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1 Introduction

In [3] Jim Cushing and Shandelle Henson published two conjectures (see Section 3) related to
the Beverton-Holt difference equation (with growth parameter exceeding one) which said that
the B-H equation with periodically varying coefficients (a) will have a globally asymptotically
stable periodic solution and (b) the average of the state variable along the periodic orbit will
be strictly less than the average of the carrying capacities of the individual maps. They had
previously [2] proved both statements for period 2.

In [4] the authors solved the first conjecture in the affirmative for arbitrary period and for
a more general class of maps in a metric state space. In addition they showed that the period
of the periodic “geometric cycle”, i.e. the projection of the periodic orbit onto the state space,
must be a divisor of the period of the underlying system. In [5] the authors solved the second
conjecture.

Independently Ryusuke Kon [7], [8] discovered a solution to the second conjecture and in fact
proved the result for a wider class of difference equations including the Beverton-Holt equation.
Also Kocic [6] has given a solution to the second conjecture.

In this paper we consider the B-H equation with periodic growth parameter as well as periodic
carrying capacity. We first give an estimate relating the averages of the state variable and the
carrying capacities. This is done by a modification of the proof of Kocic [6]. We then refine the
estimate and actually obtain an equality relating the averages, (in the case of period p = 2) thus
laying to rest once and for all the p = 2 case. The general case will be treated elsewhere.

∗Supported by University of Southern California, Letters Arts and Sciences Faculty Development Grant
†Corresponding author
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Finally we show in Section 6 that for the Beverton-Holt equation with periodic carrying
capacity and constant µ > 1, the unique asymptotically stable periodic solution must have
minimal period exactly equal to the minimal period of the equation.

2 Discrete Skew-Product Systems

Consider the system of difference equations

xn+1 = fn(xn), n ∈ Z+ (2.1)

fn : X → X, where fn is continuous on a metric space X. Let C be the space of continuous
functions equipped with the topology of uniform convergence on compact subsets of Z × X.
Define the shift map σ : C → C by σ(fi) = fi+1 and let Y = cl{fn : n ∈ Z}.Then if g 6= fn for
all n, g ∈ Y , we have fni

→ g for some subsequence {fni
}. It is a standard exercise to verify

that σ is continuous on C.
The map π : X × Y × Z+ → X × Y defines a skew product semi-dynamical system where

π(x, g, n) = (Φ(g, n)x, σn(g)), with Φ(g, n) = σn−1(g) ◦ · · · ◦ σ(g) ◦ g. We define the “fiber”, Fg

over g ∈ Y as
Fg = proj−1(g)

where proj is the projection: proj : X × Y → Y given by proj(x, y) = y. The fiber Fg is just
a copy of X residing over g in the product space. We will take the liberty to write Fi for Ffi

whenever the focus is specifically on the sequence {fi}.
Let cr = {x̄0, x̄1, . . . , x̄r−1} be a cycle of (2.1) in space X with minimal period r, where

fn+p = fn for all n ∈ Z+, and f(i+nr) mod p(x̄i) = x̄(i+1) mod r. Such a cycle “in the space X” was
defined to be a “geometric cycle” in [4] to distinguish it from a true cycle (a periodic orbit) in
the skew-product semi-dynamical system π.

Then cr produces an r-cycle in the skew-product dynamical system only if r ≥ p. In fact
an r-cycle produces an s = [r, p]-cycle in the skew-product system as may be seen from the
following result.

Lemma 2.1. Let s = [r, p] be the least common multiple of r and p. Then the orbit of (c0, f0)

in the skew-product system intersects each fiber Fi, i = 0, 1, . . . , p − 1 in exactly l =
s

p
points

and each of these points is periodic under π with period s.

Proof. Define s to be the least common multiple of r and p, and positive integers m and ` such
that

s
.
= [r, k] = mr = `p (2.2)

Define νi to be the number of distinct ci which land in Fi under repeated application of the
appropriate maps. First consider i = 0. Then ν0 is the number of distinct i, 0 ≤ i ≤ p − 1, for
which

(i + tr) mod k = 0
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or equivalently
i + tr = ρp for some ρ = ρt (2.3)

where t is the number of executions of the r-cycle. Thus 0 ≤ t < m− 1 and since 0 ≤ i < p ≤ r,
it follows that

i + tr < mr = lp

which implies that 0 ≤ ρt < ` in (2.3). Thus, even if it ρt attains all possible values, we generate
at most ` distinct i values, i.e. ν0 ≤ `. A similar argument shows νi ≤ ` for all possible i.

From (2.2) we see that each of the fibers Fi contains on average s/p = l points. But if νi < `
on some fiber then νj > ` on some other fiber, a contradiction. Thus νi = l, i = 0, . . . , p− 1.

3 The Cushing-Henson Conjectures

Cushing and Henson [3] conjectured that for the p-periodic Beverton-Holt equation, p ≥ 2,

xn+1 =
µKnxn

Kn + (µ− 1)xn

, µ > 1, Kn > 0

1. There is a positive k-periodic solution {x̄0. . . . , x̄k−1} and it globally attracts all positive
solutions

2. The average av(xn)
.
= 1

k

∑k−1
i=0 xi satisfies

av(x̄n) < av(Kn)

When the Kn = K are all the same, the autonomous case, it is clear that the mapping
xn → xn+1 has a globally (in R+) attracting fixed point K and the “averages” are trivially equal.
The interpretation of the second conjecture is that a periodically varying carrying capacity (a
fluctuating environment) has a deleterious effect on the average of the state variable along a
periodic orbit.

Earlier [2] Cushing and Henson proved both statements for k = 2.

4 Extensions

In this section we assume that both the intrinsic growth rate µ and the carrying capacity K are
periodic of minimal common period p ≥ 2. The Beverton-Holt equation becomes

xn+1 =
µnKnxn

Kn + (µn − 1)xn

(4.1)

with µn+p = µn and Kn+p = Kn, for all n ∈ Z+.
Equation (4.1) may be written in the form

xn+1 = fn(xn), (4.2)
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where

fn(x) =
µnKnx

Kn + (µn − 1)x
.

Notice that the map
H(x) = fp−1 ◦ fp−2 ◦ · · · ◦ f0(x)

defines a discrete semidynamical system on F0 = R+ given by

xn+1 = H(xn). (4.3)

Now

H(x) =
Qp−1Lp−1x

Lp−1 + Ep−1x
(4.4)

where

Lp−1 = Kp−1 . . . K0,

Qp−1 = µp−1 . . . µ0,

Ep−1 = Kp−1Ep−2 + (µp−1 − 1)µp−2µp−3 . . . µ0Kp−2Kp−3 . . . K0

with E0 = µ0 − 1. We thus obtain

Ep−1 =

(
p−2∏
j=0

Kj+1

)
(µ0 − 1) +

p−2∑
s=0

[
(µs+1 − 1)

p−2∏
j=s+1

Kj+1

s∏
j=0

µj

s∏
j=0

Kj

]
. (4.5)

Equation (4.1) has a p-periodic solution if and only if H(x̄0) = x̄0 or

x̄0 =
Qp−1Lp−1x̄

Lp−1 + Ep−1x̄
.

Hence

x̄0 =
Lp−1(Qp−1 − 1)

Ep−1

(4.6)

is a point in the unique periodic orbit of equation (4.1). Since H belongs to the class K defined
in ([4]), this unique periodic orobit is globally asymptotically stable. This establishes the first
of the Cushing-Henson conjectures.

Next we turn our attention to the second conjecture. The proof is similar to the one used
by Kocic [6].
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Let cp = {x̄0, x̄1, . . . , x̄p−1} be the unique periodic orbit of equation (4.1). Then

av(x̄n) =
1

p

p−1∑
i=0

x̄i =
1

p

p−1∑
i=0

x̄i+1

=
1

p

p−1∑
i=0

µiKix̄i

Ki + (µi − 1)x̄i

=
1

p

p−1∑
i=0

(
µiKi

µi−1

)(
(µi−1)

Ki
x̄i

)
1 +

(
(µi−1)

Ki
x̄i

)

=
1

p

[
p−1∑
i=0

(
µiKi

µi−1

)
f
(

(µi−1)
Ki

x̄i

)]
p−1∑
i=0

µiKi

µi−1

p−1∑
i=0

µiKi

µi − 1

where f(x) = x
1+x

. Clearly f is concave and thus satisfies Jensen’s inequality

f


p−1∑
i=0

wiui

p−1∑
i=0

wi

 >

p−1∑
i=0

wif(ui)

p−1∑
i=0

wi

.

Letting wi = µiKi

µi−1
, ui = µi−1

Ki
x̄i and applying Jensen’s inequality yields

av(x̄n) <
1

p

p−1∑
i=0

Kiµi

µi − 1
f


p−1∑
i=0

Kiµi

(µi−1)
(µi−1)

Ki
x̄i

p−1∑
i=0

Kiµi

(µi−1)



=
1

p

p−1∑
i=0

Kiµi

µi − 1
·

p−1∑
i=0

µix̄i/
p−1∑
i=0

Kiµi

(µi−1)

1 +

p−1P
i=0

µix̄i

p−1P
i=0

Kiµi
(µi−1)

=
1

p

p−1∑
i=0

Kiµi

µi − 1
·


1
p

p−1∑
i=0

µix̄i

1
p

p−1∑
i=0

Kiµi

(µi−1)
+ 1

p

p−1∑
i=0

µix̄i

 .

Let

Tp =
1

p

p−1∑
i=0

Kiµi

(µi − 1)
.
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Then

av(x̄n) < Tp ·
µ∗av(x̄n)

Tp + µ∗av(xn)
, µ∗ = max(µn) µ∗ = min(µn)

TP + µ∗av(x̄n) < µ∗Tp

av(x̄n) < Tp
(µ∗ − 1)

µ∗
.

Thus

av(x̄n) <
µ∗

µ∗
· (µ∗ − 1)

(µ∗ − 1)
av(Kn).

While this expression certainly gives an upper bound on the constant relating the two av-
erages, it suffers from the deficiency that if one of the µ values is close to unity, the constant
becomes very large. In the next section we will refine the estimate for period p = 2.

5 Refinement of the estimate

In this section we consider (4.1) in which the period p = 2.
We make use of the following elementary identity:

Lemma 5.1. Define, for α, β, x, y ∈ (0,∞), α + β = 1,

xy

αx + βy
− βx− αy =

−αβ(x− y)2

αx + βy
(5.1)

Proof Letting g(x, y) represent the left side of (5.1), we have

(αx + βy)g(x, y)

= {(1− α2 − β2)xy − αβ(x2 + y2)}
= −αβ(x− y)2. QED

The next lemma follows from elementary calculus:

Lemma 5.2. For x, a > 1 define

u(x, a) =
|a− x|
ax− 1

.

Then u(a, a) = 0 ≤ u(x, a) < 1.

Letting xf and µf denote respectively the stable fixed point and growth rate of a B-H function
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f , we derive a formula for a fixed point, xf◦g and xg◦f of the composition of 2 B-H functions

f(x) =
µf xf x

xf + (µf − 1)x
, g(x) =

µg xg x

xg + (µg − 1)x

f ◦ g =
µfµg xf xg x

xf xg + [(µg − 1)xf + (µf − 1)µgxg]x
(5.2)

=
µfµg xf◦g x

xf◦g + (µfµg − 1)x
, where (5.3)

xf◦g =
xf xg

(pxf + qxg)
, with p =

µg − 1

µfµg − 1
and q =

µf − 1

µfµg − 1
µg. (5.4)

Similarly

xg◦f =
xg xf

(rxg + sxf )
, where r =

µf − 1

µfµg − 1
, and s =

µg − 1

µfµg − 1
µf

Clearly p + q = 1 and r + s = 1. It follows from lemma 5.1 that

xf◦g =
xf xg

pxf + qxg

≤ pxg + qxf , (5.5)

with strict inequality if xf 6= xg.
Note that from (5.3) the composition of two B-H maps is again a B-H map with µf◦g = µfµg

and xf◦g given by (5.4) and therefore has a globally asymptotically stable fixed point. In fact
the B-H maps with µ > 1 form a sub semi-group of the semi-group K defined in [4].

Let

f0(x) =
µ0K0x

K0 + (µ0 − 1)x
and f1(x) =

µ1K1x

K1 + (µ1 − 1)x
(5.6)

and let x0 and x1 be the fixed points of f1 ◦ f0 and f0 ◦ f1, respectively. Then we have

x0 = xf1◦f0 =
µ1 − 1

µ0µ1 − 1
µ0K1 +

µ0 − 1

µ0µ1 − 1
K0 − γµ0(K0 −K1)

2 (5.7)

x1 = xf0◦f1 =
µ1 − 1

µ0µ1 − 1
K1 +

µ0 − 1

µ0µ1 − 1
µ1K0 − γµ1(K0 −K1)

2

where

0 < γ
.
=

(µ0 − 1)(µ1 − 1)

(µ0µ1 − 1)2
< 1.

Adding, we obtain

x0 + x1 = (1 + σ)K1 + (1− σ)K0 − γ(µ0 + µ1)(K0 −K1)
2 (5.8)

= (1 + σ)(K1 − K̄) + (1− σ)(K0 − K̄) + 2K̄ − γ(µ0 + µ1)(K0 −K1)
2

where

σ
.
=

µ1 − µ0

µ0µ1 − 1
and K̄

.
=

(K0 + K1)

2
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Thus,

x0 + x1 = 2K̄ + σ(K0 −K1)− γ(µ0 + µ1)(K0 −K1)
2. (5.9)

and finally

x0 + x1

2
=

K0 + K1

2
+ σ

K0 −K1

2
− γ

µ0 + µ1

2
(K0 −K1)

2. (5.10)

where 0 < γ < 1 and from Lemma 5.2, 0 ≤ |σ| < 1. This equality is the final chapter in the
saga of the Cushing and Henson conjecture in the period p = 2 case !

6 Remarks on Elaydi–Sacker Theorem

Consider the p-periodic difference equation

xn+1 = fn(xn), (6.1)

with fn+p = fn for all n ∈ Z+.
In [4], the authors gave the following result.

Theorem 6.1. Assume that X is a connected metric space and each fn : X → X is a continuous
map. If cr = {x̄0, x̄1, . . . , x̄r−1} is a globally asymptotically stable r-cycle in X, i.e. a geometric
r-cycle of equation (6.1), then r divides p.

Consider the following periodic Beverton-Holt equation where the growth rate µ is constant
and the Kn have minimal period p

xn+1 = fn(x) =
µKnxn

Kn + (µ− 1)xn

, Kn > 0, µ > 1. (6.2)

In [4], [5] it was shown that equation (6.2) has a globally asymptotically stable cycle of period
p.

We now show that in the case of the periodic Beverton-Holt equation (6.2) with constant
µ, any geometric cycle must have the same minimal period p as the equation. This is in direct
contrast to case in which µ also has minimal period p. In that case we construct an example
having a geometric cycle with minimal period r < p. Of course r|p by Theorem 6.1 due to the
known asymptotic stability properties of (6.2).

We first derive a general result for (6.1).

Let d = (r, p) be the greatest common divisor of r and p, s = [r, p], l =
s

p
, and p = md.

We need the following preliminaries from number theory [1].

Definition 6.2. An integer n is called a solution of rx = b mod p if rn = b mod p.
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Theorem 6.3. Let d = (r, p). The congruence

rx = b mod p (6.3)

has a solution if and only if d|b. If solutions exist, there are precisely d incongruent solutions
modulo p, given by

x = x∗ +
(p

d

)
t mod p (t = 0, 1, . . . , d− 1) (6.4)

where x∗ is any solution of the congruence(r

d

)
=

(
b

d

)
mod

(p

d

)
. (6.5)

We are now ready to present the main result in this section.

Theorem 6.4. Let cr = {x̄0, x̄1, . . . , x̄r−1} be a set of points in a metric space X. For (6.1) let

d = (r, p) be the greatest common divisor, s = [r, p], l =
s

p
and p = md. Then the following

statements are equivalent.

1. cr is a geometric cycle of minimal period r.

2. For 0 ≤ i ≤ r − 1, and n = 0, 1, . . . ,m− 1, f(i+nd) mod p(x̄i) = x̄(i+1) mod r .

3. For 0 ≤ i ≤ r − 1, and n = 0, 1, . . . ,m− 1, the graphs of the functions
fi, f(i+d) mod p, f(i+2d) mod p, . . . , f(i+(m−1)d) mod p intersect at the l points
(x̄i, x̄(i+1) mod r), (x̄(i+d) mod r, (x̄(i+1+d) mod r), . . . , (x̄(i+(l−1)d) mod r, x̄(i+(l−1)d+1) mod p) .

Proof. • 1 ⇒ 2 Let cr = {x̄0, x̄1, . . . , x̄r−1} be a geometric r-cycle. Then f(i+nr) mod p(x̄i) =
x̄(i+1) mod r. Let d = (r, p) be the greatest common divisor of r and p. Then by The-
orem 6.4 the equation rx = d mod p has a solution given by (6.4). Similarly rx = 2d
mod p, . . . , rx = (m − 1)d mod p all have solutions given by (6.4). Thus {nd mod p :
n ∈ Z+} = {mr mod p : m ∈ Z+}. Consequently, for each n ∈ Z+, there exists m ∈ Z+

such that fnd mod p = fmr mod p. Hence fnd mod p(x̄i) = x̄(i+1) mod r. To this end we have
verified Statement 2 for i = 0. By a similar argument one may verify Statement 2 for
i > 0.

• 2 ⇒ 3 Let i = 0. Then Statement 2 yields for n = 0, f0(x̄0) = (x̄1); for n = 1, fd(x̄0) =
(x̄1); . . . ; for n = m − 1, f(m−1)d(x̄0) = (x̄1). Similar analysis may be done for i =
d, 2d, . . . , (` − 1)d. In particular let i = (` − 1)d. Then Statement 2 yields for n =
0, f(`−1)d(x̄(`−1)d) = x̄`dmodr = x̄0; for n = 1, f`d(x̄(`−1)d) = x̄0; . . . ; for n = m − 1,
f(`−2)d(x̄(`−1)d = x̄0.

This completes the proof of Statement 3.
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• 3 ⇒ 1 From Statement 3 we conclude that each fiber Fi, i = 0, 1, . . . , p − 1, contains `
distinct points x̄i, x̄(i+d)modr, . . . , x̄(i+(`−1)d)modr. Hence those p fibers Fi, i = 0, 1, . . . , p− 1
contain a total of `p ponits, not necessarily distinct, from the set cr. However, the fibers
Fi,F(i+d)modp, . . . ,F(i+(m−1)d)modp contain the same subset of those `p points. Hence there

are exactly `p
m

= `d = r points that constitute the r-geometric cycle cr = {x̄0, x̄1, . . . , x̄r−1}.
This completes the proof of the theorem.

Remarks

1. If r = 4, p = 6 then d = (r, p) = 2, m = 3, l = 2. If cr = {x̄0, x̄1, x̄2, x̄3} is a given
geometric r-cycle, then we can infer from Theorem 6.4

(a) f0(x̄0) = x̄1, f2(x̄0) = x̄1, f4(x̄0) = x̄1

(b) f1(x̄1) = x̄2, f3(x̄1) = x̄2, f5(x̄1) = x̄2

(c) f2(x̄2) = x̄3, f4(x̄2) = x̄3, f6(x̄2) = f0(x̄2) = x̄3

(d) f3(x̄3) = x̄4 = x̄0, f5(x̄3) = x̄0, f7(x̄3) = f1(x̄3) = x̄0

From the above four observations, we conclude that the graphs of the maps f0, f2, f4

intersect at the points (x̄0, x̄1), (x̄2, x̄3), while the map f1, f3, f5 intersect at (x̄1, x̄2),
(x̄3, x̄0)

2. If r|p, then d = r, and m =
p

r
. For example, if r = 3, and p = 6, then d = 3, m = 2,

l = 1. Hence the graphs of the maps f0, f3 intersect at the points (x̄0, x̄1); f1, f4 intersect
at (x̄1, x̄2); f2, f5 intersect at (x̄2, x̄0).

Applying Theorem 6.4 to the first periodic Beverton-Holt equation (6.2) yields the following
result.

Corollary 6.5. If equation (6.2) is of minimal period p, then there are no nontrivial geometric
cycles of period less than p. Furthermore, if µ > 1, then there is a unique globally asymptotically
stable geometric cycle of minimal period p.

Proof. Suppose that equation (6.2) has a geometric cycle cr = {x̄0, x̄1, . . . , x̄r−1} of period r,
and let d = (r, p), p = md. Then by Theorem 6.4, the graphs of the maps f0, fd, . . . , f(m−1)d

must intersect at the points (x̄0, x̄1), (x̄d, x̄d+1), . . . , (x̄(l−1)d, x̄(l−1)d+1). Notice that if fi 6= fj,
i 6= j, then the maps fi and fj intersect only at the common fixed point 0 which is not part of
any geometric cycle. This implies that f0 = fd = f2d = · · · = fmd = f0.

Similarly, one may show that f1 = fd+1 = f2d+1 = · · · = fmd+1 = f1, etc.
This shows that equation (6.2) is of minimal period d, a contradiction. The second statement

now follows from [4].
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To this end we have shown that when the intrinsic growth rate µ > 1 is fixed and the carrying
capacity Kn is periodic, we have no geometric cycles of periods less than the minimal period of
the Kn.

Let us now assume that both µn and Kn to be of common minimal period p, as in equation
(4.1). Then we may have geometric cycles of periods less than p as may be illustrated by the
following example.

Example 6.6. Consider equation (4.1) with µ0 = 3, K0 = 1; µ1 = 4, K1 = 6
17

; µ2 = 2, K2 = 2;
µ3 = 5, K3 = 4

11
. Then c2 =

{
2
5
, 2

3

}
is a geometric cycle of period 2.

In contrast to the situation when µ is fixed, the graphs of the maps f0 and f2 intersect at the
point

(
2
5
, 2

3

)
, while the graphs of the maps f1 and f3 intersect at the point

(
2
3
, 2

5

)
.

The following technical lemma gives necessary and sufficient conditions under which a geo-
metric cycle of period less than the period of the system is present.

Lemma 6.7. If r|p, then the following statements are equivalent.

(a) Equation (4.1) has a periodic orbit with a minimal period r,

(b)
Lp−1(Qp−1 − 1)

Ep−1

=
Lr−1(Qr−1 − 1)

Er−1

,

(c)
Lp−1(Qp−1 − 1)

Ep−1

=
K0Kr(µrµ0)

µ0K0(µr − 1)− µrKr(µ0 − 1)
.
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