆∇ and p∇, if we impose additional nonholonomic constraints of type (25), when

p
sD̂

⋆
| p

sT̂=0
= p

⋆∇. As a result, the nonassociative equations (41) and (43) transform respectively into (2) and

(1) postulated in the Introduction section. For p
⋆∇, such nonassociative geometric flow and Ricci soliton

equations could be postulated just having the results of papers [38, 39], where the nonassociative Ricci tensors
were defined and computed for p

⋆∇ (in our notations). The main motivation for elaborating such theories in
terms of pD̂⋆

αs
(and, with nonholonomic constraints, of p

⋆∇) is that using nonholonomic s-adapted variables
we can decouple and solve in very general forms such systems of nonlinear PDEs [13, 40, 41]. This is possible
if we apply the AFCDM (see main ideas and important formulas in Appendix A). Constructing exact and
parametric solutions of nonassociative Ricci flow/ soliton equations, we analyze how the results and methods
of nonassociative geometry can be applied in modern particle physics, gravity and information theory.

2.4 Parametric decomposition of nonassociative functionals and geometric flow equa-
tions

To elaborate on possible applications in modern gravity and cosmology, the nonassociative F- and W-
functionals and related geometric flow equations are considered for a κ-linear parametric decomposition. Using
formulas (29), (30), (31) and (33), for respective parametric formulas for the canonical s-connection, nonsym-
metric Ricci s-tensor and scalar curvature, we write (38) and (39) in the forms:

p
sF̂⋆

κ(τ) =

∫

p

sΞ̂
( p

sR̂sc+
p
sK̂sc+ | p

sD̂
p
sf̂ |2)e−

p

sf̂ d pVol(τ), and (44)

p
sŴ⋆

κ(τ) =

∫

p

sΞ̂
(4πτ)−4 [τ( p

sR̂sc+
p
sK̂sc+

∑
s
| p
sD̂

p
sf̂ |)2 + p

sf̂ − 8]e−
p

sf̂ d pVol(τ), (45)

where p
sR̂sc

⋆ = p
sR̂sc+

p
sK̂sc, for

p
sK̂sc :=

p
⋆g
µsνs pK̂ βsγs ⌈~, κ⌉ and the normalizing function p

sf̂ is re-defined
to include ⌈~, κ⌉-terms from pD̂⋆ → p

sD̂ and remaining terms from κ-parametric decompositions.
There are two ways for deriving nonassociative κ-linear generalizations of the R. Hamilton equations. In

the first case, we consider κ-parametric decompositions of (41) and, in the second case, we apply a s-adapted
nonholonomic variational procedure to p

sF̂⋆
κ(τ) (44), or p

sŴ⋆
κ(τ) (45). In all cases, adapting corresponding the

nonholonomic structure, we obtain such phase geometric flow equations encoding κ-terms,

∂τ
pgαsβs(τ) = −2( pR̂ αsβs(τ) +

pK̂ αsβs(τ, ⌈~, κ⌉)), (46)

∂τ
p
sf̂(τ) = p

sR̂sc(τ) +
p
sK̂sc(τ)− △̂(τ) p

sf̂(τ) + ( p
sD̂(τ) p

sf̂(τ))
2(τ),
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where △̂ is the Laplace operator constructed for p
sD̂. Positively, the s-adapted variational procedure with κ-

linear decompositions in (41) can be performed in a well-defined mathematical form by involving the AFCDM
for constructing respective classes of exact/parametric solutions.

For self-similar configurations with τ = τ0, the equations (46) transform into a system of nonlinear PDEs
for κ–parametric canonical shell Ricci solitons,

pR̂ αsβs +
pK̂ αsβs(τ, ⌈~, κ⌉) + pD̂αs

pD̂βs
p̟( p

su) = λ pgαsβs . (47)

Similar equations can be also obtained from a corresponding κ-linear decompositions of the nonassociative Ricci
soliton equations (43). Re-defining p̟( p

su) for some particular choices and for corresponding nonholonomic
structures, we obtain from (47) phase space modified gravitational equations pR̂icαsβs = pΥαsβs (16), where
pΥαsβs = − p

sK̂icαsβs . Such systems of nonlinear PDEs can be decoupled and integrated in general off-diagonal
forms using the AFCDM if the effective source pΥαsβs is parameterized following the conventions (34) and p

sK
(35).

3 Nonassociative geometric thermodynamics

For the Ricci flows of Riemannian metrics, the W-functional (9) can be treated as a "minus entropy"
which allows to formulate a statistical thermodynamic model with thermodynamic variables determined by
τ -running fundamental geometric objects on Riemann manifolds. In [6, 7, 8] (see also references therein),
we investigated possibilities to extend such constructions to relativistic geometric thermodynamic models and
(modified) gravity and quantum information theories. A very important result was that modified G. Perelman
thermodynamic models can be associated to various classes generic off-diagonal solutions (in general, with
non-Riemannian connections and without conventional horizons) when the concept of Bekenstein–Hawking
thermodynamics is not applicable.

The goal of this section is to show how nonholonomic geometric thermodynamic models can be elaborated
for nonassociative geometric flows and Ricci solitons determined by certain data [ p

⋆gαsβs(τ),
p
sD̂

⋆(τ), p
sf̂(τ)]

and κ-linear parametric decompositions.

3.1 Star product and R-flux deformed statistical thermodynamic variables

On sM with an additional nonholonomic (3+1)+(3+1) splitting, we introduce the statistical partition
function

p
sẐ(τ) = exp[

∫

p

sΞ̂
[− p

sf̂ + 4] (4πτ)−4 e−
p

sf̂ pδ pV(τ), (48)

where the volume element (36) are computed for a s-metric (37) with "shift and lapse" functions,

pδ pV(τ) =
√
|q1(τ)q2(τ)q3(τ)N̆2(τ) pq5(τ) pq6(τ) pq7(τ) pN̆2(τ)|dx1dx2δy3δy4 pδ pu5(τ)

pδ pu6(τ)
pδ pu7(τ)

pδ pu8(τ). (49)

The Convention 2 (26) on star product R-flux deformations of s-adapted geometric objects into respective
nonassociative ones has to be adapted for parameterizations of type pt

sD̂ = p
sD̂|Ξ̂t

→ p
sD̂

⋆
|Ξ̂t

and pE
s D̂ =

p
sD̂|Ξ̂E

→ p
sD̂

⋆
|Ξ̂E

. Such transforms have to be considered for hyper-surface restrictions of the canonical s-

connections p
sD̂ → p

sD̂
⋆ and computing integrals with volume forms (49). We can define and compute Ricci

s-tensors and scalar curvatures determined by pt
s D̂

⋆ and pE
s D̂⋆ are denoted pt

sR̂
⋆
ı̀j̀
, pE
s R̂àb̀

⋆ and ptR̂⋆, pER̂⋆

which are useful for computing hyper-surface geometric s-objects for quasi-stationary configurations with
redefined normalizing functions (see examples with κ-parametric nonassociative Ricci solitons in [41] and, for
nonholonomic associative and commutative configurations in [6, 7, 8]) and next sections).
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Using p
sẐ (48) and p

sŴ⋆(τ) (39) as the respective partition function and W-entropy functional on ⋆
sM,15

we can define and compute respective thermodynamic variables (average energy, p
sÊ⋆, entropy, p

sŜ
⋆, and

fluctuation, p
sσ̂
⋆):

p
sÊ⋆ = −τ2

∫

p

sΞ̂
(4πτ)−4

(
p
sR̂sc

⋆ + | p
sD̂

⋆ p
sf̂ |2 −

4

τ

)
⋆ e−

p

sf̂ pδ pV(τ), (50)

p
sŜ

⋆ = −
∫

p

sΞ̂
(4πτ)−4

(
τ( p

sR̂sc
⋆ + | p

sD̂
⋆ p
sf̂ |2) + p

sf̃ − 8
)
⋆ e−

p

sf̂ pδ pV(τ),

p
sσ̂
⋆ = 2 τ4

∫

p

sΞ̂
(4πτ)−4 | pR̂⋆

αsβs +
pD̂⋆

αs

pD̂⋆
βs

p
sf̂ − 1

2τ
g⋆αsβs |

2 ⋆ e−
p

sf̂ pδ pV(τ).

To prove these formulas we can apply a tedious variational s-adapted calculus on nonassocitative phase space.
Following the abstract geometric formalism, such formulas can be derived in a simplified symbolic form when
geometric s-objects are generalized into similar ones with star labels.

We can restrict such formulas to 4–d and 6-d shell configurations, for respective redefinitions of p
sf̂ into a

convenient p
sf̃ , in order to adapt the geometric thermodynamic constructions to a prescribed both shell and

(3+1)+(3+1) splitting. For corresponding fixed value τ = τ0, the formulas (50) characterize nonassociative
Ricci soliton (43) (and, in particular, nonassociative vacuum gravitational (32)) equations. Such thermody-
namic values can be computed for any example of exact/parametric solution of nonassociative geometric flow
equations (41).

3.2 Parametric decompositions in nonassociative geometric thermodynamics

For κ-linear parametric decompositions as in section 2.4 (following again the Convention 2 (26) and τ -
parametric formulas (28)-(31) and (33)-(34)), the formulas for thermodynamic variables (50) encoding data
for nonassociative geometric flows transform respectively into

p
sÊ⋆κ = −τ2

∫

p

sΞ̂
(4πτ)−4

(
p
sR̂sc(τ) +

p
sK̂sc(τ) + | p

sD̂
p
sf̂ |2(τ)−

4

τ

)
e−

p

sf̂ pδ pV(τ), (51)

p
sŜ

⋆
κ = −

∫

p

sΞ̂
(4πτ)−4

(
τ( p

sR̂sc(τ) +
p
sK̂sc(τ) + | p

sD̂
p
sf̂ |2(τ)) + p

sf̂(τ)− 8
)
e−

p

sf̂ pδ pV(τ),

p
sσ̂
⋆
κ = 2 τ4

∫

p

sΞ̂
(4πτ)−4 | pR̂αsβs(τ) +

pK̂αsβs(τ) +
pD̂αs

pD̂βs
p
sf̂(τ)−

1

2τ
gαsβs(τ)|2e−

p

sf̂ pδ pV(τ).

We emphasize that such variables encode certain nonassociative data in p
sK̂sc and pK̂αsβs and certain depen-

dencies in nontrivial κ-linear terms in p
sD̂(τ),gαsβs(τ),

p δ pV(τ) and p
sf̂(τ) defined for solutions of canonical

nonholonomic Ricci flow (46), or Ricci soliton (47), equations.
The formulas (51) can be derived alternatively using on ⋆

sM a) a s-adapted variational calculus for the sta-
tistical generating function p

sẐ(τ) (36) and W-entropy p
sŴ⋆

κ(τ) (45), with a κ-linear parametric decomposition
of nonholonomic geometric and thermodynamic variables and/or b) a corresponding abstract nonassociative
geometric calculus.

We note that, in general, the nonassociative geometric flow thermodynamic variables may be not well-
defined as physical values, for instance, one could be obtained negative entropies etc. This depends on the
classes of solutions we consider and compute such values. In κ-linear parametric form we can investigate such
issues and select certain self-consistent and relativistic causal nonassociative cosmological scenarios or for some
BH like configurations.

15To formulate a statistical thermodynamic model, we can consider a partition function Z =
∫
exp(−βE)dω(E) for the canonical

ensemble at temperature β−1 = τ being defined by the measure taken to be the density of states ω(E). The thermodynamical
variables are computed as the average energy, 〈E〉 := −∂ logZ/∂β, the entropy S := β 〈E〉+ logZ and the fluctuation parameter
σ :=

〈
(E − 〈E〉)2

〉
= ∂2 logZ/∂β2.
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Finally, for the last two subsections, it should be noted that similar thermodynamic variables for nonas-
sociative geometric flows or Ricci solitons can be formulated/ in terms of respective LC-connections, p

⋆∇ and
p∇, if we impose additional nonholonomic constraints of type (25), when p

sD̂
⋆
| p

sT̂=0
= p

⋆∇. Such constraints

result into standard G. Perelman’s functionals (9) and related thermodynamic variables but on phase space
⋆
sM. In many cases, various distortion of s-connection terms can be encoded into a new type of normalization
functions p

sf̂(τ), or in respective classes of generating functions and generating effective sources.

4 Parametric geometric flows and off-diagonal quasi-stationary solutions

The goal of this section is to prove that κ-linear parametric geometric flow equations (46) (and, in partic-
ular, the nonassociative Ricci soliton equations (47)) can be decoupled and integrated in general off-diagonal
forms for effective sources encoding nonassociative star product and R-flux data and additional τ -induced co-
efficients. We follow the AFCDM [6, 7, 8, 13, 40, 41] outlined in Appendix A. There are provided four possible
parameterizations of such quasi-stationary solutions and analyzed their nonlinear symmetries.

An effective τ -depending source pℑαsβs(τ) = −( pK̂αsβs(τ) +
1
2∂τ

pgαsβs(τ)), parameterized on ⋆
sM in

s-shell adapted form

pℑαs
βs

(τ, puγs) = [ p

1ℑ(κ, τ, xk1)δ
j1
i1
, p

2ℑ(κ, τ, xk1 , y3)δa2b2 ,
p

3ℑ(κ, τ, xk2 , pp5)δ
b3
a3 ,

p

4ℑ(κ, τ, xk3 , pp7)δ
b4
a4 ], (52)

can be used for generating quasi-stationary solutions with Killing symmetry on ∂4 = ∂t. For other types of
Killing symmetries, we need corresponding type parameterizations. Such families of effective sources contain as
functionals certain κ-linear terms with Rτsξs

αs(τ) which for any fixed τ are similar to p
sK (35). We suppose that

parameterizations of type (52) can be obtained for certain frame s-adapted transform, pℑ̂α′
sβ

′
s
= eαs

α′
s
eβsβ′

s

pℑαsβs ,

when some general sources are transformed into a subset of four generating sources pℑ
βsγs

= diag{ p
sℑ}. Any

prescribed p
sℑ (τ, puγs) imposes a s-shell nonholonomic constraint for τ -derivatives of the metrics s-coefficients

∂τ
pgαsβs(τ). For small parametric deformations, such constraints can be solved in explicit general forms. In

other cases, we have to search for some special classes of generating and integration functions which allow to
find some examples of exact/ parametric solutions.

Using effective sources (52), we can write the κ-linear parametric geometric flow equations (46) in the form

pR̂icαsβs(τ) =
pℑαsβs(τ), (53)

which are very similar to the modified Einstein equations (16) (see (3) for a running source, pR̂
βs
γs(τ) =

δβsγs
p
sℑ(τ)). In these equations, there is an additional dependence geometric objects on the geometric flow

parameter τ and when the sources of type (17) are corrected with terms of type 1
2∂τ

p
sg. Such systems of non-

linear PDEs can be solved in very general off-diagonal forms using the same formulas as in Appendix A but
with additional assumptions when all coefficients of s-metrics depend additionally on τ and (considering non-
linear symmetries) on running effective cosmological constants p

sΛ (τ). We consider that corresponding classes
of generic off-diagonal solutions are physically important if they satisfy well-defined causality conditions and
self-consistent G. Perelman like thermodynamic variables (51) in certain phase space finite regions. In general,
it is not possible to express in explicit functional form all coefficients pgαsβs(τ) =

pgαsβs [
p
sℑ(τ, puγs)]. Never-

theless, using decompositions on small parameters (like on κ and other physical constants) and corresponding
s-adapting of geometric constructions, we can construct in explicit forms exact solutions in nonassociative
gravity at least to certain levels of approximation including κ-linear terms.

The ansatz for generating quasi-stationary solutions of nonassociative geometric flow equations (53) can
be chosen as (A.1) and (A.2) but with additional dependencies on τ,

dŝ2(τ) = gi1(τ, x
k1)(dxi1 )2 + ga2(τ, x

i1 , y3)(ea2(τ))2 + pga3(τ, xi2 , p6)(
pea3(τ))

2 + pga4(τ, pxi3 , p7)(
pea4(τ))

2,

where ea2(τ) = dya2 +Na2

k1
(τ, xi1 , y3)dxk1 , pea3(τ) = dpa3 +

pNa3k2(τ, x
i2 , p5)dx

k2 ,

pea4(τ) = dpa4 +
pNa4k3(τ,

pxi3 , p7)d
pxk3 (54)
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are determined by geometric flows of N-connection coefficients.

4.1 Geometric evolution of quasi-stationary solutions with effective sources

Applying the AFCDM for temperature running of sources in (A.3), p
sK → p

sℑ(τ) (52), and introducing τ -
dependencies for the coefficients of s-metric and N-connection in (A.3), we construct a class of quasi-stationary
solutions for nonassociative κ-parametric geometric flows:

dŝ2(τ) = eψ(~,κ;τ,x
k1)[(dx1)2 + (dx2)2] + (55)

[∂3( 2Ψ(τ))]2

4( p

2ℑ(τ))2{g
[0]
4 (τ)−

∫
dy3 ∂3[( 2Ψ(τ))2]

4( p

2ℑ(τ))
}
(e3(τ))2 + (g

[0]
4 (τ)−

∫
dy3

∂3[( 2Ψ(τ))2]

4( p

2ℑ(τ))
)(e4(τ))2

+
[ p∂5( p

3Ψ(τ))]2

4( p

3ℑ)2{ pg6[0](τ)−
∫
dp5

p∂6[( p

3Ψ(τ))2]

4( p

3ℑ(τ))
}
( pe5(τ))

2 + ( pg6[0](τ)−
∫
dp5

p∂5[( p

3Ψ(τ))2]

4( p

3ℑ)
)( pe6(τ))

2

+
[ p∂7( p

4Ψ(τ))]2

4( p

4ℑ(τ))2{ pg8[0](τ)−
∫
dp7

p∂7[( p

4Ψ(τ))2]

4( p

4ℑ(τ))
}
( pe7(τ))

2 + ( pg8[0](τ)−
∫
dp7

p∂7[( p

4Ψ(τ))2]

4( p

4ℑ(τ))
)( pe8(τ))

2.

The nonholonomic s-frames in this formula are computed:

e3(τ) = dy3 + wk1(~, κ, τ, x
i1 , y3)dxk1 = dy3 +

∂k1( 2Ψ(τ))

∂3( 2Ψ(τ))
dxk1 ,

e4(τ) = dt+ nk1(~, κ, τ, x
i1 , y3)dxk1 (56)

= dy4 + ( 1nk1(τ) + 2nk1(τ)

∫
dy3

∂3[( 2Ψ(τ))2]

4( p

2ℑ(τ))2|g
[0]
4 (τ)−

∫
dy3 ∂3[( 2Ψ(τ))2]

4( p

2ℑ(τ))
|5/2

)dxk1 ,

pe5(τ) = dp5 +
pwk2(~, κ, τ, x

i2 , p5)dx
k2 = dp5 +

∂k2(
p

3Ψ(τ))
p∂5( p

3Ψ(τ))
dxk2 ,

pe6(τ) = dp6 +
pnk2(~, κ, τ, x

i2 , p5)dx
k2

= dp6 + ( p

1nk2(τ) +
p

2nk2(τ)

∫
dp5

p∂5[( p

3Ψ(τ))2]

4( p

3ℑ(τ))2| pg6[0](τ)−
∫
dp5

p∂5[( p

3Ψ(τ))2]

4( p

3ℑ(τ))
|5/2

)dxk2 ,

pe7(τ) = dp7 +
pwk3(~, κ, τ, x

i2 , p5, p7)d
pxk3 = dp7 +

p∂k3(
p

4Ψ(τ))
p∂7( p

4Ψ(τ))
d pxk3 ,

pe8(τ) = dp8 +
pnk3(~, κ, τ, x

i2 , p5, p7)d
pxk3

= dp8 + ( p

1nk3(τ) +
p

2nk3(τ)

∫
dp7

p∂7[( p

4Ψ(τ))2]

4( p

4ℑ(τ))2| pg8[0](τ)−
∫
dp7

p∂7[( p

4Ψ(τ))2]

4( p

4ℑ(τ))
|5/2

) d pxk3 .
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The generating and integration functions for the class of solutions (55) with N-coefficients (56) are similar to
(A.4) but with extended τ -parametric dependence:

generating functions: ψ(τ) ≃ ψ(~, κ; τ, xk1); 2Ψ(τ) ≃ 2Ψ(~, κ; τ, xk1 , y3); (57)
p

3Ψ(τ) ≃ p

3Ψ(~, κ; τ, xk2 , p5);
p

4Ψ(τ) ≃ p

4Ψ(~, κ; τ, pxk3 , p7);

generating sources: p

1ℑ(τ) ≃ p

1ℑ(~, κ; τ, xk1); p

2ℑ(τ) ≃ p

2ℑ(~, κ; τ, xk1 , y3);
p

3ℑ(τ) ≃ p

3ℑ(~, κ; τ, xk2 , p5); p

4ℑ(τ) ≃ p

4ℑ(~, κ; τ, pxk3 , p7);

integrating functions:

g
[0]
4 (τ) ≃ g

[0]
4 (~, κ; τ, xk1), 1nk1(τ) ≃ 1nk1(~, κ; τ, x

j1), 2nk1(τ) ≃ 2nk1(~, κ; τ, x
j1);

pg6[0]τ) ≃ pg6[0](~, κ; τ, x
k2), 1nk2(τ) ≃ 1nk2(~, κ; τ, x

j2), 2nk2(τ) ≃ 2nk2(~, κ; τ, x
j2);

pg8[0](τ) ≃ pg8[0](~, κ; τ,
pxj3), 1nk3(τ) ≃ p

1nk3(~, κ; τ,
pxj3), 2nk3(τ) ≃ p

2nk3(~, κ; τ,
pxj3).

The family of generating functions ψ(τ) are solutions of a respective family of 2-d Poisson equations,

∂211ψ(~, κ; τ, x
k1) + ∂222ψ(~, κ; τ, x

k1) = 2 1ℑ(~, κ; τ, xk1), (58)

encoding geometric flows of nonassociative data if, in general, 1ℑ(τ) contains such nonholonomic dependencies.
Geometric evolution scenarios of quasi-stationary configurations defined above are characterized by four

types of additional geometric and thermodynamic flow variables:

1. The geometric evolution of nonsymmetric metrics p
⋆aαsβs(τ) = p

⋆aαsβs(~, κ; τ,
puγs) is computed in

explicit form by introducing in (22) the s-metric and N-connection coefficients, respectively, (55) and
(56) (we omit such formulas in this work). For flow evolution of quasi-stationary configurations, it is
possible to decouple the symmetric and nonsymmetric components of s-metrics (proven in [13, 40, 41]).
This allows us to study independently their nonassociative geometric evolution models.

2. In general, such solutions are with nontrivial geometric flows of nonholonomic torsion. Nevertheless, we
can always constrain such geometric flows of s-metrics to subclasses of τ -parametric families of generating
data solving the equations (25) and/or (18), which allow to extract configurations with zero torsion. The
remarks at the end of appendix A.1 state how to restrict the generating data (57) in order to restrict the
nonolonomic flows to families of LC-connections p

⋆∇(τ) and p∇(τ).

3. We can compute respective thermodynamic variables (51) associated to such quasi-stationary solutions.
In next section, we shall provide such examples for BH configurations and their nonassociative star
product R-flux deformatins.

4. The solutions for nonassociative Ricci soliton equations (47) consist self-similar configurations if the
geometric flow constant is fixed, τ = τ0, after a class of generic off-diagonal solutions is constructed
in a form (55) and (56). Such s-metrics are characterized by fixed τ0 geometric s-adapted values and
thermodynamic variables stated in 1-3. Such Ricci soliton configurations can be generated equivalently
by solutions constructed using the AFCDM as it is outlined in appendix A.

The class of off-diagonal solutions defined by (55) and (56) involves non-explicit nonholonomic constraints
on temperature derivatives of certain s-metric coefficients, ∂τ pgαsβs(τ), encoded in effective sources pℑαsβs(τ)
(52). To decouple completely such formulas is possible only for more special classes of nonholonomic distribu-
tions or additional decompositions on small parameters, for instance, for certain types of BH nonassociative
deformations to BE ones, ore other type configurations.

Finally, we note that the families of quasi-stationary s-metrics (55) are of type (54) with s-shell Killing
symmetries on ∂t,

p∂6, p∂8. They are defined by s-adapted coefficients with respective "symbolic" phase co-
ordinates and τ–dependencies of coefficients and generating/integration functions and effective sources. In a
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similar form (we have to change the "symbolic" phase coordinates and parametric dependencies of s-coefficients
and respective functions), we can construct solutions with Killing symmetries on ∂t,

p∂6, p∂7, or ∂t, p∂5, p∂8,
or ∂t, p∂5, p∂7. Such formulas have very similar physical interpretations if they are for metrics of the same
signature. If we consider solutions, for instance, with symmetries on ∂3, p∂6, p∂8, the s-metric and s-connection
coefficients depend generically on a time like variable y4 = t. This allows to study the nonassociative geometric
evolutions of locally anisotropic cosmological solutions. We plan to elaborate on nonassociative cosmological
scenarios in our further partner works (see [17] and references therein for associative and commutative generic
off-diagonal cosmological models).

4.2 Nonlinear symmetries and temperature running cosmological constants

Quasi-stationary s-metric (55) with N-connection coefficients (54) posses very important nonlinear symme-
tries which generalize for nonassociative geometric flow equations the nonlinear symmetries for Ricci solitons
and vacuum gravitational equations stated in appendix A.2. Corresponding nonlinear transforms allow:

• to construct nonassociative nonholonomic geometric flow deformations of families of prime s-metrics
p
s̊g(τ) (they can be arbitrary ones, i.e. not solutions of some (modified) Einstein equations) into a corre-
sponding family of target s-metrics p

sg(τ) defining a nonassociative geometric flow evolution scenarios
of quasi-stationary metrics on ⋆

sM,

p
s̊g(τ) → p

sg(τ) = [ pgαs(τ) =
pηαs(τ)

pg̊αs(τ),
pNas
is−1

(τ) = pηasis−1
(τ) pN̊as

is−1
(τ)], (59)

where the deformations with gravitational running on τ polarization functions are defined be formulas
(A.5), (A.6) and (A.7) generalized for τ -dependencies of respective s-coefficients;

• to re-define the geometric flows of generating functions and relate the effective sources to certain effective
shell τ -running cosmological constants,

( sΨ(τ), p
sℑ(τ)) ↔ ( p

sg(τ),
p
sℑ(τ)) ↔ ( p

sη(τ)
pg̊αs(τ) ∼ ( pζαs(τ)(1 + κ pχαs(τ))

pg̊αs(τ),
p
sℑ(τ)) ↔

( sΦ(τ),
p
sΛ(τ)) ↔ ( p

sg,
p
sΛ(τ)) ↔ ( p

sη(τ)
pg̊αs(τ) ∼ ( pζαs(τ)(1 + κ pχαs(τ))

pg̊αs(τ),
p
sΛ(τ)), (60)

where p
sΛ0 =

p
sΛ(τ0) for nonassociative Ricci soliton symmetries of type (A.8).

For simplicity, we study in this work only geometric flows with running of effective cosmological constants
even the nonlinear symmetries of quasi-stationary solutions can be formulated for generalized phase space
polarizations of cosmological constants p

sΛ(τ,
puγs). Such models involve re-definitions of effective generating

sources p
sℑ(τ, puγs) into another classes of effective sources/ cosmological constants p

sΛ(τ,
puγs).

Nonlinear transforms of flows of quasi-stationary s-metric (55) into equivalent ones with different classes
of generating functions are described by introducing additional τ -dependencies in (A.9), when

∂3[( 2Ψ(τ))2] = −
∫
dy3( p

2ℑ(τ))∂3g4(τ) ≃ −
∫
dy3( p

2ℑ(τ))∂3( pη4(τ) g̊4(τ))

≃ −
∫
dy3( p

2ℑ(τ))∂3[ pζ4(τ)(1 + κ pχ4(τ)) g̊4(τ)], (61)

( 2Φ(τ))
2 = −4 2Λ(τ)g4(τ) ≃ −4 2Λ(τ)

pη4(τ) g̊4(τ)

≃ −4 2Λ(τ)
pζ4(τ)(1 + κ pχ4(τ)) g̊4(τ);

p∂5[( p

3Ψ(τ))2] = −
∫
dp5(

p

3ℑ(τ)) p∂5 pg6(τ) ≃ −
∫
dp5(

p

3ℑ(τ)) p∂5( pη6(τ) pg̊6(τ))

≃ −
∫
dp5(

p

3ℑ(τ)) p∂5[ pζ6(τ)(1 + κ pχ6(τ)) g̊6(τ)],

( p

3Φ(τ))
2 = −4 p

3Λ(τ)
pg6(τ) ≃ −4 p

3Λ(τ)
pη6(τ) pg̊6(τ)

≃ −4 p

3Λ(τ)
pζ6(τ)(1 + κ pχ6(τ)) pg̊6(τ);
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p∂7[( p

4Ψ(τ))2] = −
∫
dp7(

p

4ℑ(τ)) p∂7 pg8(τ) ≃ −
∫
dp7(

p

4ℑ(τ)) p∂7( pη8(τ) pg̊8(τ))

≃ −
∫
dp7(

p

4ℑ(τ)) p∂7[ pζ8(τ)(1 + κ pχ8(τ)) g̊8(τ)],

( p

4Φ(τ))
2 = −4 p

4Λ(τ)
pg8(τ) ≃ −4 p

4Λ(τ)
pη8(τ) pg̊8(τ)

≃ −4 p

4Λ(τ)
pζ8(τ)(1 + κ pχ8(τ)) pg̊8(τ).

We present the corresponding quadratic line elements for quasi-stationary geometric flow solutions defined by
such transforms in next subsections.

4.3 Parametric solutions for nonassociative geometric flows with running cosmological
constants

Nonlinear symmetries (60) allow us to change the generating functions and generating sources into certain
new types of generating functions and effective cosmological data, [ sΨ(τ), p

sℑ(τ)] → [ sΦ(τ),
p
sΛ(τ)]. In result,

the κ-linear parametric nonassociative geometric flow equations (46) (written as pR̂
βs
γs(τ, sΨ(τ)) = δβsγs

p
sℑ(τ)

(53) and integrated in quasi-stationary form using sΨ(τ)) can be re-defined equivalently as a system of
functional equations with sΦ(τ),

pR̂βs
γs(τ, sΦ(τ),

p
sℑ(τ)) = δβsγs

p
sΛ(τ). (62)

We suppose that such nonlinear systems of PDEs are derived for certain shell effective τ -running constants
p
sΛ(τ) introduced for modelling geometric flow evolution processes. The solutions of (62) are τ -parametric
generalizations of s-metrics (A.10) and generating data (A.11),
p
sg[~, κ, τ, ψ(τ), sΨ(τ), p

sℑ(τ)] → p
sg[~, κ, τ, ψ(τ), sΦ(τ),

p
sΛ(τ)]. They are defined equivalently by the quasi-

stationary quadratic element (55) with nonholonomic frames (56) transformed respectively into such values:
Using nonlinear formulas (61), the quasi-stationary solutions of τ -parametric running κ-linear modified

Einstein equations (62) are defined by such quadratic linear elements:

dŝ2(τ) = eψ(~,κ;τ,x
k1)[(dx1)2 + (dx2)2] + (63)

− 1

g
[0]
4 (τ)− ( 2Φ(τ))2

4 2Λ(τ)

( 2Φ(τ))
2[∂3( 2Φ(τ))]

2

| 2Λ(τ)
∫
dy3( p

2ℑ(τ))[∂3( 2Φ(τ))2]|
(e3(τ))2 +

(
g
[0]
4 (τ)− ( 2Φ(τ))

2

4 2Λ(τ)

)
(e4(τ))2

− 1

pg6[0](τ)−
( p

3Φ(τ))2

4 p

3Λ(τ)

( p

3Φ(τ))
2[ p∂5( p

3Φ(τ))]
2

| p

3Λ(τ)
∫
dp5(

p

3ℑ(τ)) p∂5[( p

3Φ(τ))
2]|(

pe5(τ))
2 +

(
pg6[0](τ)−

( p

3Φ(τ))
2

4 p

3Λ(τ)

)
( pe6(τ))

2

− 1

pg8[0](τ)−
( p

4Φ(τ))2

4 p

4Λ(τ)

( p

4Φ(τ))
2[ p∂7( p

4Φ(τ))]
2

| p

4Λ(τ)
∫
dp7(

p

4ℑ) p∂7[( p

4Φ(τ))
2]|(

pe7(τ))
2 +

(
pg8[0](τ)−

( p

4Φ(τ))
2

4 p

4Λ(τ)

)
( pe8(τ))

2,

where the nonholonomic s-frames and respective off-diagonal terms are computed:

e3(τ) = dy3 +
∂k1

∫
dy3( p

2ℑ(τ)) ∂3[( 2Φ(τ))
2]

( p

2ℑ(τ)) ∂3[( 2Φ(τ))2]
dxk1 ,

e4(τ) = dt+ ( 1nk1(τ) + 2nk1(τ)

∫
dy3 ( 2Φ(τ))2[ ∂3( 2Φ(τ))]2

| 2Λ(τ)
∫
dy3( p

2ℑ(τ))[ ∂3( 2Φ(τ))2]|∣∣∣g[0]4 (τ)− ( 2Φ(τ))2

4 2Λ(τ)

∣∣∣
5/2

)dxk1 , (64)
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pe5(τ) = dp5 +
∂k2

∫
dp5(

p

3ℑ(τ)) p∂5[( p

3Φ(τ))
2]

( p

3ℑ(τ)) p∂5[( p

3Φ(τ))
2]

dxk2 ,

pe6(τ) = dp6 + ( p

1nk2(τ) +
p

2nk2(τ)

∫
dp5

( p

3Φ(τ))2[ p∂5( p

3Φ(τ))]2

| p

3Λ(τ)
∫
dp5(

p

3ℑ(τ))[ p∂5( p

3Φ(τ))2]|
∣∣∣ pg6[0](τ)−

( p

3Φ(τ))2

4 p

3Λ(τ)

∣∣∣
5/2

)dxk2 ,

pe7(τ) = dp7 +
∂k3

∫
dp7(

p

4ℑ(τ)) p∂7[( p

4Φ(τ))
2]

( p

4ℑ(τ)) p∂7[( p

4Φ(τ))
2]

d pxk3 ,

pe8(τ) = dE + ( p

1nk3(τ) +
p

2nk3(τ)

∫
dp7

( p

4Φ(τ))2[ p∂7( p

4Φ(τ))]2

| p

4Λ(τ)
∫
dp7(

p

4ℑ(τ))[ p∂7( p

4Φ(τ))2]|
∣∣∣ pg8[0](τ)−

( p

4Φ(τ))2

4 p

4Λ(τ)

∣∣∣
5/2

)d pxk3 .

The conventions for the generating and integration functions and effective sources in s-metric coefficients (63)
with nonholonomic frames (64) are those from (A.11) but with p

sK → p
sℑ(τ) and for the data ( p

sΦ(τ),
p
sΛ(τ)).

Respective functionals can be constrained to define LC-configurations and model their nonassociative geomet-
ric evolution as we explain in point 2 of subsection 4.1. For all cases of nonlinear transforms (60), the functional
representations of off-diagonal solutions allow to encode possible contributions from effective cosmological con-
stants when certain evolution of effective sources is re-distributed into off-diagonal terms of s-metrics and with
modifications of the diagonal s-adapted terms. The effective p

sℑ(τ) are not completely substituted by effective
τ -running constants p

sΛ(τ) and both types of values are present in integrals for certain s-connection coeffi-
cients g3(τ), pg5(τ), pg8(τ) and all N-connection coefficients in (64). Nevertheless, we can simplify substantially
certain classes of solutions using p

sΛ(τ) and then to speculate on their physical properties etc.

4.4 Flows with some s-metric coefficients as generating functions

We can generate quasi-stationary τ -running ansatz of type (A.1) prescribing g4(τ), pg6(τ) and pg8(τ) as
generating functions. For constructing κ-parametric Ricci soliton configurations, we can apply directly the
procedure described in appendix A.4 and s-metrics (A.12). To study nonassociative geometric flow evolution
we can consider such functionals for the generating functions and their nonlinear transforms (61):

g4(τ) = g4(τ, x
k1 , y3) = g4[ 2Ψ(τ), p

2ℑ(τ)] = g4[ 2Φ(τ), 2Λ(τ)];
pg6(τ) = pg6(τ, xi2 , p5) =

pg6[ 3Ψ(τ), p

3ℑ(τ)] = pg6[ p

3Φ(τ), 3Λ(τ)];
pg8(τ) = pg8(τ, xi2 , p6, E) = pg8[ 4Ψ(τ), p

4ℑ(τ)] = pg8[ p

4Φ(τ), 4Λ(τ)].

For instance, expressing sΨ(τ) = sΨ[ p
sℑ(τ), g4(τ), pg6(τ), pg8(τ)], we can compute the un-known coeffi-

cients of a s-metric (55) and N-coefficients (56). The resulting quadratic linear element is

dŝ2(τ) = eψ(τ)[(dx1)2 + (dx2)2]− (∂3g4(τ))
2

|
∫
dy3∂3[(

p

2ℑ(τ))g4(τ)]| g4(τ)
(e3(τ))2 + g4(τ)(e

4(τ))2 (65)

− [ p∂5( pg6(τ))]2

|
∫
dp5 p∂5[( p

3ℑ(τ)) pg6(τ)] | pg6(τ)
( pe5(τ))

2 + pg6(τ)( pe6(τ))
2 −

− [ p∂7( pg7(τ))]2

|
∫
dp7 p∂7[( p

4ℑ(τ)) pg8(τ)] | pg8(τ)
( pe7(τ))

2 + pg8(τ)( pe8(τ))
2,

where the nonholonomic s-frames and respective off-diagonal terms defined by N-connection coefficients are
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computed:

e3(τ) = dy3 +
∂k1 [

∫
dy3( p

2ℑ(τ)) ∂3g4(τ)]
( p

2ℑ(τ)) ∂3g4(τ)
dxk1 , (66)

e4(τ) = dt+ ( 1nk1(τ) + 2nk1(τ)

∫
dy3

(∂3g4(τ))
2

|
∫
dy3∂3[(

p

2ℑ(τ))g4(τ)]| [g4(τ)]5/2
)dxk1 ,

pe5(τ) = dp5 +
∂k2 [

∫
dp5(

p

3ℑ(τ)) p∂5( pg6(τ))]

( p

3ℑ(τ)) p∂5( pg6(τ))
dxk2 ,

pe6(τ) = dp6 + ( p

1nk2(τ) +
p

2nk2(τ)

∫
dp5

[ p∂5( pg6(τ))]2

|
∫
dp5 p∂5[( p

3ℑ(τ)) pg6(τ)]| [ pg6(τ)]5/2
)dxk2 ,

pe7(τ) = dp7 +
p∂k3 [

∫
dp7(

p

4ℑ(τ)) p∂7( pg8(τ))]

( p

4ℑ(τ)) p∂7( pg8(τ))
d pxk3 ,

pe8(τ) = dE + ( p

1nk3(τ) +
p

2nk3(τ)

∫
dp7

[ p∂7( pg8(τ))]2

|
∫
dp7 p∂7[( p

4ℑ(τ)) pg8(τ)]| [ pg8(τ)]5/2
)d pxk3 ,

The s-adapted coefficients (65) and (66) define τ -flows of quasi-stationary solutions of type
p
sg[~, κ, ψ,

p
sK, g4, pg6, pg8] in (A.9) evolving in s-adapted κ-linear parametric form to s-metrics

p
sg(τ) ≃ p

sg[~, κ, ψ(τ),
p
sℑ(τ), g4(τ), pg6(τ), pg8(τ)].

Above linear quadratic elements with respective s- and N-coefficients can be re-defined to include functional
dependencies on running cosmological constants p

sΛ(τ) if we begin with (63) and (64) and express, using
respective formulas from (61), sΦ(τ) = sΦ[

p
sΛ(τ),

p
sℑ, g4(τ), pg6(τ), pg8(τ)]. This allows us to model the

τ -evolution of nonassociative Ricci solitons of type p
sg[~, κ, ψ,

p
sΛ0,

p
sK, g4, pg6, pg8], see (A.9), into generic off-

diagonal solutions of nonassociative κ-linear parametric geometric flow equations (53) determined by families
of quasi-stationary s-metrics p

sg(τ) ≃ p
sg[~, κ, ψ(τ),

p
sΛ(τ),

p
sℑ(τ), g4(τ), pg6(τ), pg8(τ)].

4.5 Quasi-stationary nonassociative evolution via gravitational polarizations

How to construct quasi-stationary solutions for nonassociative Ricci soliton and vacuum gravitational
equations using the AFCDM with gravitational polarization functions is discussed in appendix A.5. Here, we
extend the approach for generating τ -parametric quasi-stationary solutions for nonassociative geometric flow
equations (53).

Off-diagonal deformations of a family of prescribed prime metric into other families of target ones,
p
s̊g(τ) = [ pg̊αs(τ),

pN̊as
is−1

(τ)] → p
sg(τ) (59) described by η-polarizations (A.6), can be defined by such τ -

parametric generating functions

ψ(τ) ≃ ψ(~, κ; τ, xk1), η4(τ) ≃ η4(τ, x
k1 , y3), pη6(τ) ≃ pη6(τ, xi2 , p5),

pη8(τ) ≃ pη8(τ, xi2 , p5, p7). (67)

As a result, we generalize in real variables and for nonassociative geometric flows the quadratic line element
constructed in Appendix B2, formula (B2), to [13]:

d pŝ2(τ) = pgαsβs(~, κ, τ, x
k , y3, pa3 , pa4 ;

pg̊αs(τ); η4(τ),
pη6(τ), pη8(τ), p

sΛ(τ);
p
sℑ(τ))d puαsd puβs (68)

= eψ(τ)[(dx1)2 + (dx2)2]−
[∂3(η4(τ) g̊4(τ))]

2

|
∫
dy3 2ℑ(τ)∂3(η4(τ) g̊4(τ))| (η4(τ )̊g4(τ))

{dy3 + ∂i1 [
∫
dy3 2ℑ(τ) ∂3(η4(τ )̊g4(τ))]
2ℑ(τ)∂3(η4(τ )̊g4(τ))

dxi1}2 +

η4(τ )̊g4(τ)){dt + [ 1nk1(τ) + 2nk1(τ)

∫
dy3

[∂3(η4(τ )̊g4(τ))]
2

|
∫
dy3 2ℑ(τ)∂3(η4(τ )̊g4(τ))| (η4(τ )̊g4(τ))5/2

]dxk1}
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− [ p∂5( pη6(τ) pg̊6(τ))]2

|
∫
dp5

p

3ℑ(τ) p∂5( pη6(τ) pg̊6(τ)) | ( pη6(τ) pg̊6(τ))
{dp5 +

p∂i2 [
∫
dp5

p

3ℑ(τ) p∂5( pη6(τ) pg̊6(τ))]
p

3ℑ(τ) p∂5( pη6(τ) pg̊6(τ))
dxi2}2

+( pη6(τ) pg̊6(τ)){dp6 + [ p

1nk2(τ) +

p

2nk2(τ)

∫
dp5

[ p∂5( pη6(τ) pg̊6(τ))]2

|
∫
dp5

p

3ℑ(τ) ∂5( pη6(τ) pg̊6(τ))| ( pη6(τ) pg̊6(τ))5/2
]dxk2}

− [ p∂7( pη8(τ) pg̊8(τ))]2

|
∫
dp7

p

4ℑ(τ) p∂8( pη7(τ) pg̊7(τ)) | ( pη7(τ) pg̊7(τ))
{dp7 +

p∂i3 [
∫
dp7

p

4ℑ(τ) p∂7( pη8(τ) pg̊8(τ))]
p

4ℑ(τ) p∂7( pη8(τ) pg̊8(τ))
d pxi3}2

+( pη8(τ) pg̊8(τ)){dE + [ 1nk3(τ) +

2nk3(τ)

∫
dp7

[ p∂7( pη8(τ) pg̊8(τ))]2

|
∫
dp7

p

4ℑ(τ)[ p∂7( pη8(τ) pg̊8(τ))]| [( pη8(τ) pg̊8(τ))]5/2
]d pxk3}.

The gravitational polarization η–functions describe transforms of certain classes of prime s-metrics into
other types of target s-metrics. We can prescribe respective geometric/ physical properties and investigate
how geometric flows may relate the evolution of such configurations. Respective formulas for small parametric
nonassociative geometric flow deformations of type (68) when p

sη(τ)
pg̊αs(τ) ∼ pζαs(τ)(1 + κ pχαs(τ))

pg̊αs(τ)
(60) are provided in appendix A.5.

5 Modified Bekenstein–Hawking and G. Perelman thermodynamics of BH

solutions

deformed by nonassociative geometric flows

Applying nonholonomic geometric flow methods [6, 7, 8], we concluded [41] that solutions for nonassociative
star product R-flux deformations of the Tangerlini higher dimension BHs and double Schwarzschild BHs can
be described in the framework of a (modified) κ-linear parametric Perelman’s statistical thermodynamic model
encoding nonassociative data. In section 3, we generalized the approach to a theory of nonassociative Ricci
flows and formulated a statistical thermodynamic model using decoupling properties of respective systems of
nonlinear PDEs involving for the canonical s-connection structure.

The goal of this section is to elaborate on explicit models of nonassociative flow evolution of defined by
quasi-stationary parametric solutions. We construct and analyze important geometric and physical properties
of two new classes of nonassociative modified BH solutions in the framework of nonassociative geometric
evolution theory. For a fixed evolution parameter τ0, corresponding s-metrics describe κ-linear deformations
of the double Reisner-Nordström de Sitter, RN-dS, metrics and their ’dissipation’ into off-diagonal terms; or
couples of Schwarzschild - AdS BHs deformed to black ellipsoid, BE, configurations; or higher dimension RN
anti de Sitter, RN-AdS, configurations. Such quasi-stationary generic off-diagonal solutions present explicit
examples of nonassociative Ricci solitons, which can be extended to describe geometric flow evolution scenarios
on temperature like τ -parameter.

For very special cases of nonholonomic deformations (for instance, defining BE configurations and/or other
variants with geometric evolving hyper-surface horizons), we can apply the concept of Bekenstein-Hawking
entropy [47, 48, 49, 50]. In another turn, the generalized G. Perelman W-entropy and thermodynamic variables
[1, 6, 7, 8, 41] can be defined and computed for all classes of solutions in nonassociative geometric flow and
(modified) gravity theories. We prove this by providing explicit examples how to compute thermodynamic
variables for general quasi-stationary τ–deformations of nonassociative modified RN-(A)dS, BE deformations
and Schwarzschild-(A)dS metrics.
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5.1 Geometric flow thermodynamics of nonassociative quasi-stationary solutions with
running
cosmological constants

Statistical G. Perelman thermodynamic models can be defined for any nonassociative geometric flow data
[ psg

⋆(τ), p
sD̂

⋆(τ), p
sf̂(τ)] as we explain in section 2. For κ-linear parametric decompositions, the corresponding

thermodynamic variables are computed using the formulas for p
sÊ⋆κ and p

sŜ
⋆
κ from (51). In this work, we do

not provide cumbersome formulas for computing quadratic fluctuation parameter p
sσ̂
⋆
κ). The nonassociative

thermodynamic variables are derived for a W-entropy p
sŴ⋆

κ(τ) (45) using a respective statistical generating
function p

sẐ(τ) (48). We can prescribe the nonholonomic structure on phase space ⋆
sM and the normalizing

functions p
sf̂(τ) in such forms that all basic formulas are determined by a volume form pδ pV(τ) (49).

For exact/parametric solutions of nonassociative geometric flow equations, we can compute the thermody-
namic variables corresponding to τ–modified Einstein equations (53), with effective sources p

sℑ(τ), and/or (62)
with running effective cosmological constants p

sΛ(τ). In the first approach, we can formulate a G. Perelman
thermodynamic model for quasi-stationary solutions taken in the form (55) with N-coefficients (56). This
results in cumbersome formulas for thermodynamic variables which are not appropriate for investigating, for
instance, physical problems related to the swampland conjecture [20, 23, 24, 25, 26, 27]. Using nonlinear sym-
metries (60), with p

sg[~, κ, τ, ψ(τ), sΨ(τ), p
sℑ(τ)] → p

sg[~, κ, τ, ψ(τ), sΦ(τ),
p
sΛ(τ)], we may develop a second

approach involving quasi-stationary solutions of type (A.10). This allows us to simplify the formulas for ex-
plicit computation of geometric thermodynamic variables and elaborate on physical models with running/fixed
effective cosmological constants p

sΛ(τ).
The nonassociative geometric flow thermodynamic variables defined for a temperature parameter τ, 0 <

τ ′ ≤ τ, with prescribed constant normalizing functions and for a volume form pδ pV(τ) computed for quasi-
stationary data [sΦ(τ),

p
sΛ(τ)], are expressed in the form

p
sŴ⋆

κ(τ) =

∫ τ

τ ′

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sΛ(τ)]

2 − 8
)

pδ pV(τ), (69)

p
sẐ⋆

κ(τ) = exp

[∫ τ

τ ′

dτ

(2πτ)4

∫

p

sΞ̂

pδ pV(τ)
]
,

p
sÊ⋆κ(τ) = −

∫ τ

τ ′

dτ

(4π)4τ2

∫

p

sΞ̂

(
[
∑

s

p
sΛ(τ)]−

4

τ

)
pδ pV(τ),

p
sŜ⋆κ(τ) = −

∫ τ

τ ′

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sΛ(τ)]− 8

)
pδ pV(τ).

The integration on τ parameter and respective 8-d hyper-surface integrals in (69) should be defined for non-
holonomic s-distributions which result in well-defined relativistic thermodynamic values.16 Such constructions
were considered for a fixed temperature parameter τ0 and nonassociative Ricci solitons in [41] (see formulas
(60) and (61) in that work).

For any prescribed data (τ ′, τ), p
sΞ̂ and p

sΛ(τ), the thermodynamic variables (69) are determined by a
volume form pδ pV(τ) which must be computed for a chosen class of exact/parametric solutions of nonasso-
ciative geometric flow equations. We can elaborate an explicit geometric integration formalism adapted to
nonassociative and nonholonomic distributions, and parametric deformations, if we choose, for instance some
primary data p

s̊g
⋆ and study possible flow evolution scenarios to certain target p

sg
⋆(τ). For a τ -family of

16For instance, we must exclude un-physical configurations with negative entropy; additionally, we should analyze and select on
more optimal energetic regimes and stability conditions; and construct thermodynamic models with causal evolution on cotangent
Lorentz bundles etc.
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s-metrics (63) with respect to nonholonomic frames (64), we can define the volume functional

pδ pV(τ) = pδ pV[τ, p
sΛ(τ),

p
sℑ(τ);ψ(τ), p

sΦ(τ)] (70)

= eψ(τ)
| 2Φ(τ)∂3[ 2Φ(τ)]

2|
| 2Λ(τ)

∫
dy3 2ℑ(τ){∂3[ 2Φ(τ)]2}2|1/2

[dy3 +
∂i1
(∫
dy3 2ℑ(τ)∂3[ 2Φ(τ)]

2
)

2ℑ(τ)∂3[ 2Φ(τ)]2
dxi1 ]dx1dx2dt

| p

3Φ(τ)
p∂5[ p

3Φ(τ)]
2|

| p

3Λ(τ)
∫
dp5

p

3ℑ(τ) p∂5[ p

3Φ(τ)]
2|1/2 [dp5 +

p∂i2
(∫
dp5

p

3ℑ(τ) p∂5[ p

3Φ(τ)]
2
)

p

3ℑ(τ) p∂5[ p

3Φ(τ)]
2

dxi2 ]dp6

| p

4Φ(τ)
p∂7[ p

4Φ(τ)]
2|

| p

4Λ(τ)
∫
dp7

p

4ℑ(τ) p∂7[ p

4Φ(τ)]
2|1/2 [dp7 +

p∂i3
(∫
dp7

p

4ℑ(τ) p∂7[ p

4Φ(τ)]
2
)

p

4ℑ(τ) p∂7[ p

4Φ(τ)]
2

dxi3 ]dE.

To compute in explicit forms and study properties of such volume functionals we can consider, for simplicity,
nonholonomic evolution models with trivial integration functions p

1nks = 0 and p

2nks = 0. The formulas for
pδ pV(τ) (70) can be computed for other classes of solutions determined by g-generating functions and/or η-
/χ-polarization functions using (61), when

2Φ(τ) = 2
√

| 2Λ(τ) g4(τ)| = 2
√

| 2Λ(τ) η4(τ )̊g4(τ)| ≃ 2
√

| 2Λ(τ) ζ4(τ )̊g4(τ)|[1−
κ

2
χ4(τ)], (71)

p

3Φ(τ) = 2
√

| p

3Λ(τ)
pg6(τ)| = 2

√
| p

3Λ(τ)
pη6(τ) pg̊6(τ)| ≃ 2

√
| p

3Λ(τ)
pζ6(τ) pg̊6(τ)|[1− κ

2
pχ6(τ)],

p

4Φ(τ) = 2
√

| p

4Λ(τ)
pg8(τ)| = 2

√
| p

4Λ(τ)
pη8(τ) pg̊8(τ)| ≃ 2

√
| p

4Λ(τ)
pζ8(τ) pg̊8(τ)|[1− κ

2
pχ8(τ)],

for a prime s-metric p̊gα(τ) = (̊gi(τ), p̊g
a(τ)). Introducing formulas (71) involving η-polarizations in (70), then

separating terms with shell τ -running cosmological constants, we express:

pδ pV = pδ pV[τ, p
sΛ(τ),

p
sℑ(τ);ψ(τ), g4(τ), pg6(τ), pg8(τ)] = pδ pV( sℑ(τ), p

sΛ(τ),
pηαs(τ)

pg̊αs)

=
1√

| 1Λ(τ) 2Λ(τ)
p

3Λ(τ)
p

4Λ(τ)|
pδ p

ηV, where pδ p
ηV = pδ 1

ηV × pδ 2
ηV × pδ 3

ηV × pδ 4
ηV.

In these formulas, there are used the functionals:

pδ 1
ηV = pδ 1

ηV[ 1ℑ(τ), η2(τ) g̊2] (72)

=
16

3
eψ̃(τ)dx1dx2 =

3

16

√
| 1Λ(τ)|eψ(τ)dx1dx2, for ψ(τ) being a solution of (58),

pδ 2
ηV = pδ 2

ηV[ 2ℑ(τ), η4(τ) g̊4]

=
16

3

∂3| η4(τ) g̊4|3/2√
|
∫
dy3 2ℑ(τ){∂3| η4(τ) g̊4|}2|

[dy3 +
∂i1
(∫
dy3 2ℑ(τ)∂3| η4(τ) g̊4|

)
dxi1

2ℑ(τ)∂3| η4(τ) g̊4|
]dt,

pδ 3
ηV = pδ 3

ηV[ 3ℑ(τ), pη6(τ) pg̊6]

=
16

3

p∂5| pη6(τ) pg̊6|3/2√
|
∫
dp5 3ℑ(τ){ p∂5| pη6(τ) pg̊6|}2|

[dp5 +
∂i2
(∫
dp5 2ℑ(τ) p∂5| pη6(τ) pg̊6|

)
dxi2

2ℑ(τ) p∂5| pη6(τ) pg̊6| ]dp6,

pδ 4
ηV = pδ 4

ηV[ 4ℑ(τ), pη8(τ) pg̊8]

=
16

3

p∂7| pη8(τ) pg̊8|3/2√
|
∫
dp7 4ℑ(τ){ p∂7| pη8(τ) pg̊8|}2|

[dp7 +
∂i3
(∫
dp7 3ℑ(τ) p∂7| pη8(τ) pg̊8|

)

2ℑ(τ) p∂7| pη8(τ) pg̊8| dxi3 ]dE.
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The G. Perelman thermodynamic variables (69) computed for the volume functionals can be expressed as
thermodynamic functionals:

p
sŴ⋆

κ(τ) =

∫ τ

τ ′

dτ

(4πτ)4
τ [ 1Λ(τ) + 2Λ(τ) +

p

3Λ(τ) +
p

4Λ(τ)]
2 − 8√

| 1Λ(τ) 2Λ(τ)
p

3Λ(τ)
p

4Λ(τ)|
p
ηV̊(τ), (73)

p
sẐ⋆

κ(τ) = exp



∫ τ

τ ′

dτ

(2πτ)4
1√

| 1Λ(τ) 2Λ(τ)
p

3Λ(τ)
p

4Λ(τ)|
p
ηV̊(τ)


 ,

p
sÊ⋆κ(τ) = −

∫ τ

τ ′

dτ

(4π)4τ3
τ [ 1Λ(τ) + 2Λ(τ) +

p

3Λ(τ) +
p

4Λ(τ)]− 4√
| 1Λ(τ) 2Λ(τ)

p

3Λ(τ)
p

4Λ(τ)|
p
ηV̊(τ),

p
sŜ⋆κ(τ) = −

∫ τ

τ ′

dτ

(4πτ)4
τ [ 1Λ(τ) + 2Λ(τ) +

p

3Λ(τ) +
p

4Λ(τ)] − 8√
| 1Λ(τ) 2Λ(τ)

p

3Λ(τ)
p

4Λ(τ)|
p
ηV̊(τ).

In these formulas, we use the running phase space volume functional

p
ηV̊(τ) =

∫

p

sΞ̂

pδ p
ηV( p

sℑ(τ), pg̊αs) (74)

determined by prescribed classes of generating η-functions, effective generating sources p
sℑ(τ), coefficients of

a prime s-metric pg̊αs and nonholonomic distributions defining the hyper-surface p
sΞ̂.

We can define the effective volume functionals (72) and geometric thermodynamic variables (73) for further
parametric decompositions with κ-linear approximations (71) and χ-polarizations and find parametric formulas
for τ -flows and nonassociative R-flux deformations of prime metrics,

pδ pV = pδ pV0[τ,
p
sΛ(τ),

p
sℑ(τ);ψ(τ), g̊i1 , g̊a2 , pg̊a3 , pg̊a4 ; ζ4(τ),

pζ6(τ), pζ8(τ)] + (75)

κ pδ pV1[τ,
p
sΛ(τ),

p
sℑ(τ);ψ(τ), g̊i1 , g̊a2 , pg̊a3 , pg̊a4 ; ζ4(τ),

pζ6(τ), pζ8(τ), χ4(τ),
pχ6(τ), pχ8(τ)].

Introducing a quasi-stationary parametric solution in (75) for nonassociative R. Hamilton equations, we can
compute corresponding κ-decompositions of the thermodynamic variables (69),

p
sŴ⋆

κ(τ) =
p
sŴ0+κ

p
sŴ⋆

1 (τ),
p
sẐ⋆

κ(τ) =
p
sẐ0

p
sẐ⋆

1 (τ),
p
sÊ⋆κ(τ) = p

sÊ0+κ p
sÊ⋆1 (τ), p

sŜ⋆κ(τ) = p
sŜ0+κ

p
sŜ⋆1 (τ). (76)

In this work, there are not presented cumbersome computations and incremental formulas with κ–linear de-
composition for pδ pV = pδ pV0+κ

pδ pV1 (75) and (76) (considered for solutions of type (84), with χ-polarization
functions). We consider a more general and compact approach when the thermodynamic variables (69) are
computed for volume forms (70) using quasi-stationary solutions of type (63), (65), or (68).

5.2 Geometric evolution of nonassociative double Reisner-Nordström-(A)dS BHs in
phase spaces

In a series of recent works [23, 24, 25, 26, 27], certain models of geometric flows of the Schwarzschild-
AdS, RN and other type metrics were studied in connection to the swampland program [19, 20, 21, 18].
Those papers are devoted to associative and commutative geometric and physical theories with solutions
which can be characterized by the Bekenstein-Hawking entropy. In this subsection, we consider nonassociative
generalizations and nonholonomic geometric flow deformations of the 4-d RN-dS metrics dubbed both on the
base spacetime and typical cofiber and star-deformed by a 8-d phase spaces evolution. We cite [51, 52], for
fundamental results on RN BHs (see also monographs [43, 44, 45, 46]), and [53, 54] and references therein, on
higher dimension extensions for RN-(A)dS.
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The geometric thermodynamic variables (85) and (89) can be used for constructing an effective ther-
modynamic model for quasi-stationary evolution in a conventional phase space media of double BHs into
respective BE configurations. Such constructions for nonassociative geometric flow and/or off-diagonal defor-
mation scenarios can be performed for very special classes of nonholonomic constraints, when the existence
of corresponding horizon hyper-surfaces allows us to describe the τ -evolution of such physical objects in the
framework of generalized Bekenstein-Hawking thermodynamics. For explicit models non involving prescribed
hyper-horizons and/or duality conditions for Ricci solitons and/or geometric flows, even we work with quasi-
stationary s-metrics, the concept of Hawking entropy is not applicable and we have to elaborate on other
types of statistical and geometric thermodynamic theories. In section 4 of [41], we concluded that in general
form we have to change the paradigm and characterize nonassociative geometric flow and gravitational theo-
ries (and various classes of related physically important solutions) in the framework of modified G. Perelman
thermodynamics [1].

5.2.1 Prime metrics for phase space double RN-dS BHs

Let us consider a 4-d base Lorentz spacetime manifold V on which the Einstein-Maxwell theory is defined
by the action for a metric gαβ and electromagnetic field Aµ,

S =

∫

V
d4x
√
|g|[ 1

16πG4
(R− 2Λ̌)]− 1

4e20
FµνF

µν ], (77)

where e0 is the electromagnetic constant, Fµν is the anti-symmetric strength tensor of Aµ; G4 is the 4-d
gravitational constant, and Λ̌ > 0 is the de Sitter, dS, cosmological constant. In this theory, a Reisner-
Nordström, RN, BH is constructed as a spherically symmetric and static solution of corresponding gravitational
and electromagnetic field equations in GR with zero cosmological constant. The corresponding quadratic line
element for such a RN-dS solution with positive cosmological constant, describing an electrically charged BH
in an asymptotic dS spacetime, can be parameterized as a prime spacetime metric

d ♭s2[4d] = ♭g1(r)dr
2 + ♭g2(r)dθ

2 + ♭g3(r, θ)dϕ
2 + ♭g4(r)dt

2 and Aµ = (Q/r, 0, 0, 0), for

♭g4(r) = −(1− rs
r

+
r2Q
r2

− r2

r2
Λ̌

) = −[ ♭g1(r)]
−1, ♭g2(r) = r2, ♭g3(r, θ) = r2 sin2 θ, (78)

where the constant velocity of light is stated c = 1; the Schwarzschild radius rs = 2Gm is determined by the
BH mass; the characteristic electric length r2Q = Q2G/4πe20; and r2

Λ̌
= 3/Λ̌. The local spherical coordinates are

parameterized x1 = r, x2 = θ, y3 = ϕ and y4 = t, with dΩ2
2 = dθ2 + sin2 θdϕ2 being the metric on the unity

2-d sphere, when the conditions for the causal horizon r = rh are stated for quadric polynomial ♭g4(rh) = 0.
In a 8-d phase space sM, we use double 4-d local spherical coordinates, both on base spacetime manifold

V (as in d ♭s2[4d] (78)) and 4-d spherical momentum type coordinates p1 = pr, p2 = pθ, p3 = pϕ and p4 = E;
and consider the quadratic linear element

d ♭
p s

2
[8d] = d ♭s2[4d] + d ♭

p s
2, (79)

with d ♭
p s

2 = ♭
p g

5(p)dp2 + ♭
p g

6(p)dpθ
2 + ♭

p g
7(p, pθ)dp

2
ϕ + ♭

p g
8(p)dE2, for

♭
p g

8(p) = −(1− ps
p

+
p2Q
p2

− p2

p2
pΛ̌

) = −[ ♭p g
5(p)]−1, ♭p g̊

6(p) = p2, ♭p g̊
7(p, pθ) = p2 sin2 pθ.

In such formulas, the dimension for p =
√

(p1)2 + (p2)2 + (p3) is stated (via multiplication on a constant
parameter, or working in natural units with G = c = ~ = 1) to be the same as for r =

√
(x1)2 + (x2)2 + (x3).

There are also considered some conventional "horizontal", Λ̌, and "covertical", pΛ̌, cosmological constants. To
define a double 4-d BH configuration on sM we can introduce in the typical co-fiber space a conventional
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Schwarzschild radius ps = 2 pG pm is determined by the co-fiber BH mass pm with a conventional (it can
be different from G) gravitational constant pG; the characteristic electric length p2Q = pQ2 pG/4π pe20 with

conventional electric charge in co-fiber, pe0; and p2
Λ̌
= 3/ pΛ̌.

For arbitrary frame/coordinate transforms, a diagonal phase space s-metric ♭
p gα = ( ♭gi,

♭
p g
a) (79) can

be written in off-diagonal form ♭
p gαβ(

pu) with a prime shell structure ♭
p g adapted to a prime and trivial

N-connection splitting ♭
pN. In general, such data ( ♭

p g,
♭
pN) do not define a solution of vacuum (non) asso-

ciative/commutative gravitational equations even their horizontal/vacuum components, for instance, (78) can
determine certain 4-d electro-vacuum or RNdS BH configurations.

5.2.2 Nonassociative geometric κ-linear evolution of double phase space BH configurations

In this subsection, we construct κ-linear parametric solutions of nonassociative geometric flow equations
(62) describing the evolution of a double BH phase space metric ♭

p gα = ( ♭gi,
♭
p g
a) (79). In a trivial s-adapted

form (with N-connection coefficients such way defined by some coordinate transforms when the solutions do not
contain coordinate singularities), such a primary s-metric can be parameterized by corresponding s-coefficients
♭
psg = ( ♭

sg,
♭
psg) = { ♭

p gαs = ( ♭gi1 ,
♭ga2 ,

♭
p g
a3 , )}. Using nonlinear symmetries (60) and respective nonlinear

transforms (61), we can re-define the generating functions to define nonassociative R-flux deformations of
such prime BH s-metrics into τ -families of target quasi-stationary ones, ♭

psg → p
sg(τ) (63) with N-connection

coefficients pNas
is−1

(τ) in nonholonomic s-frames (64).
We can express the parametric solutions for nonassociative κ-linear geometric flow deformations of type

♭
psg → p

sg(τ) (63) in terms of gravitational η-polarizations and generating functions (67) using phase space local
coordinates as for the prime s-metric (79). The corresponding class of quasi-stationary τ -running s-metrics
are defined by quadratic linear elements of type (68), with g̊4(τ) → ♭g4,

pg̊6(τ) → ♭
p g

6, pg̊8(τ) → ♭
p g

8, when
the primary s-metrics do not depend on τ. To avoid singular coordinate evolution scenarios for a necessary
τ -interval we can prescribe a primary s-metric written in respective coordinates and further frame transforms
to define certain well-defined data(

♭
psg;

♭
psN
)
= ( ♭sg,

♭
psg;

♭
pN

as
is−1

) = { ♭
p gαs = ( ♭gi1 ,

♭ga2 ,
♭
p g
a3 ; ♭Na2

i1
, ♭

pNi2a3 ,
♭
pNi3a4)}.

In η–polarized nonsymmetric κ-linear τ -evolving quasi-stationary phase space backgrounds, double RNdS BH
configurations are described by quadratic elements:

d pŝ2(τ) = pgαsβs(~, κ, τ, x
k , y3, pa3 , pa4 ;

♭
p gαs(τ); η4(τ),

pη6(τ), pη8(τ), p
sΛ(τ);

p
sℑ(τ))d puαsd puβs

= eψ(τ)[(dx1)2 + (dx2)2]− (80)

[∂3(η4(τ)
♭g4)]

2

|
∫
dy3 2ℑ(τ)∂3(η4(τ) ♭g4)| (η4(τ) ♭g4)

{dy3 + ∂i1 [
∫
dy3 2ℑ(τ) ∂3(η4(τ) ♭g4)]
2ℑ(τ)∂3(η4(τ) ♭g4)

dxi1}2 +

η4(τ)
♭g4){dt+ [ 1nk1(τ) + 2nk1(τ)

∫
dy3

[∂3(η4(τ)
♭g4)]

2

|
∫
dy3 2ℑ(τ)∂3(η4(τ) ♭g4)| (η4(τ) ♭g4)5/2

]dxk1}

− [ p∂5( pη6(τ) ♭p g
6)]2

|
∫
dp5

p

3ℑ(τ) p∂5( pη6(τ) pg̊6(τ)) | ( pη6(τ) ♭
p g

6)
{dp5 +

p∂i2 [
∫
dp5

p

3ℑ(τ) p∂5( pη6(τ) ♭
p g

6)]
p

3ℑ(τ) p∂5( pη6(τ) ♭
p g

6)
dxi2}2

+( pη6(τ) ♭
p g

6){dp6 + [ p

1nk2(τ) +
p

2nk2(τ)

∫
dp5

[ p∂5( pη6(τ) ♭p g
6)]2

|
∫
dp5

p

3ℑ(τ)∂5( pη6(τ) ♭p g
6)| ( pη6(τ) ♭p g

6)5/2
]dxk2}−

[ p∂7( pη8(τ) ♭p g
8)]2

|
∫
dp7

p

4ℑ(τ) p∂7( pη8(τ) ♭p g
8) | ( pη8(τ) ♭p g

8)
{dp7 +

p∂i3 [
∫
dp7

p

4ℑ(τ) p∂7( pη8(τ) ♭p g
8)]

p

4ℑ(τ) p∂7( pη8(τ) ♭p g
8)

d pxi3}2 +

( pη8(τ) ♭p g
8){dE + [ 1nk3(τ) + 2nk3(τ)

∫
dp7

[ p∂7( pη8(τ) ♭p g
8)]2

|
∫
dp7

p

4ℑ(τ)[ p∂7( pη8(τ) ♭p g
8)]| [( pη8(τ) ♭p g

8)]5/2
]d pxk3}.
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The integration functions in (80) are of type (A.11) but extended to τ -dependencies and written for coordinates
used in (79),

g
[0]
4 (~, κ, τ, r, θ), 1nk1(~, κ, τ, r, θ), 2nk1(~, κ, τ, r, θ);
pg5[0](~, κ, τ, r, θ, ϕ, p), 1nk2(~, κ, τ, r, θ, ϕ, p), 2nk2(~, κ, τ, r, θ, ϕ, p);

pg7[0](~, κ, τ, r, θ, ϕ, p, pϕ),
p

1nk3(~, κ, τ, p, pϕ),
p

2nk3(~, κ, τ, p, pϕ).

We can consider additional conditions when such generic off-diagonal gravitational interactions and nonassocia-
tive geometric evolution flows transform a prime s-metric for double conventional 4-d electro-vacuum or RNdS
BHs into vacuum quasi-stationary configurations with τ -evolution, when the electromagnetic interactions are
"dissipated" into a nonholonomic vacuum gravitational structure encoding star product R-flux data.

5.2.3 Computing the Bekenstein-Hawking entropy for double phase space BE configurations

We study two classes of nonassociative couples BE/BH s-metrics which are characterized by phase space
Bekenstein-Hawking type thermodynamic models.

Example 1: Nonassociative τ-deformed double RNdS BHs with dissipation into BEs and Schwar-
zschild BHs

Any solution (80) can be decomposed in terms of χ–generating functions as for the quadratic line element
(A.13) if the prime s-metric coefficients ♭

psg are used for a prime metric p
s̊g. In such cases, the generating and

integration functions are written in κ–linearized form (A.14),

ψ(τ) ≃ ψ(~, κ; τ, r, θ) ≃ ψ0(~, τ, r, θ)(1 + κ ψχ(~, τ, r, θ)), for

η2(τ) ≃ η2(~, κ; τ, r, θ) ≃ ζ2(~, τ, r, θ)(1 + κχ2(~, τ, r, θ)), we can consider η2(τ) = η1(τ);

η4(τ) ≃ η4(~, κ; τ, r, θ, ϕ) ≃ ζ4(~, τ, r, θ, ϕ)(1 + κ χ4(~, τ, r, θ, ϕ)),
pη6(τ) ≃ pη6(~, κ; τ, r, θ, ϕ, p) ≃ pζ6(~, κ; τ, r, θ, ϕ, p)(1 + κ pχ6(~, κ; τ, r, θ, ϕ, p)),
pη8(τ) ≃ pη8(~, κ; τ, r, θ, ϕ, p, pϕ) ≃ pζ8(~, κ; τ, r, θ, ϕ, p, pϕ)(1 + κ pχ8(~, κ; τ, r, θ, ϕ, p, pϕ)).

We may construct τ -families of quasi-stationary solutions (A.13 with conventional horizons when the χ-
polarizations satisfy the conditions

ζ4(1 + κ χ4)
♭g4(r) = ζ4(1−

rs
r
+
r2Q
r2

− r2

r2
Λ̌

+ κ χ4) = ζ̃4(1−
rs
r

+ κ χ̃4) = 0, (81)

pζ8(1 + pκ pχ8) ♭p g
8(p) = pζ8(1− ps

p
+
p2Q
p2

− p2

p2
pΛ̌

+ κ pχ8) = pζ̃8(1− ps
p

+ κ pχ̃8) = 0,

for non-zero χ4(τ) and pχ8(τ); pζ6(τ) = 1 and ζ4(τ) ≃ 1, pζ8(τ) ≃ 1 and re-definition of the generating data,

(
χ4(τ), ζ4(τ);

pχ8(τ), pζ8(τ)
)

→ (χ̃4(τ) = ζ4(τ)χ4(τ), ζ̃4(τ) = (1 +
r2Qr

2
Λ̌
− r4

r(r − rs)r2Λ̌
) ζ4(τ);

pχ̃8(τ) = pζ̃8(τ) pχ8(τ), pζ̃8(τ) = (1 +
r2Qr

2
Λ̌
− r4

r(r − rs)r
2
Λ̌

) pζ8(τ)).

Viable physical models with off-diagonal solutions are generated if the integration functions for N-coefficients
are chosen to tend, for instance, to zero for r → ∞ and p→ ∞.
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Geometric evolution models of two black ellipsoid, BE, phase space configurations are defined if we prescribe
such generating functions:

χ̃4(τ) = eχ4(τ, r, θ, ϕ) = 2χ(τ, r, θ) sin(ω0ϕ+ ϕ0); (82)
pχ̃6(τ) = pχ6(τ) = 0, for pζ̃6(τ) = pζ6(τ) = 1;
pχ̃8(τ) = eχ(τ, p, pθ, pϕ) = 2χ(τ, p, pθ) sin(

p
p ω0 pϕ + p0ϕ),

where χ(τ, r, θ) and χ(τ, p, pθ) are smooth functions (or τ -running constants); the smooth ζ-functions can be
approximated to unity, and (ω0, ϕ0) and ( p

p ω0, p
0
ϕ) are couples of constants. To define all possible horizons

we have to solve the system of two independent forth order algebraic equations for r and p and stated by
gravitational polarizations χ4(τ) and pχ8(τ) (we omit such technical details). For this subclass of quasi-
stationary phase space solutions, we can consider small parametric deformations and regions when

r(τ) ≈ rs/(1− κχ̃4(τ, ϕ)) and pr(τ) ≈ ps/(1− κ pχ̃8(τ, pϕ)). (83)

This describes a scenarios when phase space two RNdS BHs evolve under nonassociative geometric flows into
BE deformations of certain base spacetime and co-fiber Schwarzschild solutions.

For prescribed gravitational χ-polarizations (82), the parametric formulas (83) define for rotoid configu-
rations running on τ. Corresponding nonholonomic structures can be chosen to define certain nonassociative
geometric evolution of more general black ellipsoid, BE, configurations. The corresponding parametric formu-
las for respective BE horizons are defined by small gravitational polarizations determined by nonassociative
star product R-flux deformations. In the limits of zero eccentricity κ, such double BE configurations transform
into prime double BH ones.

Putting together above formulas, we construct two BE target phase space quadratic linear element with
τ–evolution,

d ♭
p s

2
[8d](τ) = eψ0(1 + κ ψ(τ) pχ(τ))[ ♭g1dr

2 + ♭g2dθ
2] (84)

−{ 4[∂3(|ζ4(τ) ♭g4|1/2)]2
♭g4|

∫
dy3{ 2ℑ(τ)∂3(ζ4(τ) ♭g4)}|

− κ[
∂3(χ4(τ)|ζ4(τ) ♭g4|1/2)
4∂3(|ζ4(τ) ♭g4|1/2)

−
∫
dy3{ 2ℑ(τ)∂3[(ζ4(τ) ♭g4)χ4(τ)]}∫

dy3{ 2ℑ(τ)∂3(ζ4(τ) ♭g4)}
]} ♭g3(e

3(τ))2

+ ζ̃4(τ)(1 −
rs
r

+ κ χ̃4(τ))(e
4(τ))2 + ♭

p g
5dp2 + ♭

p g
6dpθ

2

−{ 4[ p∂7(| pζ8(τ) ♭
p g

8|1/2)]2
♭
p g

7|
∫
dp7{ p

4ℑ(τ) p∂7( pζ8(τ) ♭
p g

8)}|
− κ[

p∂7( pχ8(τ)| pζ8(τ) ♭p g
8|1/2)

4 p∂7(| pζ8(τ) ♭p g
8|1/2)

−
∫
dp7{ p

4ℑ(τ) p∂7[( pζ8(τ) ♭p g
8) pχ8(τ)]}∫

dp7{ p

4ℑ(τ) p∂7[( pζ8(τ) ♭p g
8)]}

]} ♭
p g

7( pe7(τ))
2 + pζ̃8(τ)(1 − ps

p
+ κ pχ̃8(τ))( pe8(τ))

2,

where

e3(τ) = dϕ+ [
∂i1
∫
dy3 2ℑ(τ) ∂3ζ4(τ)

♭N3
i1 2ℑ(τ)∂3ζ4(τ)

+ κ(
∂i1 [
∫
dy3 2ℑ(τ)∂3(ζ4(τ)χ4(τ))]

∂i1 [
∫
dy3 2ℑ(τ)∂3ζ4(τ)]

− ∂3(ζ4(τ)χ4(τ))

∂3ζ4(τ)
)] ♭N3

i1dx
i1 ,

e4(τ) = dt+ [ 1nk1 + 16 2nk1

∫
dy3

(
∂3[(ζ4(τ)

♭g4)
−1/4]

)2

|
∫
dy3∂3[ 2ℑ(τ)(ζ4(τ) ♭g4)]|

+

κ
16 2nk1

∫
dy3

(∂3[(ζ4(τ) ♭g4)−1/4])
2

|
∫
dy3∂3[ 2ℑ(τ)(ζ4(τ) ♭g4)]|

(∂3[(ζ4(τ)
♭g4)−1/4χ4)]

2∂3[(ζ4(τ) ♭g4)−1/4]
+

∫
dy3∂3[ 2ℑ(τ)(ζ4(τ)χ4(τ) ♭g4)]∫
dy3∂3[ 2ℑ(τ)(ζ4(τ) ♭g4)]

)

1nk1 + 16 2nk1 [
∫
dy3

(∂3[(ζ4(τ) ♭g4)−1/4])
2

|
∫
dy3∂3[ 2ℑ(τ)(ζ4(τ) ♭g4)]|

]

]dxḱ1 ,
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pe7(τ) = dpϕ + [
p∂i3

∫
dp7

p

4ℑ(τ) p∂7( pζ8(τ))
pN̊i37

p

4ℑ(τ) p∂7( pζ8(τ))
+

κ(
p∂i3 [

∫
dp7

p

4ℑ(τ) p∂7( pζ8(τ) ♭p g
8)]

p∂i3 [
∫
dp7

p

4ℑ(τ) p∂7( pζ8(τ))]
−

p∂7( pζ8(τ) ♭p g
8)

p∂7( pζ8(τ))
)] ♭pNi37d

pxi3 ,

pe8(τ) = dE + [ p

1ni3 + 16 p

2ni3

∫
dp7

(
p∂7[( pζ8(τ) ♭p g

8)−1/4]
)2

|
∫
dp7

p

4ℑ(τ) p∂7( pζ8(τ) ♭p g
8)|

+

κ× 16 p

2ni3

∫
dp7

(
p∂7[( pζ8(τ) ♭p g

8)−1/4]
)2

|
∫
dp7

p

4ℑ(τ) p∂7[( pζ8(τ) ♭
p g

8)]|
(

p∂7[( pζ8(τ) ♭p g
8)−1/4 pχ8(τ))]

2 p∂7[( pζ8(τ) ♭p g
8)−1/4]

+

∫
dp7

p

4ℑ(τ) p∂7[( pζ8(τ) ♭p g
8) pχ8(τ)]∫

dp7
p

4ℑ(τ) p∂7( pζ8(τ) ♭p g
8)

)

(
p

1ni3 + 16 p

2ni3 [

∫
dp7

(
p∂7 [( pζ8(τ) ♭p g

8)−1/4]
)2

|
∫
dp7

p

4ℑ(τ) p∂7( pζ8(τ) ♭p g
8)|

]

)−1

]dxi3 .

For any double rotoid configuration (84) with τ = τ0, we can define and compute phase space general-
izations of the Hawking temperature, T, and the Bekenstein-Hawking entropy, S, as in section 4.1.2 of [41].
Corresponding basic formulas for the ’standard’ BH thermodynamics can be generalized for τ–running nonasso-
ciative Ricci solitons for effective locally anisotropic thermodynamic variables depending on angular spacetime
and co-fiber coordinates:

T (τ, r, θ, ϕ; p, pθ , pϕ) =
1

4π

(
Ω2

4

)1/2

{S−1/2
0 (τ, r, θ, ϕ) + pS

−1/2
0 (τ, p, pθ, pϕ)}, with

S0(τ, r, θ, ϕ) =
Ω2 × (rs)

4

4
[1 +

4κ

3
χ(τ, r, θ) sin(ω0ϕ+ ϕ0)] and

pS0(τ, p, pθ, pϕ) =
Ω2 × (ps)

4

4
[1 +

4κ

3
χ(τ, p, pθ) sin(

p
p ω0 pϕ + p0ϕ)]. (85)

In such formulas, we used the volume of unit -sphere, Ω2 = π2

(2)! , when the respective horizons in the 4-d
spacetime and 4-d co-fiber are rs and ps as in formulas (79), and (82) and (83). If χκ → 0 and/or χκ → 0,
the phase space double BEs transform into respective BH configurations with conventional different isotropic
temperatures in the spacetime base and the co-fiber space.

Example 2: Nonassociative τ-running couples of Schwarzschild-AdS BHs and BEs deformations
Another example of phase space double BE configurations for which the concept of Bekenstein-Hawking

thermodynamics is applicable consists from nonassociative star product R-flux deformations of corresponding
couples of Schwarzschild-AdS BHs. Considering prime 8-d metrics (79) with

♭g4(r) → ǫg4(r) = −(ǫ− 2m+

r
+ Λ̌r2) = −[ ǫg1(r)]

−1 and

♭
p g

8(p) → ǫ
p g

8(p) = −(ǫ− 2 pm+

p
+ pΛ̌p2) = −[ ǫp g

5(p)]−1, (86)

for mass parameters m+ and pm+, where ǫ = (+1, 0,−1) which corresponding, respectively, to spherical/
planar/ hyperbolic horizon geometries, we define prime s-metrics as solutions of the phase modified nonholo-
nomic Einstein equations (3), see also (8), with nonlinear symmetries (A.8) relating certain prescribed effective
sources p

sK to effective cosmological constants p

1Λ0 = p

2Λ0 = Λ̌ ≥ 0 and p

3Λ0 = p

4Λ0 = pΛ̌ ≥ 0. We can
extend such s-metrics for running cosmological constants p

sΛ(τ) = [Λ̌(τ), pΛ̌(τ)] ≥ 0 as solutions of (62),
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parameterized in the form

d ǫ
p s

2
[8d](τ) = d ǫs2(τ) + d ǫ

p s
2(τ), with (87)

d ǫs2(τ) = ǫg1(τ, r)dr
2 + ǫg2(r)dθ

2 + ǫg3(r, θ)dϕ
2 + ǫg4(τ, r)dt

2,

d ǫ
p s

2 = ǫ
p g

5(τ, p)dp2 + ǫ
p g

6(p)dp2θ +
ǫ
p g

7(p, pθ)dp
2
ϕ + ǫ

p g
8(τ, p)dE2,

when the coefficients are determined as respective metric functions (86) modified for running constants,

ǫg4(τ, r) = −(ǫ− 2m+(τ)

r
+ Λ̌(τ)r2) = −[ ǫg1(τ, r)]

−1 and

ǫ
p g

8(τ, p) = −(ǫ− 2 pm+(τ)

p
+ pΛ̌(τ)p2) = −[ ǫp g

5(τ, p)]−1;

and (for instance, for spherical horizon geometries) ǫg2(r) = r2, ǫg3(r, θ) = r2 sin2 θ and
ǫ
p g̊

6(p) = p2, ǫp g̊
7(p, pθ) = p2 sin2 pθ.

We considered above a prime s-metric (79) which is not a nonassociative vacuum solution but τ -evolves
into nonassociative geometric flows of quasi-stationary solutions. In this subsection, the prime s-metric (87)
defines already τ -families of double BH solutions of nonassociative vacuum Einstein equations. For a fixed
τ0, such a nonassociative Ricci soliton is defined by a stationary configuration is defined by metrics with a
conventional horizon radius r+, in the base manifold, and p+, in the co-fiber space. The thermodynamic
quantities (entropy and temperature) for such couples of phase space Schwarzschild-AdS BHs are defined and
computed in standard forms:

ǫS0(τ) =
π ǫΘ

4
r2+(τ),

ǫT0(τ) =
ǫ+ 3Λ̌(τ)r2+(τ)

4πr+(τ)
and

ǫ
p S0(τ) =

π ǫ
pΘ

4
p2+(τ),

ǫ
p T0(τ) =

pǫ+ 3 pΛ̌(τ)p2+(τ)

4πp+(τ)
, (88)

where running of conventional mass parameters are computed following formulas

m+(τ) =
r+(τ)

ǫΘ

8
[ǫ+ Λ̌(τ)r2+(τ)] and pm+(τ) =

p+(τ)
ǫ
pΘ

8
[ pǫ+ pΛ̌(τ)p2+(τ)].

In above equations, we use respective areas of constant-curvatures spaces, π ǫΘ and π ǫ
pΘ. For instance: 1Θ = 4,

for a sphere; 0Θ = XY, using X and Y as sides of the torus; there is not a simple example to compute −1Θ.
Here we note that following the standard BH thermodynamics for solutions with hyper-surfaces we can define
and compute a conventional pressure, P, and volume, V ol (for instance, P = 3

8π Λ̌ and V ol = π ǫΘ
3 r3+).

Rotoid deformations with χ-polarizations (82) under nonassociative geometric information flows of families
of s-metrics (87), ǫ

p gα → ǫχ
p gα, can be generated if we change the data for the prime s-metrics, ♭

p gα = ( ♭gi,
♭
p g
a)

(79) → ǫ
p gα = ( ǫgi,

ǫ
p g
a), into (84). We do not write in explicit form such quadratic linear elements, but provide

the formulas for the effective locally anisotropic thermodynamic variables depending on angular spacetime and
co-fiber variables:

ǫχS(τ, r, θ, ϕ) = ǫS0(τ)
[
1 + 4κχ(τ, r, θ) sin(ω0ϕ+ ϕ0)

]
, (89)

ǫχT (τ, r, θ, ϕ) = ǫT0(τ)
[
1 + 2κχ(τ, r, θ) sin(ω0ϕ+ ϕ0)

]
and

ǫχ
p S(τ, p, pθ, pϕ) = ǫ

p S0(τ)
[
1 + 4κχ(τ, p, pθ) sin(

p
p ω0 pϕ + p0ϕ)

]
,

ǫχ
p T (τ, p, pθ, pϕ) = ǫ

p T0(τ)
[
1 + 2κχ(τ, p, pθ) sin(

p
p ω0 pϕ + p0ϕ)

]
.

For κ → 0, these formulas transform into locally isotropic ones (88). As in the thermodynamics of moving
media, we have two temperature like values, τ and ǫχT. In the case of ellipsoidal deformations of couples of
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Schwarzschild-AdS metrics, we have to consider two different temperature like variables ǫχT and ǫχ
p T. This

is different from the case described by the formulas (85) defined and computed for prime s-metrics which are
not solutions of certain nonassociative vacuum Einstein equations, but they became such ones for the target
s-metrics after τ -parametric dissipation of the electromagnetic components into the N-connection coefficients.

Above phase space BHs and BEs are characterized by nonassociative locally anisotropic degrees of freedom
determined by R-flux deformations with spherical/rotoid symmetries. We omit the technical details and
cumbersome formulas for computing p

⋆gαsβs(τ) =
p
⋆ǧαsβs(τ) +

p
⋆aαsβs(τ) (21) using corresponding prime data

(79), or (87), and respective off-diagonal parametric solutions for double BEs and/or BHs.

5.2.4 Geometric thermodynamic variables for nonassociative flows of RN-dS BHs

The G. Perelman thermodynamic variables (69) can be computed in explicit form for any class of τ -running
quasi-stationary solutions (80) and/ or (84) defining nonassociative geometric evolution and star product R-
flux deformations of double RN-dS BH configurations with 1Λ(τ) = 2Λ(τ) = Λ̌ and p

3Λ(τ) =
p

4Λ(τ) =
pΛ̌. For

simplicity, we consider a nonholonomic geometric model with fixed values of cosmological h- and c-cosmologival
constants. Changing the prime data, p

s̊g → ♭
psg (79), in the volume forms (72), we express

pδ pV(τ) = pδ pV( p
sℑ(τ), Λ̌, pΛ̌, pηαs(τ)

♭
p gαs) =

1

|Λ̌ pΛ̌|
pδ p

ηV( p
sℑ(τ), ♭p gαs), where

pδ p
ηV( p

sℑ(τ), ♭p gαs) = pδ 1
ηV[ 1ℑ(τ), η2(τ) ♭g2]× pδ 2

ηV[ 2ℑ(τ), η4(τ) ♭g4]×
pδ 3

ηV[ 3ℑ(τ), pη6(τ) ♭
p g

6]× pδ 4
ηV[ 4ℑ(τ), pη8(τ) ♭

p g
8].

This allows to compute, using formulas (73) and (74) , such thermodynamic variables and, respective, volume
functionals:

p
sŴ⋆

κ(τ) =

∫ τ

τ ′

dτ

64(πτ)4
τ(Λ̌ + pΛ̌)2 − 2

|Λ̌ pΛ̌|
p♭
ηV(τ), p

sẐ⋆
κ(τ) = exp

[∫ τ

τ ′

dτ

(2πτ)4
1

|Λ̌ pΛ̌|
p♭
ηV(τ)

]
, (90)

p
sÊ⋆κ(τ) = −

∫ τ

τ ′

dτ

128π4τ3
τ(Λ̌ + pΛ̌)− 2

|Λ̌ pΛ̌|
p♭
ηV(τ), p

sŜ⋆κ(τ) = −
∫ τ

τ ′

dτ

128(πτ)4
τ(Λ̌ + pΛ̌)− 4

|Λ̌ pΛ̌|
p♭
ηV(τ),

for p♭
ηV(τ) =

∫

p

sΞ̂

pδ p
ηV( p

sℑ(τ), ♭p gαs).

Such values are well-defined for τ -running nonholonomic configurations with respective η- or χ-generating
functions when p

sÊ⋆κ(τ) and p
sŜ⋆κ(τ) can be treated as respective effective energy and entropy flow transports

in a phase space media evolving in the interval τ ′ < τ.

5.3 Nonassociative flows of phase space Reisner-Nordström-AdS BHs

In this subsection, we construct a different class of nonassociative geometric flow deformations of RN BHs,
when the effective cosmological constants are determined by negative cosmological constants and respective
prime metric configurations, which correspond to different models than those stated by (77) and (79).

5.3.1 Prime metrics for higher dimension phase space RN-AdS BHs

As shown in [55], a d = 5 dimensional Einstein-Maxwell action

S =
1

16πG[5]

∫

V[5]

d5x
√

|g[5]|[R[5] − l2[5]F
2
[4] +

12

l2[5]
], (91)

with a negative constant Λ[5] = −6/l2[5] determined by the AdS radius l[5], can be naturally viewed (with an

additional Chern-Simons term) as an effective truncation of the IIB supergravity on a 5-d sphere, S5. In [56],
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the thermodynamic geometry of 5-d Reisner-Nordström-AdS BHs existing in the theory (91) was studied for
extensions to models of phase spaces determined by the scalar curvatures of the thermodynamic Weinhold/
Ruppeinder / Quevedo metrics.

In our approach to nonassociative gravity and geometric flow theory, we can consider a d = 5 dimensional
analog of the Reisner-Nordström AdS metric trivially embedded into a 8-d phase space sM,

d s̆2[5+3] =
pğαs(

puγs)(ĕαs)2 =
dr̆2

f̆(r̆)
− f̆(r̆)dt2 + r̆2[(d2x̂2)2 + (dx̂3)2 + (dp5)

5] + (dp6)
2 + (dp7)

2 − dE2, (92)

where in natural units x̂1 = r̆ =
√

(x1)2 + (x2)2 + (x3)2 + (p5)2; for simplicity, we choose x̂2 = x̂2(x2, x3, p5),
x̂3 = x̂3(x2, x3, p5) and x̂5 = x̂5(x2, x3, p5) as coordinates for a diagonal metric on an effective 3-d Einstein
phase space V[3] of constant scalar curvature (let say, 6k̂, for k̂ = 1). The metric function in (92) is given by

f̆(r̆) = 1− m̂

r̆2
+
r̆2

l2[5]
+
q̂2

r̆4
,

where the integration constant m̂ is related to the mass of BH, M̂ = 3ω[3]m̂/16πG[5], for ω[3] denoting the

volume of V[3]; and the parameter q̂ is related to the physical charge Q̂ of the RN-AdS BH via formula

q̂ = 4πG[5]Q̂/
√
3ω[3].

The prime metric coefficients ğ1 = f̆(r̆)−1, pğ2 =
pğ3 = pğ5 = r̆2, ğ4 = −f̆(r̆), pğ6 = pğ7 = − pğ8 = 1 and

pğasis−1
(r̆, t, x̂2, x̂3, x̂5, p6,p7, E) = 0 from (92) can be subjected to s-adapted frame/coordinate transforms into

certain data ( pğαs(
puγs); pN̆as

is−1
( puγs)) which allow to apply the AFCDM for constructing exact and parametric

solutions. The 5-d part of the 8-d metric (92) can be uplifted to ten dimensions and viewed as the near horizon
geometry of Ň rotating black D3-branes in type IIB supergravity [55, 56], when l4[10] = 2Ňℓ4p/π

2 ≡ α2Ň ,
where ℓp is the 10-d Planck length. The nonassociative geometric constructions with star product and R-flux
deformations involve different types of constants on 8-d phase spaces. It should be noted here that we can
elaborate similar nonholonomic geometric constructions with sM → ⋆

sM, when for a corresponding cotangent
Lorentz bundle M = T ∗V,dimV = 5 and dim M = 10.

5.3.2 Nonassociative geometric κ-linear evolution of phase space RN-AdS BHs

We consider nonassociative generic off-diagonal generalizations of s-metric pğαs (92) under κ-linear geo-
metric flow evolution with fixed 8-d phases space cosmological constant sΛ(τ) = Λ[5] < 0, for s = 1, 2, 3, 4.
Considering pğαs as the coefficients of the prime s-metric in (68) (instead of p

s̊g(τ)) for respective effective
sources p

sℑ(τ) related via nonlinear symmetries (60) to Λ[5], we generate such a τ -family of quasi-stationary
solutions of nonassociative geometric flow equations (62), pğαs → p

s̊g(τ), parameterized, for instance, using
Φ-generating functions as in quadratic linear elements (63) with nonholonomic frames (64),

dŝ2(τ) = eψ(~,κ;τ,r̆,x̂
2,Λ[5])[(dr̆)2 + (dx̂2)2]− (93)

1

g
[0]
4 (τ)− ( 2Φ(τ))2

4 Λ[5]

( 2Φ(τ))
2[∂3( 2Φ(τ))]

2

| Λ[5]

∫
dy3( p

2ℑ(τ))[∂3( 2Φ(τ))2]|
(e3(τ))2 +

(
g
[0]
4 (τ)− ( 2Φ(τ))

2

4 Λ[5]

)
(e4(τ))2

− 1

pg6[0](τ)−
( p

3Φ(τ))2

4 Λ[5]

( p

3Φ(τ))
2[ p∂5( p

3Φ(τ))]
2

| Λ[5]

∫
dp5(

p

3ℑ(τ)) p∂5[( p

3Φ(τ))
2]|(

pe5(τ))
2 +

(
pg6[0](τ)−

( p

3Φ(τ))
2

4 Λ[5]

)
( pe6(τ))

2

− 1

pg8[0](τ)−
( p

4Φ(τ))2

4 Λ[5]

( p

4Φ(τ))
2[ p∂7( p

4Φ(τ))]
2

| Λ[5]

∫
dp7(

p

4ℑ) p∂7[( p

4Φ(τ))
2]|(

pe7(τ))
2 +

(
pg8[0](τ)−

( p

4Φ(τ))
2

4 Λ[5]

)
( pe8(τ))

2.
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In these formulas, there are used local coordinates puγs = (r̆, t, x̂2, x̂3, x̂5, p6,p7, E) and s-adapted frames:

e3(τ) = dx̂3 +
∂k1

∫
dx̂3( p

2ℑ(τ))∂̂3[( 2Φ(τ))
2]

( p

2ℑ(τ)) ∂̂3[( 2Φ(τ))2]
dxk1 ,

e4(τ) = dt+ ( 1nk1(τ) + 2nk1(τ)

∫
dx̂3 ( 2Φ(τ))2[ ∂̂3( 2Φ(τ))]2

| 2Λ(τ)
∫
dx̂3( p

2ℑ(τ))[ ∂̂3( 2Φ(τ))2]|∣∣∣g[0]4 (τ)− ( 2Φ(τ))2

4 2Λ(τ)

∣∣∣
5/2

)dxk1 ,

pe5(τ) = dx̂5 +
∂k2

∫
dx̂5( p

3ℑ(τ)) ∂̂[( p

3Φ(τ))
2]

( p

3ℑ(τ)) ∂̂5[(
p

3Φ(τ))
2]

dxk2 ,

pe6(τ) = dp6 + ( p

1nk2(τ) +
p

2nk2(τ)

∫
dp5

( p

3Φ(τ))2[ p∂5( p

3Φ(τ))]2

| Λ[5]

∫
dp5(

p

3ℑ(τ))[ p∂5( p

3Φ(τ))2]|
∣∣∣ pg6[0](τ)−

( p

3Φ(τ))2

4 Λ[5]

∣∣∣
5/2

)dxk2 ,

pe7(τ) = dp7 +
∂k3

∫
dp7(

p

4ℑ(τ)) p∂7[( p

4Φ(τ))
2]

( p

4ℑ(τ)) p∂7[( p

4Φ(τ))
2]

d pxk3 ,

pe8(τ) = dE + ( p

1nk3(τ) +
p

2nk3(τ)

∫
dp7

( p

4Φ(τ))2[ p∂7( p

4Φ(τ))]2

| Λ[5]

∫
dp7(

p

4ℑ(τ))[ p∂7( p

4Φ(τ))2]|
∣∣∣ pg8[0](τ)−

( p

4Φ(τ))2

4 Λ[5]

∣∣∣
5/2

)d pxk3 .

The integration functions considered above are defined in the form:

g
[0]
4 (~, κ, τ, r̆, x̂2), 1nk1(~, κ, τ, r̆, x̂

2), 2nk1(~, κ, τ, r̆, x̂
2);

pg5[0](~, κ, τ, r̆, x̂
2, x̂3, x̂5), 1nk2(~, κ, τ, r̆, x̂

2, x̂3, x̂5), 2nk2(~, κ, τ, r̆, x̂
2, x̂3, x̂5);

pg7[0](~, κ, τ, r̆, x̂
2, x̂3, x̂5, p7),

p

1nk3(~, κ, τ, r̆, x̂
2, x̂3, x̂5, p7),

p

2nk3(~, κ, τ, r̆, x̂
2, x̂3, x̂5, p7).

The solutions (93) can be written in terms of g-generating functions and/or η- /χ-polarization functions
using nonlinear transforms (61) for

2Φ(τ) = 2
√

| Λ[5] g4(τ)| = 2
√

| Λ[5] η4(τ)ğ4)| ≃ 2
√

| Λ[5] ζ4(τ)ğ4|[1−
κ

2
χ4(τ)], (94)

p

3Φ(τ) = 2
√

| Λ[5]
pg6(τ)| = 2

√
| Λ[5]

pη6(τ) pğ6| ≃ 2
√

| Λ[5]
pζ6(τ) pğ6|[1− κ

2
pχ6(τ)],

p

4Φ(τ) = 2
√

| Λ[5]
pg8(τ)| = 2

√
| Λ[5]

pη8(τ) pğ8| ≃ 2
√

| Λ[5]
pζ8(τ) pğ8|[1− κ

2
pχ8(τ)],

for a prime s-metric pğαs (92). For such transforms, the generating and integration functions are written in
κ–linearized form (A.14),

ψ(τ) ≃ ψ(~, κ; τ, r̆, x̂2) ≃ ψ0(~, τ, r̆, x̂
2)(1 + κ ψχ(~, τ, r̆, x̂

2)), for

η2(τ) ≃ η2(~, κ; τ, r̆, x̂
2) ≃ ζ2(~, τ, r̆, x̂

2)(1 + κχ2(~, τ, r̆, x̂
2)), we can consider η2(τ) = η1(τ);

η4(τ) ≃ η4(~, κ; τ, r̆, x̂
2, x̂3) ≃ ζ4(~, τ, r̆, x̂

2, x̂3)(1 + κ χ4(~, τ, r̆, x̂
2, x̂3)),

pη6(τ) ≃ pη6(~, κ; τ, r̆, x̂2, x̂3, x̂5) ≃ pζ6(~, κ; τ, r̆, x̂2, x̂3, x̂5)(1 + κ pχ6(~, κ; τ, r̆, x̂2, x̂3, x̂5)),
pη8(τ) ≃ pη8(~, κ; τ, r̆, x̂2, x̂3, x̂5, p7) ≃ pζ8(~, κ; τ, r̆, x̂2, x̂3, x̂5, p7)(1 + κ pχ8(~, κ; τ, r̆, x̂2, x̂3, x̂5, p7)).

Using formulas (94), we can extract solutions with rotoid spacetime configurations determined by nonas-
sociative star product R-flux deformation (considering χ-polarizations), or to compute volume forms (70) for
η-polarizations.
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5.3.3 Bekenstein-Hawking entropy of τ-running phase space RN-AdS BEs configurations

For a subclass of nonholonomic configurations, the s-metrics (93) define higher dimension BH and/or BE
configurations with conventional horizons which can be characterized variables in the framework of generalized
Bekenstein-Hawking thermodynamics [47, 48, 49, 50]. For simplicity, we shall consider solutions for 6-d τ -
running quasi-stationary configurations evolving in a 8-d phase space, for simplicity, with trivial integration
functions of type p

1nks = 0 and p

2nks = 0. The corresponding nonlinear quadratic elements are parameterized
in the form:

d χ
p s

2
[6⊂8d](τ) = eψ0(1 + κ ψ(τ) pχ(τ))[ ğ1(r̆)dr̆

2 + ğ2(r̆)(dx̂
2)] (95)

−{ 4[∂̂3(|ζ4(τ)ğ4(r̆)|1/2)]2

ğ4(r̆)|
∫
dx̂3{ 2ℑ(τ)∂̂3(ζ4(τ) ğ4(r̆))}|

− κ[
∂̂3(χ4(τ)|ζ4(τ) ğ4(r̆)|1/2)
4∂̂3(|ζ4(τ) ğ4(r̆)|1/2)

−
∫
dx̂3{ 2ℑ(τ)∂̂3[(ζ4(τ) ğ4(r̆))χ4(τ)]}∫

dx̂3{ 2ℑ(τ)∂̂3(ζ4(τ) ğ4(r̆))}
]} ğ3(e3(τ))2 + ζ4(τ)(1 + κ χ4(τ))ğ4(r̆)dt

2

−{ 4[∂̂5(| pζ6(τ) ğ6|1/2)]2
ğ5(r̆)|

∫
dx̂5{ p

3ℑ(τ) p∂7( pζ6(τ) ğ6)}| − κ[
∂̂5(

pχ6(τ)| pζ6(τ) ğ6|1/2)
4∂̂5(| pζ6(τ) ğ6|1/2)

−
∫
dx̂5{ p

3ℑ(τ) ∂̂5[( pζ6(τ)ğ6) pχ8(τ)]}∫
dx̂5{ p

3ℑ(τ) ∂̂5[( pζ6(τ)ğ6)]}
]} ğ5(r̆)(e5(τ))2 + pζ6(τ) (1 + κ pχ6(τ))(dp6)

2 + (dp7)
2 − dE2,

where

e3(τ) = dx̂3 + [
∂̂i1
∫
dx̂3 2ℑ(τ) ∂̂3ζ4(τ)

N̆3
i1 2ℑ(τ)∂̂3ζ4(τ)

+ κ(
∂̂i1 [
∫
dx̂3 2ℑ(τ)∂̂3(ζ4(τ)χ4(τ))]

∂̂i1 [
∫
dx̂3 2ℑ(τ)∂̂3ζ4(τ)]

− ∂̂3(ζ4(τ)χ4(τ))

∂̂3ζ4(τ)
)] N̆3

i1dx
i1 ,

e5(τ) = dx̂5 + [
∂̂i2

∫
dx̂5 p

3ℑ(τ) ∂̂5(
pζ6(τ))

pN̆5
i2

p

3ℑ(τ) ∂̂5( pζ6(τ))
+

κ(
∂̂i2 [
∫
dx̂5 p

3ℑ(τ) ∂̂5(
pζ6(τ) ğ6)]

∂̂i2 [
∫
dx̂5 p

3ℑ(τ) ∂̂5( pζ6(τ))]
− ∂̂5(

pζ6(τ) ğ6)

∂̂5( pζ6(τ))
)] pN̆5

i2d
pxi2 .

A subclass of solutions (95) generates τ -families of rotoid configurations in coordinates (r̆, x̂2, x̂3) (as
nonholonomic deformations of the phase BH solution (92)) if we chose such generating functions:

χ4(τ) = χ̂4(τ, r̆, x̂
2, x̂3) = 2χ(τ, r̆, x̂2) sin(ω0x̂

3 + x̂30), (96)

where χ(τ, r̆, x̂2) are smooth functions (or constants), and (ω0, x̂
3
0) is a couple of constants. In a conventional

5-d phase space on shells s = 1, 2, 3, trivially imbedded into a 8-d phase space posses a distinct ellipsoidal type
horizon with respective eccentricity κ a stated by the equations

ζ4(τ)(1 + κ χ4(τ))ğ4(r̆) = 0 i.e. (1 + κ χ4)f̆(r̆) = (1− m̂

r̆2
−

Λ[5]

6
r̆2 +

q̂2

r̆4
+ κ χ4) = 0,

for ζ4 6= 0. For small parametric deformations and configurations with −Λ[5]

6 r̆2 + q̂2

r̆4
≈ 0, we can approximate

for a fixed τ0, r̆ ≃ m̂1/2/(1 − κ
2 χ̂4). These are parametric formulas for a rotoid horizon defined by small

gravitational R-flux polarizations. In the limits of zero eccentricity, such e BE configurations transform into a
5-d BH embedded into nonassociative 8-d phase space.

45



Extending the concept of Bekenstein-Hawking entropy for phase spaces determined by quadratic linear
elements (92), we can define such thermodynamic values (computations are similar to those for formulas
(8)-(15) in [56] but with different constants and following our notations):

0S̆ =
0Ă

4G[5]
=
ω[3]r̆h

4G[5]
and 0T̆ =

1

2πr̆h
(ǫ+ 2

r̆2h
l2[5]

)−
2G2

[10]Q̂
2

3π9l8[5]r̆
5
h

, for

M̂ =
3ω[3]m̂

16πG[5]
(ǫr̆2h +

r̆4h
l2[5]

+
4G[5]Q̂

2l2[5]

3π2r̆2h
), (97)

where r̆h and 0Ă are, respectively the horizon and area of horizon of 5-d BH,G[5] = G[10]/(π
3l5[5]) and G[10] = ℓ8p.

Using these formulas for rotoid deformations r̆h → m̂1/2/(1 − κ
2 χ̂4) and 0Ă → rotĂ, with χ̂4(τ) (96), we

compute for respective BE configurations:

S̆(τ) = 0S̆(1 +
κ

2
χ̂4(τ)) and T̆ (τ) = 0T̆ + κ

(
− ǫ

4πr̆h
+

r̆h
2πl2[5]

−
5G2

[10]Q̂
2

3π9l8[5]r̆
5
h

)
χ̂4(τ). (98)

The modified Hawking temperatures T̆ (τ) and 0T̆ are stated by requiring the absence of the potential conical
singularity of the Euclidean BH at the horizon in the phase space.

5.3.4 G. Perelman thermodynamics of nonassociative flows of phase RN-AdS BHs

We can not apply the Bekenstein-Hawking thermodynamic paradigm in order to characterize physical
properties of general classes of quasi-stationary solutions of type (93) and/or (95) excepting very special cases
of nonassociative deformations, for instance, to BE configurations of type (96). The G. Perelman approach is
more general and allows to define and compute statistical thermodynamic variables of type (69). Let us sketch
how to compute such values for any data pğαs (92), p

sℑ(τ) related via nonlinear symmetries (60) to Λ[5],
and nontrivial (on shells s = 1, 2, 3, see also formulas (94)). For simplicity, we can consider the same value of
cosmological constant on such shells when

| Λ[5] η4(τ)ğ4)| = | Λ[5] ζ4(τ)ğ4|(1− κχ4(τ)), | Λ[5]
pη6(τ) pğ6| = | Λ[5]

pζ6(τ) pğ6|(1− κ pχ6(τ)) (99)

for a a subclass of s-metrics of type (95). We obtain such thermodynamic functionals:

p
sŴ⋆

κ(τ) =

∫ τ

τ ′

dτ

32(πτ)4

2τΛ2
[5] − 1

Λ2
[5]

p
ηV̆(τ), p

sẐ⋆
κ(τ) = exp

[∫ τ

τ ′

dτ

(2πτ)4
1

Λ2
[5]

p
ηV̆(τ)

]
, (100)

p
sÊ⋆κ(τ) = −

∫ τ

τ ′

dτ

64π4τ3
τΛ[5] − 1

Λ2
[5]

p
ηV̆(τ), p

sŜ⋆κ(τ) = −
∫ τ

τ ′

dτ

64(πτ)4
τΛ[5] − 2

Λ2
[5]

p
ηV̆(τ).

In these formulas, we use the running phase space volume functional

p
ηV̆(τ) =

∫

p

sΞ̂

pδ p
ηV( p

sℑ(τ), pğαs), for s = 1, 2, 3. (101)

Above presented values are determined by prescribed classes of generating η-functions (99), effective generating
sources p

sℑ(τ), coefficients of a prime s-metric pğαs and nonholonomic distributions defining the hyper-surface
p
sΞ̂, when the volume forms are computed

pδ pV(τ) = pδ pV( p
sℑ(τ), Λ[5],

pηαs(τ)
pğαs) =

1

Λ2
[5]

pδ p
ηV( p

sℑ(τ), pğαs), where

pδ p
ηV( p

sℑ(τ), pğαs) =
pδ 1

ηV[1ℑ(τ), η2(τ) ğ2]× pδ 2
ηV[2ℑ(τ), η4(τ) ğ4]× pδ 3

ηV[3ℑ(τ), pη6(τ) pğ6].
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G. Perelman thermodynamic variables (100) can be computed in explicit form if we prescribe certain
nonholonomic distributions in p

ηV̆(τ) (101) which results in physically viable geometric thermodynamic models.
For instance, we can study solutions with more general κ-parametric deformations than those determined
by rotoid generating functions (96). Prescribing generating sources p

sℑ(τ) and η-generating functions for
pδ p

ηV, we define explicit thermodynamic models of deformed phase space BH objects propagating on a local
temperature like parameter τ like, for instance, in the hydrodynamic of moving media. This analogy is very
rough because instead of hydrodynamic flow equations we consider nonassociative geometric flow equations
and certain special classes of solutions. The physical interpretation of corresponding entropy and temperature
from (100) is different from that for the hyper-surface variables (98) in the Bekenstein-Hawking approach.
Finally we note that the effective running of thermodynamic variables on shell cosmological constants in (90)
and (100) is very different. We have to analyze such different implications, for instance, in extending the
swampland conjecture for nonassociative BHs and τ -running quasi-stationary solutions.

6 Extending swampland conjectures for nonassociative geometric flows and

nonholonomic BHs deformations

Connections between the swampland conjectures in string theory, QG, exact solutions in MGTs , effective
QFTs and (non) commutative geometric flow equations, with a number of examples with BH solutions, were
studied in a series of works [22, 23, 24, 25, 26, 27]. We also cite such papers and references therein for
recent developments and applications in modern gravity, cosmology and astrophysics; and studies of various
types of Hawking–Page phase transitions under Ricci, Yamanabe, Ricci-Bourguignon flows etc. It should be
remembered that the general aim of the swampland program [19, 20, 21, 18] is to elaborate on mathematical
and physical criteria for distinguishing (low-energy) effective classical and quantum theories, QG and MGTs,
which can be completed in the UV, from other classes of theories which cannot.

The approach to nonassociative geometry and gravity [38, 39] and nonholonomic generalizations with the
AFCDM for constructing exact/parametric solutions in nonassociative/noncommutative Ricci flow theories
and MGTs [12, 13, 40, 41, 6, 7, 8] was developed for star product R-flux deformation models in string/M-
theory. Respective fundamental nonassociative geometric flow and (modified) vacuum gravitational (Ricci
soliton) equations consist very sophisticate systems of coupled nonlinear PDEs encoding nonassociative data
as effective sources and generic off-diagonal terms of nonholonomic shell adapted metrics. Such equations can
be integrated in very general exact/parametric forms, for instance, for quasi-stationary configurations running
on τ -flow parameter as we proved in section 4, see also related results examples in section 4 of [41]. Positively,
for certain classes of solutions with respective nonlinear symmetries and τ -running, or prescribed/fixed, shell
effective cosmological constants, such solutions and respective nonassociative geometric thermodynamic models
can be constructed to be compatible with certain refined versions of the swampland conjectures (both on higher
dimension spacetimes and/or phase space). Nevertheless, generalized classes of solutions do not obligatory
involve certain effective (running) cosmological constants, for instance, for nonassociative BH deformations,
see subsections 5.2.4 and 5.3.4. Even for such nonassociative geometric flow configurations, we can always
compute the modified G. Perelman F- and W-functionals and related thermodynamic variables, the issues of
compatibility or not compatibility with the swampland ideas and conjectures have to be studied respectively
for any explicit class of solutions.

In this section, we analyze and discuss two kinds of nonassociative generalized swampland and Ricci
flow conjectures. First, there are outlined refined versions on the phase space of typical results obtained for
high dimensional (A)dS spaces, for instance, modifications of the Black Hole Entropy Distance Conjecture
(BHEDC) to the case of nonassociative black ellipsoid, BE, configurations etc. Such constructions are possible
for nonassociative τ -running quasi-stationary solutions with conventional hyper-surface horizons and associated
modified Bekenstein-Hawking thermodynamic models studied above in subsections 5.2.3 and 5.3.3. Second,
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we elaborate on some main points of this paper when the swampland program is extended to nonassociative
geometric flow and MGTs using the concept of W-entropy and G. Perelman thermodynamics. There are
considered certain well-defined conditions when positively swampland and nonassociative Ricci flow conjectures
can formulated for such generalizations. We also analyze explicit examples of τ -running quasi-stationary
solutions when it is not clear and we can’t conclude without an additional analysis if such low-energy effective
(encoding nonassociative data) geometric flow and gravity models can be completed into QG in the UV and
distinguished from those that cannot.

6.1 The generalized distance conjecture, nonassociative Ricci flows and gravity

The goal of this subsection is to show how the swampland, gradient flows and infinite distance conjectures
[22, 23] can be extended on nonassociative phase spaces for solutions of nonassociative Ricci flow/soliton
equations derived in sections 2.3 and 2.4 and κ-parameterized in the form (41).

6.1.1 Phase space generalized and Weyl distances, and the AdS distance conjecture

For a phase space with star product R-flux nonassociative deformation, sM → ⋆
sM, restricted to a finite

region ⋆
sU ⊂ ⋆

sM, we consider a τ -family of symmetric s-metrics p
sg(τ) following Convention 2 (26). There are

used κ-linear parametric decomposition when p
⋆ǧ

[0]
αsβs

(τ) = p
⋆gαsβs(τ) =

pgαsβs(τ), for star product flows ⋆s(τ)

determined by s-adapted frames peis(τ) in (19) and canonical data ( p
sg(τ),

p
sD̂(τ)). We can consider arbitrary

variations of such a s-metric, or to choose a class of solutions of nonassociative geometric flow equations (41) for
the data [ p

⋆gαsβs(τ),
p
sD̂

⋆(τ)], when the nonsymmetric p
⋆gαsβs are computed using κ-linear parameterizations

(20)–(22). On ⋆
sU , a path γ(τ), τi ≤ τ ≤ τf , is considered (for which a proper metric distance ℵ is defined by

pgαsβs(τ)) (5).17 We introduce

s
gℵ = ℵ[ pgαsβs(τ),

p
sΛ(τ)] = C

∫ τf

τi

(
1

VU

∫

U

pgαsµs pgβsνs
∂ pgαsβs

∂τ

∂ pgµsνs

∂τ
d pVol(τ)

)1/2

dτ (102)

for the volume form d pVol(τ) (36), where the constant C ∼ O(1) depending on dimension of U and VU is the
volume of U → ⋆

sU . In this work, we consider that s
gℵ is determined by a τ -family of κ-parametric solutions

of geometric flow equations (62) for some prescribed running shell cosmological constants p
sΛ(τ).

For phase spaces, the generalized distance conjecture states that there must be an infinite tower of states
with an effective mass scale pm(τ), when

pm(τf ) ∼ pm(τi)e
−α̂| s

gℵ|, where α̂ ∼ O(1). (103)

This formula was introduced without labels " p" for corresponding notations for higher dimension spacetimes
in [22, 23], when

m ∼Mpe
−α| gℵ|. (104)

In field theories, it is considered that generically the massesm(τi) at some initial values τi are of order ofMp (the
Planck mass constant, determined by ~). We have to introduce such constants with additional labels also for
phase spaces ⋆

sM, when we elaborate on (nonassociative and noncommutative) quantum geometric flow models
and/or QFTs. On 4-d spacetime base with shells s = 1, 2, the formula pm (103) still contains nonassociative
star product and R-flux data encoded into s

gℵ.Only for very special nonholonomic configurations, non involving

17In this work, we write ℵ instead of △ considered, for instance, in formula (1) from [23] for formulating the general distance

conjecture. On nonassociative phase spaces, we elaborate a different system of notations when the symbol ⋆△̂ is the Laplace
operator constructed for p

sD̂
⋆. Here we also note that in field theories, the parameter τ can be an arbitrary one, parameterizing

some curves/geodesic etc. In this section, we are interested in models when τ can be always related to a geometric flow /
temperature like parameter.
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the effects of possible off-diagonal and generalized effective sources, and omitting κ-parametric terms, we may
follow the assumptions for m (104). We note that the mass scale m in associative/commutative classical
and quantum theories states a natural cut-off above which the effective field description is not valid. In
such cases, for large distance variations in the space of metrics, when | gℵ| → ∞, we get for QG models a
respective massless tower of states. This breaks down/ invalidates the effective field theory description. In
modern literature [19, 20, 21, 18, 22, 23], it is argued that for respective conditions such theories belong to
the swampland. The conjectures and related results have to be revised for nonassociative geometric flow and
gravity/matter field theories when exact/parametric generic off-diagonal solutions of effective nonholonomic
Ricci flow and/or Ricci soliton equations are considered following the AFCDM. We formulate:

The generalized distance conjecture and claim for nonassociative phase spaces, CCL1:

a) Conjecture: For nonassociative geometric flow, gravity, and classical field theories, and respective QG and
QGTs encoding star product and R-flux data from string/M-theory, there are classes of exact/parametric
solutions with nonlinear phase space symmetries of type (A.8) connecting effective sources to effective shell
cosmological constants (for τ -running or fixed τ0 quasi-stationary and/or locally anisotropic cosmological
configurations with a time like coordinate ), when the corresponding effective geometric/physical models
belong to the swampland.

b) Claim: In a general context, nonassociative/ noncommutative/ nonholonomic / generic off-diagonal/
generalized (non) linear connection modifications of gravity theories contain also large classes of ex-
act/parametric solutions (involving, or not, nonlinear symmetries of type (A.8)) defining effective τ -
running, or fixed τ0), configurations which are physically well defined and characterized by a respective
modified G. Perelman thermodynamics with variables of type (50). We have to analyze additionally for
which conditions such models belong or not to the swampland.

It should be noted here that above a) Conjecture is a nonassociative phase space version of the generalized
distance conjecture for (associative and commutative) d-dimensional manifolds studied in [22, 23]. In this
work, we show that such a conjecture (and related ones, see next subsections) can be formulated for respective
conditions on nonassociative geometric flows when s

gℵ(102)→ ∞ in the space of τ -running, or fixed τ0,
pase space s-metrics. Nevertheless, using the AFCDM, we can construct large classes of exact/parametric
solutions when s

gℵ is "freezed" someway, for respective nonholonomic configurations, and do not result in
an infinite tower of effective phase masses pm (103). This reflects a more rich propriety of respective classes
of solutions of corresponding systems of nonlinear PDEs (describing the geometric flow evolution and/or
corresponding field equations) when generic off-diagonal interactions and evolution scenarios are modeled in a
more general way than in the case when the analysis is performed in the framework of diagonalizable solutions
and ODEs. Such results (we provided very general classes of quasi-stationary solutions and explicit examples
in the previous section) motivate the b) Claim. So, a (nonassociative) modified geometric flow, gravity, and/or
classical/quantum field theory may involve large classes of solutions, and respective effective models which
belong, or not to the swampland. It depends on the type of nonholonomic constraints, nonlinear symmetries
and nonlinear interactions, circumstances of the considered coupling, prescribed generating functions and
effective sources, and integration functions/constants. In all cases, for various models with solutions satisfying
the conditions of above stated CCL1, we are able to elaborate on modified G. Perelman thermodynamic models
(50), for general assumptions on nonassociative geometric flows; or (51), for (92), thermodynamic variables;
and (90), or (100), for explicit examples of general nonassociative BH/BE deformations.

At the next step, we analyze how keeping the conditions of CCL1, with notions formulated for the (phase)
spaces of s-metrics, it is possible to formulate a respective conjecture and claim involving the so-called Weyl dis-
tance [22] but generalized for nonassociative phase spaces. Specifically, we can consider an external conformal
re-scaling of s-metrics on sM,

pg̃αsβs(τ̄ ) = e2τ̄ pgαsβs , (105)
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where the (re-scaling) parameter τ̄ , in general, is different from a geometric flow/temperature like parameter
τ. Introducing (105) in (102), we compute s

gℵ̄ ≃ τ̄f − τ̄i ≃ τ̄ . Following a) Conjecture, there is a corresponding
tower of phase space states m̃ (103) with a scale of effective masses as m̃ ∼ e−α̂τ̄ . We obtain light masses in
respective towers if s

gℵ̄ ≃ τ̄ → ∞ (we can consider also an opposite large distance limit, s
gℵ̄ ≃ τ̄ → −∞, when

light states are with masses m̃′ ∼ eα̂τ̄ ). For a Weyl re-scaling, we can consider variations of the cosmological
constant, pΛ̄i ≤ pΛ̄(τ̄) ≤ pΛ̄f for corresponding families of (A)dS phase space vacua. We can express the τ̄ -
transforms of the cosmological constant for an arbitrary dimension ď of sM ( in this work, typical constructions
are performed for ď =8),

pΛ̄ = −1

2
(ď− 1)(ď − 2)M2

p e
−2τ̄ . (106)

The phase space metric distance between any initial, pΛi, and finial, pΛf , values of such running cosmological
constant can be approximated

s
gℵ̄ ≃ τ̄f − τ̄i ≃ log( pΛi/

pΛf ), (107)

which states that the limit pΛf → 0 is at infinite distance with respect to the Weyl re-scaling (105) of an
(A)dS phase s-metric. This corresponds to the limit τ̄ → ∞.

Combining the behaviour determined by the Weyl re-scaling formulas (105) - (107) and CCL1, we extend
the AdS Distance conjecture from [22, 23] in such a form:

The AdS distance conjecture and claim for nonassociative phase spaces, CCL2:

a) Conjecture: For models of (non) associative phase space geometric flow and gravity theories, and QG on a
ď-dimensional phase space sM with cosmological constant pΛ̄ (106), there exists an infinite tower of phase
space states with mass scale pm which, as pΛ → 0, behave as pm ∼ | pΛ|ᾱ, where ᾱ is a positive order-
one constant. Such a behavior can be described by phase space s-metrics (92) and their nonassociative
quasi-stationary deformations encoding star product and R-flux data from string/M-theory with nonlinear
phase space symmetries of type (A.8) connecting effective sources to effective shell cosmological constants
p
sΛ(τ) =

pΛ̄.

b) Claim: In general, in QG models with nonassociative/ noncommutative/ nonholonomic / generic off-
diagonal/ generalized (non) linear connection modifications, there are large classes of exact/parametric
solutions (involving, or not, nonlinear symmetries of type (A.8) when the approximation (107) is not
valid. Nevertheless, corresponding classes of solutions defining effective τ -running, or fixed τ0, configura-
tions, are physically well defined and characterized by a respective modified G. Perelman thermodynamics
with variables (50).

We formulate the b) Claims in CCL2 because for (non) associative geometric flow theories and gravity,
and their generic off-diagonal solutions, the conformal symmetry of s-metric is not a general property. In
some models, one speculates on possible duality between AdS and dS configurations (see footnote 3 in [23]
on necessary exchange of the mass-towers and powers of cosmological constants). Such duality properties and
re-scaling behaviour are not important for the procedure of generating exact/parametric solutions using the
AFCDM.

Finally, it should be noted that we can also consider a "dual" infinite distance limit when the associated
curvatures of phase space/ spacetime and (effective) cosmological constants became very large for τ̄ → −∞.
Such conditions for the string/M-theory and various coupling constants are analyzed in section III of [23]. In
general, it is not clear if a tower of light states may appear for such models large curvature/ cosmological
constants. Similar conclusions can be drawn for nonassociative phase models determined, for instance, by
diagonal s-metrics of type (92) and certain κ-parametric deformations. For more general classes of solutions,
limits of type τ̄ → −∞ may be not obligatory correlated to certain large curvature/cosmological constants
values because of generic off-diagonal interactions and imposed nonholonomic constraints on the geometric
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flow evolution and/or gravitational and matter field dynamics. Such issues have to be investigated for any
class of well-defined physical solutions determined by respective generating functions and effective sources,
integration functions and prescribed (non) linear symmetries.

6.1.2 Nonassociative Ricci flows and infinite phase space distance conjectures and claims

For associative and commutative Riemannian metrics, the geometric flow equations imply the properties
that for positive Ricci curvature the manifold is contracting and for regions of negative curvature the manifold
is extending. Such properties exist for space like configurations in pseudo-Riemannian geometry and nonasso-
ciative generalizations when, in general, the evolution scenarios depend on the type of solutions for respective
systems of nonlinear PDEs. Let us begin with some properties of the associative and commutative R. Hamilton
equations for the LC-connection ∇,

∂g(τ)

∂τ
= −2 Ric[∇](τ). (108)

The Ricci flow ends in certain fixed points τ⊙, when

∂g(τ)

∂τ
|τ=τ⊙= 0 and Ric(τ⊙) = 0,

i.e. a fixed point defines a flat spacetime with vanishing curvature and zero cosmological constant, Λ = 0.
Because a metric with vanishing cosmological constant is at infinite Weyl distance in the space of all AdS
metrics, it was conjectured [22, 23] that in QG on a family of background metrics g(τ) under Ricci flows
"there exists an infinite tower of states which become massless when following the flow towards a fixed point
g⊙ = g(τ⊙) at infinite distance".

In nonassociative geometric flow theory, the equations (108) can be generalized in the form (2) for a
family of nonassociative metrics p

g
⋆(τ) and respective family of nonassociative LC-connections p∇⋆(τ) on

phase space ⋆M. Such nonassociative Ricci flow equations involve κ-parametric decompositions of geometric
objects. Corresponding decompositions of nonsymmetric metric, canonical s-connection, and Ricci s-tensor
structures are given, for instance, in formulas (20), (29) and (30); for p∇, such formulas were proven in
abstract and coordinate forms for LC-configurations in [39] and generalized in nonholonomic s-adapted forms
in [12, 13]. The issue on definition of fixed points for nonassociative Ricci flows is more sophisticate and requests
a rigorous analysis of ceratin families of exact/parametric solutions of nonlinear systems of PDEs of type (41)
and their κ-linear parametric decompositions (46). For τ -families of configurations with nonlinear symmetries
(A.8) and respectively prescribed running/ fixed shell cosmological constants p

sΛ(τ), we can analyze fixed
point properties of κ-parametric of geometric flow equations (62), when

∂ p
sg(τ)

∂τ
|τ=τ⊙= 0 and pR̂βs

γs(τ⊙, sΦ(τ⊙),
p
sℑ(τ⊙)) = δβsγs

p
sΛ(τ⊙) = 0. (109)

Here we note that fixed points determined by such equations for the canonical s-connection do not define, in
general, fixed points for nonassociative geometric flows with p∇⋆(τ). Nevertheless, we can extract and study
properties of LC-configurations considering additional nonholonomic constraints (25),

p
⋆sẐ(τ⊙) = 0, which is equivalent to p

sD̂
⋆
| p

sT̂(τ⊙)=0
(τ⊙) =

p
⋆∇(τ⊙). (110)

Above formulas and observations lead to:

The fixed points of nonassociative geometric flows conjecture and claim, CCL3:

a) Conjecture: Consider a QG model on a family of background s-metric p
sg(τ) satisfying the κ-parametric

nonassociative geometric flow equations (62). There exists an infinite tower of phase space states with
zero effective masses when following the nonassociative geometric flow evolution toward a fixed point
p
sg⊙ = p

sg(τ⊙) at infinite distance.
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b) Claim: For QG models with nonassociative star product and R-flux modifications, there are large classes
of exact/parametric solutions (involving, or not, nonlinear symmetries of type (A.8)) when conditions
of type (109) do not hold, for instance, for LC-configurations (110). The conditions of existence at
fixed points, of infinite towers of phase spaces and behaviour of corresponding effective masses must be
analyzed correspondingly for any class of solutions of κ-parametric of geometric flow equations (62) or
certain their equivalents.

We can compute the metric distance (102) along the nonassociative Ricci flows between a τ and a fixed point
τ⊙ as function s

gℵ(τ, τ⊙) determined by a background solution p
sg(τ) (we can compute respective nonsymmetric

and symmetric components of the nonassociative s-metric) in formula (102). For such configurations, possible
associated towers of phase space states as in a) Conjecture in CCL3 scale as

pm(τ⊙) ∼ pm(τ)e−α̂|
s
gℵ(τ,τ⊙)|.

For many examples, a fixed point will be of the form τ⊙ = ±∞. The tower of nonholonomic states can only
appear when the nonassociative Ricci flow evolves to a fixed point. In general, a model/ off-diagonal solution is
not necessary characterized by an infinite tower of effective massless states in phase space. If sgℵ(τ, τ⊙) → ±∞,
a fixed point/ solution can never be reached. This means the transition between (non) associative geometric
flow theories/ Ricci solitons/ gravity and/or respective classes of solutions along the geometric flows to the
fixed point is discontinuous.

The a) Conjecture in CCL3 was checked in section 2.1 of [23] (see Conjecture A in that work) for simple
cases of associative and commutative Ricci flows, simple cases of Einstein spaces (for instance, for (A) dS with
non-zero cosmological constant) and string theory and QG realizations. Similar behavior can be stated by
phase space s-metrics (92) and their nonassociative quasi-stationary deformations encoding star product and
R-flux data when nonlinear phase space symmetries (A.8) are considered for connecting effective sources to
effective shell cosmological constants p

sΛ(τ), in particular, we can approximate p
sΛ(τ) =

pΛ̄.

6.1.3 Gibbons-Hawking entropy, scalar curvatures, and generalized distances for
nonassociative geometric flows

Let us consider an example of nonassociative Ricci flow equations (62) defined with nonlinear symmetries
(A.8) resulting in a conventional phase space cosmological constant p

sΛ(τ) = pΛ0. Considering classes of
solutions involving conventional phase space horizons, we can apply the concept of Gibbons-Hawking, GB,
entropy [57] and write pSGH = ( pΛ0)

−1. For quantum models, pSGH can be related to the dimension of the
Hilbert space of pH for observer’s causal domain [58, 59], when

dim pH = e1/
pΛ0 → ∞ for pΛ0 → 0.

This property was used in [60] to relate the modified de Sitter conjecture to the GB entropy of tower of massless
states (for infinite distance at pΛ0 → 0). This property can be extended to nonassociative phase spaces ⋆M
for respective conditions with p

sΛ(τ) =
pΛ0 and, for instance, for s-metrics of type (92). As explained above,

see formula (107), we can write s
gℵ̄ ≃ log | pΛ0|, which for de Sitter configurations with positive cosmological

constant results in s
gℵ̄ ≃ log pSGH . We conclude that in the large distance limit the GB entropy becomes large

and this leads to a large tower of light states.
The concepts of Gibbons-Hawking and/or Bekenstein-Hawking entropies can be applied only for very special

classes of solutions (with conventional horizons) in geometric flow and gravity theories. In next subsections
we shall consider modified G. Perelman functionals in order characterize more general classes of generic off-
diagonal solutions.

Here, we analyze another type of geometric properties of the nonassociative phase space geometric distance.
To work directly with formula s

gℵ (102) is quite sophisticate and not completely clear how to formulate certain
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consistent geometric criteria to decide which families of background s-metrics can be used as backgrounds in a
consistent QG theory not involving an additional tower of light states, with or not generic off-diagonal terms,
in the infinite distance limit. That why we define in this work alternative, more general and more abstract
distance measures, which can encode nonassociative star product R-flux contributions.

Let us consider nonassociative Ricci flows for a family of geometric data [ p
⋆gαsβs(τ),

p
sD̂

⋆(τ)] subjected
to the condition that they are determined by a solution of nonassociative R. Hamilton equations (41). Such
equations involve complex like variables and canonical nonholonomic structures modeling generic off-diagonal
evolution processes and, for fixed Ricci soliton configurations, gravitational interactions subjected to non-
integrable constraints. Important geometric and possible physical properties are encoded in the corresponding
families of canonical nonassociative Ricci scalars p

sR̂sc
⋆(τ) (31). In partner works [12, 13], it is elaborated a

procedure of parametric decompositions of related fundamental geometric s-objects pR̂
⋆µs
αsβsγs

(28), pR̂ic⋆αsβs

(30) and p
sR̂sc

⋆ (31) with [01, 10, 11] := ⌈~, κ⌉ components, using the parametric form of the canonical s-
connections (29). This procedure is summarized in by formulas (28) - (31) in Appendix.

The Conjecture B1 from [23] states that the distance ℵR in the field space of the background Riemannian
metrics along the Ricci flows on a ď-dimensional Riemannian manifold is determined by the scalar curvature
of the LC-connection, R(τ) := Rsc[∇](τ), when at R = 0, there is an infinite tower of additional massless
states in QG. That Conjecture do not have a straightforward extension for nonassociative geometric flows and
related gravity theories because of such reasons:

1. Nonassociative phase spaces ⋆
sM can be endowed with different classes of (non) linear connections

and respective curvature and Ricci s-tensors, and respective scalars. There are necessary additional
assumptions and physical motivations on how, for instance, the canonical geometric objects are related
to similar ones for LC-configurations.

2. The generalized distance functional s
gℵ (102) and, for instance, the canonical scalar curvature p

sR̂sc
⋆(τ)

(31), and their restrictions for LC-configurations considering additional nonholonomic constraints (25),
involve complex coordinates and geometric variables. It is not clear, in general, how to find a physical
interpretation for such non-quantum models even the complex variables are important in QG.

We can solve in general forms the problems stated above in paragraphs 1 and 2 if we work with canonical
geometric data when the terms with complex variables are transformed into almost complex and almost
symplectic ones. If necessary, such nonholonomic geometric objects can be considered as certain canonical
distortions of certain LC-models. Respective κ-linear decompositions to models of parametric (real and effective
associative and commutative, but nevertheless nonholonomic) geometric flows, with nonholonomic R. Hamilton
equations (46), also allow to elaborate on physical viable theories with corresponding Conjectures and Claims:

The canonical distance - scalar curvature conjecture and claim for nonassociative geometric
flows, CCL4:

a) Conjecture: Consider a model of nonassociative geometric flows determined by κ-parametric R. Hamilton
equations (46). The generalized distance s

gℵ (102) can be defined in a form s
Rℵ̂ determined by the

canonical scalar curvature p
sR̂sc[

p
sg(τ),

p
sD̂(τ), pℑαsβs(τ)] for certain canonical data for the equivalent

system of PDEs (53). For QG models at p
sR̂sc = 0, there exists a canonical infinite tower of phase space

states with zero effective masses.

b) Claim: For configurations with nonlinear symmetries (60) and transforms of generating functions and
generating sources, [ sΨ(τ), p

sℑ(τ)] → [ sΦ(τ),
p
sΛ(τ)], we can construct exact/parametric solutions of

τ -running κ-linear modified Einstein equations (62) satisfying the conditions stated by above conjecture.
LC-configurations can be extracted if additional nonholonomic constraints (25) are imposed.
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Generalizing for nonassociative canonical geometric flows on ⋆M the formula (51) from [23], we consider
an alternative definition of (102) when

s
Rℵ̂ ≃ log( p

sR̂sc(τi)/
p
sR̂sc(τf )).

For some classes of solutions, we can consider flow evolution models with τf < τi. If in the vicinity of a fixed
point p

sR̂sc(τf ) = 0 but p
sR̂sc(τi) 6= 0, we can approximate

s
Rℵ̂(τ) ≃ log( p

sR̂sc(τ)) ≃ log(
∑

s

p
sΛ(τ)), (111)

for configurations with τ -running shell cosmological constants. The nonassociative off-diagonal geometric flux
evolution and gravitational interactions define in the infinite canonical distance limit (when s

Rℵ̂ → ∞ with
p
sR̂sc→ 0) a canonical tower of effective massless states

pm ∼Mpe
−α̂| s

Rℵ̂| ≃ ( p
sR̂sc)

α̂ ≃ (
∑

s

p
sΛ)

α̂. (112)

The statements of CCL4 can be reformulated for LC-configurations. Here we note that, in general, the
condition p

sRsc[
p∇] = 0 is characterized by p

sR̂sc 6= 0 which reflects the nonholonomic, locally anisotropic and
off-diagonal characters of effective masses pm (103) and/or (112). We prefer to work with canonical s-adapted
geometric variables because this allows us to apply the AFCDM and construct general classes of solutions.
The problem to consider p∇ as a more fundamental than the (auxiliary) canonical s-connection, p

sD̂, or other
not/or s-adapted linear connections, has to be analysed using certain additional theoretical arguments and
experimental/observational data. For pseudo-Riemannian spacetimes, the associated entropy S ≃ exp( sRℵ̂(τ))
become infinite in the flat spacetime limit. This was also pointed out in [61] for the BH entropy considerations
using the Bekenstein-Hawking paradigm. Restricting above formulas for base spacetime LC-configurations, we
conclude that the flat space limit should be accompanied by an infinite number of massless stated and that,
for instance, the Minikowki spacetime is infinitely far away from the curved manifolds along the geometric
flow. This means that the flat space never be reached, and that the transition to flat space is discontinuous.
Nevertheless, such results have to be revised, for instance, if we consider contributions from nonassociative
star products and R-fluxes and work with more general classes of generic off-diagonal solutions.

6.1.4 Generalized distances and nonassociative geometric flow G. Perelman functionals

We have to introduce and study more complicate distance functionals and test respective claims and
conjectures for nonassociative geometric flows and related classical gravity and QG models. Let us begin with
original considerations for geometric flows on ď-dimensional Riemannian manifolds, see Conjecture B2 in [23]
for the F-functional F (τ) = F (g(τ), f(τ)) (9) and (in our notations) respective distance functional ℵF . It was
conjectured that in the background field space along the combined dilaton-metric flow ℵF is determined by
F-functional when in QG models related to such Ricci flows there is an infinite tower of additional massless
states at F = 0. Here we note that f(τ) is not obligatory a dilaton type field and originally it was considered
as a normalizing function [1], see also the footnote 10.

In the case of nonassociative geometric flow, we can elaborate on physical viable theories with:

The canonical distance - F-functional conjecture and claim for nonassociative geometric flows,
CCL5:

a) Conjecture: Consider a model of nonassociative geometric flows determined by a κ-parametric functional
p
sF̂⋆

κ(τ) (44). The generalized distance s
gℵ (102) can be defined and computed in a form s

F ℵ̂ determined

by the canonical scalar curvature for certain canonical data [ p
sg(τ),

p
sD̂(τ), pℑαsβs(τ)] as solutions of

nonassociative geometric flow equations (53). For QG models at p
sF̂⋆

κ = 0, there exists a canonical infinite
tower of phase space states with zero effective masses.
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b) Claim: For nonassociative geometric flow models and gravitational configurations with nonlinear sym-
metries (60), we can construct exact/ parametric solutions of τ -parametric running κ-linear modified
Einstein equations (62) satisfying, or not, the conditions stated by above conjecture. We can extract
LC-configurations for additional nonholonomic constraints (25).

We can define and compute a generalized distance functional if

s
F ℵ̂ ≃ [ p

sF̂⋆
κ(τi)/

p
sF̂⋆

κ(τf )].

In the case when p
sF̂⋆

κ(τf ) is a fixed point of the nonassociative flow equations (53), the canonical tower of
effective massless stated scale for s

F ℵ̂ → ∞ as

pm ∼Mpe
−α̂| s

F ℵ̂| ≃
(

p
sF̂⋆

κ(τ)
)α̂

≃
(

p
sR̂sc(τ) +

p
sK̂sc(τ)

)α̂
.

A normalizing function f̂(τ) can be prescribed in a form when the distortion p
sK̂sc(τ) is absorbed in such

a form that the nonassociative geometric flow is determined by s
F ℵ̂ ≃ s

Rℵ̂ ≃ log( p
sR̂sc) as in (111). For

other type models, for instance, with f treated as a dilaton field, and considering only a base spacetime flow
of dilaton, we can approximate s

F ℵ̂ ≃ log gs, where gs is the string coupling (see formula (65) and footnote 8
in [23]). Nonassociative geometric flow configurations with nonlinear symmetries (60) can be characterized by
s
F ℵ̂ ≃ − log |

∑
s

p
sΛ(τ)| , which is compatible with the conditions of previous CCL4.

G. Perelman [1] defined also another important functional, the W-functional, which is a "minus entropy"
and can be used for treating the case of collapsing cycles of the Ricci flow theory of Riemannian metrics. In
connection to the generalized distance functional, the Conjecture B3 from [23] states that for geometric flows
of Riemannian metrics we can introduce a generalized distance s

W ℵ̂ in the background field space along the
Ricci flow evolution which is determined by the W-entropy. For QG models in the points where this variable
vanishes, there is an infinite tower of massless states. Such constructions involve more rich nonholonomic
geometric structures for nonassociative geometric flows, and results in physical models with local anisotropy.

For κ-parametric decompositions, we can introduce a re-scaling factor χ(τ) in the definition of p
sŴ⋆

κ(τ)
(45), when

p
sŴ⋆

κ[
p
sg(τ),

p
sD̂(τ), χ(τ); pℑαsβs(τ)] = (113)

∫

p

sΞ̂
δ puγs(χ)

√
| pgαsβs (χ)|

[
χ
(

p
sR̂sc(χ) + ( p

sD̂(χ) p
sf̂(χ))

2
)
+ p

sf̂(χ)− 8
] e− p

sf̂(χ)

(4πχ)4
,

under constraint
∫

p

sΞ̂
δ puγs(χ)

√
| pgαsβs (χ)|e− p

sf̂(χ)/(4πχ)4 = 1. The normalizing function p
sf̂(χ) and re-

scaling factor χ(τ) can be chosen in such a form that the resulting variational geometric flow equations involve
only the canonical Ricci s-tensor and respective scalar curvature. As a result, the nonassociative geometric
flow equations (46) can be written equivalently as

∂τ
pgαsβs(τ) = −2 pR̂ αsβs(τ), (114)

∂τ
p
sf̂(τ) = p

sR̂sc(τ)− △̂(τ) p
sf̂(τ) + ( p

sD̂(τ) p
sf̂(τ))

2(τ) + 4/χ(τ),

∂τ χ(τ) = −1.

Here we note that the nonassociative star product and R-flux contributions of order ⌈~, κ⌉ are encoded into
generating functions, generating sources and nonlinear symmetries (60) of s-metrics pgαsβs(τ). Such τ - and
χ-families of s-metrics can be found as exact/parametric solutions (62) with prescribed effective running
cosmological constants p

sΛ(τ). Finding a solution of the nonlinear system of PDEs (114), we can introduce
it in the formula (113) and compute the W-entropy of associated thermodynamic system. This functional is
important for a further analysis if such a nonassociative model belongs, or not, to swampland.
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Summarizing above considerations, for nonassociative geometric flows, we formulate:

The canonical distance - W-functional conjecture and claim for nonassociative geometric
flows, CCL6:

a) Conjecture: For models of nonassociative geometric flows determined by κ -parametric functional p
sŴ⋆

κ(τ)
(113), the generalized distance s

gℵ (102) can be defined in a form s
W ℵ̂ determined by such a canonical W-

entropy functional defined and computed for corresponding canonical data and solutions of nonassociative
geometric flow equation (46). For QG models at p

sŴ⋆
κ = 0, there exists a canonical infinite tower of

phase space states with zero effective masses.

b) Claim: If certain nonassociative models of geometric flows / Ricci solitons are constructed to posses
nonlinear symmetries (60) to running cosmological constants p

sΛ(τ), we can generate exact/ paramet-
ric solutions of τ -parametric running κ-linear modified Einstein equations (62) satisfying, or not, the
conditions stated by above conjecture. LC-configurations can be extracted for additional nonholonomic
constraints (25). The formulas for s

W ℵ̂ can be expressed as functionals on p
sΛ(τ) and respective volume

forms and the conclusion that such a nonassociative geometric and thermodynamic model belongs, or not,
to swampland depend on the type of prescribed generating functions and running effective cosmological
constants.

In analogy to CCL4 and CCL5, we define and compute for CCL6 such a generalized distance functional:

s
W ℵ̂ ≃ log( p

sŴ⋆
κ(τi)/

p
sŴ⋆

κ(τf )). (115)

If p
sŴ⋆

κ(τf ) is a fixed point of the nonassociative flow equations (114), the canonical tower of effective massless
stated scale for s

W ℵ̂ → ∞ as
pm ∼Mpe

−α̂| s
W ℵ̂| ≃

(
p
sŴ⋆

κ(τ)
)α̂

. (116)

In [23] (see formulas (88)-(95) in that work), there are provided explicit computations for functionals (115)
and (116) in some cases of associative and commutative geometric flows, for instance, for high dimensional
Einstein spaces and 2-d spacetime with SO(2) symmetries. Another example was studied for modified gravity
with F(R) Ricci flows (section 4, in that work). Here we note that more general examples and various
applications for R2-gravity with locally anisotropic cosmological and BH solutions were studied in [62]. We
shall provide explicit proofs of W-entropy and related formulas for generalized distance and effective massless
stated scales for explicit examples of nonassociative BH solutions in next subsections.

6.1.5 Generalized nonassociative phase space swampland conjectures for effective (A) dS phase
space configurations and the Bekenstein–Hawking entropy

In [63, 26], there were studied possible physical implications of the Black Hole Entropy Distance Conjecture,
BHEDC. It was postulated in the framework of a research elucidating a close connection between the infinite
distance conjecture in the context of swampland and area law for the Bekenstein-Hawking entropy, SBH . That
conjecture sates that for BH spacetime configurations in QG, the formulas s

gℵ (102) and m (104) can be
written, respectively, in the form

s
BHℵ ∼ logSBH and m ∼ S−α̂

BH , where α̂ ∼ O(1). (117)

For such considerations, the limit SBH → ∞ is identified with the Minkowski spacetime. The BHEDC was
tested and generalized for concrete string setups with AdS configurations; for metrics belonging the family of
RNdS solutions; multi-horizon spacetimes; for BH evaporation etc.

56



Nonassociative star product and R-flux deformations result in different types of nonlinear systems of PDEs
characterized by more general classes of generic off-diagonal solutions, nonholonomic structures and (non)
linear connections. Such solutions are generated for corresponding nonlinear symmetries and for coefficients
of the fundamental geometric objects depending on all phase space coordinates and flow evolution parameter.
Nevertheless, we can construct also some very special and physically important classes of solutions with
conventional horizons when the nonassociative contributions are encoded into respective classes of generating
functions (for instance, rotoid deformations). Our strategy for generalizing the BHEDC on nonassociative
phase spaces ⋆M is stated as follow:

The phase space black hole entropy distance conjecture and claim for nonassociative geomet-
ric flows, CCL7:

a) Conjecture: Exact/ parametric solutions with conventional phase space hyper-surface horizons, hh, defining
models of nonassociative geometric flows and/or gravity theories with κ-parametric modified R. Hamilton
(46) / Ricci soliton (43) equations, and describing τ -families of star product R-flux deformed BHs.
The QG models for such quasi-stationary solutions are characterized by a Bekenstein-Hawking entropy
variable, p

sShh defined on corresponding phase spaces when the generalized distance s
hhℵ ∼ log( p

sShh) and
effective mass scale for a respective tower of states is p

sm ∼ p
sS

−α̂
hh , for α̂ ∼ O(1).

b) Claim: For nonassociative geometric flow models and gravitational configurations with nonlinear symme-
tries (60) for running cosmological constants p

sΛ(τ), we can construct exact/parametric solutions of
τ -parametric running κ-linear modified Einstein equations (62) satisfying, or not, the conditions stated
by the phase space BHEDC. We can extract BE and BH solutions for LC-configurations for additional
nonholonomic constraints (25).

Additionally, in this subsection, we provide a list of four parametric solutions for τ -families of nonassociative
BE and BH solutions which are characterized by the conditions CCL7 and can be investigated as models of
nonassociative geometric flows for which the paradigm of Bekenstein–Hawking thermodynamics holds true.

Type of solution

Nonlinear
quadratic
element

Generalized Bekenstein-Hawking entropy, p

sShh

1.
Nonassociative τ -deformed
double RNdS BHs, dissipation
to BEs & Schwarzschild BHs,

d ♭
p
s2[8d](τ),

see (84);

p

sShh = S0(τ, r, θ, ϕ) + pS0(τ, p, pθ, pϕ),

S0 = Ω2×(rs)
4

4 [1 + 4κ
3 χ(τ, r, θ) sin (ω0ϕ+ ϕ0)],

pS0 = Ω2×(ps)
4

4 [1 + 4κ
3 χ(τ, p, pθ) sin(

p
p
ω0pϕ + p0ϕ)

see (85).

2.
Nonassociative τ -running
couples of Schwarzschild-AdS
BHs and BEs deformations,

d ǫ
p
s2[8d](τ),

see (87);

p

sShh = ǫχS(τ, r, θ, ϕ) + ǫχ
p
S(τ, p, pθ, pϕ),

ǫχS = ǫS0(τ)[1 +
4κ
3 χ(τ, r, θ) sin(ω0ϕ+ ϕ0)],

ǫχ
p
S = ǫ

p
S0(τ)[1 + 4κχ(τ, p, pθ) sin(

p
p
ω0 pϕ + p0ϕ)]

see (89) and (88).

3.
d = 5 RN AdS metric
embedded into a
8-d phase space sM,

d s̆2[5+3],

see (92);
0S̆ =

0Ă
4G[5]

=
ω[3]r̆h
4G[5]

, see (97).

4. τ -running phase space
RN-AdS BEs

d χ
p
s2[6⊂8d](τ),

see (95);
S̆(τ) =

0
S̆(1+κ

2 χ̂4(τ)), see (98).

There are possible different scenarios of nonassociative geometric flow evolution defined by above outlined
solutions. They depend on the type of generating functions and prescribed τ -running/fixed cosmological con-
stants, and respective nonlinear symmetries (60). In the case 1, the off-diagonal interactions and flow evolution
may transform a phase space double RNdS BH configuration into a phase system of BEs and Schwarzschild
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BHs, when the thermodynamic variables are computed as rotoid type locally anisotropic deformations of re-
spective variables in Bekenstein-Hawking thermodynamics. For certain classes of nonholonomic constraints,
the corresponding ellipsoidal deformations can be stable for a fixed value τ0 (i.e. there are defined stable
nonassociative phase space Ricci solitons) and describe τ -evolution preserving the prime configuration. Such
models are described by solutions of type 2. Similar scenarios can be described by solutions of type 3 and
4 but with different thermodynamic models and physical interpretations which is typical for the phase space
higher dimension BEs and BHs.

6.2 Nonassociative geometric flows, swampland conjectures, and G. Perelman thermo-
dynamics

A class of solutions for nonassociative geometric flows and/or nonassociative gravitational equations can be
always characterized by an associated G. Perelman thermodynamic model, when, for instance, the conditions of
CCL6 are satisfied but those stated in CCL7 are not applicable. We have to investigate explicitly (for a class of
τ -quasi-stationary solutions) if and for which the conditions and statements of CCL1-CCL6 are true, not true,
or undetermined. In this subsection, we study a certain important examples how the swampland conjectures
have to be extended to nonassociative Ricci flows. In explicit form, we show how such constructions are related
to CCL6 when the W-entropy is used for defining and computing the generalized canonical distance functional
and respective tower of effective mass stated scaling, see respective formulas (115) and (116). Similar analysis
on applicability and testing of CCL1-CCL5 are not presented in this work because, the formulas with canonical
scalar curvature, F-functionals etc. are more cumbersome and not related directly to computation of variables
of G. Perelman thermodynamics.

6.2.1 The canonical distance - W-functional conjecture and claim, CCL6, for τ-running
nonassociative generating sources and quasi-stationary solutions

For any class of solutions of geometric flow equations (53) with τ -running effective sources p
sℑ(τ) (52),

represented in a form (55), or (65), or (68), we can compute the star product deformed W-functional p
sŴ⋆(τ)

(39). Let us consider a s-metric p
sg[~, κ, τ, ψ(τ), sΨ(τ), p

sℑ(τ)] for quasi-stationary solutions of type (A.10).
We can compute the W-entropy and S-entropy functions as in formulas (69) but for corresponding generating
functions and effective sources, and volume form pδ pV(τ) (49),

p
sŴ⋆

κ(τ) =

∫ τ

τ ′

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sℑ(τ)]2 − 8

)
pδ pV(τ), (118)

p
sŜ⋆κ(τ) = −

∫ τ

τ ′

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sℑ(τ)]− 8

)
pδ pV(τ). (119)

So, nonassociative geometric flows can be characterized by two entropy type variables: the "standard" sta-
tistical thermodynamics entropy (similar to constructions in hydrodynamic models of moving media but in
terms of curvature scalars, metrics, connections) , p

sŜ⋆κ(τ), with [
∑

s
p
sℑ(τ)]; and the "minus" entropy, i.e.

W-entropy, p
sŴ⋆

κ(τ), with [
∑

s
p
sℑ(τ)]2.

Using (119), we can modify the formulas (117) for BHEDC and the conditions of CCL7,

s
S⋆
κ
ℵ̂ ∼ log( p

sŜ⋆κ(τ)) and p
sm ∼ ( p

sŜ⋆κ(τ)) −α̂ for α̂ ∼ O(1).

Alternatively, we can follow the CCL6 and compute (115) and (116) for (118). Respectively, we obtain a
generalized distance functional:

s
W ℵ̂ ≃

∫ τi

τf

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sℑ(τ)]2 − 8

)
pδ pV(τ), (120)
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when the canonical tower of effective massless stated scale for s
Rℵ̂ → ∞ as

pm ∼Mpe
−α̂| s

W ℵ̂| ≃
( ∫ τf

τi

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sℑ(τ)]2 − 8

)
pδ pV(τ)

)α̂
. (121)

In general, it is not clear if such nonassociative geometric flow models belong, or not, to swampland. It depends
of the data for generating functions encoded in pδ pV(τ) and effective sources p

sℑ(τ). We have to analyze such
issues for explicit classes of solutions of (53).

6.2.2 CCL6 for τ-running effective shell cosmological constants and quasi-stationary solutions

Using nonlinear symmetries (60), with p
sg[~, κ, τ, ψ(τ), sΨ(τ), p

sℑ(τ)] → p
sg[~, κ, τ, ψ(τ), sΦ(τ),

p
sΛ(τ)],

we can study the conditions of CCL5 involving quasi-stationary solutions of type (A.10). This allows us
to simplify the formulas for explicit computation of W-entropy p

sŴ⋆
κ(τ) in terms of running/fixed effective

cosmological constants p
sΛ(τ), see (69) with pδ pV(τ) (70). Introducing such values, respectively, in (115) and

(116), we obtain:
s
W ℵ̂ ≃

∫ τi

τf

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sΛ(τ)]

2 − 8
)

pδ pV(τ), (122)

when the canonical tower of effective massless stated scale for s
Rℵ̂ → ∞ is computed as

pm ∼Mpe
−α̂| s

W ℵ̂| ≃
( ∫ τf

τi

dτ

(4πτ)4

∫

p

sΞ̂

(
τ [
∑

s

p
sΛ(τ)]

2 − 8
)

pδ pV(τ)
)α̂

. (123)

Prescribing data for p
sΛ(τ) and pδ pV(τ), we are able to generate nonassociative geometric flow scenarios

which belong, or not, two swampland. Such an analysis is more simple than that for (120) and (121) because
respective formulas (122) and (123) contain effective cosmological constants which can be prescribed in certain
forms which allow generating viable and important physical models.

Above formulas can be computed in explicit κ-parametric form when p
sŴ⋆

κ(τ) = p
sŴ0 + κ p

sŴ⋆
1 (τ), for

pδ pV = pδ pV0 + κ pδ pV1 (75). We omit in this work such cumbersome computations and incremental formulas
with κ–linear decomposition as in (76), which can be considered for solutions of type (84), with χ-polarization
functions.

6.2.3 CCL6 for nonassociative flows of phase space deformed (double) RN-dS BHs

The W-entropy from (90) was computed for target s-metrics (80) with η-polarization functions defining
general quasi-stationary star-product R-flux deformations of double RN-dS BHs in nonassociative phase spaces.
Such configurations can be characterized by effective cosmological constants p

1Λ0 = p

2Λ0 = Λ̌ ≥ 0 and
p

3Λ0 = p

4Λ0 = pΛ̌ ≥ 0. This class of solutions can be extended for running cosmological constants p
sΛ(τ) =

[Λ̌(τ), pΛ̌(τ)] ≥ 0; when respective effective sources p
sℑ(τ) are related via nonlinear symmetries (60) to such

p
sΛ(τ). In general, such nonassociative geometric flow deformations do not describe BH configurations and their
general physical interpretation is not clear. For κ-parametric decompositions with χ-generating functions (84),
we can model stable BE and BH configurations embedded self-consistently into nonassociative phase space
backgrounds.

Using (90) and introducing p
sΛ(τ) = [Λ̌(τ), pΛ̌(τ)] in formulas (122) and (123), we compute

s
W ℵ̂ ≃

∫ τi

τf

dτ

64(πτ)4
τ [Λ̌(τ) + pΛ̌(τ)]2 − 2

|Λ̌(τ) pΛ̌(τ)|
p♭
ηV(τ),

when the canonical tower of effective massless stated scale for s
Rℵ̂ → ∞ as

pm ∼Mpe
−α̂| s

W ℵ̂| ≃
( ∫ τf

τi

dτ

64(πτ)4
τ [Λ̌(τ) + pΛ̌(τ)]2 − 2

|Λ̌(τ) pΛ̌(τ)|
p♭
ηV(τ)

)α̂
.
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Prescribing data for Λ̌(τ) and pΛ̌(τ) and p♭
ηV(τ), we are able to generate nonassociative geometric flow scenarios

for deforming double BH solutions in phase space, which belong, or not, to swampland. This depends on
behaviour of s

W ℵ̂ (if there are limits to inf, or zero) for some types of chosen functions under the integral on
τ .

6.2.4 CCL6 for nonassociative flows of phase space nonholonomic deformed RN-AdS BHs

The conditions of CC6 can be tested for another class of exact/parametric solutions (93) and (95) with
W-entropy (100) with volume form (101). In such a target metric, there is an effective cosmological constant

sΛ(τ) = Λ[5] < 0, for s = 1, 2, 3, 4; when respective effective sources p
sℑ(τ) are related via nonlinear symmetries

(60) to Λ[5]. Using (100), (122) and (123), we write:

s
W ℵ̂ ≃

∫ τi

τf

dτ

32(πτ)4

2τΛ2
[5] − 1

Λ2
[5]

p
ηV̆(τ),

when the canonical tower of effective massless is characterized by such a scale behaviour for s
Rℵ̂ → ∞ :

pm ∼Mpe
−α̂| s

W ℵ̂| ≃
( ∫ τf

τi

dτ

32(πτ)4

2τΛ2
[5] − 1

Λ2
[5]

p
ηV̆(τ)

)α̂
.

Such formulas can be generalized for a τ -running cosmological constant Λ[5](τ) < 0 with the same value for all

shells. Effective volume flows p
ηV̆(τ) can be adapted to nonholonomic s-distributions which allow to conclude

if such nonassociative geometric flow deformed phase space RN-AdS BHs belong, or not, to swampland.

7 Discussion and conclusions

This is the fifth partner work in a series of articles devoted to the theory of nonassociative geometric and
information flows, modified gravity, and applications in astrophysics and cosmology [12, 13, 40, 41]. Such a
research program is motivated by important results on nonassociative geometry and physics involving theories
with star product R-flux deformations in string and M-theory [34, 35, 36, 37, 38, 39]. In this paper, we postulate
the main functionals and derive the geometric evolution equations for such a theory of nonassociative Ricci
flows and gravity; state the necessary conditions for a general decoupling and integrability of necessary systems
of nonlinear PDEs; and construct new classes of exact/parametric solutions describing nonassociative flux
evolution on quasi-stationary and BH configurations. There are computed and analyzed physical properties
of nonassociative phase space thermodynamic variables developing the paradigms defined (for subclasses of
solutions with conventional hyper-surface horizons) by the Bekenstein-Hawking entropy, and/or following the
G. Perelman W-entropy and geometric thermodynamic approach which is applicable to general geometric
evolution models and generic off-diagonal solutions. Finally, we study key issues (formulated as conjectures
and claims) related to nonassociative extensions and revision of the swampland program [19, 20, 21, 18, 60,
22, 23, 24, 25, 26, 27].

7.1 Summary and discussion of main results

Let us discuss how the results of this paper fit in with the Objectives (Aims 1-5) stated in section 1.2. We
analyze the most important ideas and innovative methods, consider possible interpretations, and present the
key points of novelty and originality:

1. Using nonassociative star product, ⋆, deformations, we define in section 2 (first objective) generalized
G. Perelman F- and W-functionals, p

sF̂⋆(τ) and p
sŴ⋆(τ), see formulas (38) and (39); and effective
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functionals p
sF̂⋆

κ(τ) (44) and p
sŴ⋆

κ(τ) (45), for computing κ-parametric decompositions (on string con-
stant κ, when τ is a temperature like parameter). Such functionals are used for deriving nonassociative
versions of R. Hamilton equations describing nonassociative and noncommutative geometric flow evolu-
tion models. For self-similar configurations, they define nonassociative Ricci soliton geometries and, in
particular, nonassociative vacuum gravity theories with running cosmological constants. We note that
nonassociative geometric flow evolution theories and applications have not been studied in modern math-
ematics and physics. There were elaborated only approaches related to noncommutative geometry (a lá
A. Connes) [15], geometric and quantum information flow theories and modified gravity [62, 6, 7, 8]; and,
in associative/commutative form, it is performed a recent research on swampland conjectures and Ricci
flows [23, 24, 26, 27]. Our nonassociative geometric models and solutions are self-consistent and well-
defined in a sense that they are nonholonomic deformations with 2+2+2+... and/or (3+1)+(3+1)+....
decompositions of dimensions, encoding nonassociative geometric data, and generalizing the fundamental
geometric objects and evolution equations in standard Ricci flow theory [4, 5, 1, 2, 3, 9, 10, 11]. Such
geometric constructions can be performed in relativistic forms for Lorentz manifolds and their (co) tan-
gent bundles, when the nonassociativeand noncommutative structures are determined by star product
and R-flux deformations in string and M-theory.

In [38, 39], two similar models of nonassociative gravity theories were elaborated up to defining and com-
puting the nonassociative Ricci tensor for the nonassociative star deformed Levi-Civita, LC, connection,
involving (non) symmetric metric structures. The originality of nonassociative geometric methods elab-
orated for the nonholonomic shell oriented structures in [12, 13] consists in developing a formalism which
allows us to apply the anholonomic frame and connection method, AFCDM [16, 17, 62] for construct-
ing exact and parametric solutions in modified gravity theories, MGTs; see a brief review in Appendix
A. Using the AFCDM we can prove a general decoupling and integration property of of nonassociative
R. Hamilton equations (41), see section 4 and [40, 41], for related details for nonasscociative vacuum
Einstein equations.

Modern mathematics states explicit limitations, in the sense of topology and geometric analysis meth-
ods, for elaborating a general nonassociative and/or noncommutative Ricci flow theory. This is be-
cause an infinite number of models of nonassociative/ noncommutative geometries can be elaborated
(some of them present interest in modern mathematical physics and information theory) and it was not
formulated at least an example of nonassociative/ noncommutative / relativistic generalization of the
Poincaré-Thurston conjecture. Nevertheless, nonassociative geometric flow models with star product R-
flux deformations are well defined (at least in κ-parametric form, in the framework of string/ M-theory,
and corresponding phase space generalizations of the Einstein gravity). Applying the AFCDM, we can
construct physically important solutions of respective nonlinear systems of PDEs.

2. Theories of nonassociative geometric flows and modified gravity are characterized by respective statisti-
cal thermodynamic models defined by W-entropy p

sŴ⋆(τ) and related statistical generating functional
p
sẐ⋆(τ). The novelty of the second objective (for section 3) consists in formulating a nonassociative
geometric thermodynamic theory determined by variables (50) encoding nonassociative geometric data in
the κ-linear thermodynamic variables [ p

sÊ⋆κ(τ), p
sŜ⋆κ(τ), p

sσ̂
⋆
κ] (51). Such statistical thermodynamic vari-

ables are defined using fundamental (non) associative/ commutative geometric objects (the geometric
measure, (non) linear derivatives, respective nonassociative Ricci tensors and scalar curvatures). They
can be computed, at least in κ-parametric forms, for all classes of solutions of corresponding geomet-
ric flow/ gravitational field equations. Former results were for associative and commutative theories
[23, 24, 26, 27, 63] and involving special classes of solutions with conventional horizons when the concept
of Bekenstein-Hawking entropy [47, 48, 49, 50] is well-defined. Following a nonassociative generalized
G. Perelman functional formalism [1, 9, 10, 11, 7], we can elaborate on a new statistical/ geometric
thermodynamic paradigm for classical and quantum gravity and information theories, and study non-
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linear models of quasi-stationary and locally anisotropic cosmological evolution in MGTs, see details in
[62, 6, 7, 8, 17, 62].

3. In our approach, the nonassociative geometric and gravity theories with star product R-flux deformations
are defined on nonholonomic phase spaces modelled as cotangent Lorentz bundles, ⋆

sM = T ∗
s V, with

nonholonomic shell, s, dyadic splitting of dimensions, 2+2+2+2. Following the third objective of this
work, in section 4, we show how the AFCDM developed for nonassociative gravity theories in [13, 40, 41]
can be applied for generating τ -evolving classes of quasi-stationary solutions of nonassociative geometric
flow equations written in κ-parametric form (46). An original and important result consists from the
proof that, for well-defined nonholonomic geometric and relativistic physical assumptions, such equations
can be written in two equivalent forms:

• 1] as τ -running canonically s-deformed Einstein equations (53), with effective sources pℑαsβs(τ)
encoding nonassociative geometric data; and

• 2] as equivalent families of modified vacuum gravitational equation (62), with effective τ -running
shell cosmological constants p

sΛ(τ).

Such functional representations of κ-parametric nonassociative R. Hamilton equations are important
because they allow us to use directly the AFCDM (as for the nonholonomic Einstein equations but with
additional τ -dependence) and generate various classes of generic off-diagonal solutions. The method
simplifies substantially if there are considered, for instance, some general classes of quasi-stationary
solutions involving nonlinear symmetries of type (60) (for generating locally anisotropic cosmological
solutions, we have to consider certain dual nonlinear symmetries).

We constructed in general off-diagonal forms such exact/parametric nonassociative geometric flow solu-
tions for τ -evolving quasi-stationary configurations: with effective sources, (55); with running cosmolog-
ical constants (63); and for various types of s-metric generating and polarizations functions, see (65), or
(68). The coefficients of such (non) symmetric metrics and (non) linear connections depend, in general,
on all conventional space like, co-fiber coordinates, for certain Killing type phase space symmetries, be-
ing determined by corresponding τ -families of generating and integration functions, generating effective
sources and running cosmological constants as in (57).

The AFCDM is an innovative geometric and analytic method for constructing exact/parametric solu-
tions of physically important systems of nonlinear PDEs in (non) associative/ commutative MGTs and
geometric flow generalizations. It allows to generate vacuum and non-vacuum metrics for very general
off-diagonal ansatz not using special assumptions for diagonalizable metrics resulting into some asso-
ciated systems of nonlinear ODEs (such details, for GR, are presented in [43, 44, 45, 46]). Another
important difference from other analytic and numeric methods is that using the AFCDM we work with
certain canonical s-adapted connections which allow to decouple necessary types of nonlinear systems
of equations. We have to impose additional nonholonomic constraints of type (25) in order to extract
LC-configurations and model their nonassociative geometric flow evolution. It should be noted that the
AFCDM can be applied for constructing exact/parametric solutions of nonassociative vacuum gravita-
tional equations with coefficients proportional to the complex unity. Such κ-parametric decompositions
are for nonassociative Ricci tensors are considered, for instance, in [38, 39], when only the real coeffi-
cients are taken for analyzing possible consequences for classical models. It is not clear what physical
importance may have such complex solutions in classical theories but, positively, they can be used to
study quasi-classical approximations in QG and string/ M-theory. In our approach, we can redefine all
(non) associative/ geometric constructions using almost complex/symplectic structures and related real
nonholonomic geometric models [12, 13, 40].
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4. The fourth objective of this work, in section 5, is twofold on its novelty of results and methods:

1] There are constructed and analyzed most important physical properties of two new classes of τ -running
nonassociative phase space black hole, BH, black ellipsoid, BE, and other types of more general quasi-
stationary deformations. Such generic off-diagonal solutions are classified with respect to two different
types of primary phase space s-metrics defined by double Schwarzschild - AdS BHs and, in the second
case, phase space generalizations of Reisner-Norström BHs, when the generated target s-metrics have
different interpretations. For certain types of nonholonomic constraints and generating functions, there
are generated τ -evolving BE type solutions with conventional phase space hyper-surfaces, when the
concept of Bekenstein–Hawking is applicable, and we compute respective thermodynamic variables in
sections 5.2.3 and 5.3.3.

2] Nevertheless, general models with nonassociative and generic off-diagonal Ricci flow evolution of
physically important quasi-stationary solutions do not contain hyper-surfaces and we have to apply
more general concepts of nonassociative generalized G. Perelman thermodynamics. The formulas for
respective thermodynamic variables (73) are defined by effective running shell cosmological constants,
p
sΛ(τ) and certain volume forms depending on the prescribed nonholonomic structure. Such values are
computed in explicit forms for corresponding classes of nonassociative Ricci flow deformed BHs solutions,
see subsections 5.2.4 and 5.3.4. They functionally depend on generating and integration functions,
which can be chosen in such forms when the configurations are well-defined as effective relativistic
thermodynamic variables, preserving certain physical important properties under τ -evolution, to belong,
or not to swampland models etc.

5. We study nonassociative modifications of the swampland program [19, 20, 21, 18, 60], which consists
the fifth objective of this paper, see section 6. As motivated in modern literature on high energy
physics and gravity [15, 6, 17, 7, 8, 22, 23, 24, 25, 26, 27], the Ricci flow is closely related to the RG
flow with respect to the energy scale in the underlying two-dimensional non-linear sigma-models and
various modified gravity and string theories. This provides a connection between RG, Ricci flows, and
the swampland idea.

In this work, we formulate a theory of nonassociative geometric flows using generalizations of G. Perel-
man functionals and related thermodynamic models and develop the AFCDM of constructing new classes
of τ -evolving nonassociative quasi-stationary star-deformed BH and BE solutions. In general, the ther-
modynamic physical properties of such nonassociative geometric flow and gravity generic off-diagonal
solutions can not be investigated following only the Bekenstein-Hawking entropy paradigm. We analyze
how the a series of important swampland and Ricci flow conjectures can be extended to nonassociative
geometric flows and respective extensions to the modified G. Perelman thermodynamic models. Then,
we argue that we can prescribe certain subclasses of nonholonomic constraints, generating and integra-
tion functions when corresponding models satisfy the conditions of swampland conjectures studied in
[23, 24, 25, 26, 27]. Corresponding phase space generalizations and modifications involving respective
generalized distance functionals and effective mass scale of towers of states are stated respectively in
subsections 6.1 and 6.2 and numbered as a) Conjectures 1-7. We provide and analyze four examples of
τ -running quasi-stationary phase space solutions for nonassociative BH configurations with conventional
hyper-surface horizons when the concept of generalized Bekenstein–Hawking entropy is applicable, see
the end of subsection 6.1. This proves that for certain defined geometric conditions the swampland con-
jectures can be extended to conventional phase space and generalized for such nonassociative geometric
flow and gravitational configurations.

For more general nonassociative κ-parametric off-diagonal solutions, characterized by respective W-
entropy functionals, we need a more tedious analysis in order to conclude if a corresponding nonassociative
geometric flow model belongs, or not, to swampland following b) Claims 1-7. We formulate such criteria
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in the form of Conjectures and Claims, CCL, 1-7. In subsection 6.2, we provide explicit formulas for
computing nonassociative and off–diagonal modifications of general distances and towers of effective mass
states for various classes of τ -running nonassociative quasi-stationary equations following the CCL5 and
effective cosmological constants p

sΛ(τ).

7.2 Conclusions, validity of claims and results, and perspectives

Discussing Objectives 1-5 for nonassociative Ricci flow theory and applications, we have advocated for
modifications of the Swampland Program summarized in a series of Conjectures and Claims, CCL:

• CCL1: The generalized distance conjecture and claim for nonassociative phase space. We
conclude that for very special nonholonomic/ diagonal configurations and additional assumptions on
the type of nonlinear symmetries for the κ-parametric distance there are limits of the general distance
functional s

gℵ (102)→ ∞ resulting in infinite towers of effective phase masses pm (103). This extends
for nonassociative phase space the generalized distance conjecture studied in [22, 23] for (associative and
commutative) d-dimensional manifolds. In this work, we show that using the AFCDM, we can construct
new classes of exact/parametric solutions when, for nonassociative configurations, when s

gℵ and pm
may have a different behaviour because generic off-diagonal interactions and a more rich nonholonomic
structure of phase spaces and nonassociative geometric flux evolution. This claims additional investiga-
tions for any class of off-diagonal solutions in order to understand if they result in effective models which
belong, or not, to swampland.

• CCL2: The AdS distance conjecture and claim for nonassociative phase spaces. Another
important conclusion of this work is that combining the conditions of CCL1 with the notion of (conformal)
Weyl re-scaling of nonassociative phase space metrics, we can extend the AdS Distance conjecture in a
form including a part a) as a conjecture for a subclass of phase space quasi-stationary s-metrics with κ-
and τ parametric nonlinear symmetries (60) connecting effective sources to effective running cosmological
constants. A part b) Claim in CCL2 is motivated because the conformal transforms and symmetries are
relevant only to very special classes of solutions encoding nonassociative data and generic off-diagonal
geometric flow evolution scenarios and/or nonassociative gravitational interactions. In general, we need
an additional analysis in order to determine if a class of parametric solutions for nonassociative Ricci
flows belong, or not, to swampland.

• CCL3: The fixed points of nonassociative geometric flows conjecture and claim. This con-
cludes that in the nonassociative geometric flow theory elaborated in this work there exist parametric
solutions defining infinite towers with effective zero masses points for flow evolution toward a fixed point
at infinite distance. The a) Conjecture in CCL3 can be checked on nonassociative phase spaces, for
instance, for s-metrics (92) in a form similar to that for associative and commutative Ricci flows in [23].
For more general classes of nonassociative quasi-stationary off-diagonal solutions, we need a more rig-
orous analysis for chosen classes of generating functions and effective cosmological constants. Different
nonholonomic configurations may result, or not, in well defined effective classical and QG models.

• CCL4: The canonical distance - scalar curvature conjecture and claim for nonassociative
geometric flows. The AFCDM allows to decouple (modified) Ricci flow and gravitational equations and
construct exact/parametric solutions if the canonical s-connection is used instead of the LC-connection.
An original result of the subsection 6.1.3 consists in deriving formulas for the generalized canonical
distance and related tower of effective mass states in terms of the canonical scalar curvatures and running
shell cosmological constants (see constructions related to (111) and (112)). So, in principle, we can check
if some classes of parametric solutions belong or not to swampland if we formulate all results in terms
of the canonical s-connections. We can extract LC-configurations imposing additional nonholonomic
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constraints but the corresponding geometric constructions and analysis of possible physical implications
depend on the type of generated families of quasi-stationary solutions. This imposes certain limitations
for testing in general LC-form the CCL4. Nevertheless, such formulas involving the canonical s-curvature
allow to express the necessary results in terms of p

sΛ(τ) which is important for testing, for instance, the
CCL6 and CCL7 (see below).

• CCL5: The canonical distance - F-functional conjecture and claim for nonassociative geo-
metric flows. The idea to define the general distance functional in terms of F- and W-functionals was
elaborated for associative and commutative geometric flows, see Conjectures B2 and B3 in [23]. The
subsection 6.1.4 consists an original extension of those constructions for nonassociative geometric flows
determined by respective κ-parametric generalizations of G. Perelman’s functionals. Using p

sF̂⋆
κ(τ) (44),

we can compute the generalized distance and state the conditions of existence of canonical infinite tower
of phase space states with zero effective masse as in a) Conjecture of CCL5. The part b) Claim states
that in general, solving respective τ - and κ-parametric equations we can express necessary formulas in
terms of respective F-functionals and decide if a class of solutions belong or not two swampland and
speculate on how LC-configurations can be extracted. Nevertheless, we conclude that the constructions
with generalized F-functionals are quite sophisticate when we study the statistic and geometric thermo-
dynamic properties of modified (nonassociative and/or other types) geometric flows and Ricci soliton
configurations and, in particular of quasi-stationary and nonholonomic BH solutions.

• CCL6: The canonical distance - W-functional conjecture and claim for nonassociative ge-
ometric flows. The a) Conjecture and b) Claim parts are similar to those stated for CCL5 but using
the star deformed W-functional. We derived the formulas s

W ℵ̂ ≃ log( p
sŴ⋆

κ(τi)/
p
sŴ⋆

κ(τf )) (115) and

pm ∼ Mpe
−α̂| s

W ℵ̂| ≃
(

p
sŴ⋆

κ(τ)
)α̂

(116), for s
W ℵ̂ → ∞, which are very important and simplify the

procedure for analyzing if certain classes of exact/ parametric solutions belong, or not, to swampland.
Using nonlinear symmetries, we can express p

sŴ⋆
κ(τi) as a functional of running cosmological constants

and volume forms and, then, we can speculate on classes of generating functions which drive a class
of solutions to swampland, or inversely, keep it with some well-defined properties. For associative and
commutative Ricci flows, such formulas were conjectured in [23].

• CCL7: The phase space black hole entropy distance conjecture and claim for nonassociative
geometric flows. An original approach to swampland and BH physics was elaborated in [63, 26] exploit-
ing possible connections between the distance conjecture and area low, involving Ricci flow conjectures,
for the Bekenstein-Hawking entropy. The statements of the Black Hole Entropy Distance Conjecture,
BHEDC, can be extended to certain classes of nonassociative phase solutions for geometric flows/ Ricci
solitons if the s-metrics contain certain hyper-surface configurations, as we concluded in a) Conjecture of
CCL7. Nevertheless, even for such type of quasi-stationary κ- and τ -running solutions related via nonlin-
ear symmetries to running cosmological constants, we may need an additional analysis (the b) Claim of
CCL7) in order to decide if such a solution belong to swampland or not. We list a table with 4 examples
of such nonlinear quadratic elements and respective formulas for phase generalized Bekenstein-Hawking
entropy computed, for instance, for rotoid configurations.

Summarizing CCL1-CCL7, we conclude that, in general, the solutions of nonassociative geometric flow
and Ricci soliton equations can be characterized by a corresponding modified G. Perelman thermodynamic
model, when the conditions of CCL6 can be analyzed with respect to the purposes of the Swampland Program,
even the statements of CCL7 are not applicable. Here we note that we can define and compute two types
of entropy variables: the "minus" entropy, i.e. W-entropy, p

sŴ⋆
κ(τ) and p

sŜ⋆κ(τ), with effective shell sources∑
s

p
sℑ(τ) (119). Using nonlinear symmetries / transforms (60), such formulas allow us to modify respectively

the statements of CCL6 in certain forms which are applicable to compute the generalized distance functional
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and the effective mass stated scale in terms of effective running cosmological constants. We present such
important formulas for quasi-stationary solutions, see (122) and (123). Together with CCL6, the modified
CCL7 is tested by explicit examples of nonassociative quasi-stationary geometric flow deformations of phase
space double nonholonomic deformed RN-dS BHs and nonholonomic deformed RN-AdS BHs, see respective
formulas in subsections 6.2.3 and 6.2.4.

Let us discuss the proofs and validity of results and claims of this article stated as Issues 1-5, Is1-5:

• Is1: Postulating nonassociative geometric flow and vacuum gravitational equations. It is not possible
to formulate a general theory of nonassociative or noncommutative geometric flows or MGTs involving
different types of non-Riemannian metric and (non) linear connection structures. For a subclass of
theories determined by R-flux deformations [12, 13, 40, 41], it is possible to define star variants of
Riemannian and Ricci tensors and perform corresponding κ–linear decompositions of geometric objects
(generalizing in nonholonomic form the constructions from [38, 39]). The geometric constructions are
very different for other models involving octonionic or supersymmetric variables, spectral triples etc. [15,
33, 34, 35, 36, 37, 70]. Using p

sR̂ic⋆ and p
sR̂sc⋆ from (27), we can postulate the nonassociative geometric

flow equations (2), or (41), describing the evolution of τ -families
(

p
⋆gαsβs(τ),

p
sD̂

⋆(τ)
)

(as we considered

in subsection 2.3.1). For some subclasses of nonassociative Ricci solitons, we obtain nonassociative
generalizations of the Einstein equations (43), or (32), which can be formulated independently in abstract
symbolic geometric form as in [43] but for nonassociative geometric s-objects.

• Is2: Postulating nonassociative Perelman’s functionals and thermodynamic variables. Considering p
sR̂ic⋆

and p
sR̂sc⋆, and respective normalizing functions and volume forms, we can define in abstract geometric

form the F- and W-functionals (38) and (39). Such Lyapunov type functionals consist nonholonomic
relativistic generalizations and star product deformations of standard Perelman functionals (9) for Ricci
flows of Riemannian metrics. The nonassociative W-functional (39) is similar to a "minus" nonassociative
entropy, which allowed us to define geometrically (generalizing the constructions from [1]) nonassocia-
tive versions of statistical/ geometric thermodynamic variables (50). Such nonassociative geometric
thermodynamic models can be defined in abstract symbolic geometric form and corresponding physical
motivations are provided at the end of subsection 2.3.2, see also below the paragraphs Is3 - Is5.

• Is3: Problems and a cure for formulating variational procedures for deriving nonassociative geomet-
ric flow and nonassociative gravitational field equations. One of the fundamental G. Perelman’s result
[1] consisted in a proof that for Riemannian geometries the R. Hamilton equations (108) can be de-
rived using variational procedures for F- or W-functionals (9). Those geometric constructions were
used for elaborating rigorous proofs of the Poincaré-Thurston conjecture [1], see details in monographs
[9, 10, 11]. Unfortunately, it is not possible to formulate a self-consistent variational principle for general
nonassociative deformations determined by a general twist product and in other types of nonassociative
and noncommutative theories. Here, we note that one can be defined an infinite number of nonasso-
ciative and noncommutative differential and integral calculi which is different from the commutative
(pseudo) Riemannian geometry. So, it is not possible to formulate some general forms of nonassociative
the Poincaré-Thurston conjecture and use "twisted" variational constructions for corresponding proofs.
Nevertheless, this does not prohibit us to elaborate on physically important and well-defined models
of nonassociative geometric flows. We can postulate in symbolic geometric form nonassociative geo-
metric flow equations (2), or (41), and then to study their thermodynamic properties using associated
nonassociative F-and W-functionals. For such nonassociative geometric constructions, we can perform
always parametric decompositions and compute all terms for κ-deformed R. Hamilton equations (46) and
Perelman’s functionals (44) and (45). Working with κ–linear deformed theories, we can always elaborate
self-consistent variational procedures, when corresponding nonassociative geometric flow/ gravitational
equations are characterized by κ-linear thermodynamic variables (51).
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• Is4: Physically important nonvariational theories. There are various physical arguments (similarly to
those for models of hydrodynamics with parametric turbulence, or for thermodynamic models with para-
metric phase transitions, multi-diffusion and branch decomposition and evolution) to study nonassocia-
tive geometric flow theories. In such cases, the definition of self-consistent variational procedures is not
uniquely defined but depends on some prescribed (non) linear / associative / commutative symmetries,
on the order of parametric decompositions and corresponding nonholonomic s-distributions. We empha-
size that the variational procedure described in subsection 2.3.2 can be performed in a quite general form
if we begin with a corresponding commutative canonical s-adapted variational nonholonomic configura-
tion and subject the constructions to κ-parametric deformations following the Convention 2 (26). Such
a variational procedure can be performed recurrently for higher orders on κ. Unfortunately, to prove
some general convergence conditions summarizing all terms on powers of κ is an unsolved mathematical
problem, which is typical for nonlinear functional analysis. Theoretically, we can consider an inverse
situation and begin with general nonassociative formulas for flow equations (2) and formal functionals
(38) and (39). Then, we can perform adapted κ-parametric decompositions involving imaginary and
real terms. Unfortunately, in such cases, we are not able to elaborate a general method for constructing
exact/parametric solutions but following the inverse procedure we can always apply the AFCDM as we
proved in previous sections (for quasi-stationary solutions) and in partner works [13, 40, 41]. This is a
generic property for any nonassociative/ noncommutative differential and integral calculus.

• Is5: Validity through exact and parametric solutions of physically important nonlinear systems of PDE
encoding nonassociative data. So, haven defined corresponding fundamental nonassociative geometric
s-objects like a star deformed metric, a canonical s-connection and respective Ricci s-tensor and canoni-
cal scalar, we can always postulate geometrically certain nonassociative geometric flow equations and F-
and W-functionals. Such values are well-defined in all orders on κ but for twisted theories there is not a
general nonassociative variational proof for nonassociative geometric flow/ gravitational equations from
some generalized Perelman/ action functionals. For applications in modern physics and quantum infor-
mation theory, we can consider only κ-linear constructions, apply the AFCDM and construct physically
important solutions (star-deformed black holes, wormholes, locally anisotropic cosmological s-metrics),
and speculate on verifiable models encoding nonassociative data. Recurrently, we can construct nonas-
sociative and noncommutative solutions with higher orders on κ and ~ but the technically the resulting
formulas are much cumbersome. For any such higher order parametric configurations, we can define
and compute effective F- and W-functionals, and respective nonassociative thermodynamic variables.
Re-defining the measures (for respective normalizing s-functions and nonholonomic s-distributions), we
suppose that a corresponding variational procedure can be formulated for any stated polynomial order
on κ and ~ (like we considered in subsection 2.3.2). But this do not provide us a general well-defined
nonassociative variational theory with twist product. We can construct and study physical properties of
realistic nonassociative theories considering physically important solutions encoding κ-linear data.

Finally, with respect to above Is1-5, we note that (in certain similar forms) such problems exist in all classical
gravity and QG theories. For instance, the classical Einstein equations are linear on κ = 8πG/c4, were G is the
Newtonian constant of gravitation and c is the light velocity constant. We do not have yet a well-defined theory
of QG, but it is aways possible to elaborate on physically important effects proportional to κ and ~ and consider
higher orders on such constants involving (square) curvature terms etc. Such effective models are commutative
or noncommutative. R-flux deformations from string theory result in nonassociative geometric configurations
determined by twist products. This results in ambiguities for constructing general self-consistent principles,
involves complex terms for curvatures and Ricci tensors for some parametric decompositions on κ and ~ like
in [38, 39, 12] etc. This reflects our not complete knowledge about string theory and QG. The priority of
nonholonomic s-adapted definition of star product (19) is that using the Convention 2 (26) we can define and
compute recurrently parametric R-flux deformations of some (associative/commutative) variatonal equations
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and apply the AFCDM in order to construct physically important solutions of nonassociative geometric flows
and vacuum gravitational equations. In general form, such nonassociative solutions are characterized by
respective modified Perelman (thermodynamic) functionals and variables. This states a new paradigm for
formulating and investigating possible physical implications of nonassociative theories and provides a general
computational method when nonassociative effects can be computed and the validity of certain claims can be
verified at least (for simplicity) in the linear approximation on κ.

Above conclusions and theoretical/ computational tests of CCL1-CCL7 support the The Main Hypothe-
sis, MH, of this work (formulated at the end of subsection 1.2) that the Swampland Program has to be revised/
modified in order to elaborate explicit criteria how to include nonassociative and noncommutative geometric
flows, QM, QFTs, and MGTs in elaborating QG theories. The corresponding Conjectures and Claims allows
us to select self-consistent nonassociative geometric and physical models (defined by generic off-diagonal solu-
tions) encoding at least in parametric form nonassociative star product and R-flux data for string / M-theory.
In low-energy limits, such configurations can be completed into QG in the UV forms and distinguished from
another classes of theories/models/ solutions which do not have such properties.

The MH modifies a series of future research purposes stated in our partner works [12, 13, 40, 41]. We
list and speculate on five perspective directions of research involving nonassociative geometric flow methods,
classical and quantum gravity, and quantum information models18:

• Q1a: Nonassociative Einstein-Yang-Mills-Higgs systems. A full investigation of nonassociative geometric
flow and gravity theories should involve flux evolution and field equations with nontrivial matter sources
and other types of nonassociative/ noncommutative structures (for instance, octonions etc.) which are
not necessarily determined by R-flux deformations but based on other types of star product and/or nonas-
sociative algebraic structures. One of the next steps is to formulate and study models with nonassociative
nonholonomic deformations and geometric flow evolution of Einstein-Yang-Mills-Higgs systems resulting
in nonassociative gravity and matter field theories with nonsymmetric metrics, generalized connections
and nonzero sources. Such nonassociative models should generalize in nonassociative form the Einstein-
Eisenhart-Moffat theories [64, 65, 66, 66, 68], see respective nonholonomic and phase space Ricci flow
constructions in [69]. References [12, 13, 40, 41] provide a series of new ideas on further nonassociative/
nonsymmetric metric / nonholonomic developments when the AFCDM can be applied for constructing
various classes of exact/parametric solutions (for instance, defining locally anisotropic wormholes, BHs
and BEs, solitonc hierarchies, nonassociative quasi-periodic cosmological structures etc.).

• Q2a: Nonassociative Finsler-Lagrange-Hamilton geometric flows/gravity, their almost symplectic models,
and deformation quantization. Nonassociative geometric flow and gravity theories determined by a
star product of type (19) on tensor products of cotangent bundles consist of a class of nonassociative
generalizations of the Finsler-Lagrange-Hamilton geometry which have generalized metrics/connections
depending on velocity/ momentum-like coordinates. In relativistic/ noncommutative and commutative/
supersymmetric / fractional etc. variants, there are status reports and reviews of results [70, 8]. The
importance of Finsler-like geometric objects and nonholonomic variables (they can be defined even on
Lorentz manifold enabled with a nonolonomic fibered structure) is that they can be reformulated as
some equivalent almost Kaehler/ symplectic and almost complex variables. This allows us to elaborate
on realistic classical models for (non) associative/ commutative geometric flow and gravity theories (to
apply complex variables for quantum models and almost complex variables for classical models) and
apply/develop methods of deformation and/or geometric quantization. A more sophisticate program
is to formulate and study models of QG involving nonassociative/ noncommutative Lagrange-Hamilton
structures and/or almost symplectic variables.

18for instance, Q1a is used for modifications involving nonassociative Ricci flow of the query Q1 from [41]; we also state a new
query Q5.
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• Q3a: Elaborating Bekenstein-Hawking and G. Perelman thermodynamic and locally anisotropic kinetic
models for physically important solutions in nonassociative classical and quantum theories. The sections
2 and 3 of this work provide a solution of query Q3 stated at the end of [41]. Here we remember that
the nonassociative gravity with star product and R-flux deformations was formulated up to defining and
computing the nonassociative Ricci tensor in [38, 39]. This was enough to develop models of nonassocia-
tive/ noncommutative Ricci flows but those abstract geometric and/or coordinate frame constructions
based on LC-connection do not allow to motivate respective generalizations of R. Hamilton equations,
prove decoupling and integration properties of such geometric flow equations and find exact/ parametric
solutions. To study possible physical implications we had to elaborate a respective nonholonomic formal-
ism with dyadic shell structures, see details in [12, 13] and Appendices to this work. Such constructions
were motivated by finding physically important exact/parametric solutions and computing respective
Bekenstein-Hawking and/or G. Perelman thermodynamic variables in section 4 of [41] and section 5 in
this paper.

• Q4a: The program on nonassociative geometric and quantum information flow theories. We point again
to perspectives and importance of a research program to extend in nonassociative forms the geometric flow
information theory [6, 7] to theories with nonassociative qubits and entanglement, conditional entropies
etc. Such new directions in modern QFT, strings and gravity, theory of quantum computers have deep
roots in nonassociative quantum mechanics and gauge models [30, 31, 33, 37] and motivations from
noncommutative geometry, string and M-theory [15, 34, 35, 36, 38, 39].

• Q5: Cosmological models and dark energy and dark matter physics encodding quasi periodic structure
and data for nonassociative theories. In this work, we constructed and studied the main properties
of a series of new classes of nonassociative exact/ parametric solutions for τ -running quasi-stationary
physically important solutions defining star product and R-flux deformed BHs, BEs etc. The AFCDM
can be also developed and applied in certain dual forms when there are generated locally anisotropic
solutions [72, 17, 71]. Extending such geometric and analytic methods, we plan to elaborate on a
series of works on phase space and spacetime nonassociative quasi-crystal configurations and related
web filaments, nonassociative quasi-periodic geometric flow evolution and pattern forming structures in
accelerating and inflationary cosmology and dark energy and dark matter physics. Such models are
generic off-diagonal (for certain classes of holonomic configurations, the s-metrics can be diagonalized)
encoding nonassociative star product deformations. They are characterized by respective generalized
G. Perelman thermodynamic variables and put their imprints and requests for modifications of the
Swampland Program.

We shall develop on above directions and report on progress for queries Q1a-Q4a,Q5 in future works.
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A The anholonomic frame and connection deformation method, AFCDM

We outline the AFCDM for constructing exact and parametric solutions for nonlinear systems of PDEs
(16). Details with proofs and methods in commutative gravity theories are provided in [7, 8] and, for recent
nonassociative generalizations, [12, 13, 40, 41]. In this section, we consider effective sources parameterized in
the form (35) encoding nonassociative star product and R-flux deformations. Such PDEs can’t be integrated
in some general off-diagonal forms if we follow standard methods from GR [46, 43, 45, 44] when solutions are
found for some special diagonal ansatz of metrics transforming the (modified) Einstein equations into certain
systems of nonlinear ordinary differential equations, ODE. For diagonalizable metrics, there are imposed some
higher order symmetries (spherical, cylindrical type etc.) which allow to integrate the resulting ODEs in very
general forms. The solutions are classified by respective integrations constants. This is used, for instance,
for constructing black hole, BH, solutions. The AFCDM is a more genera geometric method for generating
exact and parametric solutions, when a necessary type of auxiliary connection (for instance, the canonical
s-connection p

sD̂) is used. This allows us to decouple and integrate systems of (modified) geometric flow and
gravitational field equations defined by generic off-diagonal metrics, (non-) Riemannian connections etc. with
coefficients depending, in principle, on all spacetime and phase space coordinates. Different classes of such
exact/ parametric solutions are determined by respective classes of generating functions, generating sources,
integrating functions and constants, and/or decompositions certain small physical parameters (for instance,
on string and Plank constants) etc.

To apply the AFCDM the quadratic linear element for generating quasi-stationary solutions is parameter-
ized by such an off-diagonal ansatz for s-metrics:

dŝ2 = gi1(x
k1)(dxi1)2 + ga2(x

i1 , y3)(ea2)2 + pga3(xi2 , p5)(
pea3)

2 + pga4( pxi3 , E)( pea4)
2, (A.1)

for i1, j1, k1... = 1, 2; a2 = 3, 4; i2 = (i1, b2), b2 = 3, 4; i3 = (i2, b3), b3 = 5, 6; b4 = 7, 8 etc.; and coordinates
xi1 = (x1, x2);ui2 = xi2 = (xi1 , yb2), y4 = t; pui3 = pxi3 = (xi2 , pb3);

pui4 = ( pxi3 , pb4), p8 = E. The dual bases
in (A.1),

ea2 = dya2 +Na2
k1
(xi1 , y2)dxk1 , pea3 = dpa3 +

pNa3k2(x
i2 , p6)dx

k2 , pea4 = dpa4 +
pNa4k3(

pxi3 , E)d pxk3 ,

are determined by respective N-connection coefficients,

N3
k1 = wk1(x

i1 , y3), N4
k1 = nk1(x

i1 , y3); (A.2)
pN5k2 = nk2(x

i2 , p5),
pN6k2 = wk2(x

i2 , p5);
pN7k3 = nk3(x

i3 , E), pN8k3 = wk3(x
i3 , E).

We emphasize that above coefficients defined with respect to s-adapted frames do not depend on u4 = y4 =
x4 = t, i.e. there is a Killing vector ∂t on shell s = 2; do not depend on pu6 = p6, i.e. there is a Killing
symmetry on p∂6 on shell s = 3; and do not depend on pu7 = p7, i.e. there is a Killing symmetry on p∂7

on shell s = 4. In similar forms, changing parameterizations of coordinates and coefficients, we can consider
ansatz with Killing symmetry on ∂3 instead of ∂4; on p∂5 instead of p∂6; on p∂8 instead of p∂7. Such
parameterizations allow to decouple and integrate in explicit form various classes of vacuum and non-vacuum
modified gravitational equations.

A.1 Off-diagonal quasi-stationary solutions with effective sources

Tedious computations provided in [13] (re-defined in real momentum coordinates puα) prove that quasi-
stationary solutions of the nonassociative parametric vacuum gravitational equations (16) with effective sources
(35) are defined by respective s-metric (A.1) and N-connection (A.2) coefficients:

g1(x
i1) = g2(x

i1) = eψ(~,κ;x
k1 ), (A.3)

g3(x
i1 , y3) =

[∂3( 2Ψ)]2

4( p

2K)2{g[0]4 −
∫
dy3 ∂3[( 2Ψ)2]

4( p

2K)
}
, g4(x

i1 , y3) = g
[0]
4 −

∫
dy3

∂3[( 2Ψ)2]

4( p

2K)
,
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pg5(xi1 , y3, p5) =
[ p∂5( p

3Ψ)]2

4( p

3K)2{ pg6[0] −
∫
dp5

p∂5[( p

3Ψ)2]

4( p

3K)
}
, pg6(xi1 , y3, p5) =

pg6[0] −
∫
dp5

p∂5[( p

3Ψ)2]

4( p

3K)
,

pg8(xi1 , y3, p5, p7) =
[ p∂7( p

4Ψ)]2

4( p

4K)2{ pg8[0] −
∫
dp7

p∂7[( p

4Ψ)2]

4( p

4K)
}
, pg8(xi1 , y3, p5, p7) =

pg8[0] −
∫
dp7

p∂7[( p

4Ψ)2]

4( p

4K)
;

and N3
k1 = wk1(x

i1 , y3) =
∂k1( 2Ψ)

∂3( 2Ψ)
,

N4
k1 = nk1(x

i1 , y3) = 1nk1 + 2nk1

∫
dy3

∂3[( 2Ψ)2]

4( p

2K)2|g[0]4 −
∫
dy3 ∂3[( 2Ψ)2]

4( p

2K)
|5/2

;

pN5k2 = wk2(x
i2 , p5) =

∂k2(
p

3Ψ)
p∂5( p

3Ψ)
,

pN6k2 = nk2(x
i2 , p5) =

p

1nk2 +
p

2nk2

∫
dp5

p∂5[( p

3Ψ)2]

4( p

3K)2| pg6
[0]

−
∫
dp5

p∂5[( p

3Ψ)2]

4( p

3K)
|5/2

;

pN7k3 = wk3(x
i2 , p5, p7) =

p∂k3(
p

4Ψ)
p∂7( p

4Ψ)
,

pN8k3 = nk3(x
i2 , p5, p7) =

p

1nk3 +
p

2nk3

∫
dp7

p∂7[( p

4Ψ)2]

4( p

4K)2| pg8[0] −
∫
dp7

p∂7[( p

4Ψ)2]

4( p

4K)
|5/2

,

Above coefficients are functionals on such functions and parameters:

generating functions: ψ(~, κ;xk1); 2Ψ(~, κ;xk1 , y3); p

3Ψ(~, κ;xk2 , p5);
p

4Ψ(~, κ; pxk3 , p7); (A.4)

generating sources: p

1K(~, κ;xk1); p

2K(~, κ;xk1 , y3); p

3K(~, κ;xk2 , p5);
p

4K(~, κ; pxk3 , p7);

integrating functions: g[0]4 (~, κ;xk1), 1nk1(~, κ;x
j1), 2nk1(~, κ;x

j1);
pg6[0](~, κ;x

k2), 1nk2(~, κ;x
j2), 2nk2(~, κ;x

j2); pg8[0](~, κ;
pxj3), p

1nk3(~, κ;
pxj3), p

2nk3(~, κ;
pxj3).

We emphasize that ψ(~, κ;xk1) is determined on shell s = 1 as a solution of 2-d Poisson equation, ∂211ψ+∂
2
22ψ =

2 1K, and may encode certain nonassociative data if 1K contains nonholonomic dependencies on such ones.
Any generic off-diagonal ansatz (A.3) defines a class of exact solutions determined by generating data (A.4)

and depend in parametric form on ~, κ for any nonassociative star product and R-flux data encoded in p
sK.

Corresponding quasi-stationary configurations are also characterized by nontrivial coefficients of respective
nonsymmetric metrics p

⋆aαsβs computed by introducing in (22) the s-metric and N-connection coefficients
for (A.3). Such solutions are with nontrivial nonholonomic torsion but can be constrained to subclasses of
generating data which solve the conditions (25), see also (18), and allow to extract LC-configurations, see
details in section 5.3.3 of [13].

A.2 Nonlinear symmetries and solutions with effective cosmological constants

Quasi-stationary solutions posses an important nonlinear symmetry which allow to formulate them in
different functional forms emphasizing certain classes of effective sources and cosmological constants, different
types of generating functions and parametric decompositions, which is important for finding other classes of
solutions and investigating their physical properties.
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We can study nonassociative nonholonomic deformations of a prime s-metric p
s̊g (which may be, or not,

a solution of some (modified) gravitational equations) into a target s-metric p
sg defining a quasi-stationary

solution (A.3) on ⋆
sM,

p
s̊g → p

sg = [ pgαs =
pηαs

pg̊αs ,
pNas
is−1

= pηasis−1

pN̊as
is−1

]. (A.5)

Such nonholonomic s-deformations can be described in terms of gravitational polarization functions
(η-polarizations), when the target s-metrics are parameterized

pηαs(~, κ, x
is−1 , pas) and pηasis−1

(~, κ, xis−1 , pas). (A.6)

For κ-linear s-deformations, we can introduce χ-polarizations,

[ pgαs =
p ζαs(1 + κ pχαs)

pg̊αs ,
pNas
is

= pζasis−1
(1 + κ pχasis−1

) pN̊as
is−1

], when (A.7)
pηαs =

pζαs(~, x
is−1 , pas)[1 + κ pχαs(~, x

is−1 , pas)] and
pηasis−1

= pζasis−1
(~, xis−1 , pas)[1 + κ pχasis−1

(~, xis−1 , pas)].

In detailed forms, general quasi-stationary deformations to solutions of type (A.3) determined by gravitational
polarizations of type (A.6) and (A.7) are studied in section 2.3 of [13] and appendix A.2 of [41].

Any target s-metric p
sg (A.3) satisfies on shells s = 2, 3, 4 certain nonlinear symmetries which allow to re-

define the generating functions and relate the effective sources to certain effective shell cosmological constants,

( sΨ,
p
sK) ↔ ( p

sg,
p
sK) ↔ ( p

sη
pg̊αs ∼ pζαs(1 + κ pχαs)

pg̊αs ,
p
sK) ↔ (A.8)

( sΦ,
p
sΛ0) ↔ ( p

sg,
p
sΛ0) ↔ ( p

sη
pg̊αs ∼ pζαs(1 + κ pχαs)

pg̊αs ,
p
sΛ0).

In explicit form, such nonlinear transforms are defined by equations

∂3[( 2Ψ)2]
p

2K
=
∂3[( 2Φ)

2]

2Λ0
,

p∂5[( p

3Ψ)2]
p

3K
=

p∂5[( p

3Φ)
2]

p

3Λ0
,

p∂8[( p

4Ψ)2]
p

4K
=

p∂8[( p

4Φ)
2]

p

4Λ0
.

In integral forms, we obtain such transforms:

( 2Ψ)2 = ( 2Λ0)
−1

∫
dy3( p

2K)∂3[( 2Φ)
2] and/or ( 2Φ)

2 = 2Λ0

∫
dy3( p

2K)−1∂3[( 2Ψ)2],

( p

3Ψ)2 = ( p

3Λ0)
−1

∫
d p5(

p

3K)[( p

3Φ)
2] and/or ( p

3Φ)
2 = p

3Λ0

∫
dp5(

p

3K)−1[( p

3Ψ)2],

( p

4Ψ)2 = ( p

4Λ0)
−1

∫
d p7(

p

4K)[( p

4Φ)
2] and/or ( p

4Φ)
2 = p

4Λ0

∫
dp7 ( p

4K)−1[( p

4Ψ)2].

The generating functions/ sources/ cosmological constants and gravitational polarization functions (A.6) and
(A.7) can be re-defined for various geometric and analytic purposes when the nonlinear symmetries are re-
written in other equivalent forms:

∂3[( 2Ψ)2] = −
∫
dy3( p

2K)∂3g4 ≃ −
∫
dy3( p

2K)∂3(
pη4 g̊4) ≃ −

∫
dy3( p

2K)∂3[
pζ4(1 + κ pχ4) g̊4],

( 2Φ)
2 = −4 2Λ0g4 ≃ −4 2Λ0

pη4 g̊4 ≃ −4 2Λ0
pζ4(1 + κ pχ4) g̊4;

p∂5[( p

3Ψ)2] = −
∫
dp5(

p

3K) p∂5 pg6 ≃ −
∫
dp5(

p

3K) p∂5( pη6 pg̊6) ≃ −
∫
dp5(

p

3K) p∂5[ pζ6(1 + κ pχ6) g̊6],

( p

3Φ)
2 = −4 p

3Λ0
pg6 ≃ −4 p

3Λ0
pη6 pg̊6 ≃ −4 p

3Λ0
pζ6(1 + κ pχ6) pg̊6;
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p∂7[( p

4Ψ)2] = −
∫
dp7(

p

4K) p∂7 pg8 ≃ −
∫
dp7(

p

4K) p∂7( pη8 pg̊8) ≃ −
∫
dp7(

p

4K) p∂8[ pζ8(1 + κ pχ8) g̊8],

( p

4Φ)
2 = −4 p

4Λ0
pg8 ≃ −4 p

4Λ0
pη8 pg̊8 ≃ −4 p

4Λ0
pζ8(1 + κ pχ8) pg̊8.

The formulas for nonlinear symmetries (A.8) allow to express solutions (A.3) in different equivalent forms
and/or for different approximations via corresponding functionals on generating sources, effective cosmological
constants, and generating functions:

p
sg = p

sg[~, κ, ψ,s Ψ,
p
sK] = p

sg[~, κ, ψ,s Φ,
p
sΛ0] (A.9)

≃ p
sg[~, κ, ψ,

p
sK, g4, pg6, pg8]

≃ p
sg[~, κ, ψ,

p
sΛ0, g4,

pg6, pg8]

≃ p
sg[~, κ, ψ,

p
sK, pη4 g̊4,

pη6 pg̊6, pη8 pg̊8, g̊3,
pg̊5, pg̊7]

≃ p
sg[~, κ, ψ,

p
sΛ0,

p
sK, pη4 g̊4,

pη6 pg̊6, pη8 pg̊8, g̊3,
pg̊5, pg̊7]

≃ p
sg[~, κ, ψ,

p
sK, pζ4,

pχ4, g̊4;
pζ6, pχ6, pg̊6; pζ8, pχ8, pg̊8, g̊3,

pg̊5, pg̊7]

≃ p
sg[~, κ, ψ,

p
sΛ0,

p
sK, pζ4,

pχ4, g̊4;
pζ6, pχ6, pg̊6; pζ8, pχ8, pg̊8, g̊3,

pg̊5, pg̊7].

We conclude that using functional data we can construct a class of solutions for certain prescribed ef-
fective sources p

sK and generating functions sΨ. To elaborate on solutions in classical and quantum gravity
and information theory, it can be useful to consider equivalent (or almost equivalent, with "≃", for some
decompositions on a small parameter) representations of such solutions when they are connected to certain
effective cosmological constants p

sΛ0 and generating functions sΦ. We can consider configurations when some
coefficients of s-metrics are taken as explicit generating functions, for instance, g4, pg6, pg8. In another case,
some η-polarizations are prescribed as generating functions, for instance, we can use pη4,

pη6, pη8. In [40, 41],
nonassociative star product and R-flux deformations of black hole solutions into black ellipsoid configurations
were studied using κ-linear s-deformations determined by generating functions pχ4,

pχ6, pχ8.

A.3 Solutions with effective cosmological constants

We can transform the nonassociative vacuum s-metrics (A.3), p
sg[~, κ, ψ,s Ψ,

p
sK] → p

sg[~, κ, ψ,s Φ,
p
sΛ0]

following the first line in the functional representations (A.9):

g1(x
k1) = g2(x

k1) = g1[ψ] = g2[ψ] = eψ(~,κ;x
k1 ), (A.10)

g3(x
k1 , y3) = g3[ 2Φ] = − 1

g4[ 2Φ]

( 2Φ)
2[∂3( 2Φ)]

2

| 2Λ0

∫
dy3( p

2K)[∂3( 2Φ)2]|
,

g4(x
k1 , y3) = g4[ 2Φ] = g

[0]
4 − ( 2Φ)

2

4 2Λ0
;

pg5(xi2 , p5) = pg5[ p

3Φ] = − 1
pg6[ p

3Φ]

( p

3Φ)
2[ p∂5( p

3Φ)]
2

| p

3Λ0

∫
dp5(

p

3K) p∂5[( p

3Φ)
2]| ,

pg6(xi2 , p5) = pg6[ p

3Φ] = g6[0] −
( p

3Φ)
2

4 p

3Λ0
;

pg7(xi2 , p5, p7) = pg7[ p

4Φ] = − 1
pg8[ p

4Φ]

( p

4Φ)
2[ p∂7( p

4Φ)]
2

| p

4Λ0

∫
dp7(

p

4K) p∂7[( p

4Φ)
2]| ,

pg8(xi2 , p5, p8) = pg8[ p

4Φ] = g8[0] −
( p

4Φ)
2

4 p

4Λ0
;
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N3i1(x
k1 , y3) = wi1 [ 2Φ] =

∂i1
∫
dy3( p

2K) ∂3[( 2Φ)
2]

( p

2K) ∂3[( 2Φ)2]
,

N4k1(x
i1 , y3) = nk1 [ 2Φ] = 1nk1 + 2nk1

∫
dy3

g3[ 2Φ]

| g4[ 2Φ]|3/2

= 1nk1 + 2nk1

∫
dy3

( 2Φ)
2[ ∂3( 2Φ)]

2

| 2Λ0

∫
dy3( p

2K)[ ∂3( 2Φ)2]|

∣∣∣∣g
[0]
4 − ( 2Φ)

2

4 2Λ0

∣∣∣∣
−5/2

;

pN5k2(x
i2 , p5) = wk2 [

p

3Φ] =
∂k2

∫
dp5(

p

3K) p∂5[( p

3Φ)
2]

( p

3K) p∂5[( p

3Φ)
2]

,

pN6k2(x
i2 , p5) = nk2 [

p

3Φ] =
p

1nk2 +
p

2nk2

∫
dp5

pg5[ p

3Φ]

| pg6[ p

3Φ]|3/2

= p

1nk2 +
p

2nk2

∫
dp5

( p

3Φ)
2[ p∂5( p

3Φ)]
2

| p

3Λ0

∫
dp5(

p

3K)[ p∂5( p

3Φ)
2]|

∣∣∣∣ pg6[0] −
( p

3Φ)
2

4 p

3Λ0

∣∣∣∣
−5/2

;

pN7k3(x
i2 , p5, p7) = wk3 [

p

4Φ] =
∂k3

∫
dp7(

p

4K) p∂7[( p

4Φ)
2]

( p

4K) p∂7[( p

4Φ)
2]

.

pN8k3(x
i2 , p5, p7) = nk3 [

p

4Φ] =
p

1nk3 +
p

2nk3

∫
dp7

pg7[ p

4Φ]

| pg8[ p

4Φ]|3/2

= p

1nk3 +
p

2nk3

∫
dp7

( p

4Φ)
2[ p∂7( p

4Φ)]
2

| p

4Λ0

∫
dp7(

p

4K)[ p∂7( p

4Φ)
2]|

∣∣∣∣ pg8[0] −
( p

4Φ)
2

4 p

4Λ0

∣∣∣∣
−5/2

.

In formulas for above coefficients, there are used such conventions:
for indices: i1, j1, k1, ... = 1, 2; i2, j2, k2, ... = 1, 2, 3, 4; i3 , j3, k3, ... = 1, 2, ...6;x3 = ϕ, y4 = t, p8 = E; and

generating functions: ψ(~, κ, xk1); 2Φ(~, κ, x
k1y3); p

3Φ(~, κ, x
k2 , p6);

p

4Φ(~, κ,
pxk3 , p7);

generating sources: p

1K(~, κ, xk1); p

2K(~, κ, xk1 , y3); p

3K(~, κ, xk2 , p5);
p

4K(~, κ, pxk3 , p7);

integration functions: g[0]4 (~, κ, xk1), 1nk1(~, κ, x
j1), 2nk1(~, κ, x

j1); (A.11)
pg6[0](~, κ, x

k2), 1nk2(~, κ, x
j2), 2nk2(~, κ, x

j2); pg8[0](~, κ,
pxj3), p

1nk3(~, κ,
pxj3), p

2nk3(~, κ,
pxj3).

Such functional representations of off-diagonal solutions allow to encode possible contributions from effec-
tive cosmological constants when certain dynamics of effective sources is re-distributed into off-diagonal terms
of s-metrics. Nevertheless, the contributions from p

sK are not completely excluded being present in integrals
for certain s-connection coefficients like g3, pg5, pg7 and all N-connection coefficients.

Changing the generating functions and generating sources/ cosmological constants data, [sΨ,
p
sK] →

[sΦ,
p
sΛ0], we re-express the data for quasi-stationary solutions of the nonassociative parametric vacuum gravi-

tational equations (16) with effective sources (35), defined by (A.3) as solutions for pR̂
βs
γs [sΨ,

p
sK, ...] = δβsγs

p
sK

(3), into solutions of type (A.10) of pR̂
βs
γs [sΦ,

p
sΛ0,

p
sK, ...] = δβsγs

p
sΛ0 (8). The functional structure of

geometric objects is subjected to certain (A.8) transforms when the data for effective sources p
sK are kept

into off-diagonal N-connection terms but the left side of modified Einstein equations is stated with effective
cosmological constants p

sΛ0.

A.4 Using some coefficients of s-metrics as generating functions

We can consider

g4(x
k1 , y3) = g4[ 2Ψ,

p

2K] = g4[ 2Φ, 2Λ0];
pg6(xi2 , p5) =

pg6[ 3Ψ,
p

3K] = pg6[ p

3Φ, 3Λ0];
pg8(xi2 , p5, p7) = pg8[ 4Ψ,

p

4K] = pg8[ p

4Φ, 4Λ0],
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from (A.3) and (A.10) as generating functions for a s-metric (A.1) and N-coefficients (A.2). In the first case,
expressing sΨ = sΨ[ p

sK, g4, pg6, pg8], we obtain such parameterizations of quasi-stationary solutions:

g1(x
k1) = g2(x

k1) = g1[ψ] = g2[ψ] = eψ(~,κ;x
k1), (A.12)

g3(x
k1 , y3) = − (∂3g4)

2

|
∫
dy3∂3[(

p

2K)g4]| g4
, g4(x

k1 , y3) is a generating function on shell s = 2;

pg5(xi2 , p5) = − [ p∂5( pg6)]2

|
∫
dp5 p∂5[( p

3K) pg6] | pg6
, pg6(xi2 , p5) is a generating function on shell s = 3,

pg7(xi2 , p5, p7) = − [ p∂7( pg8)]2

|
∫
dp7 p∂7[( p

4K) pg8] | pg8
, pg8(xi2 , p5, p7) is a generating function on shell s = 4, ;

N3i1(x
k1 , y3) = wi1 [g4] =

∂i1 [
∫
dy3( p

2K) ∂3g4]

( p

2K) ∂3g4
,

N4k1(x
i1 , y3) = nk1 [ g4] = 1nk1 + 2nk1

∫
dy3

(∂3g4)
2

|
∫
dy3∂3[(

p

2K)g4]| [g4]5/2
;

pN5k2(x
i2 , p5) = wk2 [

pg6] =
∂k2 [

∫
dp5(

p

3K) p∂5( pg6)]

( p

3K) p∂5( pg6)
,

pN6k2(x
i2 , p5) = nk2 [

pg6] = p

1nk2 +
p

2nk2

∫
dp5

[ p∂5( pg6)]2

|
∫
dp5 p∂5[( p

3K) pg6]| [ pg6]5/2
;

pN7k3(x
i2 , p5, p7) = wk3 [

pg8] =
p∂k3 [

∫
dp7(

p

4K) p∂7( pg8)]

( p

4K) p∂7( pg8)
,

pN7k3(x
i2 , p5, p7) = nk3 [

pg8] = p

1nk3 +
p

2nk3

∫
dp7

[ p∂7( pg8)]2

|
∫
dp7 p∂7[( p

4K) pg8]| [ pg8]5/2
,

The s-coefficients (A.12) define quasi-stationary solutions of type p
sg[~, κ, ψ,

p
sK, g4, pg6, pg8] from (A.9).

Above coefficients can be re-defined to include functional dependencies on effective cosmological constants
p
sΛ if we begin with (A.10) and express sΦ = sΦ[

p
sΛ0,

p
sK, g4, pg6, pg8]. This way we generate a solution of

type p
sg[~, κ, ψ,

p
sΛ0,

p
sK, g4, pg6, pg8] from (A.9).

A.5 Parametric quasi-stationary gravitational polarizations and κ-linear flows

To model off-diagonal deformations of a prescribed prime metric into target ones, p
s̊g = [ pg̊αs ,

pN̊as
is−1

] → p
sg

(A.5) by η-polarizations (A.6), we can consider as generating functions such values:

ψ(~, κ;xk1), pη4(x
k1 , y3), pη6(xi2 , p5),

pη8(xi2 , p5, p7).

This allows us to compute all polarization functions pηαs(~, κ, x
is−1 , pas) and pηasis−1

(~, κ, xis−1 , pas) following
the standard AFCDM. The explicit form of η-polarizations depend, for instance, on the type of target quasi-
stationary solutions we search. If the target is of type (A.3), we generate s-metrics with functional dependence
p
sg[~, κ, ψ,

p
sK, pη4 g̊4,

pη6 pg̊6, pη8 pg̊8, g̊3,
pg̊5, pg̊7] stated by classifications (A.9). In explicit form, with

complex variables, such a s-metric was constructed in appendix B.2 to [13], see formulas (B.4) in that work.
We can introduce effective cosmological constants p

sΛ0 and generate s-metrics with quasi-stationary dependence
p
sg[~, κ, ψ,

p
sΛ0,

p
sK, pη4 g̊4,

pη6 pg̊6, pη8 pg̊8, g̊3,
pg̊5, pg̊7] if such a target metric is of type (A.10). More general
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classes of solutons describing nonassociative geometric flows of quasi-stationary metrics with η-polarizations,
effective sources p

sℑ(τ) (52) and running cosmological constants p
sΛ(τ) are studied in section 4.5.

In [13, 40, 41], we constructed quasi-stationary 4-d and 8-d solutions of nonassociative vacuum gravitational
equations when the prime metrics are certain black hole, BH, metrics and the target s-metrics for black ellip-
soid, BE, s-metrics are generated as κ-linear s-deformations determined by generating functions pχ4,

pχ6, pχ8,
see (A.7). The coefficients of such s-metrics, with functional dependence of type
p
sg[~, κ, ψ,

p
sK, pζ4,

pχ4, g̊4;
pζ6, pχ6, pg̊6; pζ8, pχ8, pg̊8, g̊3,

pg̊5, pg̊7] from (A.9, were computed in a general
form involving complex coordinates in appendix B.3, formulas (B.7) of [13]. This way, we generate a class of
κ-parametric target quasi-stationary s-metrics of type (A.3). In a similar form, we can construct κ-parametric
target quasi-stationary s-metrics of type (A.10) with dependencies on p

sΛ0. Such generic off-diagonal configu-
rations are described by functionals of type
p
sg[~, κ, ψ,

p
sΛ0,

p
sK, pζ4,

pχ4, g̊4;
pζ6, pχ6, pg̊6; pζ8, pχ8, pg̊8, g̊3,

pg̊5, pg̊7] from (A.9). We note also that nonas-
sociative BE target solutions are generated for special rotoid polarizations of pχ4,

pχ6, pχ8 as we studied in
[40, 41]. The goal of this appendix is to generalize such solutions in real variables for nonassociative geometric
flow with small parametric deformations depending on τ -parameter.

In a τ -running family of quasi-stationary s-metrics of type (68), the η-polarizations are expressed as κ-
linear functions when s-metric and N-connection coefficients of families of prime s-metrics are transformed into
respective families of target ones,

p
s̊g(τ) → pκ

s g(τ) = [ pgαs(τ) =
pζαs(τ)(1 + κ pχαs(τ))

pg̊αs(τ),
pNas
is
(τ) = pζasis−1

(τ)(1 + κ pχasis−1
(τ)) pN̊as

is−1
(τ)].

The ζ- and χ-coefficients for deformations the η-polarization generating functions (67) are respectively κ-
linearized as data

ψ(τ) ≃ ψ(~, κ; τ, xk1) ≃ ψ0(~, τ, x
k1)(1 + κ ψχ(~, τ, x

k1)), for (A.13)

η2(τ) ≃ η2(~, κ; τ, x
k1) ≃ ζ2(~, τ, x

k1)(1 + κχ2(~, τ, x
k1)), we can consider η2(τ) = η1(τ);

pη4(τ) ≃ pη4(~, κ; τ, x
k1 , y3) ≃ pζ4(~, τ, x

k1 , y3)(1 + κ pχ4(~, τ, x
k1 , y3)),

pη6(τ) ≃ pη6(~, κ; τ, xi2 , p5) ≃ pζ6(~, κ; τ, xi2 , p5)(1 + κ pχ6(~, κ; τ, xi2 , p5)),
pη8(τ) ≃ pη8(~, κ; τ, xi2 , p5, p7) ≃ pζ8(~, κ; τ, xi2 , p5, p7)(1 + κ pχ8(~, κ; τ, xi2 , p5, p7)).

In above formulas, ψ(τ) and η2(τ) = η1(τ) are related to define a τ -family of solutions 2-d Poisson equation
∂211ψ(τ) + ∂222ψ(τ) = 2 1ℑ(τ).

For parameterizations (A.13), we can re-write the geometric evolution of quasi-stationary s-metrics in a
small κ-parametric form with χ-generating functions (for simplicity, we do not write in this formula the phase
space coordinate and parametric τ -dependence of coefficients):

d pŝ2(τ) = pĝαsβs(~, κ; τ, x
k , y3, pa3 , pa4 ; g4(τ),

pg6(τ), pg8(τ), p
sℑ(τ))d puαsd puβs

= eψ0(1 + κ ψ pχ)[(dx1)2 + (dx2)2]

−{ 4[∂3(|ζ4g̊4|1/2)]2
g̊3|
∫
dy3{ 2ℑ∂3(ζ4g̊4)}|

− κ[
∂3(χ4|ζ4g̊4|1/2)
4∂3(|ζ4g̊4|1/2)

−
∫
dy3{ 2ℑ∂3[(ζ4g̊4)χ4]}∫
dy3{ 2ℑ∂3(ζ4g̊4)}

]}̊g3

{dy3 + [
∂i1

∫
dy3 2ℑ ∂3ζ4

(N̊3
i1
) 2ℑ∂3ζ4

+ κ(
∂i1 [
∫
dy3 2ℑ∂3(ζ4χ4)]

∂i1 [
∫
dy3 2ℑ∂3ζ4]

− ∂3(ζ4χ4)

∂3ζ4
)]N̊3

i1dx
i1}2
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+ζ4(1 + κ χ4) g̊4{dt+ [(N̊4
k1)

−1[ 1nk1 + 16 2nk1 [

∫
dy3

(
∂3[(ζ4g̊4)

−1/4]
)2

|
∫
dy3∂3[ 2ℑ(ζ4g̊4)]|

] (A.14)

+κ
16 2nk1

∫
dy3

(∂3[(ζ4g̊4)−1/4])
2

|
∫
dy3∂3[ 2ℑ(ζ4g̊4)]|

(∂3[(ζ4g̊4)
−1/4χ4)]

2∂3[(ζ4g̊4)−1/4]
+

∫
dy3∂3[ 2ℑ(ζ4χ4g̊4)]∫
dy3∂3[ 2ℑ(ζ4g̊4)]

)

1nk1 + 16 2nk1 [
∫
dy3

(∂3[(ζ4g̊4)−1/4])
2

|
∫
dy3∂3[ 2ℑ(ζ4g̊4)]|

]

]N̊4
k1dx

ḱ1}2+

−{ 4[ p∂5(| pζ6 pg̊6|1/2)]2
pg̊5|

∫
dp5{ p

3ℑ p∂5[( pζ6 pg̊6)]}| − κ[
p∂5( pζ6 pg̊6)

p∂5( pζ5)
− ∂i2 [

∫
dp5

p

3ℑ p∂5( pζ6 pg̊6)]

∂i2 [
∫
dp5

p

3ℑ p∂5( pζ6)]
]} pg̊5

{dp5 + [
∂i2

∫
dp5

p

3ℑ p∂5( pζ6)

( pN̊i25)
p

3ℑ p∂5( pζ6)
+ κ(

∂i2 [
∫
dp5

p

3ℑ p∂5( pζ6 pg̊6)]

∂i2 [
∫
dp5

p

3ℑ p∂5( pζ6)]
−

p∂5( pζ6 pg̊6)
p∂5( pζ5)

)]( pN̊i25)dx
i2}

+ pζ6(1 + κ pχ6) pg̊6{dp5 + [ ( pN̊i26)
−1[ p

1ni2 + 16 p

2ni2 [

∫
dp5{

(
p∂5[( pζ6 pg̊6)−1/4]

)2

|
∫
dp5 p∂5[ p

3ℑ( pζ6 pg̊6)]| ] +

+κ
16 p

2ni2
∫
dp5

( p∂5[( pζ6 pg̊6)−1/4])
2

|
∫
dp5

p

3ℑ
p∂5[( pζ6 pg̊6)]|

(
p∂5[( pζ6 pg̊6)−1/4 pχ6)]

2 p∂5[( pζ6 pg̊6)−1/4]
+

∫
dp5

p

3ℑ
p∂5[( pζ6 pg̊6) pχ6]∫

dp5
p

3ℑ
p∂5[( pζ6 pg̊6)]

)

p

1ni2 + 16 p

2ni2 [
∫
dp5

( p∂5[( pζ6 pg̊6)−1/4])
2

|
∫
dp5

p

3ℑ
p∂5[( pζ6 pg̊6)]|

]

]]( pN̊i26)dx
i2}2

−{ 4[ p∂7(| pζ8 pg̊8|1/2)]2
pg̊7|

∫
dp7{ p

4ℑ p∂7( pζ8 pg̊8)}| − κ[
p∂7( pχ8| pζ8 pg̊8|1/2)
4 p∂7(| pζ8 pg̊8|1/2) −

∫
dp7{ p

4ℑ p∂7[( pζ8 pg̊8) pχ8]}∫
dp7{ p

4ℑ p∂7[( pζ8 pg̊8)]} ]} pg̊7

{dp7 + [
p∂i3

∫
dp7

p

4ℑ p∂7( pζ8)

( pN̊i37)
p

4ℑ p∂7( pζ8)
+ κ[

p∂i3 [
∫
dp7

p

4ℑ p∂7( pζ8 pg̊8)]
p∂i3 [

∫
dp7

p

4ℑ p∂7( pζ8)]
−

p∂7( pζ8 pg̊8)
p∂7( pζ8)

]]( pN̊i37)d
pxi3}2

+ pζ8(1 + κ pχ8) pg̊8{dp7 + [( pN̊i38)
−1[ p

1ni3 + 16 p

2ni3 [

∫
dp7{

(
p∂7[( pζ8 pg̊8)−1/4]

)2

|
∫
dp7

p

4ℑ p∂7( pζ8 pg̊8)| ]

+κ
16 p

2ni3
∫
dp7

( p∂7[( pζ8 pg̊8)−1/4])
2

|
∫
dp7

p

4ℑ
p∂7[( pζ8 pg̊8)]|

(
p∂7[( pζ8 pg̊8)−1/4 pχ8)]

2 p∂7[( pζ8 pg̊8)−1/4]
+

∫
dp7

p

4ℑ
p∂7[( pζ8 pg̊8) pχ8]∫

dp7
p

4ℑ
p∂7( pζ8 pg̊8)

)

p

1ni3 + 16 p

2ni3 [
∫
dp7

( p∂7 [( pζ8 pg̊8)−1/4])
2

|
∫
dp7

p

4ℑ
p∂7( pζ8 pg̊8)|

]

]] ( pN̊i38)dx
i3}2.

Quasi-stationary solutions of type (A.14) can be constructed for κ-parametric decompositions of τ -running
gravitational polarization functions beginning with quadratic linear elements (63) with nonholonomic frames
(64) and respective nonlinear transforms (60) and (61), when

[ p
sg(τ), sΨ(τ), p

sℑ(τ)] ↔ [ p
sg(τ), sΦ(τ),

p
sℑ(τ), p

sΛ(τ)] ↔ [ p
sg(τ),

p
sη(τ)

pg̊αs(τ),
p
sℑ(τ), p

sΛ(τ)]

↔ [ p
sg(τ),

pζαs(τ)(1 + κ pχαs(τ))
pg̊αs(τ),

p
sℑ(τ), p

sΛ(τ)].

We omit details on such technical constructions but present examples in next appendix section and some
applications, for instance, for double BE and BHs phase space flow solutions in section (5.2).

If we fix τ = τ0 for self-similar configurations of s-metrics (A.14), we generate κ-parametric solutions
for nonassociative Ricci solitons (47). Such solutions were constructed for nonassociative vacuum Einstein
equations with effective sources q

sK and complex variables in [13] (see appendix B.3 with formulas (B.7) in
that work).
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