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Abstract

The repeating fast radio bursts (FRBs) 180916.J0158 and 121102 are visible during periodically occurring
windows in time. We consider the constraints on internal magnetic fields and geometries if the cyclical behavior
observed for FRB 180916.J0158 and FRB 121102 is due to the precession of magnetars. In order to frustrate
vortex line pinning we argue that internal magnetic fields must be stronger than about 1016 G, which is large
enough to prevent superconductivity in the core and destroy the crustal lattice structure. We conjecture that the
magnetic field inside precessing magnetars has three components: (1) a dipole component with characteristic
strength∼ 1014 G; (2) a toroidal component with characteristic strength∼ 1015–1016 G that only occupies a modest
fraction of the stellar volume; and (3) a disordered field with characteristic strength∼ 1016 G. The disordered field
is primarily responsible for permitting precession, which stops once this field component decays away, which we
conjecture happens after ∼1000 yr. Conceivably, as the disordered component damps bursting activity diminishes
and eventually ceases. We model the quadrupolar magnetic distortion of the star, which is due to its ordered
components primarily, as triaxial and very likely prolate. We address the question of whether the spin frequency
ought to be detectable for precessing, bursting magnetars by constructing a specific model in which bursts happen
randomly in time with random directions distributed in or between cones relative to a single symmetry axis. Within
the context of these specific models, we find that there are precession geometries for which detecting the spin
frequency is very unlikely.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Transient sources (1851)

1. Introduction

The relatively long 16.4 day period of FRB 180916.J0158
(CHIME/FRB Collaboration et al. 2020) and the even longer
160 day period of FRB 121102 (e.g., Cruces et al. 2021)
suggest the precession of magnetars deformed by strong
internal magnetic fields (Levin et al. 2020; Zanazzi &
Lai 2020). However, to date no evidence for a spin period
has been reported for either of these fast radio bursts (FRBs)
(e.g., Zhang et al. 2018; Li et al. 2021). One possibility is that
not enough bursts have been detected yet for either FRB to
reveal its spin frequencies, presuming that the underlying
engine is a magnetar. But a second possibility is that the
physical nature of repeating bursts might prevent detecting a
spin frequency even in upcoming surveys that will detect far
larger numbers of individual outbursts.

The important phenomenological questions motivating this
paper are as follows:

1. Should the spin period be detectable in FRBs that
reappear periodically because of precession?

2. Is it possible for there to be no evidence for either a spin
period or a precession period for FRBs associated with a
precessing magnetar?

Recently, evidence for a short≈0.2 s period has been
presented by The CHIME/FRB Collaboration et al. (2021)
from analysis of the light curve of a single outburst lasting≈4
s. This report lends urgency to addressing these two questions,
and raises other issues we shall not address here, such as

whether the 0.2 s period is due to magnetar spin, and, if it is,
what the implications are for spindown, internal magnetic
fields, and precession.
In order to address these two questions, we first examine

what the detection of precession tells us about the internal
magnetic fields of magnetars presumed to be sources of FRBs.
Shaham (1977) showed that the pinning of (crustal) superfluid
neutron vortex lines can prevent slow precession, and Link
(2003) showed that the pinning of neutron vortices to flux tubes
associated with a proton superconductor is likely wherever the
superfluid and the superconductor coexist in the core of a
neutron star. Moreover, for a neutron star rotating with period P
and precessing with period Pp the moment of inertia of the
region where neutron vortices are pinned must beP/Pp≈
10−7P(s)/(Pp/100 days) times the total moment of inertia of
the star for slow precession to be possible. We cannot rule out
that FRB 121102 and FRB 180916.J0158 are both fine-tuned to
the accuracy necessary to permit slow precession. However, we
regard it as far likelier that the magnetic fields in the interiors of
these magnetars are large enough to destroy proton super-
conductivity (and perhaps even neutron superfluidity).
Section 2.1 is devoted to discussing constraints on internal

magnetic fields that would be consistent with precession. We
propose a specific model for the magnetic field that has three
distinct components: in order of typical magnetic field strength
these are a dipole field, a toroidal field (both of which are
ordered), and a disordered field. We develop this model in
Section 2.2, where we are led inevitably to the conclusion that
the quadrupole distortion of the star is triaxial, and most likely
somewhat prolate. We also propose that a magnetar may only
precess for a relatively short portion of its life lasting perhaps
1000 yr.
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Section 2.3 develops results on triaxial precession necessary
for the more phenomenological modeling done in Section 3. In
particular, we show that rather large amplitude precession can
be excited with relatively little fractional expenditure of
magnetic energy, a natural consequence of the fact that
magnetic energy is substantially larger than rotational energy
in magnetars. We also consider two distinct types of effects due
to spindown. In Section 2.4 we develop the timing model
relating observer time to precession phase when spindown is
included. There are two effects, the familiar long-term
spindown and a cyclical effect specific to precessing pulsars
that has period Pp (Cordes 1993). In Section 2.5 we investigate
the secular effect of spindown on the precession amplitude and
phase, generalizing work done by Goldreich (1970) for oblate
axisymmetric precession to triaxial precession. We outline a
simple phase diagram for this more complicated problem,
which is more complex than what arises for oblate, axisym-
metric precession.

Finally, in Section 3 we develop a very specific model in
which we assume that FRBs are tied to magnetar outbursts that
occur randomly in time and point in random directions about
some reference axis, which we take to be (but need not be) the
magnetic dipole axis. We show that it is impossible to detect
either the spin frequency or the precession period if the
outbursts can point in any direction, which is not a big surprise.
However, we also find that the spin frequency ought to be easy
to detect in some cases and much harder to detect in others,
depending on specific characteristics of the precession model
and the distribution of beam directions of the outbursts.

From a qualitative point of view, we offer two simple reasons
why the outbursts underlying FRBs may occur randomly in time.
Although tautological, one explanation is that the physical
mechanism triggering the bursts simply is stochastic temporally,
with burst directions that are random within some boundaries.
Another is that the times between burst triggers are irregular but
correlated, perhaps because there is a characteristic time for the
burst phenomenon to reload, but associated with each outburst is a
random time offset, possibly as large as the spin period, related to
where the burst is triggered within the magnetar magnetosphere.
The bursts may point in a large range of directions because they
involve plasma moving relativistically along open magnetic field
lines, leading to highly focused energy output in directions
ranging from close to the magnetic dipole axis to perpendicular to
the light cylinder. Alternatively, bursts may originate from a set of
distinct, concentrated regions in the magnetosphere of a magnetar
that turn on and off stochastically, with each region beaming
energy outward in a different direction.

In a companion paper (Cordes et al. 2021) we address the
challenge of uncovering an underlying FRB spin frequency in a
more general, phenomenological way that does not rely on as
specific a model for bursts from rotating magnetars as we
develop in Section 3. The model presented in this paper can be
regarded as a definite physical setup that realizes the general
conditions for hiding the spin frequency of an FRB-inducing
magnetar developed in the companion paper.

2. Internal Magnetic Fields and Triaxial Precession

2.1. Internal Magnetic Fields that Permit Slow Precession

Previous work has focused primarily on precession arising
from oblate axisymmetric distortion due to magnetic stresses
(e.g., Levin et al. 2020; Zanazzi & Lai 2020). Here, we

examine what internal magnetic structure may be required for
precession to occur, and highlight distinctive features that arise
when the distortion is not axisymmetric and possibly prolate.
The internal magnetic structure of magnetars is not well

studied. In general, magnetohydrodynamic (MHD) studies of
magnetic fields in normal conductors have shown that there are
no stable magnetic field configurations in barotropic normal
fluids (Lander & Jones 2012; Mitchell et al. 2015), but that
stable, axisymmetric configurations may exist in stably
stratified fluids (Reisenegger 2009; Akgün et al. 2013; Mitchell
et al. 2015). Braithwaite (2009) and Akgün et al. (2013) argued
that there may be stable magnetic field configurations in stably
stratified stars whose poloidal fields are much weaker than their
toroidal fields. Glampedakis & Lasky (2016) argued that the
equilibrium magnetic fields in nonbarotropic normal-fluid stars
can be specified freely if they are axisymmetric, but not if they
are nonaxisymmetric. At the strong fields we envision,
magnetization due to Landau quantization of core electrons
also affects stability (Suh & Mathews 2010; Rau & Wasser-
man 2021). Relativistic equilibria have been computed using
realistic equations of state (e.g., Cardall et al. 2001; Kiuchi &
Yoshida 2008; Frieben & Rezzolla 2012); equilibria were only
found to exist if the maximum internal magnetic field strength
is1018 G, which is a significant indication of limitations
imposed by the overall dynamical stability, but does not assess
MHD stability. Of course, stability constraints are not
necessarily relevant if the magnetic field is time-dependent,
although presumably field configurations that are MHD-
unstable vary rather rapidly on timescales set by the local
Alfvèn speed and the length scale of variation.
Overall, these studies suggest that the internal magnetic

fields of magnetars could be considerably stronger than their
dipole (surface) magnetic fields.
Another, rather different argument also suggests strong

internal magnetic fields. Once the core of the star cools
below≈109 K core protons become superconducting unless the
internal magnetic field is stronger than the second critical field
strength:
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where Δp is the proton gap, pF,p is the proton Fermi momentum,
mp
 is the proton effective mass, x p= Dp mp p p pF,  is the

coherence length, and Φ0= πÿc/e is the flux quantum. Proton gap
calculations are complicated by many-body effects at high
densities (Zuo et al. 2008; Gezerlis et al. 2014; Dong et al.
2017; Guo et al. 2019) but indicate that Δp; 0.5MeV≈me near
nuclear density nnuc= 0.16 fm−3, where pF,p≈ 100MeV;Δp

decreases to zero at densities 2nnuc. Of course, it is also
possible that protons are superconducting but magnetic field
strengths at the inner boundary of the (normal) crust are below the
first critical field strength:

( )

( )

( ) ( )
( )

k

»

»

k´

D

H G,

,

c
p

m m

m m m

p

1
2 10 100 MeV ln

0.7

4.8 0.7

100 MeV

p

p p

p p p e

p

14
F,

3

3 2

F,
5 2





2

The Astrophysical Journal, 928:53 (21pp), 2022 March 20 Wasserman et al.



in which case magnetic fields would not penetrate into the
superconductor in equilibrium if entering from the outside.
However, it is very likely that the magnetic flux in the core is
“left over” from before it cooled enough to become super-
conducting (e.g., Baym et al. 1969), in which case the proton
superconductor in the core is in a “mixed state” with
Hc2>H>Hc1. Quadrupolar deformations due to magnetic
fields are
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for magnetic induction B= 1015B15 G, stellar radius R= 10R10

km, and mass M= 1.4M1.4 Me, where H/B= 1 for a normal
conductor but H/B> 1 for a type II superconductor (e.g.,
Jones 1975; Cutler 2002; Wasserman 2003; Akgün & Wasser-
man 2008; Henriksson & Wasserman 2013). The parameter β2
depends on the structure of the neutron star and of its internal
magnetic field, and represents how effectively the magnetic
forces cause quadrupolar deformation.

The superconductor is type II as long as k > 1 2 , which is
the case throughout much of the region where protons are
superconducting. In a type II superconductor, magnetic flux is
organized into an array of thin flux tubes that have an areal
density eB/πÿc≈ 5× 1021B15 cm

−2. If the neutrons are also
superfluid their vorticity would be confined into thin
vortex lines with a much lower areal density μnΩ/πÿ≈ 3×
104(μn/mn)/P(s) cm

−2 for a rotation period P(s), where μn/mn

is the neutron chemical potential in units of the neutron rest
mass. Unless the relative velocity between flux lines and vortex
lines is high enough, which may be true if the precession
amplitude remains sufficiently large (Link & Cutler 2002),
vortex lines will pin to flux lines (Link 2003), which frustrates
slow precession (Shaham 1977). This problem can be avoided
entirely if the core of the neutron star is hot enough that
neutrons remain normal: neutron gaps are∼10–100 keV;
108−9 K (Zuo et al. 2008; Gezerlis et al. 2014; Dong et al.
2017; Guo et al. 2019). Calculations by Potekhin & Chabrier
(2018) indicate that the core of a magnetar may cool below
a few 108 K within100 yr of forming, so neutrons may be
normal in some but not all of the core of a100 yr old
magnetar unless the maximum neutron critical temperature in
the core is lower than current estimates. But even a moderately
small region where protons and neutrons are both superfluid
could have an important impact on neutron star precession: for
a precession period Pp the moment of inertia Ip of any region in
the core where vortices are pinned to proton flux tubes must
beP/Pp; 10−5P(s)/Pp(days) times the total moment of
inertia of the star (Shaham 1977).

Here, we assume that the magnetic field in the core is strong
enough to suppress superconductivity entirely. This means that
we suppose that the total magnetic field strength B=H>Hc2

throughout all of the core. For this to be true, the internal field
strength must be at least comparable to and probably larger
than the dipole magnetic field at the stellar surface. This may be
achieved if there are substantial nondipolar components of the
internal magnetic field, particularly toroidal components (e.g.,
Cutler 2002). Akgün et al. (2013) found stable, axisymmetric
equilibria with toroidal fields 100 times stronger than the
poloidal fields. The deformation due to toroidal fields can be
axisymmetric, but if so, it is prolate rather than oblate.

Vortex line pinning may also be a problem in the neutron star
crust, where neutron pairing is S-wave and superfluid gaps are
larger, ∼MeV (Gezerlis et al. 2014); neutrons are likely to be
superfluid down to densities close to neutron drip for
temperatures∼ a few 108 K (Potekhin & Chabrier 2018). The
unpinning and repinning of neutron superfluid vortices to crustal
nuclei have long been thought to be responsible for the behavior
of pulsar spins during and after rotational glitches (Anderson &
Itoh 1975; Anderson et al. 1982; Alpar et al. 1984; Link et al.
1993). Strong magnetic fields alter the equation of state because
the degenerate electron gas becomes one-dimensional once
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the equation of state of the inner crust is largely unaffected for
B 1017 G, although it stiffens considerably in the outer crust
(Mutafchieva et al. 2019). The crust ought to crystallize except
at low densities for temperatures a few 109 K (Carreau et al.
2020). Neutron star precession can only persist in spite of the
potential pinning of neutron superfluid vortex lines to crustal
nuclei or pasta phases (Ravenhall et al. 1983; Hashimoto et al.
1984; Lorenz et al. 1993) if the sustained precession amplitude
is large enough (Link & Cutler 2002). The complex topology
of the nuclear pasta revealed by molecular dynamics simula-
tions (Schneider et al. 2018) could complicate pinning.
There are two other effects of superstrong crustal magnetic

fields that should alter the physical conditions there, perhaps
enabling precession to occur. One effect is to shatter the
crystalline crust, which can happen if B2/8π> μel, where μel is
the elastic shear modulus. Molecular dynamics simulations by
Caplan et al. (2018) indicate that the shear modulus of nuclear
pasta is ( ) pº ´-10 erg cm 1.6 10 G 831 3 16 2 , so crustal
magnetic fields 1016 G would shatter the crust (see also
Pethick & Potekhin 1998).
A second possibility presents itself for magnetic fields larger

than the Clogston–Chandrasekhar limiting field strength
(Clogston 1962; Chandrasekhar 1962)
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above which flipping the spin of one neutron can break an
S-wave Cooper pair; here Δn is the neutron gap and μn is the
neutron magnetic moment. For such large magnetic field
strengths, the uniform S-wave BCS superfluid condensate
transitions to an inhomogeneous LOFF state (Larkin &
Ovchinnikov 1974; Fulde & Ferrell 1964; Kinnunen et al.
2018). Although the implications of such states in the crust have
not been explored extensively, it is conceivable that the
inhomogeneous LOFF state behaves more like a crystal than
like a (super)fluid, which may permit precession to occur (Lee
et al. 2018). Moreover, somewhat weaker magnetic fields may
destroy the predominantly P-wave superfluidity of core neutrons
for which Δn 100 keV (e.g., Haskell & Sedrakian 2018).
In any event, we conclude that magnetic fields stronger than

about 1016 G are necessary for slow precession. However, the
precession period is of the order of
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which, in view of Equation (2), suggests a quadrupolar
deformation corresponding to B∼ 1014–1015 G for FRB
121102 and FRB 180916.J0158+65, which is too weak to
prevent the superconductivity of core protons according to
Equation (1). We therefore propose that the magnetic fields
inside these magnetars consist of three components:

1. a dipole field with characteristic strength BD∼ 1014 G;
2. a quadrupolar field with characteristic strength

BT∼ (1015–1016) G and a symmetry axis misaligned
with the dipole moment; and

3. a disordered magnetic field with characteristic strength
Bturb∼ 1016 G strong enough to suppress superconduc-
tivity but with large-scale stresses that do not contribute
significantly to the quadrupolar deformation of the star.

The spindown timescale in this model is of the order of
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where I0= 1045I0,45 g cm2 is the moment of inertia of the star
and BD= 1014BD,14 G; the expected ratio of the spindown
timescale to the precession period is
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so spindown is very slow compared with precession. Below,
we shall also suggest that Bturb decays via ambipolar diffusion
within ∼100–1000 yr. That would mean that if FRB 121102
and FRB 180916.J0158+65 have P; 10 s they are both
younger than their spindown ages and spinning close to their
original rotational frequencies. However if they are spinning
faster, with P; 1 s then they might be about as old as their
spindown ages, have quadrupolar distortions òmag∼ 10−7, and
be of order halfway through their lifetimes as precessing
neutron stars.

2.2. Magnetic Precession

In this paper, we consider triaxial magnetic distortions that
may be far from oblate. We shall see that such configurations
lead to qualitatively new features for neutron star precession
that may have distinctive observable consequences. Precession
of a fluid star caused by magnetic distortions differs
qualitatively from solid-body precession even though mathe-
matically the two are the same. The inevitability of precession
for stars with nonaligned spin and magnetic fields was
originally pointed out by Spitzer (1958), and was studied
extensively by Mestel and collaborators (Mestel &
Takhar 1972; Mestel et al. 1981; Nittmann & Wood 1981).
These studies also found that there are slow, internal nonrigid
motions in addition to uniform rotation, which have been
studied recently by Lander & Jones (2017) for neutron stars
with toroidal magnetic fields. Below, we neglect these motions,
which are second-order in small quantities, although we
recognize that they may be significant for magnetic field
evolution.

In a rotating, highly magnetic fluid the matter density is
perturbed away from spherical symmetry. The moment of
inertia tensor of the star only depends on the l= 2 perturba-
tions:

⎡
⎣
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where rotation is along the Ŵ direction, òrot and òmag are the
amplitudes of the l= 2 distortions due to rotation and magnetic
fields, respectively, and mij is symmetric and trace-free (STF).
The stellar angular momentum is
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where we use the summation convention. Since
[ ( )]¢ = +1mag mag rot  O we ignore the difference between

òmag and ¢mag below. Invert Equation (8) to get
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for an axisymmetric magnetic field Δò= 0 but we regard this
case as exceptional (although Spitzer (1958) and Mestel &
Takhar (1972) and subsequent work focused on this situation).
Since ê3 is fixed in the rotating frame of reference
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in the inertial frame. If the star is axisymmetric, precession is
about the magnetic field axis of symmetry, as is well known
(e.g., Spitzer 1958; Goldreich 1970; Mestel & Takhar 1972),
but this is untrue for the more general nonaxisymmetric case,
where precession is more complicated.
For the intense magnetic fields we envision, the main cause

of quadrupolar deformations is magnetic stresses. Even in
nonbarotropic stars, the magnetic field configurations that give
rise to static deformations are highly constrained (Glampedakis
& Lasky 2016). In such a star, the static structure is perturbed
away from spherical symmetry by the Lorentz force density
fL; to linear order

ˆ ( ) ( ) ( )d dr r d = - + - Y + +r f fP g r r0 110 0 L NF

where g0(r)=−GM(r)/r2 is the gravitational acceleration in
the unperturbed star, δP(r) is the pressure perturbation, fNF is
due to nonfluid forces, and δΨ is the gravitational potential of
the perturbation. In the neutron star core, where fNF= 0,
axisymmetric static perturbations require that the toroidal field
be
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where ψ(r, θ) is the flux function of the poloidal field

ˆ´jy
q


=B

r sin
,P

but for nonaxisymmetric fields ( )y¢ =f constant (Glampeda-
kis & Lasky 2016). Assuming that this restriction holds,
Equation (11) is easy to solve in a nonbarotropic star, where δP
and δρ are unrelated.

Lasky & Melatos (2013) considered a specific example of a
nonaxisymmetric field with dipole and toroidal fields that have
different axes of symmetry m̂ and t̂ , respectively, that lead to
static deformations of the star. Below, we use a slightly
different model for the dipole and toroidal fields, and also
include a disordered component. Assuming that the quad-
rupolar deformation due to the disordered component is
relatively small, magnetic forces due to the ordered dipole
and toroidal fields result in a perturbed moment of inertia tensor
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Both qT and qD are positive, and it follows that the toroidal field
promotes prolate deformations relative to a symmetry axis t̂
whereas the dipole field promotes oblate deformations relative
to a symmetry axis m̂. If we assume that

ˆ ˆ ˆ ( )m s s= +t ucos sin 13

in a right-handed ˆ ˆ ˆu v t, , coordinate system then we find that
the eigenvalues of δIij are
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where we define qD= dqT. The eigenvectors are v̂ for λv,

for λ+, and ˆ ˆ ˆz z= - +-e u tsin cos for λ−. Because there are
three different eigenvalues and eigenvectors the star is triaxial:
it is only axisymmetric if (i) d= 0 (i.e., no internal dipole field),
(ii) d=∞ (no internal toroidal field), or (iii) σ= 0 (aligned
dipole and toroidal field symmetry axes). In general
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so λ+> λv> λ−.
For the dipole field, we adopt a stream function

·( ) [ ( ˆ ˆ) ] ( )my = - rB h r R r 1 17D
2 2

where m̂ is the dipole axis, and the dimensionless function is

( ) ( ) ( )=h x
m x

x
18

3

for a mass profileM(r)=Mm(r/R). The magnetic field matches
smoothly to an exterior vacuum dipole provided that ρ= 0 and
dρ/dr= 0 at the stellar surface. Typically, the poloidal
magnetic field vanishes somewhere along its equator, and is
prone to instability there. In the Cowling approximation we
find that

[ ] ( )m
= =q

GM

B R

GM

2 2
Cowling 19D

D
2 2 6

independent of the detailed density profile of the star, but
including self-gravity changes qD by a factor ∼2.
The toroidal field must vanish at the surface of the star in

order to match to a vacuum exterior. The toroidal fields in a
magnetar magnetosphere are much weaker than the internal
toroidal fields we consider here. In corotating magnetosphere
solutions, the toroidal field isΩR/c times weaker than the
dipole field at the stellar surface (e.g., Goldreich & Julian 1969),
whereas in twisted, force-free magnetosphere models the
surface toroidal field may be comparable to the dipole field
(Akgün et al. 2016; Mahlmann et al. 2019); for either of these
magnetospheric models, the surface toroidal field is consider-
ably weaker than it is in much of the stellar interior, where the
dipole field is much weaker than the toroidal field in our
picture. As a rough approximation we take the toroidal field to
be zero at the surface. For ( )y¢ =f constant in the neutron star
core, this important constraint can be satisfied in two ways that
lead to very different values of qT.

1. The toroidal field may fill the core,

( ) ˆ ( ) ˆ ( )j jq q
= =B

B rh r R

R

B m x

x

sin sin
, 20T

T T
2

where θ is the polar angle measured from the symmetry

axis of the toroidal field, t̂ , and ĵ encircles t̂ . The
boundary region within which the toroidal field strength
drops precipitously from its value at the outer core
contributes to the distortion even though it occupies a
geometrically thin, low-mass shell. The value of qT
depends on the density profile; we adopt

( ) ( )( ) ( )

( )

r r= -  = -

+ =

r x m x
x x

x
I

MR

0 1
35
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where I0 is the moment of inertia of the spherical star; for
this particular density profile including self-gravity implies

( ) q
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GM
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To zeroth order in the shell thickness

( )

= =
á ñ

 =
á ñ

q
B R

GM

B R

GM

B

GM

0.237 0.188 0.845

23

T
T T

T
T

2 6 2 6

mag,

2 2

2


for this model, where á ñ =B B1.26T T
2 2 is the mean square

toroidal field strength. The thin shell contributes about half
of the deformation, which may be unrealistic, so actual
values could be as small as half as large.

2. The toroidal field may be confined to a limited volume if
instead of Equation (20)

⎡
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sin
, 24

T T 2

2

which is the model used by Lasky & Melatos (2013).
(See also Akgün et al. (2013), who introduced models of
this type in their study of magnetic stability in
axisymmetry.) The field only occupies about 21% of
the stellar volume, and has a mean square á ñ =B B0.01T T

2 2

within this volume. In this case
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=
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=
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The quadrupole moment for this model is diminished
severely because it is confined to such a small volume.

3. Interpreting these two models as extremes for quad-
rupolar distortion due to toroidal fields we estimate

( ) ( )
- á ñ

q
B R

GM

0.04 0.2
26T

T
2 6

and therefore
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-
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Thus, d 1 but is probably not well below 0.1, so the
quadrupolar distortions arising from the ordered fields are
significantly triaxial unless the dipole axis m̂ and toroidal
axis t̂ are aligned perfectly, and are very likely prolate.
See Equation (16).

If the toroidal field occupies a small volume, as in
Equation (24), then no matter how large á ñBT

2 is the field will
be incapable of suppressing proton superconductivity any-
where. Even if the field occupies much of the star, as in
Equation (20), it may not be strong enough to exceed Hc2 even
if it is much stronger than BD. Moreover, as noted above BP is
prone to instability in this model. Although the toroidal field
represented by Equation (24) can prevent instability in
axisymmetry if á ñBT

2 is large enough (Akgün et al. 2013) we
doubt that the tilted dipole model is stable (∇×BT∥BP for both
Equations (24) and (20) in axisymmetry but not in the tilted
dipole model). For these reasons we conclude that a precessing
neutron star with internal fields that are stable on short
timescales ought to include a disordered component with a
characteristic local field strength > á ñ >B B BT Dturb

2 . The
disordered field may be a remnant of the violent process that

generated the strong internal magnetic fields (Thompson &
Duncan 1993; Braithwaite 2009).
The turbulent magnetic field is

( ) ( ) ( )´ =B x xN N 28turb 1 2

where the scalar functions Ni(x) are constant along the field
lines and are advected with the fluid in the limit of perfect
conductivity. We can think of Ni as a pair of co-moving field
line labels. We assume that the turbulence is small-scale locally
but has a large-scale bias, so that we can expand

·( ) ( ) [ ( ) ( )] ( )å y= +x x k x kN
V

S k i i
1

, exp 29
k

i i i

where Si(òx, k) is a spectral function and ò is the ratio between
the small scale that characterizes the local turbulence and the
large scale that characterizes the bias; V is the normalization
volume and ψi(k) is a random phase. If we assume that
ψ1(k)= ψ2(k), which is plausible if the turbulent field results
from fluid motions that stretch, twist, and fold individual field
lines, then Equation (28) has a mean value∼ ò2 times the
characteristic local field amplitude, and there are magnetic
forces∼ ò (corresponding to the gradient of turbulent magnetic
pressure), ∼ ò3, and∼ ò5 (corresponding to the mean field). We
assume that the local field is strong enough to destroy
superconductivity, but that the forces are too weak to have
much effect on quadrupolar deformation. We do not address
the question of whether such a field may form and persist for
years (as opposed to seconds or minutes; e.g., Thompson &
Duncan 1993). However, we do hope that the stresses can act
as deus ex machina to stabilize the ordered fields. Link & van
Eysden (2016) have summarized theoretical and phenomen-
ological arguments for the existence of a tangled field in
magnetars (see also Bretz et al. 2021). Here we add another
phenomenological argument that strong disordered fields
pervade the core of a young magnetar: without them slow
precession is not possible, necessitating some other explanation
for the slow and very regular periodicities of FRB 121102 and
FRB 180916.J0158+65. Moreover, before the disordered field
decays away it is a substantial energy reservoir that might
power FRBs.
Magnetic fields in the core of a highly magnetic neutron star

containing normal neutrons and protons decay via ambipolar
diffusion. Reisenegger & Goldreich (1992) estimated a decay
timescale

( ) ( )( ) [ ( )] ( )
( )

( )

~t L
Y T L n n

B L

220 yr 20 3 km
,

30

b
ambip

8
2 2

nuc
2 3

16
2

for fields varying on a length scale L(km), where nb is baryon
density, nnuc= 0.16 fm−3 is nuclear density, Ynb is proton
density, and T= 108T8 (see also Glampedakis et al. 2011;
Passamonti et al. 2017; Gusakov et al. 2017, Figure 1). Neutron
superfluidity would increase the decay time but as long as the
core temperature is as high as∼ a few 108 K the normal
neutron fraction will be considerable in much of the core, and
Equation (30) remains true within a factor of an order of
magnitude or less. (Field decay heats the core, but given the
steep T dependence of neutrino cooling the core temperature is
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not changed substantially.) The tangled component will decay
on a timescale that depends on its fluctuation spectrum: if
B2(L)∝ Lα the decay timescale tambip(L)∝ L2−α, which
implies faster decay on smaller scales for α< 2 and
vice versa; theories of fully developed magnetic turbulence
generally find α< 1 (Iroshnikov 1963; Kraichnan 1965;
Goldreich & Sridhar 1995). Plausibly, the tangled field decays
away in time 103 yr, after which substantial portions of the
magnetar core become superconducting, which limits the time
span during which a magnetar may precess slowly. The larger-
scale ordered fields also decay as long as core protons are
normal but since L(km); 10 for these fields they may survive
relatively undiminished until protons become superconducting,
after which ambipolar diffusion becomes ineffective. Ambipo-
lar diffusion in the crust is suppressed by neutron superfluidity.
Magnetic field evolution in a magnetar crust involves an
interplay among the Hall effect, ohmic dissipation, and plastic
flow (Li et al. 2016; Lander & Gourgouliatos 2019), involving
instabilities on timescales∼ 103 yr (Gourgouliatos &
Pons 2020) and possibly evolution toward an attractor solution
on timescales∼ 105 yr (Gourgouliatos & Cumming 2014a,
2014b). (The effect of the Landau quantization of crustal
electrons on magnetar magnetic field evolution, which may be
substantial, is being included for the first time in a forthcoming
paper by P. B. Rau & Wasserman 2021, in preparation.)

2.3. Triaxial Precession

Conservation of angular momentum is

( )´W= + =
L L

L N
d

dt

d

dt
31



where L is the angular momentum and N is the spindown
torque; då/dt is the time derivative in the rotating frame.
Substitute ˆ=L ℓL , where L= |L|, to get

·ˆ ( )= = ºℓ N
dL

dt

d L

dt
N , 32



and

·ˆ ˆ ˆ ˆ
( )´W+ =

-
º ^ℓ

ℓ
N ℓℓ N Nd

dt L L
. 33



For the spindown torque we adopt

( · )

( · · · )
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where μ is the magnetic moment of the star, and k and a are
numerical constants ∼1; for numerical evaluations we adopt
k= 2 and a= 1/2, which corresponds to a rate of energy loss

· ( )( )m qW = W +N c 1 sin2 4 3 2 , where ·ˆ m̂q W=cos (Li et al.
2012). (The same spindown model was used in Akgün et al.
(2006) for the precession of triaxial stars; Goldreich (1970),
Melatos (1999), and Link & Epstein (2001) studied the
precession of axisymmetric stars with vacuum dipole spin-
down, and Melatos (2000) studied the precession of triaxial
stars with vacuum dipole spindown.) The angular velocity of

rotation is
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where I3> I2> I1 are the moments of inertia along the
principal axes of the quadrupolar distortion; we define a
parameter 0< e2<∞ , which measures the degree of triaxi-
ality, in terms of which
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where òmag is given by Equation (2). Oblate axisymmetric
distortions (I1= I2) correspond to e2= 0; prolate axisymmetric
distortions (I3= I2) correspond to e2→∞. For the tilted dipole
model (see Equation (14) and Lasky & Melatos 2013)

(∣ ∣ )
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s
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D =

-
e

I d d

I d d

d

d

1 1 1

1 1 1
,

4 sin

1
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37
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2
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The principal axes are (ˆ ˆ ˆ ) (ˆ ˆ ˆ )= - +e e e e v e, , , ,1 2 3 according to
Equation (16). For   s Dd d1 4 sin 12 the dipole
field dominates the quadrupolar distortion and Equation (37)
implies that   sDe d4 sin 12 2 . For   Dd 1

sd4 sin 12 the toroidal field dominates the quadrupolar
distortion, and Equation (37) implies that  D =e 42

sd1 sin 12 . For σ= 0, the axisymmetric case, e2= 0 if
d> 1 and e2=∞ for d< 1. For the numerical examples in
Section 3 we adopt e2= 10, which corresponds to Δ; 40/81
or ( ) s - »d dsin 1 10 81 0.1232 , implying a quadrupo-
lar distortion that is predominantly but not overwhelmingly due
to the toroidal field according to Equation (27).
The Euler equations have an exact conservation law

ˆ ˆ ˆ ( )+ + =ℓ ℓ ℓ 1 381
2

2
2

3
2

because ℓ̂ is a unit vector, but there is also an approximate
conservation law

· ˆ
ˆ ˆ ˆ

( )W = + + ºℓ
ℓ ℓ ℓ

I I I

E

L

2
; 391

2

1

2
2

2

3
2

3

rot

0
2

· ·( ˆ)W W= - ^ℓ Nd dt so · ˆW ℓ only varies appreciably on a
timescale of the order of 1/òmag times the spindown time. In
Equation (39) the parameter L0 is the magnitude of the stellar
angular momentum at some reference start time, which could
be the time when precession is excited.
The Euler equations allow steady-state rotation about any of

the three principal axes. By combining Equations (38) and (39)
in three different ways appropriate to perturbation away from
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each principal axis we find
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Equation (40) shows that at a given angular momentum, the
lowest energy state is a rotation about ê3, the highest is a
rotation about ê1, and a rotation about ê2 is intermediate, as is
well known. For axisymmetric oblate precession (e2= 0) the ê1

and ê2 directions are interchangeable, and precession is
unstable about either one but stable about the symmetry axis
ê3, but for axisymmetric prolate precession (e2→∞) the ê2 and
ê3 directions are interchangeable, and precession is stable about
either one and unstable about the symmetry axis ê1.

Below, we will use the first part of Equation (40) to quantify
the second conservation law by defining the energy perturba-
tion above the minimum energy state to be
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where δEp is the extra energy associated with precession. Using
Equation (41) we write the conservation law as

( ) ˆ ( ) ˆ ( )L + = + +ℓ ℓe e1 1 . 422 2
1
2 2

2
2

Suppose precession is excited from its minimum energy state
by injection of rotational energy d h=E L I2p 0

2
3. This is

consistent with exciting precession with amplitude
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hL + =
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º =
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e
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2

2

2

2
. 432 2
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There are then two very different cases depending on how
much energy is injected: if η< ηcrit then Λ2(1+ e2)< 1 and if
η> ηcrit then Λ2(1+ e2)> 1. We shall treat each of these cases,
which have very different properties, separately. Qualitatively,
we shall see that Λ2(1+ e2)< 1 has well-defined e2→ 0
(axisymmetric, oblate) limiting dynamics whereas Λ2(1+
e2)> 1 has well-defined e2→∞ (axisymmetric, prolate) limit-
ing dynamics. Since

( )
b E

E
44mag

2 mag


where Emag∼ B2R3 is the magnetic energy and Eå∼GM2/R is
the binding energy of the neutron star, a more apt comparison
is

( ) ( )
d b + L
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E

E

e

e

2 1

2
45
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where òrot= L2/2I3Eå is the rotational distortion of the star.
This separation into two regimes does not appear to have been

emphasized in previous astrophysics literature on triaxial
precession, although no doubt Euler was well aware of it.
For a rotation period ∼1 s we expect ~ W ~I R GMrot

2 2
[ ( )]- I R M P10 s7

45 10
3

1.4
2 so the energy required to excite even

high-amplitude precession is only a small fraction of the
magnetic energy of the star. Even small changes in the
magnetic field can engender relatively large amplitude preces-
sion. To make this quantitative, suppose that a shearing event
in the neutron star distorts the magnetic field changing the
moment of inertia of the star from I to ¢ = + DI I I, where ΔI
is STF. The eigenvalues of ¢I are slightly different from those
of I, and its eigenvectors are rotated relative to the eigenvectors
of I. If the eigenvalues and associated eigenvectors of I
are ( ˆ )eI ,i i , then to lowest order in ||ΔI|| the eigenvalues and
eigenvectors of ¢I are

⎛

⎝
⎜

⎞

⎠
⎟
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=
D
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i i ii
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ij
ij

i j

1

2
2^ ^ ^

normalizing the eigenvectors so that ·ˆ ˆ d¢ ¢ =e ei j ij. Since
we expect ΔIij= sijòmag, where sij is STF with magnitude
 1, and ∣ ∣¢ - ¢ ~I Ii j mag the rotations involve angles 1,
not∼òmag= 1. Assuming that L is conserved in the shearing
event, its projection along the rotated principal axes of ¢I
differs from its projection along I. For example, suppose that
the star was rotating without any precession at all along ê3, the
axis of the largest moment of inertia, prior to the shearing
event; then afterward

⎡⎣ ⎤⎦
ˆ ˆ ˆ ˆ ( ) ( ) q q q q¢ + ¢ + ¢ - +ℓ e e e 1 , 471 13 2 23 3

1

2 13
2

23
2

and the star will precess. If angular momentum is conserved as
the field rearranges itself, then the angular velocity changes
during the shearing event by

DW = -
D WI

I
i

ij j

i

working in the reference frame where I is diagonal. The
associated change in rotational energy is

( )

D = DW = -
D W

= -W D W

=- W W

E L
L I

I
I

s . 48

i i
i ij j

i
i ij j

i ij j

rot

mag

ΔErot might be negative or positive, and is not equal to the
extra energy in precession above the minimum energy state
corresponding to rotation about ˆ ¢e3 , in part because the
magnitude of the angular velocity changes as a result of the
shearing event. In rough order of magnitude |δErot| òrotEmag.
Phenomena associated with the spindown torque include a

cyclical variation over a precession cycle and a secular torque
that develops very slowly compared with the precession period.
We discuss these in Sections 2.4 and 2.5 using a perturbative
technique similar to that of Goldreich (1970) but generalized to
triaxial precession. To zeroth order, we neglect spindown

8

The Astrophysical Journal, 928:53 (21pp), 2022 March 20 Wasserman et al.



effects, and Equation (33) becomes
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where df= (L/I3)dt is the differential spin phase.
From an observational standpoint, we are most interested in

the motion of the direction from the star to the observer, n̂, in
the rotating frame of reference. In the inertial frame, where ℓ̂ is
independent of time to lowest order, let

ˆ ˆ ˆ ( )= +n ℓ ei icos sin . 50x

To project n̂ onto the rotating frame we use a standard Euler
angle rotation (e.g., Gottfried 1966, Figure 32.1): (i) Rotate
angle α ä [0, 2π] about the 3 axis to get new axes
¢ ¢ ¢ =1 , 2 , 3 3. (ii) Rotate angle β ä [0, π] about the ¢2 axis to
get new axes   = ¢  = z1 , 2 2 , 3 . (iii) Rotate angle γ ä [0, 2π]
about the 3″= z axis to get the axes x, y, z. In terms of the
angles α, β, and γ we get ˆ ˆ ˆ=n eni i, where
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If we define ˆ ˆ=ℓ z in the inertial frame we find that ˆb = ℓcos 3

and
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Using ˆ ˆ´W=e ed dti i for any of the principal axes we find
that
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using Equation (42). Note that these results can be used for
both L + <e1 12 and L + >e1 12 .

In the rotating frame of reference, ˆ ˆ= +n ℓicos
(ˆ ˆ )g g+e eisin cos sina b , where ˆ ( ˆ ˆ ) ˆ´ ´ b=e ℓ e ℓ sina 3 and

ˆ ˆ ˆ´ b=e ℓ e sinb 3 are slowly varying unit vectors perpend-
icular to ℓ̂; n̂ rotates rapidly in the retrograde direction in
the plane instantaneously perpendicular to ℓ̂ . For emission
along a beam direction b̂ the observed intensity depends
on · · · ·ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ )g g= + +b n b ℓ b e b ei icos sin cos sin .a b Define ·ˆ ˆ =b ℓ

hcos b, ·ˆ ˆ h y=b e sin cosa b b, and ·ˆ ˆ h y=b e sin sin ;b b b then

·ˆ ˆ ( ) ( )h h g y= + -b n i icos cos sin sin cos , 54b b b

where ηb and ψb vary during the precession cycle for a given b̂.
For “pulsar-like” behavior, beam directions are randomly

distributed in a narrow cone around a dominant direction.
Given unlimited sensitivity, the observed intensity would be
nearly periodic, with periodic timing residuals due to
precession 1 rad of spin phase. The amplitude of the rapidly
oscillating term in Equation (54) is hµsin b, which varies

during the precession cycle. Presumably the observed intensity
is a decreasing function of ·ˆ ˆb n, so the observed intensity has
extrema when

·ˆ ˆ ( )
f

=
b nd

d
0 , 55

which has solutions twice per cycle, only one of which
corresponds to the maximum value of ·ˆ ˆb n. (Our method of
solution and solutions of Equation (55) are presented in Cordes
et al. 2021.) Intrinsic intensity fluctuations and imperfect, time-
varying, and often unfavorable beaming due to precession turn
out to render most pulses undetectable, but nevertheless the
spin frequency would be readily discernible in this case.
For “stochastic” behavior, in which outbursts occur

randomly in time with a random distribution of beam
directions, it is much harder but not impossible to uncover
the pulse frequency. If the beams emit into narrow cones,
Equation (54) implies that most outbursts will not be seen but
there will be a bias favoring times when ·ˆ ˆb n is near one. This
bias imprints the effect of fast rotation on the times when
outbursts happen, but only weakly, so the spin frequency is
only discernible after many bursts have been detected. We
develop a specific model for stochastic outbursts in Section 3.
An approximate analytic model that elucidates how informa-
tion about the spin frequency and precession period is
imprinted on the modeled series of burst detection times may
be found in Appendix B.
Intermediate between these two extreme models would be

one in which FRBs occur randomly in time but are triggered by
exceptionally narrow beams within a restricted range of
possible directions. For an outburst occurring at a particular
time, the associated FRB would only be seen if b̂ is very nearly
parallel to n̂, as determined from Equation (51) with
Equation (52), and n̂ is in the range of allowed beam directions.
Table 1 details the solutions of the Euler equations. Note

that the solutions are continuous across the limiting case
L + = =e q1 12 , but because the precession period dive-
rges logarithmically as q→ 1 (from either side) the solutions
are not really connected physically across q= 1. Figure 1
depicts the solutions for Λ= 0.2 and e2= 10. The left panel
shows the motion of ℓ̂ in three dimensions (arrows) and its
projection onto the 1−2 plane (green points), which is the
ellipse given by Equation (42). The right panel shows the
projection onto the 1−3 plane. In both panels the black arrows
indicate the principal axes, the blue arrow indicates the
direction of t̂ , and the red arrow indicates the direction of m̂;
ζ is the angle between t̂ and ˆ ˆ= -e e1 and σ is the angle between
m̂ and t̂ defined in Equation (13).

There are two different axisymmetric situations, e2= 0,
which is oblate (I1= I2< I3), and e2=∞, which is prolate
(I3= I2> I1); these solutions are listed in Table 1. However,
these are singular limiting cases: = L - Lq e 1 2 is
identically zero for e= 0 for any value of Λ≠ 1 and is infinity
for e=∞ for any value of Λ≠ 0.
The ratio of the neutron star’s spin period P to its precession

period Pp is

⎧
⎨⎩

( ∣ ) [ ]
( ∣ ) [ ]

( )

p
f

p p
p

= =
L +

+
<
>

P

P

e e

e

qF q q

F q q
2 1

2

1 2 1
1 2 1 1

56

p p,cyc

mag
2

2
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which is plotted in Figure 2 for various values of e2 as a
function of L + e1 2 . The smallest values of P/Ppòmag are for

L + <e1 12 and large e2, except for the region right around

L + =e1 12 , where P/òmagPp→ 0 for all values of e2. Since
FRB 121102 and FRB 180916.J0158+65 both have very long
Pp, Figure 2 favors models with large values of e2, which
implies that the toroidal component of the magnetic field is
significantly larger than the poloidal component, unless the star
is fortuitously close to L + =e1 12 .

2.4. Periodic Timing Residuals from Precession plus Spindown

Here, we derive the equation for t(f), the functional
dependence of time on spin phase, which we have defined
previously as df= (L/I3)dt; we use Equations (32) and (34) to
zeroth order in òmag to get

⎛
⎝

⎞
⎠

( )

[ ( · ) ]

[ ( · ) ]

m

m

f
m

f f
m

W
= -

W -


W

= =
-

57

ℓ

ℓ

d

d

k a

Ic

d

d

d t

d

k a

Ic

1

1 1

2 2 2

3

2

2

2 2

3

^ ^

^ ^

where dt/df= 1/Ω and Ii; I in this approximation. The
solution to Equation (57) is a continuous function t(f) that
exhibits the timing residuals due to spindown; for a single
beam, which is appropriate for a precessing pulsar, we evaluate
at {fi}, the discrete set of spin phases where the pulses are
beamed toward the observer optimally.

The dependence on precession phase arises from

⎛
⎝

⎞
⎠

( )

·[ ˆ ˆ ( )] ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ( ) ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

å å

å

m m m m

m m m

m m

F = +

= L + - L + - +

+

m m

¹

+

+

¹

58

ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ

2

1

2 ,

i
i i

i j
i j i j

e

e

i j
i j i j

2 2 2

1
2 2

3
2 2

2
2

1 2
21

2
3
2 2

2

where we use the conservation laws, Equations (38) and (42),
to separate out the constant term and isolate the dependence on
ˆ µ Fℓ sn2

2 2 . In evaluating t(f) we must be careful to isolate
secularly growing terms from terms that are periodic over a
precession cycle. We write the solution to Equation (57)
succinctly as

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨⎩

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎤

⎦
⎥

( )

( ) ( ) ˆ ˆ

[ ˆ ˆ ( )
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( )
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ℓ

t t C

a

P P
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1 1

2 ,
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i j ij

k
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e

e
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e

e
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2

2
2

1
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2

3

2 2
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2

3
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2
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1
2

3
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Table 1
Precession Solutions

< L + <e0 1 12 < L + < +e e1 1 12 2 a

q <L

-L
1e

1 2
>L

-L
1e

1 2

Φb ( ( )∣ )
( )

òj F =
j j

j

F ¢

- ¢
F q d

q0 1 2 sin2
( ( )∣ )

( )
òj F =
j j

j

F ¢

- ¢
F q1 d

q0 1 sin2 2
/

/

Fsn [ ( )]j Fsin [ ( )]j Fsin
Fcn [ ( )]j Fcos [ ( )]j Fcos
Fdn - Fq1 sn2 2 - F q1 sn2 2

Φp,cyc
c 4F(π/2|q) 4F(π/2|1/q)

dΦ/df ( )( )

( )
=

-L +

+

L +

+

e

e

e e

q e

2 mag 1 2 1 2

2 2

2 mag 1 2

2 2

  ( )( )
=

L +

+

-L +

+

e e

e

q e

e

2 mag 1 2

2 2

2 mag 1 2 1 2

2 2

 

fp,cyc
d ( ) ( ∣ )

( )( )

( ) ( ∣ )=p p+

- L +

+

L +

e F q

e

q e F q

e e

2 2 2 2

mag 1 2 1 2

2 2 2 2

mag 1 2 

( ) ( ∣ ) ( ) ( ∣ )

( )( )
=p p+

L +

+

- L +

e F q

e e

e F q

q e

2 2 2 2 1

mag 1 2

2 2 2 2 1

mag 1 2 1 2 

ℓ̂1 L Fcn L Fdn
ℓ̂2 L + Fe1 sn2 ( )( ) =-L + F L + Fe

e

e

q

1 2 1 2 sn 1 2 sn

ℓ̂3 - L F1 dn2 - L F1 cn2

+ g
f

1 d

d
( ) ( ) ( )

- = -f f

f

+ F

- L + F

+ F

L +

e d d

e

q e d d

e e

1 2

1 2 1 2 sn2

1 2

1 2 sn2 [ ( ) ] ( )
- = -f fL + F

L + - L F

+ F

L + F

e d d

e

e d d

e e q

1 2

2 1 2 sn2
1 2

1 2 sn2 2

( )
=- f+ F

- L + F

e d d

q e q

1 2

1 2 1 2 sn2 2

e2 = 0.0 (Axisymmetric, Oblate) e2 = ∞ (Axisymmetric, Prolate)

dΦ/df - L1mag
2 2òmagΛ

ℓ̂1 L Fcos Λ

ℓ̂2 L Fsin - L F1 sin2

ℓ̂3 - L1 2 - L F1 cos2

+ g
f

1 d

d
- = -fF

- L

d d

1 2 mag
( )

-
L

L + - L F

2 mag 2

2 1 2 sin2



Notes.
a
Λ < 1 is required.

b Precession phase. F(j|q) and F(j|1/q) are elliptic functions (e.g., Abramowitz & Stegun 1972).
c Precession phase per precession cycle.
d Spin phase per precession cycle.
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where 1/Ω(0)= (dt/df)0. The coefficients in Equation (59) are
given in Table 2. The various averages and functions in Table 2
are evaluated in Appendix A.

For calculations, it is convenient to express t− t(0) in terms
of the precession period Pp. Then f/Ω(0)Pp=Φ/Φp,cycle and
the remaining terms all depend on the single nondimensional
parameter

( )

( ) ( )
[ ( )] ( )


m

=
W

=
´ -

60

P

I c

P

t

B R P

P M I MR

0 2.3 10 100 days

s 0.2
p p D p

sd

2 2

0
3

sd

4
,14

2
10
4

2
1.4 0

2


because Equation (57) may be written in the form

·( ) [ ( ˆ ˆ) ]m
F

=
-

F
ℓd t P

d

k a1
.

p

p

2

2
sd

2

,cycle
2



From Equation (59) we see that in addition to the apparent
frequency shift ( )magO arising from precession there is another
apparent frequency shift ( )sdO .

The amplitude of the cyclical terms is of the order of

( )D = =t P
P

t
61p

p
sd, cyc sd

2

sd


and the cyclical shift in pulse phase due to spindown is of the
order of

( ) ( )
p p

W D = =t
P

P

P

Pt
0

2 2
62

p p
sd, cyc

sd
2

sd



which can be large for

( )º ~
P

P
63

p
sd sd,1 mag  

(Cordes 1993). The secular terms∝Φ2 also become progres-
sively more important for òsd> òsd,1 and, if large enough, may
frustrate searches for the underlying spin period of the
precessing magnetar in models based on stochastic outbursts.
Equations (60) and (63) imply that

( ) ( )
[ ( )] ( )

( )

m
=

W
=

´P

I c P

B R P

P M I MR

0 1.9 10 100 days

s 0.2
64

p D psd

sd,1

2 2 2

0
3

3
,14

2
10
4 2

3
1.4 0

2




which is between ~ B5 D,14
2 and ~ B5000 D,14

2 if Pp= 160 days

(FRB 121102) and between ~ B0.05 D,14
2 and ~ B50 D,14

2

if Pp= 16.4 days (FRB 180916.J0158+65) for 1/P∼
0.1−1 s−1.

2.5. Secular Evolution of Precession via N⊥

We now consider how precession evolves as a consequence
of spindown, generalizing Goldreich (1970) to cases with
e2≠ 0. As in Goldreich (1970) we consider effects to lowest
order in òmag. We generalize the solutions to the Euler
equations to include a slow evolution of the amplitude
parameter Λ=Λ(òt), as was done by Goldreich (1970), but
also include a slowly varying phase shift by replacing
Φ= (dΦ/df)f with ˜ ( ) ( )yF = F +t t . This phase shift is
required for triaxial precession evolving via spindown. Here

( )m= ak L I c I2
3

2 3
3 is roughly the inverse spindown time.

We assume that the spindown time is long compared with
the precession timescale, a necessary condition for a perturba-
tive treatment; this assumption fails at early times, or
if L + e1 12 .

Figure 1. Solution for ℓ̂ with Λ = 0.2 and e2 = 10. Left: 3D motion of ℓ̂ (arrows) and projection onto 1–2 plane (green points). Right: Projection onto 1–3 plane. In
both panels, the black arrows denote the principal axes, and the blue and red arrows are the directions of t̂ and m̂, respectively. The symbols ζ and σ are the angles
between t̂ and ê1 and m̂, respectively.

Figure 2. P/òmagPp as a function of L + e1 2 for e2 = 0.01, 0.1, 1, 10,
and 100.
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We start by considering L + <e1 12 , which is favored
for long precession periods, and is the expected state if
precession is excited from rotation about ê3 with relatively low
δEp. Averaging over the precession phase we find

⎡
⎣⎢

⎤
⎦⎥

( ) { ˆ [ ( ) ]

ˆ [ ( ) ] ( )}

( ) ˆ ˆ
( )

( )

m

m

m m

m

y m

= - + á Fñ

+ + - á Fñ - - á Fñ

=
+

F
F

- +
F
F

q

dq

dt

ak L I

c I
q

q q

d

dt

ak L I

c I e
e

1
2 1 sn

1 1 2 sn 1 sn

1

cn

dn
1

sn

dn
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2
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2

3
3

1
2 2 2

2
2 2 2 2 2

2
3

2
1 2

3
3

2

2
2

2

where we use

( )
( )

=
L
L

-
- L

- L
=

L
L

+
L L
- L

=
L

L - L
-

- L

L - L

dq

q

d d d d

d d

1

1 1

1

1

1
. 66

2

2 2

2

2

2 2

Equation (65) reduces to the results in Goldreich (1970) for
e2= 0, the axisymmetric oblate case, for which
á Fñ = á Fñ =cn sn2 2 1

2
and F =dn 1, after replacing

dq/q→ dΛ/Λ(1−Λ2) using Equation (66); for that case, there
is no phase shift ψ. The stability condition implied by the first
part of Equation (65) is more complicated than what was found
by Goldreich (1970) for the axisymmetric oblate case: there is a
separatrix that is an ellipse in the ˆ ˆm m-1 2 plane whose axes

depend on q, so that, for given values of e2 and m̂1
2 and m̂2

2,
there is a fixed point at a specific value of q.

By contrast, for the axisymmetric oblate case, the ellipse
degenerates into a circle

ˆ ˆ ( )m m+ =
2

3
671

2
2
2

irrespective of the value of Λ. In this case, Λ grows as long as
the magnetic moment configuration of the star is outside this
circle. The growth halts once Λ→ 1, where dΛ/dt also goes to
zero. Inside the circle, Λ decreases, reaching Λ= 0
asymptotically.

For the triaxial case q cannot grow beyond q= 1; since
á Fñ =sn 12 for q= 1, Equation (65) implies dq/dt= 0. The

stability curve (infinitesimally) close to q2= 1 is

ˆ ˆ ( )m m+ =2 1 . 681
2

2
2

The two curves intersect at ˆ ˆm m= = 1 3;1
2

2
2 in fact all of the

stability boundaries intersect at this point since
á Fñ = - á Fñcn 1 sn2 2 and á Fñ = - á Fñqdn 1 sn2 2 2 . These
two bounding stability lines are depicted in Figure 3. The
stability boundaries for all other values of q are between these
two lines, pivoting about their intersection point
at ˆ ˆm m= = 1 31

2
2
2 .

Figure 3 depicts the evolution outcomes for various regions
in the m m-1

2
2
2 phase plane. The region marked “q→ 1” is

unconditionally unstable: if precession is excited for ( )m m,1
2

2
2 in

this region, q grows on the spindown timescale until q= 1,
where growth ceases. Conversely, the region marked “q→ 0”
is unconditionally stable: if precession is excited for ( )m m,1

2
2
2 in

this region, q shrinks toward zero on the spindown timescale.
In the two triangular regions between the q= 0 and q= 1
bounding curves dq/dt= 0 at ( )m m=q q ,eq 1

2
2
2 for each

( )m m,1
2

2
2 . In the region marked “q→ qeq,” dq/dt< 0 for

( )m m>q q ,eq 1
2

2
2 and dq/dt> 0 for ( )m m<q q ,eq 1

2
2
2 , so if

precession is excited in this region ( )m mq q ,eq 1
2

2
2 asympto-

tically as a result of spindown. In the region marked “q→ 0 or
1,” dq/dt> 0 for ( )m m>q q ,eq 1

2
2
2 so q→ 1 asymptotically if

precession is excited with ( )m m>q q ,eq 1
2

2
2 and dq/dt< 0 for

Table 2
Coefficients in Timing Model

q < 1 q > 1

ˆá ñℓ2
2 ( )L + á Fñe1 sn2 2 2 ( )( )- L + á Fñe1 1 1 sn2 2 2

C12 ( )L + - á Fñe

q

1 1 dn2 2

2
( )( )L - L + e1 1 12 2

C13 0 0
C23 ( )( )L - L + e1 12 2 ( ) ( )- L + - á Fñq e1 1 1 1 dn2 2 2

P12 ( ∣ )L + Fe C q12 2
2 ( )( ) ( ∣ )-L - L + Fe C q1 1 1 12 2

4

P13 ( ∣ )L - L FC q1 2
3 ( ∣ )L - L FC q1 12

3

P23 ( )( ) ( ∣ )-L - L + Fe C q1 12 2
4 ( ) ( ∣ )- L + Fe C q1 1 1 12 2

2

P22 Λ2(1 + e2)C1(Φ|q) (1 − Λ2)(1 + 1/e2)C1(Φ|1/q)

Figure 3. Stability boundaries for q = 0 and q = 1 and outcomes for secular
evolution of q.
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( )m m<q q ,eq 1
2

2
2 so q→ 0 asymptotically if precession is

excited with ( )m m<q q ,eq 1
2

2
2 .

For precession in the L + >e1 12 regime we get
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where we use Equation (66) again. Equation (69) may be
obtained from Equation (65) with the substitutions ˆ ˆm m1

2
3
2,

e2→ 1/e2, and q→ 1/q. The evolution scenarios for 1/q
analogous to those for q shown in Figure 3 may be derived
using this mapping.

3. Application to FRBs

3.1. A Random Burst Model

Up to this point, we have focused on the combined effects of
precession and spindown on observations of emission along a
single beam in which emitted intensity is determined entirely
by ·ˆ ˆb n. For application to FRBs we develop a different model
in which multiple beams pointing in random directions fire at
random times with random intrinsic intensities.

To address these questions we simulate an ideal observing
program consisting of daily observations over a total observing
time lasting np,cycle precession cycles. In our idealized
observing campaign, each daily observation starts 1 day after
the beginning of the previous one and lasts fobs days (2.4 hr).
We assume that bursts occur at a uniform rate throughout the
duration of the observing program and that nbursts bursts occur
during the total time fobsnp,cyclePp of the observations. We input
Pp in days, so that the number of observing days is the integer
part of Pp plus 1.

We also input the parameters of the precession model (òmag,
Λ, and e2) from which we can compute the spin frequency νå.
We choose γ(0) randomly in the range [0, 2π].

The simulation starts by choosing the set {Φj} of individual
burst precession phases; in the absence of spindown the
corresponding burst times are tj= PpΦj/Φp,cycle, and even with
spindown included the burst times only differ from these times
by ( )sdO . For each simulation there are nbursts bursts.
Ultimately, only a small fraction of these are detectable.

For each Φj we next determine a beam direction b̂j in the
rotating frame of reference. We do this relative to a reference
beam whose direction we input. In the calculations presented
here we assume that this reference direction coincides with the
direction of the dipole moment appearing in the spindown
formula, m̂. We assume that b̂j is anywhere between two cones
about m̂ defined by ·ˆ m̂q qbcos cosjmin max  , adopting a
uniform distribution for ·ˆ m̂bj over this range and a uniform
direction of azimuthal angles in [0, 2π]. We could, of course,
choose a different reference direction or multiple reference
directions among which bursts may switch. As should already

be apparent, there are many parameters in this model, and
choosing a single reference direction simplifies the calculation
somewhat. Our model does allow the reference direction to
switch to a different one with a probability pflip= 1− fno flip,
but the results reported here are for pflip= 0.
The next step is to compute ·ˆ ˆb nj for each outburst. We do

this by computing ˆ ( )Fn j in the rotating frame of reference from
Equation (54). This requires choosing a value of the inclination
angle i defined in Equation (50), which we input.
Once we have the value of · ·ˆ ˆ ( ) ˆ ˆF ºb n b nj j j j for a given

outburst we can decide whether that outburst is detectable. As a
first cut, we discard all bursts for which ·ˆ ˆ <b n 0j j since these
point away from the observer. Because we assume that each
beam has an FWHM θFWHM we may be discarding some bursts
that could be detectable, in principle, but as long as θFWHM is
not too large we expect that this is not an important source of
inaccuracy in our conclusions. We do not discard beams that
would be eclipsed by the neutron star. To do that we would
need to specify the radius rb from which emission originates for
beam b; eclipses could occur for q <cos 0b and π− θb R/rb.
In most of our simulations we restrict qcos 0b  .
We assume a Gaussian emission pattern for each beam with

an intrinsic intensity

· ·( ˆ ˆ) ( ) [ ( ˆ ˆ )] ( )k= -b n b nI I 1 exp 1 70j j j j

where, if the FWHM of the beam is θFWHM,

( )
( )k

q
=

-

ln 2

1 cos
; 71

1

2 FWHM

Ij(1) is the peak intensity for outburst j and

( )
( )[ ( )]

( )ò m m
p k

k
=

- -
d I

I2 1 1 exp
72j

j

0

1

is the total intensity of the beam integrated over the directions.
Equation (70) would be the final answer if all outbursts were
equally intense intrinsically, but in general we expect a
distribution of Ij(1). To model this, we input a range of
intrinsic intensities, and assume that the distribution of intrinsic
intensities Ij(1) is uniform in ( )Iln 1j over the corresponding
logarithmic range with a mean value of 1. (In this model we
could choose a different mean value, but this would just
introduce a multiplicative factor in each value of Ij(1).) After
selecting ( )Iln 1j at random from this distribution we evaluate Ij
using Equation (70).
Given {Ij} we can find the maximum value Imax. We assume

that only bursts greater than ( )= ´I I I Imin max min max are
detectable, where I Imin max is another input parameter. We
then have the sets {Φj} and { }I Ij max for the bursts. The latter
can immediately be turned into a plot of the number of detected
bursts per (daily) observing session versus the precession
phase, which provides a simple visual indication of whether the
data reveal or conceal the precession period. The same data can
be plotted as a cumulative distribution of observed burst
intensities, which we shall see is different from the inputted
distribution of intrinsic burst intensities.
The final step in our calculations is to determine conditions

under which the spin frequency ought to be detected. We do
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this by computing

ˆ ( ) [ ( )] ( )ån p n= FD w i texp 2 73
j

j j 

where νå=Ω(0)/2π is the (initial) spin frequency of the star
and t(Φj) is computed from Equation (59) for selected values of
òsd. In Equation (73) {wj} is a set of weights assigned to each
detected burst. To assess the evidence for a given ν we compute
|D(ν)|. For totally uncorrelated tj

∣ ˆ ( )∣ ( )åná ñ =D w 74
j

j
2

uncorrelated
2



so we normalize the computed values:

∣ ˆ ( )∣ ∣ ˆ ( )∣

∣ ˆ ( )∣
( )n

n

n
º

á ñ
D

D

D
. 75normalized

2
uncorrelated






In our calculations we weight each term in Equation (73)
equally, so that wj= 1/Nbursts for Nbursts detected bursts; with
this choice 〈|D(ν)|2〉uncorrelated= 1/Nbursts, and

∣ ˆ ( )∣ ∣ ˆ ( )∣ ( )n nºD D N . 76normalized bursts 

Another plausible choice for wj would be I Ij max. If the burst

times are precisely periodic then ∣ ˆ ( )∣n =D 1 and
∣ ˆ ( )∣n =D Nnormalized bursts . This remains true for
n n n¢ = + D ;   the frequency shift associated with spindown,
which is included in our calculation, is undetectable. For a
single beam, there would be a systematic frequency shift

( )magO that depends on beam direction, but for multiple beams

there is no systematic shift. The value of ∣ ˆ ( )∣nD  is unaffected
by shifting the burst times by a common time offset. If burst
times are random, the asymptotic probability distribution of

∣ ˆ ( )∣n=r D N is

( ) ( ) ( )= -
dp r

dr
r r2 exp 772

independent of N. The mode of Equation (77) is =r 1 2 and
the mean is p 2.

In our models, we evaluate ( ) ∣ ˆ ( )∣n n=D D Nd d  for each of
the {d} days of observations during which {Nd} bursts are
detected. According to Equation (77) the probability that
Dd> r is ( )-rexp 2 if the bursts occur randomly. If observa-
tions are done on M days the expected number of values of Dd

that exceed r is ( ) ( )> = -n r M rexp 2 , and the value of r for
which (n> r)= 1 is

( ) ( )=r M Mln . 781

The probability that no values of ∣ ˆ ( )∣n >D N rd d 0 are found
at random is

( ) [ ( )]= - -p r M r, 1 exp M
0 0

2

so for a chosen value p= p(r0|M)

( )
( ) [ ( ) ]

( )
( )

( )

=
-

=
-

»
-

=
-

r p M
p p M

p M

r M

p

,
1

ln 1

1

ln 1 exp ln

1

ln ln
;

79

M
0

1

1

r1(M)≈ r0(1/e, M). Below we use r1(M) to assess the
detectability of νå over M days by keeping track of the number
of days for which ˆ ( )nDd  exceeds r1(M).
Of course the observer will not know νå in advance but we

presume that he/she analyzes the data for a broad range of
possible spin frequencies including test values near νå. In our
simulations, we compute { ˆ ( )}nDd  for each of M= 512
consecutive days, so ( ) = =r M ln 512 2.4981 . We focus on
the day with the largest value of ˆ ( )nD Nd and for that day we
calculate ˆ ( )nD Nd for Nfreq different frequencies. For small
enough spacing between the test frequencies νå ought to be very
near one of the sampled frequencies; a value above r1(Nfreq) is
considered to be significant. In the simulations reported in Table 3
we sample frequencies spaced by Δν/ν= 10−5 Hz between
0.05Hz and 5Hz, a total of Nfreq= 460,518 frequencies, so

( ) = =r N ln 460, 518 3.6111 freq . Although we have only done
frequency searches on the most promising day for each burst
model, the spin frequency ought to be detectable on any day for
which ˆ ( ) ( )n >D N r Nd d 1 freq , so we tabulate the number of
such days.
In Appendix B we develop an analytic theory of the

probability of burst detections at a given time in our model.
Equation (B.1) makes it clear that the probability depends on
spin and precession frequency via ·ˆ ( ) m̂Fn . Moreover, there is
no time dependence at all if the distribution of beam directions
is isotropic. Thus, the observation of regular precession cycles
by itself argues for a restricted range of beam directions.

3.2. Results

Given the large number of parameters, we have not done a
systematic, complete exploration of the multidimensional phase
space of models. However, we have explored numerous
particular cases to look for trends related to the two
phenomenological questions above. In doing this, we have
held one parameter not listed in Table 3 fixed for most runs: the
initial value of the random number seed. Normally, this is
Monte Carlo malpractice. Two models with identical initial
random number seeds, the same value of nbursts, and the same
ranges of qcos b and Ij(1) will start with identical sets of
outbursts; that is,{ ˆ ( )}F b I, , 1j j j will be the same. However, two
models with the same e2 but different values of Λ will have
different { ˆ }nj and hence different ·{ ˆ ˆ }b nj j and different
intensities {Ij} so their subsets of detectable outbursts will be
different. Models with different ranges of qcos b and Ij(1) start
with identical sets of {Φj}, which isolates the differences in
properties of detectable bursts associated with emitting
geometry and precession. Here and there we have verified that
the initial random number seed is not critical to qualitative
features of the results.
For nbursts in a total observing time tobs= fdnp,cyclePp, the

burst rate is nbursts/tobs; for the simulations listed in Table 3
tobs= 51.2 days and the burst rate is 1,024,000/
51.2 days= 20,000 days−1= 0.231 Hz. For our simulations,
νå; 0.1, 0.15, 1, or 1.5 Hz so the number of outbursts per spin
period ranges from;0.15 to;2.3. If all of these bursts were
detectable, the spin frequency of the magnetar would be easy to
find. In the simulation results, the burst detection efficiency is
at most;4%, which would correspond to at most of the order
of one burst per 10 spin periods, which, although not large,
should still suffice to uncover the underlying spin period. The
total number of outbursts is chosen so that the average number
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of detected bursts per day would turn out to be ∼50 in the
simulations. This detection rate is comparable to the rate
reported by Li et al. (2021) for about 50 days of observations of
FRB 121102. No convincing evidence for a spin frequency was
found by Li et al. (2021).

Table 3 tabulates the results for 16 simulations. For all of
these

1. e2= 10,
2. the distribution of intrinsic intensities ranges over a factor

of 1000,
3. the beamwidth is θFWHM= 20°,
4. bursts are detectable over a range of observed inten-

sities =I I 1000max min ,
5. the distribution of beam directions is axisymmetric about the

symmetry axis ˆ ˆ ( ˆ ˆ )m qm q j j= + +m m me e ecos sin cos sin3 1 2

with (θμ, jμ)= (30°, 40°),
6. there are daily observations lasting 0.1 days each over a

total time span of 512 days, and
7. the observer is at i= 52° relative to the spin angular

momentum of the star (Equation (50)).

The average number of bursts per day is ∼30–60 for all of the
tabulated models. Although the tabulated models are for òsd= 0

we do not regard this as an essential limitation for two reasons.
First, as omniscient simulators, we can nullify the effects of
spindown entirely by adjusting the value of the frequency
tested from νå to νå,d; our code allows us to do this, and we
have verified that ˆ ( )nDd d, with òsd≠ 0 is virtually the same as
ˆ ( )nD  with òsd= 0. Second, we do frequency searches on the
most promising day with òsd≠ 0 and detect frequency shifts for
large enough spindown compared to our frequency resolution.
The table is divided into two categories, Λ= 0.2 and

Λ= 0.44; more precisely q2= 5/12 for the upper half of the
table and q2= 12/5 for the lower half. Each half is subdivided
into three parts that are distinguished by different ranges of
beam directions:

1. “pulsar-like” models only allow beams in a very narrow
cone of angles around m̂, q0.99 cos 1;b 

2. “hemisphere” models allow beams in any direction in the
outward hemisphere relative to m̂, q0 cos 1;b  and

3. “inter-cone” models allow beams between the cones
defined by q =cos 0.1min and q =cos 0.8max around m̂.

Inter-cone models exclude beams in a fairly narrow cone near
the symmetry axis as well as beams orthogonal to it. A number
of trends are apparent in Table 3:

Table 3
Simulated Burst Modelsa

Pp (days) òmag Λ νå (Hz) qcos b
b Dmax (day)

c Nbursts (%)d Nd(512)
e Nd(Nfreq)

f Description

160 10−6 0.2 0.1521 [0.99, 1] 13.6 (411) 37,596 (3.7%) 399 384 pulsar-like
160 10−7 0.2 1.521 [0.99, 1] 13.0 (414) 37,017 (3.6%) 403 386 pulsar-like
16.4 10−5 0.2 0.1484 [0.99, 1] 13.0 (48) 40,280 (3.9%) 417 403 pulsar-like
16.4 10−6 0.2 1.484 [0.99, 1] 12.8 (109) 39,497 (3.9%) 416 403 pulsar-like

160 10−6 0.2 0.1521 [0, 1] 4.46 (443) 29,864 (2.9%) 114 13 hemisphere
160 10−7 0.2 1.521 [0, 1] 4.40 (427) 29,663 (2.9%) 114 11 hemisphere
16.4 10−5 0.2 0.1484 [0, 1] 4.24 (341) 29,333 (2.9%) 110 8 hemisphere
16.4 10−6 0.2 1.484 [0, 1] 4.05 (488) 29,456 (2.9%) 109 12 hemisphere

160 10−6 0.2 0.1521 [0.1, 0.8] 3.22 (438) 28,965 (2.8%) 17 0 inter-cone
160 10−7 0.2 1.521 [0.1, 0.8] 3.79 (377) 29,030 (2.8%) 24 2 inter-cone
16.4 10−5 0.2 0.1484 [0.1, 0.8] 2.90 (37) 28,630 (2.8%) 8 0 inter-cone
16.4 10−6 0.2 1.484 [0.1, 0.8] 3.36 (168) 28,290 (2.8%) 13 0 inter-cone

160 10−6 0.44 0.1071 [0.99, 1] 13.1 (352) 16,682 (1.6%) 181 164 pulsar-like
160 10−7 0.44 1.071 [0.99, 1] 12.6 (32) 16,541 (1.6%) 182 169 pulsar-like
16.4 10−5 0.44 0.1045 [0.99, 1] 12.9 (86) 16,747 (1.6%) 181 168 pulsar-like
16.4 10−6 0.44 1.045 [0.99, 1] 12.9 (431) 16,784 (1.6%) 179 166 pulsar-like

160 10−6 0.44 0.1071 [0, 1] 5.07 (50) 21,334 (2.1%) 326 157 hemisphere
160 10−7 0.44 1.071 [0, 1] 4.85 (445) 21,158 (2.1%) 317 143 hemisphere
16.4 10−5 0.44 0.1045 [0, 1] 4.80 (418) 20,322 (2.0%) 336 149 hemisphere
16.4 10−6 0.44 1.045 [0, 1] 5.20 (187) 20,799 (2.0%) 343 177 hemisphere

160 10−6 0.44 0.1071 [0.1, 0.8] 5.61 (390) 22,160 (2.2%) 271 179 inter-cone
160 10−7 0.44 1.071 [0.1, 0.8] 5.65 (433) 22,335 (2.2%) 278 177 inter-cone
16.4 10−5 0.44 0.1045 [0.1, 0.8] 5.46 (46) 21,615 (2.1%) 299 185 inter-cone
16.4 10−6 0.44 1.045 [0.1, 0.8] 5.37 (385) 21,268 (2.1%) 300 193 inter-cone

Notes.
a Consecutive daily observations lasting 0.1 days each for 512 days, observer at i = 52°. A total of 1,024,000 outbursts. Beamwidth θFWHM = 20°. Intrinsic intensity
range a factor of 1000; ratio of minimum to maximum observed intensities =I I 0.01min max . òsd = 0.
b Range of beam offsets axisymmetric relative to symmetry axis at ˆ (ˆ ˆ )q q j j+ +m m m me e ecos sin cos sin3 1 2 with (θμ, jμ) = (30°, 40°).
c Maximum value of D̂ Nd d and day on which it occurs.
d Total number of detectable bursts and fraction of total number of outbursts.
e Number of days for which D̂ Nd d exceeds = ¼ln 512 2.498 .
f Number of days for which D̂ Nd d exceeds = ¼Nln 3.611freq .
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1. more bursts are detectable for Λ= 0.2 than for Λ= 0.44
in all cases;

2. for either value of Λ all subcategories—pulsar-like,
hemisphere, and inter-cone—give similar results irre-
spective of the value of òmag;

3. νå is readily detectable on∼30% of days for Λ= 0.44 for
pulsar-like, hemisphere, and inter-cone geometries;

4. νå is detectable on3% of all days for hemisphere models
with Λ= 0.2, but reproducible results for νå (modulo
spindown) ought to emerge in a dedicated program of
nearly daily observations that last long enough; and

5. νå is largely undetectable for inter-cone models
with Λ= 0.2.

The uniformity of results within the various subcategories is not a
complete surprise since 160/16.4 is near 10 so models with
Pp= 160 days and a given value of òmag ought to resemble
models with Pp= 16.4 days and 10òmag closely. The dependence
on òmag for a given value of Pp is weak. The detection criteria in
our simulations only depend on spin frequency implicitly via

·ˆ ˆ ( )Fb n , but this dependence is weak because b̂ varies widely and
stochastically (except in the pulsar-like models). We expect that
as long as the time between bursts is long compared with 1/νå
final results should be insensitive to òmag.

Although we have not tabulated results for models in which
beams can point in any direction (i.e., q-1 cos 1b  ) we
have simulated such models; in general neither νå nor Pp is
apparent in the results.

Figure 4 shows the numerical results for two models where
νå ought to be detected. All of these results are for Pp= 160

days, òmag= 10−6, and Λ= 0.2, so that νå= 0.1521 Hz. The
top panels are for the pulsar-like case and the bottom are for the
hemisphere case. The left panels in both rows show Nd/10 for
each day (purple crosses); the precession cycle is evident in
both panels. These panels also show ˆ ( )nD Nd d for each day
(green crosses), with the day on which ˆ ( )nD Nd d is largest
indicated by a downward arrow. The horizontal red line in each
figure is at ( ) =r N Nln 3.6111 freq freq , which we take to be
the threshold for detection of νå. The right panels show the
results of a period search on the most favorable day for
detecting νå using Nfreq= 460,518 test frequencies spaced at
equal logarithmic intervals Δν/ν; 10−5 between 0.05 Hz and
5 Hz. The value of ˆ ( )nD Nd d exactly at νå is also shown as an
orange triangle. The leftmost vertical dashed lines are at the
spin frequencies for these two models; for the pulsar-like model
vertical dashed lines at four harmonics of νå are also shown.
The spin frequency and four harmonics are found easily for the
pulsar-like model; the spin frequency is also found for the
hemisphere model.
Figure 5 shows the numerical results for two inter-cone

models with Pp= 160 days and òmag= 10−7 (top) and
òmag= 10−6 (bottom). For òmag= 10−7 the spin frequency
should be detectable, whereas for òmag= 10−6 it is not. The
spin frequency would be found significantly for òmag= 10−7,
but a slightly larger value of ∣ ˆ ( )∣nD Nd is found around 1.7
Hz. This is not particularly troubling since both frequencies
have values of ∣ ˆ ( )∣nD Nd close to r1(Nfreq), but it suggests that
νå would not be detected on this particular day. (We reran this
case with a different random number seed and found that
∣ ˆ ( )∣ (n <D N r Nd 1 freq) on all days.) The spin frequency would
not be found for òmag= 10−6.
So far, we have concentrated on searching for νå on

individual days, presenting frequency spectra only on the most
promising days for detection. Alternatively, the frequency
search can be performed on the entire data set. Figure 6 shows
the results for the cumulative value ∣ ˆ ( )∣nD d,  computed by
performing the sum in Equation (73) over the N(� d) bursts
detected up to the end of day d and multiplying by ( )N d .

Figure 4. Results for the most promising days for spin frequency detection for
two models with Pp = 160 days, Λ = 0.2, and òmag = 10−6. A pulsar-like
model is shown in the top row and a hemisphere model in the bottom row. See
Table 3 for details. The left panels show the number of bursts per day, Nd,
divided by 10 (purple crosses) and the value of ∣ ˆ ( )∣nD Nd d on each day (green
crosses). Downward-pointing arrows indicate the days with the largest value of
∣ ˆ ( )∣nD Nd d , days 411 (top/pulsar-like) and 443 (bottom/hemisphere). The
right panels show the results of computing ∣ ˆ ( )∣nD Nd d on these days for
frequencies 0.05 Hz � ν � 5 Hz with equal logarithmic spacing Δν/ν ; 10−5.
The horizontal red lines are at ∣ ˆ ( )∣ n =D N Nln 3.611d d freq , the value
above which about one point ought to appear at random according to the
Rayleigh distribution. For the models shown, detecting the spin frequency
ought to be relatively easy: the fundamental and four harmonics show up
significantly for the pulsar-like model but just the fundamental shows up for the
hemisphere model.

Figure 5. Results for the most promising days for spin frequency detection for
two inter-cone models with Pp = 160 days, Λ = 0.2, and òmag = 10−7 (top) and
òmag = 10−6 (bottom). The format is the same as that in Figure 4. For these
models the spin frequency is not detectable unambiguously on their respective
most promising days.
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All four panels in Figure 6 are computed for a nested-cone
geometry with q0.1 cos 0.8b  . The top panels are for
Pp= 160 days and òmag= 10−6 and the bottom for Pp= 16.4
days and òmag= 10−5 so spin frequencies are comparable in all
cases. The left panels are for Λ= 0.2, where Table 3 indicates
no promising days for burst detections, and the right panels are
for Λ= 0.44, for which we expect≈200 promising days. The
top left panel shows that the value of ∣ ˆ ( )∣ ( )nD d N d,  
generally increases with d for òsd= 0, apart from fluctuations,
suggesting that detection may be possible in a cumulative
analysis. However, Equation (64) implies that

» B17 Dsd sd,1 ,14
2  for the top left panel in Figure 6 and

» B6 D,14
2 for the right panel. At these levels, the accumulated

spindown over many days of observation becomes important,
and discovering νå from a cumulative analysis that neglects
spindown is problematic. The situation for Pp= 16.4 days
appears to be more complicated. As the left panel shows,
although ∣ ˆ ( )∣ ( )nD d N d,   increases at first for òsd= 0,
ultimately it decreases while fluctuating considerably; the same
sort of behavior is evident in the right panel. For these cases,

» B0.17 Dsd ,14
2

sd,1  and B0.06 D,14
2

sd,1 , respectively, so spin-
down is less important for BD,14= 1. We show what happens
for òsd= òsd,1 in both panels: spindown this fast further
suppresses accumulation of evidence for νå in the left panel,
but actually can enhance it, at least for a while, in the case
depicted in the right panel.

4. Conclusions

The first part of this paper has been devoted to the theory of
precession of neutron stars whose distortions are due to strong
internal magnetic fields. We have stressed that unless internal
field strengths are very large precession ought to be frustrated
by the pinning of neutron superfluid vortices, to nuclei in the
crust (Shaham 1977) and to flux tubes associated with type II
proton superconductivity in the core (Link 2003). We argue
that internal magnetic fields with strength 1016 G must
pervade the star if precession is to be possible. As we have
discussed, fields this strong can prevent proton superconduc-
tivity in the core (see Equation (1) and the associated

discussion), are strong enough to shatter the crust, and may
even prevent or at least substantially alter neutron superfluidity
in both core and crust (see Equation (3) and the associated
discussion). Avoiding vortex line pinning is a very stringent
requirement: even very localized regions where neutron
vortices pin can prevent slow precession if they comprise just
a modest fraction—say 0.1%—of the moment of inertia of the
star (Shaham 1977).
These considerations have led us to examine the implications of

a three-component model of the magnetic field in magnetars: (1) a
dipole component with characteristic strength∼ 1014 G; (2)
a toroidal component with characteristic strength∼ 1015–
1016 G; and (3) a disordered field with characteristic strength∼
1016 G. Because the volume occupied by the toroidal field may be
limited (as in the models of Akgün et al. 2013) the disordered
component may be critical for suppressing superfluidity and
superconductivity, which is a necessary condition for slow
precession. Since small-scale, disordered fields may decay in a
timescale ∼1000 yr (see Equation (30); Reisenegger & Gold-
reich 1992; Glampedakis et al. 2011; Passamonti et al. 2017;
Gusakov et al. 2017) a magnetar may only precess for a relatively
short time, until the disordered field that enables slow precession
decays significantly. The decay of the disordered field may also
end the bursting phase in the life of a magnetar, for this
component contains most of the stellar magnetic energy and is
capable of stimulating internal fluctuations that propagate into the
magnetosphere, where they might trigger burst activity.
The illustrative but schematic models for magnetic distortion

in Section 2.2 imply that the resulting quadrupolar deformation
is almost certainly triaxial and probably prolate. We developed
the theory of triaxial precession in Section 2.3, noting in
particular that large-amplitude precession can be excited as a
result of small shearing motions involving only tiny fractions of
the magnetic energy of the star. We included spindown in the
theory developed in that section (using the spindown formula
found by Li et al. 2012): Section 2.4 developed a timing model
t(Φ) that relates clock time to precession phase when spindown
is included, and Section 2.5 developed the secular effects of
spindown on precession dynamics for the triaxial case, a
generalization of Goldreich (1970) that dealt with axisym-
metric, oblate precession. We have yet to explore possible
phenomenological implications of the secular evolution. The
timing model exhibits the expected systematic spindown, as
altered by precession, but also includes important cyclical
terms that vary periodically with precession (discussed less
generally by Cordes 1993).
In the introduction, we asked whether the spin frequency

ought to be detected for a magnetar precessing with a known
precession period. So far, no spin frequency is apparent in
either FRB 121102 or FRB 180916.J0158+65. This may be
simply because we have not detected enough bursts from these
FRBs to find evidence for their spin periods, or it may be that
doing so is virtually impossible because of the physical
properties of these objects and the FRB mechanism. If the
reason we have yet to detect spin frequencies is that we need
more burst detections, how sensitive and systematic must an
observing program be to find the spin convincingly?
In order to address this issue we constructed a specific

stochastic model for FRBs in Section 3. In this model, FRBs
are associated with outbursts that occur randomly in time with
energy output that is beamed into a range of directions that we
select. Generally, we confine the beam directions to be outward

Figure 6. Cumulative ∣ ˆ ( )∣ ( )nD d N d,   as a function of day number d.
Top: Pp = 160 days, òmag = 10−6 nested-cone models with Λ = 0.2 (left) and
Λ = 0.44 (right), and òsd = 0 (purple crosses) and òsd = 10òsd,1 (green crosses).
Bottom: Pp = 16.4 days, òmag = 10−5 with Λ = 0.2 (left) and Λ = 0.44 (right),
and òsd = 0 (purple crosses) and òsd = òsd,1 (green crosses).

17

The Astrophysical Journal, 928:53 (21pp), 2022 March 20 Wasserman et al.



relative to a reference (magnetic) axis; for beam directions that
are totally random neither the spin frequency nor the precession
period is discernible. Thus, the existence of repeated precession
cycles for FRB 121102 and FRB 180916.J0158+65 already
shows that they are not caused by beamed emission directed
entirely at random.

Our model offers some hope for detecting spin frequencies,
as precession implies that there is a bias that favors detection of
optimally directed beams. The analytic model in Appendix B
demonstrates that the dependence on both the spin and
precession frequencies arises from the motion of the unit
vector to the observer in the rotating frame of reference, but the
dependences may be very weak. In order to assess whether
the spin frequency can be detected, we computed ( )n =rd 
∣ ˆ ( )∣nD Nd d for each day d in our hypothetical observing
program; Nd is the number of bursts detected on day d and
ˆ ( )nD is defined in Equation (73). For a frequency search with
Nfreq= 460,518 frequencies spanning the range 0.05–5 Hz with
equal logarithmic spacing, Δν/ν= 10−5, on any given day, the
largest value that should arise at random is approximately

( ) )= »r N Nln 3.6111 freq freq . The spin frequency ought to be
detectable on days when rd(νå)> r1(Nfreq). Finding νå is likelier
for cases where the number of days with rd(νå)> r1(Nfreq) is a
substantial fraction of the total number of days on which
observations are done.

Although we have only computed a modest number of
models, the results reported in Table 3 divide qualitatively into
two classes depending on the value of q2= e2Λ2/(1−Λ2).
Based on the criterion described above, we believe that
detecting the burst frequency is likely when q2> 1 irrespective
of the value of òmag or the distribution of beam directions.
However, the situation for q2< 1 is more complicated.
Although detecting νå ought to be easy for pulsar-like models,
where the range of beam directions relative to the reference axis
is small, widening this range diminishes the odds of detection
considerably. Allowing beam directions anywhere in the
outward hemisphere relative to the axis would lead to
detections on3% of the days during which observations are
done. But restricting beams to avoid directions moderately
close to the axis and perpendicular to it makes detecting the
spin frequency nearly impossible in our models.

Finally, the simulations all indicate that the fraction of
outbursts that are ultimately detectable is small: the largest
fraction of all outbursts that are detectable in our models is
3.9%, for pulsar-like models with q2< 1, and is at most 2.9%
for all other models we have simulated. That means that the
model simulated here is not very energy-efficient, in that at
least ∼25–50 times as much energy is being emitted in FRBs as
we would deduce from observations. One might expect that
beaming mitigates the energetic requirements, and of course for
a given peak intensity the total emitted intensity is

k qµ ~1 FWHM
2 . Our calculations only cover a single Gaussian

beamwidth, θFWHM= 20°. Lowering θFWHM reduces the total
number of detections at a fixed outburst rate, which we have
found to be roughly qµ FWHM

2 via sporadic exploration of the
phase space. Assuming this to be true, the overall amount of
energy required in the stochastic model would be roughly
independent of θFWHM for small values of the beamwidth: the
total emission per beam is qµ FWHM

2 but the number of
undetected beams per detected beam is qµ1 FWHM

2 . Moreover,
with fewer burst detections per day uncovering the magnetar
spin frequency becomes harder.
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Appendix A
Useful Integrals and Details of Computation of the Timing

Model

Using Table 4 we find
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where we rewrite the first integral to isolate the secular term
from the strictly periodic one. The third integral also has a
secular term. These terms are∝Φ∝ f and, in effect,
renormalize the initial spin period.
Finally, we consider terms µ Fsn ;2 we clearly need to

remove á Fñsn2 , which produces a term in t(f) that is∝ f2. We
assume that what remains is periodic, so we focus just on the
period starting at Φ= 0. We then find
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Available routines for evaluating complete elliptic functions
return values for j(Φ)� π/2 (Press et al. 2002), which covers
all of the values of these functions; for π/2< j� π we
substitute

( ∣ ) ( ∣ ) ( ∣ )
( ∣ ) ( ∣ ) ( )

j p p j
p p j

= - -
= - -

E Q E Q E Q

E Q E Q2 2 A.3
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to get
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C1(Φ|Q)= 0 at Φ= 0 and Φ= 2F(π/2|Q), and has its peak
value at Φ= F(π/2|Q).

Figure 7 shows the results for Ci(Φ|Q) for one precession
cycle for Q = 0.3, 0.6, and 0.9, and also for Q= 0 (thin black
line), for which the limiting forms are
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8
1 cos sin . A.5

1 2

3 4

The functions C1(Φ|q) and C2(Φ|q) have periods equal to half
of the precession period. The functions C3(Φ|q) and C4(Φ|q)
have periods equal to a full precession cycle. Notice that
although there is no secular variation of C3(Φ|q) this function

has a nonzero mean over its full cycle of variation, which
would manifest itself as an offset in t(f).

Appendix B
Analytic Theory of Detection Probability

Equation (70) relates the intrinsic intensity I and the peak
intensity I(1); in our model a burst is detectable if >I Imin. The
probability that a burst with peak intensity I(1) is detectable at
the precession phase Φ is
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Useful Integrals and Averages
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Figure 7. Ci(Φ|Q) vs. Φ for one precession cycle and Q = 0, 0.3, 0.6, and 0.9.

19

The Astrophysical Journal, 928:53 (21pp), 2022 March 20 Wasserman et al.



where ( ˆ)bn is the distribution of beam directions (normalized to
1) and Θ( L ) is the Heaviside function; use
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We assume that ( ˆ) ˜( )q p=bn n cos 2b is only a function of
qcos ;b with this assumption
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1. Pdetect increases with weakly increasing I(1), decreases
∝ 1/κ as κ increases, and is only nonzero where

( )q ¹n cos 0n .
2. If ˜( )qn cos b is uniform, as would be the case if beam

directions are random and isotropic, then there is no Φ

dependence so there is no imprint of either the spin
frequency or the precession frequency on Pdetect.

3. Precession phase Φ dependence arises from nonunifor-
mity in ˜( )qn cos ;b in our models, nonuniformity is a
consequence of boundaries in the distribution of beam
directions.

Consider the region near qmax. If q q q- < <R nmax max and
˜( )q =n cos 0b at q q>b max then
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where ( )q qD = - <R 1nmax and ñ is the uniform value
inside the region containing beams; if q q>n max then

d q q- < < - <R 0b nmax and
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Equation (B.2) can be used for θn inside or outside provided
that we use ∣ ∣D = - Dsin sin for Δ< 0. Near qmin, similar
considerations imply that d q q- < < -1 ;b n min then we get
the same results but with ( )q qD = - Rn min . For q = 0min ,
0� δb� θn (0�Δ� 1). Otherwise, Pdetect= 0 for
q q - Rn min and for q q> + Rn max . These results depend
on Φ via Δ and imprint information about both the spin
frequency and the precession cycle on our models. We also
note that the range of values of θn is model-dependent via Λ, e2,
and the rate at which outbursts occur, which may depend on Φ

(but does not in our models). If R(Φ, I(1))dI(1)dΦ is the rate of
outbursts with intrinsic intensity in I(1)+ dI(1) then

( ) ( ) ( ( ) ) ( ( ) ) ( )òF = F F Fdr d dI R I P I1 1 , 1 , B.4detect detect

is the rate of detection of bursts in dΦ.
These results can be generalized to beams distributed about

multiple axes by replacing

( ˆ) ( ˆ)åb bn p n
j

j j

where pj is the probability that a beam comes from the
distribution around the axis m̂j and ( ˆ)bnj is normalized to 1. The

average beam direction is then the sum of ˆá ñbpj j .
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