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he existing solutions of Navier–Stokes and energy equations in
he literature regarding the three-dimensional problem of
tagnation-point flow either on a flat plate or on a cylinder are
nly for the case of axisymmetric formulation. The only exception
s the study of three-dimensional stagnation-point flow on a flat
late by Howarth (1951, “The Boundary Layer in Three-
imensional Flow—Part II: The Flow Near Stagnation Point,”
hilos. Mag., 42, pp. 1433–1440), which is based on boundary

ayer theory approximation and zero pressure assumption in di-
ection of normal to the surface. In our study the nonaxisymmetric
hree-dimensional steady viscous stagnation-point flow and heat
ransfer in the vicinity of a flat plate are investigated based on
otential flow theory, which is the most general solution. An ex-
ernal fluid, along z-direction, with strain rate a impinges on this
at plate and produces a two-dimensional flow with different com-
onents of velocity on the plate. This situation may happen if the
ow pattern on the plate is bounded from both sides in one of the
irections, for example x-axis, because of any physical limitation.
similarity solution of the Navier–Stokes equations and energy

quation is presented in this problem. A reduction in these equa-
ions is obtained by the use of appropriate similarity transforma-
ions. Velocity profiles and surface stress-tensors and temperature
rofiles along with pressure profile are presented for different val-
es of velocity ratios, and Prandtl number.
DOI: 10.1115/1.3153366�

eywords: similarity solution, nonaxisymmetric three-
imensional, stagnation flow and heat transfer, steady, viscous
uid

Introduction
There are many three-dimensional axisymmetric solutions for

avier–Stokes and energy equations regarding the problem of
tagnation-point flow and heat transfer in the vicinity of a flat
late or a cylinder. Fundamental three-dimensional axisymmetric
tudies in which the nonlinearity is removed by superposition of
undamental exact solutions that lead to nonlinear coupled ordi-
ary differential equations by separation of coordinate variables
re uniform shear flow over a flat plate in which the flow is in-
uced by a plate oscillating in its own plane beneath a quiescent
uid by Stokes �1�, two-dimensional stagnation-point flow by Hi-
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emenz �2�, and the flow induced by a disk rotating in its own
plane by Von Karman �3�. The works in which nonlinearity is
readily superposed but still axisymmetric are flow over a flat plate
with uniform normal suction by Griffith and Meredith �4�, three-
dimensional stagnation-point flow by Homann �5�. The same kind
of work but on a cylinder is the axisymmetric stagnation flow on
a circular cylinder by Wang �6�. Further three-dimensional axi-
symmetric exact solutions to the Navier–Stokes equations are ob-
tained by superposition of the uniform shear flow on a body os-
cillating or translating in its own plane, with or without suction.
The examples are superposition of two-dimensional and three-
dimensional stagnation-point flows by Howarth �7�, Reshotko �8�,
and Libby �9�. The ones using superposition of stagnation flow are
by Gersten �10� and Papenfuss �11�. Also, the three-dimensional
axisymmetric solution for a fluid oscillating about a nonzero mean
flow parallel to a flat plate with uniform suction was given by
Stuart �12�. More three-dimensional axisymmetric solutions with
superposition of stagnation-point flow on a flat plate oscillating in
its own plate, and also consideration of the case where the plate is
stationary and the stagnation stream is made to oscillate was done
by Glauert �13�, uniform shear flow aligned with out flowing two-
dimensional stagnation-point flow has been presented by Stuart
�14�, and uniform flow along a flat plate with time-dependent
suction and included periodic oscillations of the external stream
was studied by Kelly �15�. In addition, Gorla �16� has studied
unsteady laminar axisymmetric stagnation flow over a circular
cylinder, nonsimilar axisymmetric stagnation flow on a moving
cylinder �17�, transient response behavior of an axisymmetric
stagnation flow on a circular cylinder due to time-dependent free
stream velocity �18�, and unsteady viscous flow in the vicinity of
an axisymmetric stagnation-point on a cylinder �19�. Additionally,
suppression of turbulence in wall-bounded flows by high-
frequency spanwise oscillations has been studied by Jung et al.
�20�, axisymmetric stagnation flow toward a moving plate by
Wang �21�, and axisymmetric stagnation-point flow impinging on
a transversely oscillating plate with suction by Weidman and Ma-
halingam �22�. Studies under the same category as above but with
a rotating body include superposition of uniform suction at the
boundary of a rotating disk by Stuart �23�, shear flow over a
rotating plate by Wang �24�, and radial stagnation flow on a rotat-
ing cylinder with uniform transpiration by Cunning et al. �25�.

Three-dimensional axisymmetric studies considering exact so-
lutions of the Navier–Stokes equations along with energy equation
include the problems of heat transfer in an axisymmetric stagna-
tion flow on a cylinder by Gorla �26�, axisymmetric stagnation-
point flow and heat transfer of a viscous fluid on a moving cylin-
der with time-dependent axial velocity and uniform transpiration
by Saleh and Rahimi �27�, and axisymmetric stagnation-point
flow and heat transfer of a viscous fluid on a rotating cylinder with
time-dependent angular velocity and uniform transpiration by Ra-
himi and Saleh �28�, and similarity solution of nonaxisymmetric
heat transfer in stagnation-point flow on a cylinder with simulta-
neous axial and rotational movements by Rahimi and Saleh �29�.

In this study the nonaxisymmetric three-dimensional steady vis-
cous stagnation-point flow and heat transfer in the vicinity of a flat
plate are investigated. A similarity solution of the Navier–Stokes
equations and energy equation is derived in this problem. A reduc-
tion in these equations is obtained by use of these appropriate
similarity transformations �30�. The obtained coupled ordinary
differential equations are solved using numerical techniques. Ve-
locity profiles and surface stress-tensors and temperature profiles
along with pressure profile are presented for different values of
impinging fluid strain rate, different forms of jet arrangements,
and Prandtl number.

2 Problem Formulation
Flow is considered in Cartesian coordinates �x ,y ,z� with corre-

sponding velocity components �u ,v ,w�, Fig. 1. This figure repre-

sents a three-dimensional surface which is the boundary of a po-
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ential region, and with the region of rapid changes of velocity
omponents for all 0���1, in which � is the coefficient that
ndicates the difference between the velocity components in x-
nd y-directions. The velocity components in these directions are
he same if �=1, the axisymmetric case. We consider the laminar
teady incompressible flow and heat transfer of a viscous fluid in
he neighborhood of the stagnation-point on a flat plate located in
he plane z=0. An external fluid along the z-direction with strain
ate a impinges on this flat plate and produces a two-dimensional
ow with different components of velocity on the plate. This situ-
tion may be encountered if the flow pattern on the plate is
ounded in one of the directions, for example on the x-axis, be-
ause of physical limitations. The three-dimensional, steady
avier–Stokes and energy equations in Cartesian coordinates are
sed in which p, �, �, and � are the fluid pressure, density, kine-
atic viscosity, and thermal diffusivity.

Self-Similar Solution

3.1 Fluid Flow Solution. An inviscid solution of governing
quations valid far above the plane is given by

U = a�x, 0 � � � 1 �1�

V = ay �2�

W = − a�� + 1�z �3�

p = p0 − 1
2�a2��2x2 + y2 + �� + 1�2z2� �4�

0 is stagnation pressure.
A reduction in the Navier–Stokes equations is sought by the

ollowing coordinate separation in which the solution of the vis-
ous problem inside the boundary layer is obtained by composing
he inviscid and viscous parts of the velocity components as the
ollowing:

u = a�xf����, 0 � � � 1 �5�

v = ay�f���� + g����� �6�

�

x

y

z

ig. 1 Three-dimensional stream surface and velocity profiles
w = − a���� + 1�f��� + g���� �7�
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� = �a/�z �8�

in which the terms involving f��� and g��� in Eqs. �5�–�7� com-
prise the Cartesian similarity form for steady stagnation-point
flow, and prime denotes differentiation with respect to �. Note
that the boundary layer is defined here as the edge of the points
where its velocity is 99% of its corresponding potential velocity.
Transformations �5�–�7� satisfy continuity automatically, and their
insertion into momentum equations yields a coupled system of
ordinary differential equations in terms of f��� and g���, and an
expression for the pressure:

f� + ��� + 1�f + g�f� + ��1 − �f��2� = 0 �9�

g� + ��� + 1�f + g�g� − �g� + 2f��g� − �1 − ����f��2 − 1� = 0

�10�

p = p0 − 1
2�a2��2x2 + y2� − �a�� 1

2 ��� + 1�f + g�2 + �f� + �f� + g��

− �� + 1� − ���� + 1�� �11�

�=lim�→	 g���=constant. This constant is obtained after solving
Eqs. �9� and �10�. The boundary conditions are

� = 0:f = 0, f� = 0, g = 0, g� = 0 �12�

� → 	:f� = 1, g� = 0 �13�

Note that when �=1, the case of axisymmetric three-dimensional
results are obtained �5�. When �=0, the results are the same as a
two-dimensional problem.

3.2 Heat Transfer Solution. To transform the energy equa-
tion into a nondimensional form for the case of defined wall tem-
perature, we introduce


 =
T��� − T	

Tw − T	

�14�

Making use of Eqs. �5�–�8�, the energy equation may be written as


� + Pr�g + �1 + ��f�
� = 0 �15�

with the boundary conditions as

� = 0:
 = 1 �16�

� → 	:
 = 0 �17�

where Pr=� /� is the Prandtl number, and prime indicates differ-
entiation with respect to �.

Note that for Pr=1, the thickness of the fluid boundary layer
and heat boundary layer become the same, and therefore this con-
cept is proved by reaching Eq. �15� from Eq. �9� through substi-
tution of 
= f�.

Eqs. �9�, �10�, and �15� are solved numerically using a shooting
method trial and error and based on the Runge–Kutta algorithm,
and the results are presented for selected values of � and Pr in
Secs. 4 and 5. Since Eqs. �9� and �10� are coupled, we guess a
value for g��� function first and solve Eq. �9� for f���. Then Eq.
�10� is integrated and a new value of g��� is obtained, which is
used to solve Eq. �9� again. This procedure is repeated until the
differences between the results are less than 0.00001.

4 Shear-Stress
The shear-stress at the wall surface is calculated from:

� = �� �u

�z
ex +

�v
�z

ey	
z=0

�18�

where � is the fluid viscosity. Using the transformation equations
�5�–�8�, the shear-stress at the flat plate surface becomes

1/2 3/2 2 2 2 2 2 1/2
� = �� a �� x f� + y �f� + g�� � �19�
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he wall shear stress is presented for different values of � in the
resentation of Results.

Presentation of Results
In this section, the solution of the self-similar equations �9�,

10�, and �15� along with the surface shear-stresses for different
alues of velocity ratios and Prandtl numbers are presented.

The boundary layer thickness in the two directions on the flat
late versus the velocity ratio is presented in Fig. 2. This thickness
s larger in the x-direction compared with the y-direction, because
f the difference of the velocity components in these directions.
he difference of the boundary layer thickness in directions x and
decreases as � increases until the value of unity where these two

ayers meet each other. From Fig. 2, the following relations can be
btained for the boundary layer thickness versus the ratio of the
elocities in potential flow:


x = − 0.75� + 2.75
�20�


y = − 0.35� + 2.35

omparing these results with the ones in Howarth �7�, the differ-
nce between the boundary layer thickness in x-direction is 2%

λ
0 0.2 0.4 0.6 0.8 1 1.20

0.5

1

1.5

2

2.5

3

X Direction B.L. Thickness
Y Direction B.L. Thickness

δ

ig. 2 Boundary layer thickness versus variation of velocity
atio
Fig. 3 Typical u and v velocity components for �=0.1
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and in y-direction is 18%, which is because of the inablity of his
approximation solution method.

Figures 3 and 4 present the profiles of f�, g�, and f�+g� for
different values of velocity ratio �. The smaller the �, the bigger
g� and therefore the difference between the velocity components
is larger. For �→1, then g�→0 and the two velocity components
become the same.

Figures 5 and 6 depict the f and g profiles, and therefore
w-component of velocity versus velocity ratio. The bigger the �,
the larger the absolute value of the w-component of the velocity,
as expected. This component of velocity, which is the penetration
of momentum into the boundary layer in the z-direction, changes
abruptly as � increases. This is because the boundary layer in-
creases faster as � gets larger, and therefore there is need for more
penetration of the momentum and hence this component of veloc-
ity gets bigger.

The temperature profiles for different values of velocity ratio
and selected values of Prandtl numbers are presented in Figs. 7
and 8. The increase in velocity ratio and increase in Prandtl num-
ber both cause the decrease in the temperature profile. It is also
noted that for �→1 and Pr=1, the temperature boundary layer is
obtained the same as the velocity boundary layer.

Figure 9 presents the change in shear-stress on the flat plate
surface in terms of velocity ratio �. The following relations can be
deduced from this plot

Fig. 4 Typical u and v velocity components for �=0.5

η
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Fig. 5 Typical w-component of velocity for �=0.1
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�x = �1.55 + 0.3�

�21�
�y = 0.1�1.1 − 0.03� + 1.235

As �→0, the stress tensor in x-direction tends to zero but note
that �=0 does not represent a physical situation. In Howarth’s
work �7�, for the case of the velocity aspect ratio �in our study, ��
equal to zero, the shear-stress in x-direction is calculated to be an
amount equal to 0.570, though it must be close to zero physically,
as it has been shown by �x relation obtained above. This shows
again the inability of his solution method and the error approxi-
mation it brings about.

Pressure profiles inside the boundary layer are shown in Fig. 10
for selected values of �. From these profiles it can be seen that
with an increase in velocity ratio in x- and y-directions and tend-
ing toward the symmetric situation, the variation in pressure in-
side the boundary layer increases because � affects velocity di-
rectly, and the pressure changes with velocity in power form.

6 Conclusions
The most general solution of the Navier–Stokes equations and

energy equation for nonaxisymmetric three-dimensional
stagnation-point flow and heat transfer on a flat plate has been
presented in this paper based on potential flow theory. This task
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Fig. 9 Surface shear-stress components on the flat plate
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Fig. 6 Typical w-component of velocity for �=0.50
Fig. 10 Pressure profiles for selected values of �
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as been accomplished by choosing appropriate similarity trans-
ormations and reduction in these governing equations to a system
f coupled ordinary differential equations and subsequent numeri-
al integration. Velocity components, temperature profiles, pres-
ure change, and surface stress tensor have been presented for
elected values of velocity ratios and Prandtl numbers. This solu-
ion represents many physical situations, including the stagnation-
oint problem in which the flow pattern on the plate is bounded
rom both sides in one direction because of any physical limita-
ion.
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