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By Luc Devroye1 and Gábor Lugosi2

McGill University and Pompeu Fabra University

We introduce a method to select a smoothing factor for kernel density
estimation such that, for all densities in all dimensions, the L1 error of
the corresponding kernel estimate is not larger than three times the error
of the estimate with the optimal smoothing factor plus a constant times√

log n/n, where n is the sample size, and the constant depends only on the
complexity of the kernel used in the estimate. The result is nonasymptotic,
that is, the bound is valid for each n. The estimate uses ideas from the
minimum distance estimation work of Yatracos. As the inequality is uni-
form with respect to all densities, the estimate is asymptotically minimax
optimal (modulo a constant) over many function classes.

1. Introduction. We are given an i.i.d. sample X1; : : : ;Xn drawn from
an unknown density f on Rd. We consider the Akaike–Parzen–Rosenblatt
density estimate

fnh�x� =
1
n

n∑
i=1

Kh�x−Xi�;

where Kx Rd→ R is a fixed kernel with
∫
K = 1, Kh�x� = �1/hd�K�x/h�,

and h > 0 is the smoothing factor [Akaike (1954); Parzen (1962); Rosenblatt
(1956)]. Many data-dependent choices for h have been proposed in the lit-
erature. Most perform well for restricted classes of densities. An exception
may be found in the recent work of Devroye and Lugosi (1996), where a data-
dependent smoothing factor H is introduced for which

sup
f

lim sup
n→∞

E
∫
�fnH − f�

infh E
∫
�fnh − f�

≤ 3;

whenever the kernel K is nonnegative, Lipschitz and of a compact support.
The estimate of that paper requires various parameter choices which in turn
are used to define the procedure for findingH. In this paper, a “cleaner” related
estimate is proposed, and explicit nonasymptotic performance guarantees are
provided that are uniform over all f.
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2. The estimate. To define our estimate, we first introduce the class Rk

of kernels of the form

K′�x� =
k∑
i=1

αiIAi
�x�;

where IA denotes the indicator function of a set A, k <∞, α1; : : : ; αk ∈ R and
A1; : : : ;Ak are Borel sets in Rd with the following property: the intersection
of an infinite ray �xx x = tx0; t ≥ 0�, anchored at the origin, with any Ai is
an interval. This property is needed in the proof of Lemma 3 below. Examples
of such Ai’s include all convex sets and all star-shaped sets (a set A is star-
shaped if x ∈ A implies λx ∈ A for all λ ∈ �0;1�). The Ai’s need not be disjoint.
However, if the Ai’s are disjoint rectangles, the sum looks a bit like a Riemann
approximation of a function. Thus, kernels of the type given here are called
Riemann kernels of parameter k. Denote the class of all such functions by
Rk. The most important examples include the uniform densities on ellipsoids,
balls and hypercubes.

In our estimate, we first select k and K′ ∈Rk such that
∫
�K−K′� ≤ 1

n
:

Note that this is always possible if K is Riemann integrable. The size k as a
function of n will be discussed in Section 6.

A kernel estimate with kernel K′ is piecewise constant and thus easy to
work with in simulations.

The second and last choice is that of a parameter m ≤ n/2 that will be used
to split the data set into a small test set of size m and a large main sample
of size n−m. Define the kernel estimates

f′n−m;h�x� =
1

n−m
n−m∑
i=1

K′h�x−Xi�

for all h > 0. Let µm be the empirical measure defined by the rest of the data
points: Xn−m+1; : : : ;Xn, that is, for any Borel set A ⊆ Rd,

µm�A� =
1
m

n∑
i=n−m+1

IA�Xi�:

Let H be that smoothing factor for which the quantity

sup
A∈A

∣∣∣∣
∫
A
f′n−m;h − µm�A�

∣∣∣∣

is minimal over h ∈ �0;∞�, where A is a special (random) collection of sets
to be defined below. If the minimum is not unique, we choose among the min-
imizing densities according to a prespecified rule; for example, we choose the
smallest one. Observe that since f′n−m;h is piecewise constant and K′ ∈Rk, a
minimum always exists.
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As µm�A� is close to
∫
A f for all A, one may expect that

∫
A f
′
n−m;h is close

to
∫
A f as well if A is not too large. If A is the class of all Borel sets, the

criterion to be minimized is equal to 2 for all h and becomes useless. If A is
too small, the closeness of

∫
A f
′
n−m;h to

∫
A f does not imply the closeness of

f′n−m;h to f. Thus, a compromise must be struck. Based on ideas from Yatracos
(1985), for each u; v > 0, we define the set Au; v by

Au; v =
{
x ∈ Rdx

n−m∑
i=1

K′u�x−Xi� ≥
n−m∑
i=1

K′v�x−Xi�
}

=
{
xx f′n−m;u�x� ≥ f′n−m;v�x�

}
:

We call the class of sets

A = �Au; vx u > 0; v > 0�
a Yatracos class. This class depends on X1; : : : ;Xn−m, and it becomes very
rich, yet remains reasonably simple (even though it has an infinite number of
members).

Finally, our estimate is

fn
def= fn−m;H:

Note that we have replaced K′ by K again. The kernel K′ is no longer needed.
We may also use fn = fn;H and refer to Devroye and Lugosi (1996) for analysis
of this situation. For a practical implementation and experimental comparison,
we refer to Devroye (1997).

3. Main result. Let K be a Riemann integrable kernel, and let n be a
positive integer. The kernel complexity of precision 1/n of K is defined by

κn = min
{
kx there exists a K′ ∈Rk such that

∫
�K−K′� ≤ 1

n

}
;

that is, κn is the smallest integer k such that there exists a Riemann kernel
with parameter k whose L1 distance from K is at most 1/n. Clearly, if K
is Riemann integrable, then κn < ∞ for all n. In fact, it will be shown in
Section 6 that for most kernels used in practice, κn is usually of the order of
nα for some constant α.

Theorem. Let K be a bounded kernel, and m ≤ n/2. If κn is the kernel
complexity of K of precision 1/n, then there exists a Riemann kernel K′ of
parameter κn such that if K′ is used in the estimate described in the previous
section, then for all densities f,

E
∫
�fn − f� ≤ 3

(
1+ 2m

n−m + 8
√
m

n

)
inf
h

E
∫
�fnh − f�

+ 4

√
log�4e8�m2 + 1��1+ 2κnm2�n−m��2�

2m
+ 4
n
:
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Corollary 1. If we take m = �n/2�, then

E
∫
�fn − f� ≤ 43 inf

h
E
∫
�fnh − f� + c

√
log�nκn�

n
;

where c is a universal constant, independent of f and K.

Corollary 2. Take m = �n/64� and assume n ≥ 64. Then simple compu-
tations show the following:

E
∫
�fn − f� ≤

128
21

inf
h

E
∫
�fnh − f�

+ 32

√
log�128e8�n/64�6n2κ2

n�
n

+ 4
n

≤ 128
21

inf
h

E
∫
�fnh − f�

+ 32

√
22+ 8 log�n/64� + 2 log κn

n
+ 4
n
:

Corollary 3. If m = o�n�, m/�n4/5 log n� → ∞ and κn = O�nα� for some
finite α, then

E
∫
�fn − f� ≤ �3+ o�1�� inf

h
E
∫
�fnh − f� + o�n−2/5�:

As lim infn→∞ n2/5 infh E
∫
�fnh − f� > 0 for any f, K ≥ 0 and d [see Devroye

and Györfi (1985)], we have

sup
f

lim sup
n→∞

E
∫
�fn − f�

infh E
∫
�fnh − f�

≤ 3:

This universal asymptotic bound is shared with the related estimate of Devroye
and Lugosi (1996).

Corollary 4. Let s > 0 be even. If the kernelK is bounded, symmetric and
has finite nonzero sth moment (for even s) and zero ith moments for 0 < i < s,
then regardless of the density and the choice of h,

lim inf
n→∞

ns/�2s+1� inf
h

E
∫
�fnh − f� > 0

[Devroye (1988), page 1173]. For such higher-order kernels, let m = o�n� such
that m/�n2s/�2s+1� log n� → ∞. Then if κn = O�nα� for some finite α,

E
∫
�fn − f� ≤ �3+ o�1�� inf

h
E
∫
�fnh − f� + o�n−s/�2s+1��;

and therefore

sup
f

lim sup
n→∞

E
∫
�fn − f�

infh E
∫
�fnh − f�

≤ 3:

Thus, the theorem covers all kernels of finite order.
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Computational notes. The user must pick m, K and K′. If K itself is a
Riemann kernel, then one should pick K′ ≡K. As noted earlier, the piecewise
constant nature of K′ ensures that f′n−m;h is piecewise constant and thus easy
to manage without having to worry about numerical errors. When K is not
Riemann, the last section of this paper gives some guidance with respect to
the choice of K′. Note that the kernels K and K′ need not necessarily be
positive. Finally, the corollaries of the previous section show that one should
not take m smaller than about n4/5 log n.

The estimate requires that
∫
�K−K′� ≤ 1/n. The value 1/n is chosen such

that the error resulting from this approximation stays small (less than 4/n).
Since this value is much smaller than the other terms in the performance
bound, one may be willing to use a less accurate approximation of K. For
example, using a kernel K′ with

∫
�K − K′� = u lets us replace κn in the

upper bound by κ�1/u�. Clearly, one would not want to choose u much larger
than m−1/2, since then the approximation error would dominate the error.
Therefore, if κn = O�nα� for some α, as in most interesting cases, no more
than a constant factor in the lower-order term is at stake.

4. Proof of the Theorem.

Lemma 1. For each n;m and for all f,

∫
�fn − f� ≤ 3 inf

h

∫
�fn−m;h − f� + 4 sup

A∈A

∣∣∣∣
∫
A
f− µm�A�

∣∣∣∣+ 4
∫
�K−K′�:

Proof of Lemma 1. Fix an ε > 0, and let f̄ be an estimate f′n−m;h (based
on the kernel K′) such that, for all h > 0,

∫
�f̄− f� ≤

∫
�f′n−m;h − f� + ε:

Then
∫ ∣∣f′n−m;H − f

∣∣ ≤
∫ ∣∣f̄− f

∣∣+
∫ ∣∣f′n−m;H − f̄

∣∣

=
∫ ∣∣f̄− f

∣∣+ 2 sup
A∈A

∣∣∣∣
∫
A
f′n−m;H −

∫
A
f̄

∣∣∣∣ (by Scheffé’s theorem);

≤
∫ ∣∣f̄− f

∣∣+ 2 sup
A∈A

∣∣∣∣
∫
A
f′n−m;H − µm�A�

∣∣∣∣+ 2 sup
A∈A

∣∣µm�A� −
∫
A
f̄
∣∣

≤
∫ ∣∣f̄− f

∣∣+ 4 sup
A∈A

∣∣∣∣µm�A� −
∫
A
f̄

∣∣∣∣ (by the definition of H)

≤
∫ ∣∣f̄− f

∣∣+ 4 sup
A∈A

∣∣∣∣
∫
A
f−

∫
A
f̄

∣∣∣∣+ 4 sup
A∈A

∣∣µm�A� −
∫
A
f
∣∣

(by the triangle inequality)
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≤ 3
∫ ∣∣f̄− f

∣∣+ 4 sup
A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣ (by Scheffé’s theorem)

≤ 3 inf
h

∫ ∣∣f′n−m;h − f
∣∣+ ε+ 4 sup

A∈A

∣∣µm�A� −
∫
A
f
∣∣:

But since ε is arbitrary, we have
∫ ∣∣f′n−m;H − f

∣∣ ≤ 3 inf
h

∫ ∣∣f′n−m;h − f
∣∣+ 4 sup

A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣:

On the other hand, since, for each h,
∫
�fn−m;h − f′n−m;h� ≤

∫
�K −K′�, for

the L1 error of our estimate fn = fn−m;H, we have
∫
�fn − f� ≤

∫
�f′n−m;H − f� +

∫
�K−K′�

≤ 3 inf
h

∫ ∣∣f′n−m;h − f
∣∣+ 4 sup

A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣+
∫
�K−K′�

(by the argument above)

≤ 3 inf
h

∫ ∣∣fn−m;h − f
∣∣+ 4 sup

A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣+ 4
∫
�K−K′�;

which proves Lemma 1. 2

The first term on the right-hand side of the inequality of Lemma 1 may be
bounded by the following result.

Lemma 2 [Devroye and Lugosi (1996)]. Let K be a bounded kernel. If m >
0 is a positive integer such that 2m ≤ n, then

1 ≤ infh E
∫
�fn−m;h − f�

infh E
∫
�fn;h − f�

≤ 1+ 2m
n−m + 8

√
m

n
:

Therefore,

inf
h

E
∫ ∣∣fn−m;h − f

∣∣ ≤ inf
h

E
∫
�fn;h − f�

(
1+ 2m

n−m + 8
√
m

n

)
:

To obtain suitable upper bounds for supA∈A �
∫
A f − µm�A��, we use an in-

equality by Vapnik and Chervonenkis (1971) for uniform deviations of the
empirical measure µm over the Yatracos class of sets A .

Let y1; : : : ; ym ∈ Rd be fixed points. Define the shatter coefficient

s�A ;m� = sup
y1;:::;ym∈Rd

∣∣�y1; : : : ; ym� ∩Ax A ∈ A
∣∣:

The purpose of the next lemma is to obtain a simple upper bound for s�A ;m� if
K′ is a Riemann kernel. It is convenient to let the rank of A be r�A � = n−m,
the size of the sample used in the definition of A .
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Lemma 3. Let K′ =∑k
i=1 αiIAi

be a Riemann kernel of parameter k. Then

s�A ;m� ≤ �m+ 1��1+ 2kmr�A ��2:

Proof. Set r = r�A �. Define the vector

zu =
( r∑
i=1

K′
(
y1 −Xi

u

)
; : : : ;

r∑
i=1

K′
(
ym −Xi

u

))
∈ Rm:

As u ↑ ∞, each component of zu changes every time �yj −Xi�/u enters or
leaves a set Al, 1 ≤ l ≤ k for some Xi, 1 ≤ i ≤ r. Note that, for fixed
�yj−Xi�, the evolution is along an infinite ray anchored at the origin. By our
assumption on the possible form of the sets Al, the number of different values
a component can take in its history (as u ↑ ∞) is clearly bounded by 2kr. As
there are m components, the cardinality of the set of different values of zu is
bounded as

∣∣{zux u > 0
}∣∣ ≤ 1+ 2kmr:

Thus,
∣∣{�zu; zv�x u; v > 0

}∣∣ ≤ �1+ 2kmr�2:
Let W = ��w;w′�x �w;w′� = �zu; zv� for some u; v > 0�. For fixed �w;w′� ∈ W ,
let U�w;w′� denote the collection of all �u; v� such that �zu; zv� = �w;w′�. For
�u; v� ∈ U�w;w′�, we have

yi ∈ Au; v if and only if wi ≥
(
u

v

)d
w′i;

where w;w′ have components wi;w
′
i, respectively, 1 ≤ i ≤m. Thus,

∣∣{{y1; : : : ; ym
}
∩Au; vx �u; v� ∈ U�w;w′�

}∣∣

≤
∣∣{(Iw1≥cw′1; : : : ; Iwm≥cw′m

)
x c ≥ 0

}∣∣ ≤m+ 1:

But then ∣∣{{y1; : : : ; ym
}
∩Au; vx �u; v� > 0

}∣∣ ≤ �m+ 1�
∣∣U�w;w′�

∣∣

≤ �m+ 1��1+ 2kmr�2: 2

A variant of the Vapnik–Chervonenkis inequality [Vapnik and Chervo-
nenkis (1971); see Devroye (1982)] states that, for ε > 0,

P
{

sup
A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣ > ε
∣∣X1; : : : ;Xn−m

}

≤ 4e8s�A ;m2�e−2mε2 ≤ 4e8�m2 + 1��1+ 2km2r�A ��2e−2mε2
;

where we used Lemma 3. This implies by standard bounding that

E
{

sup
A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣
∣∣X1; : : : ;Xn−m

}
≤
√

log�4e8s�A ;m2��
2m
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[see Devroye, Györfi and Lugosi (1996), page 208]. As r�A � = n − m and
s�A ;m� is uniformly bounded over all (random) collections A , the proof of
the theorem is complete. 2

5. Kernel complexity. In this section we obtain bounds for κn, the kernel
complexity of precision 1/n appearing in the theorem, for several examples of
kernels. Note that the theorem has the form

E
∫
�fn − f� ≤ 3

(
1+ 2m

n−m + 8
√
m

n

)
inf
h

E
∫
�fnh − f� + c

√
log n
m

for some constant c which is independent of f, whenever κn = O �nα� for some
α < ∞. Such kernels are polynomially Riemann approximable. All kernels
that we have found in papers are in this class.

Uniform kernels. If K�x� = IA�x� for a star-shaped set A, then obvi-
ously κn = 1 for all n > 1.

Isosceles triangular density. If K�x� = �1−�x��+, then elementary cal-
culation shows that, for all n, κn ≤ n+ 1.

Symmetric unimodal kernels. As a first main example, consider sym-
metric unimodal densities (i.e., K ≥ 0 and

∫
K = 1) on the real line. Let β be

the last positive value for which
∫∞
β K ≤ 1/�4n�. Partition �0; β� and �−β;0�

into N = �4nK�0�β� equal intervals. On each interval, let K′ be constant
with value equal to the average of K over that interval. Let γ =

∫∞
β K/K�β�,

and set K′�x� = K�β� on �β;β + γ� and �−β − γ;−β�. Note that
∫
K′ = 1,∫

�K − K′� ≤ 1/n and that K′ is Riemann with parameter k = 2N + 2 ≤
8nK�0�β+ 10. Thus, κn ≤ 8nK�0�β+ 10.

Example 1 (Bounded compact support densities). If K�x� ≤ aI�−b; b��x�
and K is symmetric, nonnegative and unimodal (such as the Epanechnikov–
Bartlett kernel), then κn ≤ 8nab+ 10.

Example 2 (The normal density). When K�x� = �
√

2π�−1e−x
2/2, we have

K�0� = �
√

2π�−1. Since, for β ≥ 1,

∫ ∞
β

1√
2π

exp�−x2/2�dx ≤ 1√
2π

1
β

exp�−β2/2� ≤ 1√
2π

exp�−β2/2�;

we may take β =
√

2 log�4n/
√

2π�. Thus, for all n > 1,

κn ≤
8n
√

log n√
π

+ 10:
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Example 3 (The Cauchy density). Take K�x� = 1/�π�1 + x2��. Note that
K�0� = 1/π, and that β = π/�4n� will do. Therefore,

κn ≤
32n2

π2
+ 10:

Example 4 (Densities with polynomial tails). Note that if K is a symmet-
ric unimodal density, and �K�x�� ≤ c/�1+ �x�γ+1� for some c <∞, γ > 0, then
κn = O�n1+1/γ�. In fact, for most cases of interest, κn = O�nα� for some finite
constant α > 0. This remains so even for d dimensions.

Kernels of bounded variation. If K is symmetric and a difference of
two monotone functions, that is, K =K1−K2, K1 ↓ 0, K2 ↓ 0 on �0;∞�, then
each K1;K2 may be approximated as above. Thus, in particular, if K is of
bounded variation, and �K�x�� ≤ c/�1+�x�γ+1� for some c <∞, γ > 0, then we
may approximate with κn = O�n1+1/γ�. Nearly every one-dimensional kernel
falls in this class.

Product kernels. If K = K1 × · · · × Kd is a product of d univariate
kernels, and if we approximateKi withK′i with parameter κ�i�nd for all i (where

κ
�i�
nd is the kernel complexity ofKi of precision nd) and formK′ =K′1×· · ·×K′d,

thenK′ is a weighted sum of indicators of product sets, and it is Riemann with
parameter not exceeding

∏d
i=1 κ

�i�
nd. Furthermore,

∫
�K−K′� ≤

∫
�K1 × · · · ×Kd−1 ×Kd −K1 × · · · ×Kd−1 ×K′d�

+ · · · +
∫
�K1 ×K′2 · · · ×K′d −K′1 ×K′2 · · · ×K′d�

≤ d
(

1
nd

)

= 1
n
:

Thus, it suffices to replace κn throughout by
∏d
i=1 κ

�i�
nd, and only worry about

univariate kernel approximations.

Kernels that are functions of �x�. Assume that K�x�=M��x��, where
M is a bounded nonnegative monotone decreasing function on �0;∞�. Then we
may approximateM by a stepwise constant functionM′, and use the Riemann
kernel K′�x� =M′��x�� in the estimate as an approximation of K. Clearly,

∫
�K�x� −K′�x��dx =

∫ ∞
0
cdu

d−1�M�u� −M′�u��du;

where cd is d times the volume of the unit ball in Rd. We may define M′ as
follows. Let β be the largest positive number for which

∫∞
β cdu

d−1M�u�du ≤
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1/�2n�. Partition �0; β� into N = �2ncdM�0�βd� equal intervals. On each
interval, let M′ be equal to the average of M over that interval. Let γ =∫∞
β cdu

d−1M�u�du/M�β�, and set M′�u� = M�β� on u ∈ �β;β + γ� and let
M′�u� = 0 for u > γ. Clearly,

∫
K′ = 1, and K′ is Riemann with parameter

k =N+ 1 ≤ 2ncdK�0�βd + 2. Moreover,
∫
�K�x� −K′�x��dx =

∫ β
0
cdu

d−1�M�u� −M′�u��du

+
∫ ∞
β
cdu

d−1�M�u� −M′�u��du

≤ 1
2n
+ cdβd−1

∫ β
0
�M�u� −M′�u��du

≤ 1
2n
+ cdβd−1M�0�β

N

≤ 1
n
:

Thus,

κn ≤ 2ncdM�0�βd + 2:

The multivariate standard normal kernel. We may apply the bound of
the previous paragraph to the multivariate normal density. First note that it
suffices to take β = 2

√
2 log n. From this, we deduce that the kernel complex-

ity is

κn = O�n logd/2 n�:

6. Minimax optimality and adaptation. In a minimax setting, a sub-
class F of densities of interest is given, and the minimax risk is commonly
defined by

Rn�F �
def= inf

fn
sup
f∈F

E
∫
�fn − f�;

where the infimum is over all density estimates. For many smoothness classes
it is known that, if fnh is the kernel estimate with an appropriate kernel K,
then

sup
f∈F

inf
h

E
∫
�fnh − f� ≤ CRn�F �

for some universal constant C > 1 [see, e.g., Devroye (1987)]. In fact, the
proof of such a result usually reveals a formula for h as a function of f ∈ F .
However, we do not know f, and so we are stuck. If we use the present data-
dependent bandwidth H, then with m = o�n� and κn = O�na� for some finite
a, we have

sup
f∈F

E
∫
�fnH − f� ≤ �3C+ o�1��Rn�F � +O

(√
log n/m

)
:
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In many cases, the last term is negligible. Thus, our results may be used
for existence proofs of minimax optimal estimators; if one can find a formula
h = h�f;n� for the bandwidth that gives a certain rate, then that same rate
will be achieved with H.

A more interesting problem occurs when we define F up to a parameter,
such as the class of all Lipschitz densities on �0;1� with unknown Lipschitz
constant α. For fixed α, the class is denoted by Fα. Assume that we know that,
for each α,

�1� sup
f∈Fα

inf
h

E
∫
�fnh − f� ≤ CαRn�Fα�:

When α is not given beforehand, the challenge is to find a data-dependent H
such that

sup
α

supf∈Fα E
∫
�fnH − f�

Rn�Fα�
≤ C′

for some suitable constant C′. In that case, we may say that H adapts itself
nicely to the union of the classes Fα. Such a point of view is not without merit.
Assume that H is picked by the method of this paper. Then, assuming that m
grows linearly with n, and that κn = O�na� for some finite a > 0, we see that
there exist universal constants D and E such that

sup
α

supf∈Fα E
∫
�fnH − f�

Rn�Fα�
≤ sup

α

supf∈FαD infh E
∫
�fnh − f� +E

√
�log n�/n

Rn�Fα�

≤ sup
α

DCαRn�Fα� +E
√
�log n�/n

Rn�Fα�

= D sup
α
Cα +

E
√
�log n�/n

inf αRn�Fα�
:

In the majority of the interesting cases, this is D supαCα+o�1�. Indeed, then,
one may useH and be assured of good adaptive capabilities whenever (1) holds
and the constants Cα are uniformly bounded. Typically, (1) is easy to verify, so
that one need not be concerned with the details of the random bandwidth H.
Furthermore, the universal nature of the above result says something very
powerful about the kernel estimate and about the bandwidths described in
this paper.
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