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Abstract—The amount of captured video is growing with the increased numbers of video cameras, especially the increase of millions

of surveillance cameras that operate 24 hours/day. Since video browsing and retrieval is time consuming, most captured video is never

watched or examined. Video synopsis is an effective tool for browsing and indexing of such a video. It provides a short video

representation, while preserving the essential activities of the original video. The activity in the video is condensed into a shorter period

by simultaneously showing multiple activities, even when they originally occurred at different times. The synopsis video is also an index

of the original video by pointing to the original time of each activity. Video synopsis can be applied to create a synopsis of endless video

streams, as generated by webcams and by surveillance cameras. It can address queries like “Show in one minute the synopsis of this

camera broadcast during the past day.” This process includes two major phases: 1) an online conversion of the endless video stream

into a database of objects and activities (rather than frames) and 2) a response phase, generating the video synopsis as a response to

the user’s query.

Index Terms—Video summary, video indexing, video surveillance.

Ç

1 INTRODUCTION

EVERYONE is familiar with the time-consuming activity
involved in sorting through a collection of raw video.

This task is time consuming since it is necessary to view the
video in order to determine if anything of interest has been
recorded. While this tedious task may be feasible in
personal video collections, it is impossible when endless
video, as recorded by surveillance cameras and webcams, is
involved. It is reported, for example, that, in London alone,
there are millions of surveillance cameras covering the city
streets, each camera recording 24 hours/day. Most surveil-
lance video is therefore never watched or examined. Video
synopsis aims at taking a step toward sorting through video
for summary and indexing and is especially beneficial for
surveillance cameras and webcams.

The proposed video synopsis is a temporally compact
representation of video that enables video browsing and
retrieval. This approach reduces the spatiotemporal redun-
dancy in video. As an example, consider the schematic
video clip represented as a space-time volume in Fig. 1. The
video begins with a person walking on the ground and, after
a period of inactivity, a bird is flying in the sky. The inactive
frames are omitted in most video abstraction methods.
Video synopsis is substantially more compact, playing the
person and the bird simultaneously. This makes optimal use
of image regions by shifting events from their original time
intervals to other time intervals when no other activities take
place at these spatial locations. Such manipulations relax

the chronological consistency of events, an approach also
used in [27].

The basic temporal operations in the proposed video
synopsis are described in Fig. 2. Objects of interest are
defined and are viewed as tubes in the space-time volume.
A temporal shift is applied to each object, creating a shorter
video synopsis while avoiding collisions between objects
and enabling seamless stitching.

The video synopsis suggested in this paper is different
from previous video abstraction approaches (reviewed in
Section 1.1) in the following two properties: 1) The video
synopsis is itself a video, expressing the dynamics of the
scene, and 2) to reduce as much spatiotemporal redundancy
as possible, the relative timing between activities may
change. The latter property is the main contribution of our
method.

Video synopsis can make surveillance cameras and
webcams more useful by giving the viewer the ability to
view summaries of the endless video in addition to the live
video stream.Toenable this, a synopsis server cananalyze the
live video feed for interesting events and record an object-
based description of the video. This description lists, for each
webcam, the interesting objects, their duration, their location,
and their appearance. In a 3D space-time description of the
video, each object is represented by a “tube.”

A query that could be answered by the system may be
similar to “I would like to watch in one minute a synopsis of
the video from this camera captured during the last hour”
or “I would like to watch in five minutes a synopsis of the
last week,” etc. Responding to such a query, the most
interesting events (“tubes”) are collected from the desired
period and are assembled into a synopsis video of the
desired length. The synopsis video is an index into the
original video as each object includes a pointer to its
original time.

While webcam video is endless and the number of
objects is unbounded, the available data storage for each
webcam may be limited. To keep a finite object queue, we
propose a procedure for removing objects from this queue
when space is exhausted. Removing objects from the queue
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should be done according to similar importance criteria as
done when selecting objects for inclusion in the synopsis,
allowing the final optimization to examine fewer objects.

In Section 2, a region-based video synopsis is described
which produces a synopsis video using optimizations on
Markov Random Fields (MRFs) [14]. The energy function in
this case consists of low-level costs that can be described by
an MRF.

In Section 3, an object-based method for video synopsis
is presented. Moving objects are first detected and
segmented into space-time “tubes.” An energy function is
defined on the possible time shifts of these tubes, which
encapsulates the desired properties of the video synopsis.
This energy function will help to preserve most of the
original activity of the video, while avoiding collisions
between different shifted activities (tubes). Moving object
detection is also done in other object-based video summary
methods [13], [10], [31]. However, these methods use object
detection to identify significant key frames and do not
combine activities from different time intervals.

One of the effects of video synopsis is the display of
multiple dynamic appearances of a single object. This effect
is a generalization of the “stroboscopic” still pictures used
in traditional video synopsis of moving objects [11], [1]. A
synopsis can also be generated from a video captured by
panning cameras. Stroboscopic and panoramic effects of
video synopsis are described in Section 3.4.

The special challenges in creating video synopsis for
endless video, such as the ones generated by surveillance
cameras, are presented in Section 4. These challenges
include handling a varying background due to day-night
differences, incorporating an object queue to handle a large
amount of objects (Section 4.2), and stitching the synopsis
video onto a time-lapse background, as described in
Section 4.3. Examples for synopsis of an endless video are
given in Section 4.7. The application of video synopsis for
indexing is described in Section 1.

Since this work presents a video-to-video transformation,
the reader is encouraged to view the video examples at
http://www.vision.huji.ac.il/video-synopsis/.

1.1 Related Work on Video Abstraction

A video clip describes visual activities along time and
compressing the time axis allows viewing a summary of

such a clip in a shorter time. Fast-forward, where several
frames are skipped between selected frames, is the most
common tool used for video summarization. A special case
of fast-forward is called “time lapse,” generating a video of
very slow processes like growth of flowers, etc. Since fast-
forward may lose fast activities during the dropped frames,
methods for adaptive fast-forward have been developed
[17], [23]. Such methods attempt to skip frames in periods of
low interest or lower activity and keep frames in periods of
higher interest or higher activity. A similar approach
extracts from the video a collection of short video sequences
best representing its contents [30]. In [16], different sources
for user attention—sound, camera motion, object motion,
color, etc.—are discussed. In [33], a survey of fast video
browsing is given.

Many approaches to video summary eliminate the time
axis and show a synopsis of the video using some key
frames [13], [35]. These key frames can be selected
arbitrarily or selected according to some importance
criteria. But, key frame representation loses the dynamic
aspect of video. Comprehensive surveys on video abstrac-
tion appear in [15], [18].

In both approaches above, entire frames are used as the
fundamental building blocks. A different methodology uses
mosaic images together with some metadata for video
indexing [11], [24], [21]. In this case, the static synopsis
image includes objects from different times.

Object-based approaches to video synopsis were first
presented in [26], [12], [25], where moving objects are
represented in the space-time domain. These papers
introduced a new concept: creating a synopsis video that
combines activities from different times (Fig. 1). This
paper is a unification and expansion of the approach
described in [26], [25].

The underlying idea of the “Video Montage” paper [12]
is closely related to ours. In that work, a space-time
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Fig. 1. The input video shows a walking person and, after a period of

inactivity, displays a flying bird. A compact video synopsis can be

produced by playing the bird and the person simultaneously.

Fig. 2. Schematic description of basic temporal rearrangement of
objects. Objects of interest are represented by “activity tubes” in the
space-time representation of the video. The upper parts in this figure
represent the original video and the lower parts represent the video
synopsis. (a) Two objects recorded at different times are shifted to the
same time interval in the shorter video synopsis. (b) A single object
moving during a long time is broken into segments having a shorter
duration and those segments are shifted in time and played simulta-
neously, creating a dynamic stroboscopic effect. (c) Intersection of
objects does not disturb the synopsis when object tubes are broken into
segments.



approach for video summarization is presented: Both the
spatial and temporal information in a video sequence are
simultaneously analyzed and informative space-time por-
tions of the input videos are extracted. Following this
analysis, spatial as well as temporal shifts are applied to
objects to create a video summary. The basic difference in
our paper is the use of only temporal transformations,
keeping spatial locations intact. This basic difference results
in many differences of object extraction and video composi-
tion. Our approach of allowing only temporal transforma-
tions prevents the total loss of context that occurs when
both the spatial and temporal locations are changing. In
addition, maintaining the spatial locations of objects allows
the generation of seamless video, avoiding the visually
unpleasant seams that appear in the “video montage.”
These differences are visualized in Fig. 3.

Shifting video regions in time is also done in [29], but for
an opposite purpose. In that paper, an infinite video is
generated from a short video clip by separating objects
(video sprites) from the background and rendering them at
arbitrary video locations to create an endless video.

2 SYNOPSIS BY ENERGY MINIMIZATION

Let N frames of an input video sequence be represented in a
3D space-time volume Iðx; y; tÞ, where ðx; yÞ are the spatial
coordinates of the pixel and 1 � t � N is the frame number.

The generated synopsis video Sðx; y; tÞ should have the
following properties:

. The video synopsis S should be substantially shorter
than the original video I.

. Maximum “activity” (or interest) from the original
video should appear in the synopsis video.

. Thedynamics of theobjects shouldbepreserved in the
synopsis video. For example, regular fast-forward
may fail to preserve the dynamics of fast objects.

. Visible seams and fragmented objects should be
avoided.

The synopsis video S having the above properties is
generated with a mapping M, assigning to every coordinate
ðx; y; tÞ in the video synopsis S the coordinates of a source
pixel from the input video I. We focus in this paper on time
shift of pixels, keeping the spatial locations fixed. Thus, any
synopsis pixel Sðx; y; tÞ can come from an input pixel
Iðx; y;Mðx; y; tÞÞ. The time shift M is obtained by minimiz-
ing the following cost function:

EðMÞ ¼ EaðMÞ þ �EdðMÞ; ð1Þ

where EaðMÞ (activity) indicates the loss in activity and
EdðMÞ (discontinuity) indicates the discontinuity across
seams having a relative weight of �. The loss of activity will
be the number of active pixels in the input video I that do
not appear in the synopsis video S, or the weighted sum of
their activity measures in the continuous case.

The activity measure of each pixel can be represented by
the characteristic function indicating its difference from the
background:

�ðx; y; tÞ ¼ Iðx; y; tÞ �Bðx; y; tÞk k; ð2Þ

where Iðx; y; tÞ is the pixel in the input image and Bðx; y; tÞ
is the respective pixel in the background image. To obtain
the background image, we can use a temporal median over
the entire video. More sophisticated background construc-
tion methods can also be used, such as described in [8].

Accordingly, the activity loss is given by

EaðMÞ ¼
X

ðx;y;tÞ2I

�ðx; y; tÞ �
X

ðx;y;tÞ2S

�ðx; y;Mðx; y; tÞÞ: ð3Þ

The discontinuity cost Ed is defined as the sum of color
differences across seams between spatiotemporal neighbors
in the synopsis video and the corresponding neighbors in
the input video (a similar formulation can be found in [1]):

EdðMÞ ¼
X

ðx;y;tÞ2S

X

i

kSððx; y; tÞ þ eiÞ

� Iððx; y;Mðx; y; tÞÞ þ eiÞk
2;

ð4Þ

where ei are the six unit vectors representing the six
spatiotemporal neighbors: four spatial neighbors and two
temporal neighbors. A demonstration of the space-time
operations that create a short video synopsis by minimizing
the cost function (1) is shown in Fig. 4a.

2.1 Minimization of the Energy Function

Notice that the cost function EðMÞ (1) corresponds to a
3D MRF, where each node corresponds to a pixel in the
3D volume of the output movie and can be assigned any
time value corresponding to an input frame. The weights on
the nodes are determined by the activity cost, while the
edges between nodes are determined according to the
discontinuity cost. The cost function can therefore be
minimized by algorithms like iterative graph cuts [14].

The optimization of (1), allowing each pixel in the video
synopsis to come from any time, is a difficult problem. For
example, an input video of 3 minutes which is summarized
into a video synopsis of 5 seconds results in a graph of
225 nodes (5 seconds � 30 frames/seconds � image size of
640 � 480), each having 5,400 possible labels (3 minutes �
60 seconds � 30 frames/seconds).

It was shown in [2] that, for cases of dynamic textures or
objects thatmove in ahorizontal path, 3DMRFs can be solved
efficiently by reducing the problem into a 1D problem. In this
work, we address objects that move in a more general way
and, therefore, we use different constraints. Consecutive
pixels in the synopsis video S are restricted to coming from
consecutive pixels in the input video I. Under this restriction,
the 3D graph is reduced to a 2D graph, where each node
corresponds to a spatial location in the synopsis movie. The
label of eachnodeMðx; yÞdetermines the framenumber t in I
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Fig. 3. Comparison between “video montage” [12] and our approach of
“video synopsis.” (a) A frame from a “video montage.” Two space-time
regions were shifted in both time and space and then stitched together.
Visual seams between the different regions are unavoidable. (b) A frame
from a “video synopsis.” Only temporal shifts were applied, enabling
seamless stitching.



shown in the first frame of S, as illustrated in Fig. 4b. A seam
exists between two neighboring locations ðx1; y1Þ and ðx2; y2Þ
inS ifMðx1; y1Þ 6¼ Mðx2; y2Þ and thediscontinuity costEdðMÞ
along the seam is a sum of the color differences at this spatial
location over all frames in S:

EdðMÞ ¼
X

x;y

X

i

X

K

t¼1

kSððx; y; tÞ þ eiÞ

� Iððx; y;Mðx; yÞ þ tÞ þ eiÞk
2;

ð5Þ

where ei are now four unit vectors describing the four
spatial neighbors.

The number of labels for each node is N �K, where N
and K are the number of frames in the input and output
videos, respectively. The activity loss for each pixel is

EaðMÞ ¼
X

x;y

X

N

t¼1

�ðx; y; tÞ �
X

K

t¼1

�ðx; y;Mðx; yÞ þ tÞ

 !

:

Fig. 5 shows an original frame and a frame from a
synopsis video that was obtained using this approximation.

To overcome the computational limitations of the region-
based approach and to allow the use of higher level cost
functions, an object-based approach for video synopsis is
proposed. This object-based approach is described in the
following section and will also be used for handling endless
videos from webcams and surveillance cameras.

3 OBJECT-BASED SYNOPSIS

The low-level approach for video synopsis as described
earlier is limited to satisfying local properties such as
avoiding visible seams. Higher level object-based properties
can be incorporated when objects can be detected and
tracked. For example, avoiding the stroboscopic effect

requires the detection and tracking of each object in the
volume. This section describes an implementation of an
object-based approach for video synopsis. Several object-
based video summary methods exist in the literature (for
example, [13], [10], [31]) and they all use the detected
objects for the selection of significant frames. Unlike these
methods, we shift objects in time and create new synopsis
frames that never appeared in the input sequence in order
to make better use of space and time.

3.1 Object Detection and Segmentation

In order to generate a useful synopsis, interesting objects and
activities (tubes) should be identified. In many cases, the
indication of interest is simple:Amoving object is interesting.
While we use object motion as an indication of interest in
many examples, exceptions must be noted. Some motions
may have little importance, like leaves on a tree or clouds in
the sky. People or other large animals in the scene may be
important even when they are not moving. While we do not
address these exceptions, it is possible to incorporate object
recognition (e.g., people detection [19], [22]), dynamic
textures [9], or detection of unusual activities [5], [34]. We
will give a simple example of video synopsis giving
preferences to different classes of objects.

As objects are represented by tubes in the space-time
volume, we use the words “objects” and “tubes”
interchangeably.

To enable segmentation of moving foreground objects,
we start with background construction. In short video clips,
the appearance of the background does not change and it
can be built by using a temporal median over the entire clip.
In the case of surveillance cameras, the appearance of the
background changes in time due to changes in lighting,
changes of background objects, etc. In this case, the
background for each time can be computed using a
temporal median over a few minutes before and after each
frame. We normally use a median over 4 minutes. Other
methods for background construction are possible, even
when using a shorter temporal window [8], but we used the
median due to its efficiency. Fig. 6 shows several back-
ground images from a surveillance video as they vary
during the day.

We use a simplification of [32] to compute the space-
time tubes representing dynamic objects. Background
subtraction is combined together with min-cut to get
smooth segmentation of foreground objects. As in [32],
image gradients that coincide with background gradients
are attenuated as they are less likely to be related to
motion boundaries. The resulting “tubes” are connected
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Fig. 4. In this space-time representation of video, moving objects create
the “activity tubes.” The upper part represents the original video I, while
the lower part represents the video synopsis S. (a) The shorter video
synopsis S is generated from the input video I by including most active
pixels together with their spatiotemporal neighborhood. To assure
smoothness, when pixel A in S corresponds to pixel B in I, their “cross
border” neighbors in space as well as in time should be similar. (b) An
approximate solution can be obtained by restricting consecutive
synopsis pixels to come from consecutive input pixels.

Fig. 5. The activity in a surveillance video can be condensed into a much

shorter video synopsis. (a) A typical frame from the original video taken

in a shopping mall. (b) A frame from the video synopsis.



components in the 3D space-time volume and their

generation is briefly described below.
Let B be the current background image and let I be the

current image to be processed. Let V be the set of all pixels

in I and let N be the set of all adjacent pixel pairs in I. A

labeling function f labels each pixel r in the image as

foreground ðfr ¼ 1Þ or background ðfr ¼ 0Þ. A desirable

labeling f usually minimizes the Gibbs energy [6]:

EðfÞ ¼
X

r2V

E1ðfrÞ þ �
X

ðr;sÞ2N

E2ðfr; fsÞ; ð6Þ

where E1ðfrÞ is the unary-color term, E2ðfr; fsÞ is the

pairwise-contrast term between adjacent pixels r and s, and

� is a user-defined weight.
As a pairwise-contrast term, we used the formula

suggested by [32]:

E2ðfr; fsÞ ¼ �ðfr � fsÞ � expð��drsÞ; ð7Þ

where � ¼ 2 < kðIðrÞ � IðsÞk2 >�1 is a weighting factor

(< � > is the expectation over the image samples) and drs
are the image gradients, attenuated by the background

gradients, and given by

drs ¼ kðIðrÞ � IðsÞk2 �
1

1þ kBðrÞ�BðsÞk
K

� �2

expð�z2rs
�z

Þ
: ð8Þ

In this equation, zrs measures the dissimilarity between the

foreground and the background,

zrs ¼ max kIðrÞ �BðrÞk; kIðsÞ �BðsÞk; ð9Þ

and K and �z are parameters, set to 5 and 10, respectively,

as suggested by [32].
As for the unary-color term, let dr ¼ kIðrÞ �BðrÞk be the

color differences between the image I and the current

background B. The foreground (1) and background (0) costs

for a pixel r are set to

E1ð1Þ ¼
0 dr > k1

k1 � dr otherwise;

�

E1ð0Þ ¼

1 dr > k2;

dr � k1; k2 > dr > k1

0 otherwise;

8

>

<

>

:

ð10Þ

where k1 and k2 are user-defined thresholds. Empirically,
k1 ¼ 30=255 and k2 ¼ 60=255 worked well in our examples.

We do not use a lower threshold with infinite weights
since the later stages of our algorithm can robustly handle
pixels that are wrongly identified as foreground, but not the
opposite. For the same reason, we construct a mask of all
foreground pixels in the space-time volume and apply a
3D morphological dilation on this mask. As a result, each
object is surrounded by several pixels from the background.
This fact will be used later by the stitching algorithm.

Finally, the 3D mask is grouped into connected compo-
nents, denoted as “activity tubes.” Examples of extracted
tubes are shown in Figs. 7 and 8.

Each tube b is represented by its characteristic function

�bðx; y; tÞ ¼
kIðx; y; tÞ �Bðx; y; tÞk t 2 tb
0 otherwise;

�

ð11Þ

where Bðx; y; tÞ is a pixel in the background image, Iðx; y; tÞ
is the respective pixel in the input image, and tb is the time
interval in which this object exists.

3.2 Energy between Tubes

In this section, we define the energy of interaction between
tubes. This energy will later be used by the optimization
stage, creating a synopsis having maximum activity while
avoiding conflicts and overlap between objects. Let B be the
set of all activity tubes. Each tube b is defined over a finite
time segment in the original video stream tb ¼ tsb; t

e
b

� �

.
The synopsis video is generated based on a temporal

mapping M, shifting objects b in time from its original time
in the input video into the time segment t̂b ¼ t̂sb; t̂

e
b

� �

in the
video synopsis. MðbÞ ¼ b̂ indicates the time shift of tube b
into the synopsis and, when b is not mapped to the output
synopsis, MðbÞ ¼ ;. We define an optimal synopsis video as
the one that minimizes the following energy function:

EðMÞ ¼
X

b2B

Eaðb̂Þ þ
X

b;b02B

�Etðb̂; b̂0Þ þ �Ecðb̂; b̂0Þ
� �

; ð12Þ

where Ea is the activity cost, Et is the temporal consistency
cost, andEc is the collision cost, all defined below. Weights �
and � are set by the user according to their relative
importance for a particular query. Reducing the weights of
the collision cost, for example, will result in a denser video
where objects may overlap. Increasing this weight will
result in a sparser video where objects do not overlap and
less activity is presented. An example for the different
synopsis obtained by varying � is given in Fig. 16.

Note that the object-based energy function in (12) is
different from the low-level energy function defined in (1).
After extracting the activity tubes, the pixel-based cost can
be replaced with object-based cost. Specifically, the Stitch-
ing cost in (1) is replaced by the Collision cost in (12)
(described next). This cost penalizes for stitching two
different objects together, even if their appearance is similar
(e.g., two people). In addition, a “Temporal Consistency”
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Fig. 6. Background images from a surveillance camera at Stuttgart

airport. The bottom images are at night, while the top images are in
daylight. Parked cars and parked airplanes become part of the

background. This figure is best viewed in color.



cost is defined, penalizing for the violation of the temporal
relations between objects (or tubes). Such features of the
synopsis are harder to express in terms of pixel-based costs.

3.2.1 Activity Cost

The activity cost favors synopsis movies with maximum

activity. It penalizes for objects that are not mapped to a
valid time in the synopsis. When a tube is excluded from

the synopsis, i.e., MðbÞ ¼ ;, then

Eaðb̂Þ ¼
X

x;y;t

�b̂ðx; y; tÞ; ð13Þ

where �bðx; y; tÞ is the characteristic function as defined in
(11). For each tube b whose mapping b̂ ¼ MðbÞ is partially

included in the final synopsis, we define the activity cost
similar to (13), but only pixels that were not entered into the

synopsis are added to the activity cost.

3.2.2 Collision Cost

For every two “shifted” tubes and every relative time shift
between them, we define the collision cost as the volume of
their space-time overlapweighted by their activitymeasures:

Ecðb̂; b̂0Þ ¼
X

x;y;t2t̂b\t̂b0

�b̂ðx; y; tÞ�b̂0ðx; y; tÞ; ð14Þ

where t̂b \ t̂b0 is the time intersection of b and b0 in the
synopsis video. This expression will give a low penalty to
pixel whose color is similar to the background but was
added to an activity tube in the morphological dilation
process. Changing the weight of the collision cost Ec

changes the density of objects in the synopsis video, as
shown in Fig. 16.

3.2.3 Temporal Consistency Cost

The temporal consistency cost adds a bias toward preser-
ving the chronological order of events. The preservation of
chronological order is more important for tubes that have a
strong interaction. For example, it would be preferred to

keep the relative time of two people talking to each other or
to keep the chronological order of two events with a
reasoning relation. Yet, it is very difficult to detect such
interactions. Instead, the amount of interaction dðb; b0Þ
between each pair of tubes is estimated from their relative
spatiotemporal distance, as described below:

if t̂b \ t̂b0 6¼ ; then

dðb; b0Þ ¼ exp �mint2t̂b\t̂b0 fdðb; b
0; tÞg=�space

� �

;
ð15Þ

where dðb; b0; tÞ is the euclidean distance between the pair of
closest active pixels from b and b0 in frame t and �space

determines the extent of the space interaction between tubes.
If tubes b and b0 donot share a common timeat the synopsis

video and assuming that b is mapped to earlier time than b0,
their interaction diminishes exponentially with time:

dðb; b0Þ ¼ exp � t̂sb0 � t̂eb
� �

=�time

� �

; ð16Þ

where �time is a parameter defining the extent of time in
which events still have temporal interaction.

The temporal consistency cost creates a preference for
maintaining the temporal relations between objects by
penalizing cases where these relations are violated:

Etðb̂; b̂0Þ ¼ dðb; b0Þ �
0 tsb0 � tsb ¼ t̂sb0 � t̂sb
C otherwise;

�

ð17Þ

where C is a constant penalty for events that do not
preserve temporal consistency.

3.3 Energy Minimization

Since the global energy function in (12) (and later in (20)) is
written as a sum of energy terms defined on single tubes or
pairs of tubes, it can be minimized by various MRF-based
techniques such as Belief Propagation or Graph Cuts [14].
We used a simple greedy optimization, which gave good
results. The optimization was applied in the space of all
possible temporal mappings M, including the special case
when a tube is not used at all in the synopsis video.

Each state describes the subsets of tubes that are included
in the synopsis and their mapping into the synopsis.
Neighboring states are defined as states in which a single
activity tube is removed or changes its mapping into the
synopsis. As an initial state, we used the state in which all
tubes are shifted to the beginningof the synopsismovie.Also,
in order to accelerate computation,we restricted the temporal
shifts of tubes to be in jumps of 10 frames.

3.4 Stroboscopic Panoramic Synopsis

When long tubes exist in the input video, no temporal
rearrangement of the tubes can give a very short video as
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Fig. 8. Two extracted tubes from the “Billiard” scene.

Fig. 7. Four extracted tubes shown “flattened” over the corresponding

backgrounds from Fig. 6. The left tubes correspond to ground vehicles,
while the right tubes correspond to airplanes on the runway at the back.

This figure is best viewed in color.



the duration of the synopsis video is bounded from below
by the duration of the longest tube that is shown in the
synopsis. There are a few options to overcome this
limitation: One option is to display only partial activities
(i.e., to allow displaying subsections of a tube). Another
option is to cut the long activity tube into shorter
subsections and display several subsections simulta-
neously. This results in a dynamic stroboscopic effect—
simultaneously displaying several appearances of the same
object. This effect is described schematically in Fig. 2b and
an example appears in Fig. 9.

An example where the stroboscopic effect is very useful
is in the case of a panning video camera scanning a scene. In
this case, spatial redundancy can be eliminated by using a
panoramic mosaic. Yet, existing methods construct a single
panoramic image in which the scene dynamics is lost.
Dynamics has been represented by a static stroboscopic
image [11], [1], [4], where moving objects are displayed at
several locations along their paths.

A panoramic synopsis video can be created from a
panning camera by simultaneously displaying actions that
took place at different times in different regions of the
scene. The duration of a panoramic video is limited by the
duration of time each object is visible by the camera. In the
special case of a camera tracking an object, the time
duration of the tracked object equals the time duration of
the entire video. Temporal compression can be achieved
only by allowing the stroboscopic effect, as shown
schematically in Fig. 10. An example of a camera tracking
a running leopard is shown in Fig. 11.

Constructing the panoramic video synopsis is done in a
similar manner to the regular video synopsis, with a
preliminary stage of aligning all the frames to a reference
frame.

3.5 Surveillance Applications

An interesting application for video synopsis may be access
to stored surveillance videos. When it becomes necessary to
examine certain events in the video, it can be done much
faster with video synopsis. Two examples are given from
real surveillance cameras. Fig. 12 uses a video captured by a
camera watching a city street, with pedestrians occasionally

crossing the field of view. Many of them can be collected
into a very condensed synopsis.

4 SYNOPSIS OF ENDLESS VIDEO

As mentioned earlier, millions of webcams and surveillance
cameras are covering the world, capturing their field of view
24 hours/day. One of the problems in utilizing these cameras
is that they provide unedited raw data. A 2 hour feature film,
for example, is usually created from hundreds or even
thousands of hours of raw video footage. Without editing,
most of thewebcamdata is irrelevant.Also, viewing a camera
on another continentmay be convenient only during hours of
nonactivity because of time zone differences.

In this section, we attempt to make the webcam resource
more useful by giving the viewer the ability to view
summaries of the endless video, in addition to the live video
streamprovided by the camera. A user’s query can be similar
to “I would like to watch in five minutes a synopsis of last
week.” To enable this, we describe a system that is based on
the object-based synopsis, but which consists of additional
components that allows dealing with endless videos.

In this system, a server can view the live video feed,
analyze the video for interesting events, and record an
object-based description of the video. This description lists,
for each camera, the interesting objects, their duration, their
location, and their appearance. In a 3D space-time descrip-
tion of the video, each object is a “tube.”

A two-phase process is proposed for synopsis of endless
video, as shown in Fig. 13:

1. Online Phase during video capture. This phase is
done in real time:

. Creating a background video by temporal
median.

. Object (tube) detection and segmentation (Sec-
tion 3.1).

PRITCH ET AL.: NONCHRONOLOGICAL VIDEO SYNOPSIS AND INDEXING 1977

Fig. 9. Video synopsis with the dynamic stroboscopic effect as illustrated

schematically in Fig. 2b. The video can be seen at http://www.vision.

huji.ac.il/video-synopsis.

Fig. 10. A schematic diagram of panoramic video synopsis. When the
frames of a panning video are aligned, the obtained space-time volume
is titled according to the motion of the camera. The long tube in the
center of the space-time volume represents a tracked object which is
tracked by the panning camera. The background of the panoramic video
synopsis, whose space-time volume is at the bottom, is a mosaic of the
background. The long input tube is broken into shorter segments that
are shifted into the space-time volume of the video synopsis. Each
output frame will simultaneously show several occurrences of the
tracked object.



. Inserting detected objects into the object queue
(Section 4.2).

. Removing objects from the object queue when
reaching a space limit (Section 4.2).

2. Response Phase constructing a synopsis according
to a user query. This phase may take a few minutes,
depending on the amount of activity in the time
period of interest. This phase includes the following:

. Constructing a time-lapse video of the changing
background (Section 4.4). Background changes
are usually caused by day-night differences, but
can also be a result of an object that starts (stops)
moving.

. Selecting tubes that will be included in the
synopsis video and computing the optimal
temporal arrangement of these tubes (Sec-
tions 3.2 and 3.3).

. Stitching the tubes and the background into a
coherent video (Section 4.6). This step should
take into account that activities from different
times can appear simultaneously and on a
background from yet another time.

4.1 Removing Stationary Frames

Most surveillance cameras and webcams have long periods
with no activity. The frames corresponding to such time
periods can be filtered out during the online phase. The
original time of the remaining frames is recorded together
with each frame. In our implementation, we recorded
frames according to two criteria: 1) a global change in the
scene, measured by the sum of squared difference (SSD)
between the incoming frame and the last kept frame. This
criterion tracked the lighting changes expressed by a
gradual illumination change in the entire frame. 2) The
existence of a moving object measured by the maximal SSD
in small windows.

By assuming that moving objects with a very small
duration (e.g., less than a second) are not important, video
activity can be measured only once in every 10 frames.

4.2 The Object Queue

One of the main challenges in handling endless videos is
developing a scheme to “forget” older objects when new
objects arrive. The naive scheme of throwing out the oldest
activity is not good as a user may wish to get a summary of
a long time duration which includes objects from the entire
period. Instead, we propose an alternative scheme that aims
at estimating the importance of each object to possible
future queries and throwing objects out accordingly.
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Fig. 11. In this example, a video camera tracks a running leopard. The background of the synopsis video is a panoramic mosaic of the background

and the foreground includes several dynamic copies of the running leopard moving simultaneously.

Fig. 12. Video synopsis from street surveillance. (a) A typical frame from

the original video (22 seconds). (b) A frame from a video synopsis movie

(2 seconds) showing condensed activity. (c) A frame from a shorter

video synopsis (0.7 second) showing even more condensed activity.

Fig. 13. The two-phase process for creating a synopsis of an endless
video. The online phase is performed in real time during video capture

and recording. The response phase is performed following a user query

and generates the video synopsis.



All detected objects, represented as tubes in the space-
time volume, are stored in a queue awaiting user queries.
When an object is inserted into the queue, its activity cost
(13) is computed to accelerate the future construction of
synopsis videos. As the video generated by the webcam is
endless, it is likely that, at some point, the allocated space
will be exhausted and objects will have to be removed from
the queue.

When removing objects (tubes) from the queue, we
prefer to remove objects that are least likely to be included
in a final synopsis. In our examples, we used three simple
criteria that can be computed efficiently: “importance”
(activity), “collision potential,” and “age.” But other options
are possible, for example, when a specific appearance or
activity is of interest.

A possible measure of the importance of an object is the
sum of its characteristic function, as defined in (13).

Since the collision cost cannot be computed before
receiving the user query, an estimate for the collision cost
of tubes is made using the spatial activity distribution in the
scene. This spatial activity is represented by an image which
is the sum of active pixels of all objects in each spatial
location, normalized to sum to one. A similar spatial
activity distribution is computed for each individual object
(this time unnormalized). The correlation between these
two activity distributions is used as a “potential collision”
cost for this object. An image showing the activity
distribution in a scene is shown in Fig. 14.

There are several possible approaches to addressing the
removal of older objects from the queue, taking into
consideration the desired distribution of objects in the
synopsis. For example, the user can be interested in
focusing on newer events but leaving some representation
of old events in case they were significant. Alternatively, the
synopsis should have a uniform representation of every
time interval (e.g., in a synopsis of 24 hours, a user may be
interested in seeing an object from each and every hour if
applicable).

In the first approach, we can assume that the density of
objects in the queue should decrease exponentially with the
age of the objects. For example, if we divide the age axis into
discrete time intervals, the number of objects at t’s interval,
Nt, should be proportional to

Nt ¼ K
1

�
e�

t
�; ð18Þ

where � is the decay coefficient and K is determined to
control the total number of objects in the queue. When an
object should be removed from the queue, the number of
objects in each time interval t is compared to Nt. Only
objects from time intervals t whose population exceeds Nt

will be evaluated using the activity cost and the potential
collision. The object with minimal activity and maximal
collision will be removed.

An example of the temporal distribution of the object
arriving into the queue appears in Fig. 15. Exponential
decay of objects in the queue will result in an age
distribution which is proportional to the arrival distribution
multiplied by a decaying exponential.

4.3 Synopsis Generation

The object queue can be accessed via queries such as “I
would like to have a one-minute synopsis of this camera
broadcast during the past day.” Given the desired period
from the input video and the desired length of the synopsis,
the synopsis video is generated using four steps:

1. Generating a background video.
2. Once the background video is defined, a consistency

cost is computed for each object and for each
possible time in the synopsis.

3. An energy minimization step determines which
tubes (space-time objects) appear in the synopsis
and at what time.

4. The selected tubes are combined with the back-
ground time-lapse to get the final synopsis.

These steps are described in this section. The reduction of
the original video to an object-based representation enables
a fast response to queries.

After a user query about a second (shorter) time period, a
queue is generated having only objects from the desired
time period. To enable fast optimization, the collision cost in
(14) between every two objects in the smaller queue is
computed in advance.

4.4 Time-Lapse Background

The background of the synopsis video is a time-lapse
background video, generated before adding activity tubes
into the synopsis. The background video has two tasks: 1) It
should represent the background changes over time (e.g.,
day-night transitions, etc.) and 2) it should represent the
background of the activity tubes. These two goals are
conflicting as representing the background of activity tubes
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Fig. 14. The spatial distribution of activity in the airport scene (intensity is
log of activity value). The activity distribution of a single tube is on the left
and the average over all tubes is on the right. As expected, the highest
activity is on the car lanes and on the runway. The potential for the
collision of tubes is higher in regions having a higher activity.

Fig. 15. Temporal distribution of activities, as measured by the number of

movingobjects,at theairport sceneover29hours.Thereare1,920objects

during this period.



will be done best when the background video covers only
active periods, ignoring, for example, most night hours.

We address this trade-off by constructing two temporal
histograms: 1) a temporal activity histogram Ha of the video
stream (an example of such histogram is shown in Fig. 15)
and 2) a uniform temporal histogram Ht. We compute a
third histogram by interpolating the two histograms
� �Ha þ ð1� �Þ �Ht, where � is a weight given by the user.
With � ¼ 0, the background time-lapse video will be
uniform in time regardless of the activities, while, with
� ¼ 1, the background time-lapse video will include the
background only from active periods. We usually use
0:25 < � < 0:5.

Background frames are selected for the time-lapse
background video according to the interpolated temporal
histogram. This selection is done such that the area of the
histogram between every two selected background frames
is equal. More frames are selected from active time
durations while not totally neglecting inactive periods.

4.5 Consistency with Background

Since we do not assume accurate segmentation of moving
objects, we prefer to stitch tubes to background images
having a similar appearance. This tube to background
consistency can be taken into account by adding a new
energy term EsðbÞ. This term will measure the cost of
stitching an object to the time-lapse background. Formally,
let Ib̂ðx; y; tÞ be the color values of the mapped tube b̂ and let
Boutðx; y; tÞ be the color values of the time-lapse back-
ground. We set

Es b̂
� �

¼
X

x;y2�ðb̂Þ;t2t̂b\tout

Ib̂ðx; y; tÞ �Boutðx; y; tÞ
	

	

	

	; ð19Þ

where �ðb̂Þ is the set of pixels in the border of the mapped
activity tube b̂ and tout is the duration of the output
synopsis. This cost assumes that each tube is surrounded by
pixels from its original background (resulting from our
morphological dilation of the activity masks).

The background consistency term in (19) is added to the
energy function described in (12), giving

EðMÞ ¼
X

b2B

Ea b̂
� �

þ �Es b̂
� �� �

þ
X

b;b02B

�Et b̂; b̂0
� �

þ �Ec b̂; b̂0
� �� �

;
ð20Þ

where �, �, � are user selected weights that are query
dependent. The effect of changing the value of � can be seen
in Fig. 16.

4.6 Stitching the Synopsis Video

The stitching of tubes from different time periods poses a
challenge to existing methods (such as [1], [20]). Stitching all
of the tubes at once may result in a blending of colors from
different objects, which is an undesired effect. It is better to
preserve the sharp transitions between different objects
while eliminating the seams only between the objects and
the background. An accurate segmentation of the objects
may solve this problem, but an accurate segmentation is
unrealistic. Instead, the boundaries of each tube consist of
background pixels due to the morphological dilation we
apply when generating the activity tubes.

The �-Poisson Image Blending proposed in [28] may be a
good solution for the stitching between objects, but not as
good as Poisson Editing [20] for stitching the objects to the
background. The suggested approach is to use the observa-
tion that all objects have a similar background (up to
illumination changes) and stitch each tube independently to
the time-lapse background. Any blending method is
possible and, in our experiments, we used a modification
of Poisson editing: We add a regularization that preserves
the original appearance of the objects even if they were
stitched to background images with different lighting
conditions (e.g., people seen during the day stitched on
top of an evening background).

Let � be an image domain with boundary @�. Let f; b be
the foreground object (tube) and background (time-lapse)
pixel colors and let s be the unknown values of the stitched
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Fig. 16. (a) Three frames from a video captured over 24 hours at

Stuttgart airport. (b) A frame from a 20 second synopsis of this period.

(c) Reducing the “collision penalty” in the cost function substantially
increases the density of objects, allowing more overlap between objects.



object over the interior of �. The result of the Poisson
blending with regularization is given by

mins

X

�

ð�s��fÞ2 þ �ðs� fÞ:2
h i

such that s@� ¼ b@�;

where � is the weight of the regularization term. In [3], it
was shown that gradient domain stitching can be very
efficient.

After stitching each tube to the background, overlapping
tubes are blended together by letting each pixel be a
weighted average of the corresponding pixels from the
stitched activity tubes b̂, with weights proportional to the
activity measures �b̂ðx; y; tÞ. Alternatively, transparency can
be avoided by taking the pixel with maximal activity
measure instead of the weighted average.

It may be possible to use depth ordering when “object
tubes” are combined, where closer tubes will occlude
further tubes. A simple “ground plane” heuristic can be
used which assumes that an object whose vertical image
position is lower is also closer. Other depth ordering
methods include [7]. The frequency of object occlusion
cases depends on the relative weights of the collision cost
(that prevent such cases) with respect to other costs.

4.7 Examples

We tested video synopsis on a few video streams captured
off the Internet. As the frame rate is not constant over the
Internet and frames drop periodically, whenever we use a
temporal neighborhood, we do not count the number of
frames, but we use the absolute times of each frame.

Figs. 16 and 18 are from cameras stationed outdoors,
while Fig. 17 is from a camera stationed indoors with
constant lighting. In most examples, the main “interest” of
each tube has been the number of moving pixels in it.

Fig. 16 shows the effect of the choice of collision cost of
the density of objects in the video synopsis. Fig. 18 shows

shape-based preferences. In Fig. 18b, the regular cost

function was used and the large objects (moving cars) were

preferred. In Fig. 18c, small, dark objects were preferred,

showing a completely different pedestrian activity.

5 APPLICATIONS FOR VIDEO SYNOPSIS

The proposed video synopsis is a general framework that

can be adopted for multiple applications. Some variants of

this framework are described in this section.

5.1 Video Indexing

Video synopsis can be used for video indexing, providing

the user with efficient and intuitive links for accessing

actions in videos. This is possible since every object includes

the time of its appearance in the original video.
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Fig. 17. Top: Three frames from a video captured over 9 hours in a

billiards club. Bottom: A frame from a short synopsis of this period.

Notice the multiple players per table in the synopsis.

Fig. 18. (a) Three frames from a video captured overnight in
St. Petersburg. The street had little activity. (b) A frame from a short
synopsis of this video. Cars that passed during different hours are
shown simultaneously. (c) Selecting only small, dark objects creates a
new synopsis video—now with people rather than with cars.



For indexing applications, the original video frames of
active periods should be stored together with the object-
based queue. Once a video synopsis is generated and an
object from the synopsis is selected, the time associated with
this object takes the viewer directly to the desired location
in the original video.

An object can be selected by clicking on the area where it
appears in the video synopsis with a mouse. For ease of
object selection, playback options of pause and slow
forward/backward can bring the synopsis video to the
desired temporal position. The selected synopsis frame can
be divided into regions, each region relating to a single
active object in this frame. Selecting a region in the
displayed synopsis frame will index into the desired time
of the original video where the selected object appears.

5.2 Customized Energy Functions

In most cases, not all objects are of interest. A traffic
surveillance camera may be interested only in cars, while
other applications may prefer pedestrians. Filtering of
objects can be done in several places. Objects can be filtered
out before entering into the queue and, in this case, it will
never be possible to retrieve them. Alternatively, objects can
be filtered only at the query stage. In this case, the queue
will include all objects and different queries can extract
different objects from the queue. It is also possible to create
a customized energy function for each application.

A simple example of customization is shown in Fig. 18b,
where only small, dark objects were selected from the
queue. While the original synopsis includes mostly cars, the
new synopsis includes mostly pedestrians. Another exam-
ple appears in Fig. 19, where the energy function included
the element of a “phase transition” (Section 5.5), when a
moving object stops and becomes part of the background.

5.3 Synopsis Specification

There are a few different possibilities for letting the users
specify the features of a requested video synopsis:

1. Users can specify the desired duration of the video
synopsis and the penalty for object collisions. In this
case, the optimization stage will maximize the
number of objects that will be included in the
synopsis under the specified constraints.

2. Users can specify the desired duration of the video
synopsis and the percentage of objects that must be
included in the synopsis. The optimization stage will
generate a video synopsis having minimum colli-
sions under the specified constraints.

3. Users can specify the percentage of objects that must
be included in the synopsis and the penalty for
object collision. The optimization stage will mini-
mize the duration of the synopsis under the
specified constraints.

We have implemented option 1, where the duration of
the video synopsis was determined by the user as a hard
constraint. Surveillance video may prefer option 2 or 3,
requiring that most objects will be included in the synopsis.

5.4 Object-Based Fast-Forward

Fast-forward is the most common tool used for video
summarization and is always applied to entire frames. For
example, “time-lapse” videos display, in a short time, slow

processes like the growth of flowers, etc. Some current

methods suggest an adaptive fast-forward [17], [23], but are

still limited to the framework of entire frames. With video

synopsis, each object can have its own “fast-forward” based

on its importance or based on its original velocity. Slow

objects may be accelerated, but not fast objects.
Object fast-forward can be done in a simple manner, e.g.,

bringing all moving objects to a uniform velocity. Alter-

natively, the speedup of slow objects can be determined

during the optimization stage, giving some penalty to a

speedup of objects. Adding object-based fast-forward to the

optimization stage can further improve the temporal

compression rate of the synopsis video at the expense of

increasing the complexity of the optimization.
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Fig. 19. (a) Three frames taken over 5 hours from a webcam watching a
quiet parking lot. (b) A frame from a short synopsis of this period. A high
score was given to phase transitions (e.g., moving objects that stop and
become background). The video synopsis includes mostly cars involved
in parking. (c) Objects without phase transitions are preferred. Only
passing cars and pedestrians are shown in this synopsis.



5.5 Foreground-Background Phase Transitions

Phase transitions occur when a moving object becomes
stationary and merges with the background or when a
stationary object starts moving. Examples are cars being
parked or getting out of parking. In most cases, phase
transitions are significant events and we detect and mark
each phase transition for use in the query stage.

We can find phase transitions by looking for background
changes that correspond to the beginning and ending of
tubes. These transitions are important as they explain the
changes in the background. Fig. 19b shows a synopsis
where objects that correspond to phase transitions are
preferred. Mostly cars involved in parking are shown. In
contrast, in Fig. 19c, objects that do not correspond to phase
transitions are preferred. Only passing cars and pedestrians
are shown.

Since phase transitions correspond to changes in the
background, the stitching of phase transitions into the
background should be given special attention. Two effects
may occur in the synopsis video when phase transitions are
not inserted into the background at the right time. 1) Back-
ground objects will appear and disappear with no reason,
causing a flickering effect. 2) Moving objects will disappear
when they stop moving rather than becoming part of the
background. To minimize such effects in the video
synopsis, phase transitions should be inserted into the
time-lapse background at a time which corresponds to their
original time.

6 CONCLUDING REMARKS

Video synopsis has been proposed as an approach for
condensing the activity in a video into a very short time
period. This condensed representation can enable efficient
access to activities in video sequences and enable effective
indexing into the video.

Two approaches were presented for video synopsis: One
approach uses low-level graph optimization, where each
pixel in the synopsis video is a node in this graph. This
approach has the benefit of obtaining the synopsis video
directly from the input video, but the complexity of the
solution may be very high. An object-based approach
detects and segments moving objects and performs the
optimization on the detected objects. The object-based
approach is much faster and enables the use of object-
based constraints.

The activity in the resulting video synopsis is much more
condensed than the activity in any ordinary video and
viewing such a synopsis may seem awkward to the
nonexperienced viewer. But, when the goal is to observe
much information in a short time, video synopsis delivers
this goal.

6.1 Computational Costs

Creating a video synopsis of an endless video stream has
two major phases as shown in Fig. 13: an online phase and a
query phase.

The online phase runs in parallel to video capture and
recording and is independent of any query. In this phase,
moving objects are detected and tracked and are entered as
metadata into the object queue. Only frames with detected
changes, caused by motion or by illumination, are further
processed for extracting moving objects. The complexity of

our object extraction is governed by the min-cut process and
runs at 10 fps (on a 3 GHz PC) for frames of size 320 � 240.
Since most surveillance videos include many frames with
no activity that are automatically skipped, our implementa-
tion of this phase requires less than an hour to process a
1 hour video. Alternatively, hardware solutions for the
detection and tracking of moving objects are provided by
most surveillance companies (“VMD”) and can be used
instead. Since the first phase happens in parallel to video
capture, it does not delay the response to a user query.

The response phase starts after a user presents a query to
the system, specifying the Period of Interest (POI) in the
input video and the length of the synopsis video. In this
phase, all objects in the POI are selected and packed into the
synopsis range by optimizing the target cost. This includes
computing the cost function (20) and determining the
temporal rearrangement of objects to minimize this cost.
The most expensive element in the cost function is the
collision cost (14), which is computed for every relative time
shift between each pair of objects. Given K objects and T
time steps, a naive computation of the collision cost
includes T �K2 computations of correlation between
objects. Longer POI results in more objects (a larger K)
and a longer synopsis video results in a larger T . The
computation complexity can be significantly reduced by
1) using coarser time intervals (e.g., every 10 frames),
2) using reduced image resolution, and 3) using bounding
boxes for each object in each frame to avoid the computa-
tion for pairs of objects (and time shifts) with no overlap.
Cost computation took 65 seconds on the 334,000 frames of
the parking scene (24 hours), having 262 objects, for a
synopsis of length 450 frames. In the airport scene, with
100,000 frames covering 30 hours, the cost function for 500
objects was computed in 80 seconds.

Given the computed elements of the cost function, the
optimal temporal arrangement is computed. Given
K objects and T time steps, there are TK possible
arrangements. Greedy optimization converged to good
results in the Parking example after 59 seconds and, for
the Airport example, after 290 seconds (4.8 minutes).

The second phase is accelerated by removing in advance
from the object queue objects that have a very small
likelihood of being selected for a synopsis. For example,
older or smaller objects may be considered as less
interesting. Such objects can be removed as long as other
objects with higher interest are available (Section 4.2). This
stage, for example, decreased the number of objects from
1,917 to 500 in the Airport scene.

6.2 Limitations and Failures

Video synopsis is less applicable in several cases, some of
which are listed below:

1. Video with already dense activity. All locations are
active all the time. An example is a camera in a busy
train station.

2. Edited video, like a feature movie. The intentions of the
movie creator may be destroyed by changing the
chronological order of events.

The object-based approach depends on object segmenta-
tion and tracking. While this task is relatively easy in the
case of a static camera or even a rotating camera, it may be
more difficult in the case of a moving camera constantly
changing its viewing direction.
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In some cases, the video synopsis is very condensed with
objects and events, making it difficult for a user to search for
any particular object. Making video synopsis that is easier
to view is a topic for future studies.
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