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Non-circular cavity expansion in undrained soil: semi-analytical solution  16 

Hang Zhou*, Brian Sheil, Hanlong Liu  17 

ABSTRACT 18 

The cavity expansion approach has been a popular tool to interpret a wide range of geotechnical problems 19 

over the last several decades. Most previous research focused on the expansion of cylindrical and/or 20 

spherical cavities whereas ‘non-standard’ cavities have received much less attention. To address this 21 

shortcoming, this paper presents a general theoretical framework for two-dimensional (2D) displacement-22 

controlled undrained non-circular cavity expansion (N-CCE) in undrained soil. The new approach 23 

combines strain path method (SPM) concepts and conformal mapping to determine the soil velocity and 24 

strain rate fields analytically. The soil displacement and strain are subsequently determined by integrating 25 

the soil velocities and strain rates along the strain path using a series of transformed ordinary differential 26 

equations. In this study, the modified Cam clay (MCC) effective stress constitutive model is used to 27 

determine the soil stress-strain relationship while consolidation effects are captured using finite difference 28 

calculations. The proposed methodology is validated by comparing the reduced solution for a circular 29 

cavity with traditional circular cavity expansion theory. A parametric analysis is subsequently undertaken 30 

to explore the influence of three non-circular cavity shapes on expansion-induced soil deformation 31 

mechanisms, shear strains, effective stresses, and pore water pressure development and consolidation. The 32 

proposed solution can be implemented with any critical state-based soil model and can be applied to 33 

arbitrary non-circular cavity problems.  34 

Keywords: Non-circular cavity expansion; Undrained; Analytical solution; Strain; Excess pore pressure  35 
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INTRODUCTION 36 

Cavity expansion is a simple theoretical framework which has been used to interpret a wide range of 37 

geotechnical problems including displacement pile installation, pile end-bearing capacity, cone penetration 38 

testing and pressuremeter testing. A myriad of analytical and semi-analytical solutions have been 39 

developed using diverse solution techniques including the early closed-form approaches for an elastic-40 

perfectly plastic medium (Gibson and Anderson 1961; Vesic 1972; Yu and Houlsby 1991; Mantaras and 41 

Schnaid 2002; Shuttle 2007), the similarity solution method (Collins and Stimpson 1994; Zhou et al., 2018a, 42 

2021a) and Chen’s method (Chen 2012, 2013, 2019) for critical state-based constitutive models. These 43 

published solutions have considered many complex soil behaviours including undrained/drained 44 

conditions (Collins and Stimpson 1994), soil dilatancy (Yu and Houlsby 1991), particle breakage (Liu et 45 

al., 2021), unsaturated effects (Chen et al., 2020), anisotropy (Li and Zou 2019), thermoplasticity (Zhou et 46 

al., 2018a), softening (Zhou et al., 2021b), viscoplasticity (Zhou et al., 2021c), and soil stratigraphy  (Wang 47 

et al., 2019; Mo et al., 2017),. 48 

Existing solutions are mainly limited to axisymmetric cavity problems. This limits application of the cavity 49 

expansion approach to ‘non-standard’ problems such as modeling the penetration behavior of X-section 50 

cast-in-place concrete (‘XCC’) piles (Liu et al., 2014; Sun et al., 2017; Zhou et al., 2017a, 2018b, 2019), 51 

rectangular piles (Basu & Salgado 2008; Seo et al., 2009) and prefabricated vertical drains (PVDs) 52 

mandrels (Ghandeharioon et al., 2010). For non-circular cavity expansion (N-CCE) in elastic media, 53 

theoretical solutions are feasible using complex variable elasticity (CVE) developed by Muskhelishvili 54 

(1954). Zhou et al. (2016, 2017b) explored the application of both displacement-controlled and pressure-55 

controlled N-CCE to elastic soil and proposed a series of closed-form solutions using CVE. However, CVE 56 

is no longer suitable if soil plasticity is allowed to develop because the biharmonic stress function is often 57 

non-existent. Zhou et al. (2014) and Liu et al. (2016) proposed simplified solutions for N-CCE in elastic-58 
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perfectly plastic soil. Recently, Zhou et al. (2021d) proposed a semi-analytical solution for elliptical cavity 59 

expansion in a more realistic critical state-based modified Cam Clay (MCC) soil model. However, no 60 

general theoretical method exists for the expansion of arbitrary cavity shape. This gap motivates the present 61 

study, particularly for future applications to non-cylindrical pile performance. 62 

The aim of this paper is to construct a general theoretical framework for two-dimensional displacement-63 

controlled undrained N-CCE in undrained soil. This framework allows any critical state-based constitutive 64 

model to be incorporated; the widely adopted MCC model is adopted for this study. The proposed 65 

methodology is validated by comparing the reduced solution for a circular cavity with traditional circular 66 

cavity expansion theory. A parametric analysis explores the influence of three non-circular cavity shapes 67 

on expansion-induced soil deformation mechanisms, shear strains, effective stresses, and pore water 68 

pressure development and consolidation. The proposed solution can be implemented with any critical state-69 

based soil model and can be applied to arbitrary non-circular cavity problems.  70 

PROBLEM DEFINITION AND BASIC ASSUMPTIONS 71 

List of Figure Captions 72 

Figure 1 defines the problem and notation for this study. A cavity with zero radius is expanded radially to 73 

an arbitrary non-circular cavity in an infinite soil domain. Cartesian coordinates x-y-w and cylindrical 74 

coordinates system r-θ-w are used to describe the geometric features of N-CCE where w defines the vertical 75 

coordinate to differentiate from the complex variable z (= x+iy) where 1i = − . Cavity expansion occurs 76 

in the x-y or r-θ planes. For N-CCE, the radius of the non-circular boundary is nonconstant and defined as 77 

Rc(θ) where θ is the polar angle. The expansion velocity is vc, which is equal to the derivative of the radius 78 

with respect to expansion time t. The initial total stress of the soil in the expansion (x-y, or r-θ) plane is 79 

transversely isotropic (uniform) and defined as σh0 whereas σv0 is used to define the initial total stress in 80 
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the w-direction. The initial pore pressure of the soil is u0 such that the initial effective stress can be 81 

described as: 
'

h0 h0 0= u  −  and 
'

0 0 0=v v u  − . The critical state-based MCC model is used here to describe 82 

the stress-strain relationship of the soil. Three domains exist in the soil surrounding the cavity during 83 

expansion process: elastic, plastic (but pre critical state) and critical state domains.  84 

The boundary of the non-circular cavity is assumed smooth (interface friction coefficient equals zero) 85 

thereby allowing the soil move tangentially to the boundary only. This is because the N-CCE soil 86 

deformations are derived using two-dimensional incompressible inviscid potential flow. Therefore, the soil 87 

and boundary velocities at the cavity-soil interface are not consistent and it is necessary to define the 88 

normal and tangential velocities of the soil at the interface, namely vn and vt, where vn is equal to vc in the 89 

direction normal to the boundary surface.   90 

MATHEMATICAL FORMULATION: KINEMATICS 91 

Governing equations for soil velocity  92 

The governing equation for soil velocity can be described by the following equations (derivations see 93 

Appendix A) 94 

 
2 2

2 2
0

x y

  
+ =

 
  (1) 95 

 ,  x yv v
x y

  
= =
 

  (2) 96 

The velocity field for an incompressible medium is described by the Laplace equation which is solved 97 

using a new coordinate system, namely the ‘conformal mapping coordinate system’, for N-CCE. 98 

Conformal mapping equation 99 

The conformal mapping technique is used to transform an arbitrary non-circular cavity to a unit circular 100 

cavity. As shown in Figure 2, the outer domain of the non-circular cavity in the z- (physical) plane is 101 
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mapped into the outer domain of a unit circular cavity in the ζ- (phase) plane. The N-CCE induced velocity 102 

boundary condition is also transformed from the z-plane to the ζ- plane. The general conformal mapping 103 

equation for an arbitrary non-circular cavity is: 104 

 ( ) 2 1

1

1 2 1n

n

nz R c   −

=


− 

= +  
 

   (3) 105 

where R and c2n-1 are conformal mapping parameters, which can be determined through the method of least 106 

squares (Zhou, 2017b) and 
i z x iy re = + =  and 

ii e    = + = . The parameters R and c2n-1 control the 107 

size and shape of the cavity, respectively. If c2n-1=0, the cavity shape becomes a circle. If n=1 and c1 is 108 

equal to a constant, the shape becomes an ellipse. If n >1, the shape will become more complex. The term 109 

2 1

1 2n

nc  −

−  in Equation 3 means the cavity has a symmetric shape; if 
n

nc   is instead used, the cavity becomes 110 

asymmetric. Figure 3 plots the conformal mapping coordinate system obtained from published classical 111 

solutions for circular, elliptical and square shapes and through iterative calculation using the method of 112 

least squares (Zhou, 2017b) for the X-shape. 113 

Transformation of the governing equations to the phase plane 114 

Equation (3) allows Equations (1) and (2) to be recast in the phase plane as follows (respectively): 115 

 
2 2 2

2 2
0

d

dz

  

 

  
+ = 

  
  (4) 116 

 v v 

 



 
= =
 

，   (5) 117 

Since 
2

d dz is a nonzero positive number, Equation (4) becomes the well-known Laplace equation and 118 

can be expressed in a polar coordinate system as: 119 

 

2 2

2 2 2

1 1
0

  

    

  
+ + =

  
  (6) 120 

The general solution for Equation (6) is: 121 
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 0 0

1

( , ) ln ( cos sin )n

n n

n

a b a n b n      


−

=

= + + +   (7) 122 

where a0, b0, 
na  and 

nb  are constant coefficients. 123 

In addition, the radial and tangential velocity in the phase plane can be expressed as: 124 

 
1

v v 

 

  

 
= =
 

，   (8) 125 

Combining Equations (7) and (8) yields the following expressions: 126 

 
10

1

( cos sin )k

k k

k

b
v A k B k   




− −

=

= + +   (9) 127 

 
1

1

( sin cos )k

k k

k

v A k B k   


− −

=

= −   (10) 128 

or: 129 

 ( ) 10

1

( ) k ik

k k

k

b
v iv A iB e 

  



− −

=

+ = + −   (11) 130 

where k kA ka= − , k kB kb= −  (n =1, 2, 3…).  131 

Velocity boundary conditions 132 

We first define two unit vectors as follows: 133 

 ( )cos ,sinne n n
ie  = =    (12) 134 

 ( )cos ,sinre r r
ie  = =    (13) 135 

where ne and re  represent the unit vector in the cavity boundary normal and radial directions (respectively) 136 

in the physical plane (see Figure 4). Noting that  137 

 
( )

( )

( )

( )

''

' '
ei

zz

z

ddz

dz d z


 

  


= = =   (14) 138 

 ( ) ( )ie z z  =   (15) 139 
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the cosine of the included angle between n and r at the cavity-soil boundary can be expressed as: 140 

 ( ) ( ) ( )cos , cos , Re en r n r
=

n r = e e e e =
i  

 

− = •
 

  (16) 141 

where 
=1

= = ie 


   represents the cavity boundary. 142 

The general expression for the radial distance in the z-plane from the non-circular cavity boundary to the 143 

origin center, Rc (θ), can be obtained from Equation (3): 144 

 ( ) ( ) ( ) ( )conformal mapping

=
=c cR zR z

 
  ⎯⎯⎯⎯⎯⎯→ =   (17) 145 

where ( )z   defines the modulus of z at the cavity boundary.  146 

The cavity boundary velocity can be expressed as: 147 

 
( ) ( )' =

c c

c

dR d dR

dt

R
v

dt dR

 
=   (18) 148 

where R is a kinematic parameter which is used here as a time scale proxy for convenience. The cavity 149 

boundary velocity can be re-defined as: 150 

 
( )'

cc
c

dRv
v

dR dt dR


= =   (19) 151 

Combining Equations (18) and (19) gives: 152 

 
( ) ( )

=c

d
v

d

z z

R R

 
=   (20) 153 

Given that the normal velocity components of the soil at the interface vn and the projected cavity boundary 154 

vc should be equal, one obtains: 155 

 ( ) ( ) ( ) ( )  ( ) 1 1
cos Re e Re en r

= =

e ,e == i i

n c z z z z
R R

v v  

   

    


= 
  

  (21) 156 

Furthermore, the transformation between velocity components in the physical and phase planes can be 157 

expressed as (detailed derivation given in Appendix B):  158 
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( ) ( )' '

1 e
( ) ( )

i

x yv iv v iv v iv
z z



   
 

−

− = − = −   (22) 159 

According to the coordinate transformation relationship, one obtains: 160 

 ( )
= =

i

x y n tv iv e v iv

   

−− = −   (23) 161 

Combining Equations (22) and (23) gives: 162 

 
( )

( ) ( )
( )

( )
( )

'

'= ''

= =

1 1
=n t

z
v iv v iv v iv

z zz
    

   



 

      
− = − −   

      

  (24) 163 

Thus, the velocity component 
=

v  
 at the cavity boundary can be obtained as: 164 

 ( )  ( ) ( )  ( ) ( ) ( ) ( )
= =

' ' '

=

1 1
Re R= e ei

nv v z z
R R

z Vz z V

     

          = =
   

=   (25) 165 

where the radial velocity in the phase plane is a function of the complex variable   (representing the 166 

cavity boundary) or the phase angle  .  167 

Closed-form expression for the field velocity 168 

Substituting the velocity boundary condition in Equation (25) into the general solution for v  ( =1 ) results 169 

in: 170 

 ( ) 0
0

1 1

( cos sin )= ( cos sin )
2

n n k k

k k

A
b A k k A kV B B k   

 

= =

= + + + +    (26) 171 

This is the standard form of Fourier series and the constant coefficients Ak and Bk can be evaluated through 172 

the following integrations: 173 

 ( ) ( )
1

= cos 0,1,2kA dV k k





 


−

=    (27) 174 

 ( ) ( )
1

= 1,2 3sink V kB d k





 


−

=  ，   (28) 175 

Noting that ( )V   is an even function about   and therefore Bk = 0, Ak can be obtained by Equation (27)176 

through numerical integration. Then, the final expression for the velocity in the ζ- and z-planes can be 177 
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obtained as (respectively): 178 

 
10

1

( ) k ik

k

k

b
v iv A e 

  



− −

=

+ = +   (29) 179 

 
( ) ( )

10

' '
1

e e
+ ( )

i i
k ik

x y k

k

b
v iv v iv A e

z z

 


 
 





− −

=

 
= + = + 

 
   (30) 180 

For convenience, Equation (30) is written with respect to the complex variables    and    noting 181 

2 =    and 
2 =   :  182 

 

( ) ( )
0 0

1 1

2 1

1

'1 2

1 1
+

1 2

kk

x y k k

k k

n

n

n

v iv b A b A

R n
z

c


 





 
−−

= =

−

=


−

   
= + = +   

     
+ − 

 

 


  (31) 183 

Closed-form expression for the strain rate 184 

Expressions for the strain rate components x , y , and xy  are obtained as the derivatives of the respective 185 

velocity components as follows: 186 

 
1

2

y yx x
x y xy

v vv v

x y y x
  

   
= − = − = − + 

    
， ，   (32) 187 

Then, we respectively define two new complex variables for velocity and strain rate as: 188 

 +z x yv v iv=   (33) 189 

 2 = z z
z x y xy

v v
i i

x y
   

 
= − + − −

 
  (34) 190 

Now, it is necessary to determine the derivative of zv   with respect to x and y using the principle of 191 

multivariate function derivatives as follows: 192 

 = =z z z z zv v v v vz z

x z x x zz z

     
+ +

     
  (35) 193 

 = =z z z z zv v v v vz z
i

y z y y zz z

       
+ − 

      
  (36) 194 
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Subsequently, the complex variable strain rate can be transformed as: 195 

 = 2 z
z

v

z



−


  (37) 196 

where z  is the function of variable   and thus, 197 

 
( )'

1
= 2 2z z

z

v vd

d z z




  

 
− = −

 
  (38) 198 

It is more convenient to use the strain rate components in the mapping orthogonal curvilinear coordinate 199 

system in the z-plane for follow-on calculations of effective stress. The complex variable strain rate in the 200 

ζ-plane can be defined as: 201 

 2i      = − +   (39) 202 

where  ,  , and   are the three strain components in the ζ-plane. 203 

The relationship between   and z  can be determined as (Muskhelishvili, 1954): 204 

 
( )

( )

2
'

-2

'
=i

z z

z
e

z






  

 

  
=  

  

  (40) 205 

The complex variable strain rate   can finally be obtained from Equations (38) and (3): 206 

 
( )

( )

( ) ( )

2
'

'''

1 1
2 = 2z z

zv v

zzz


 


   

   
= − − 

   

  (41) 207 

where 208 

 

( ) ( )

( ) ( )

' ''

1

0

1
2 '

1'

1
= +

k k
z

k k

k k

v
b

z z

z
A

z

kA
  

 
   

 
− − −

= =

 
     − + −   
    

+

 
 

    (42) 209 

Governing equations for displacement and strain in the phase plane 210 

The displacement and strain can be obtained by integrating the velocity and derivatives of the velocity, 211 

respectively: 212 
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 ( ) ( )
0 0

, , , ,

R R

z zdz v R dR d z v R dR   = = ，   (43) 213 

 ( ) ( )
0 0

, , , ,

R R

d R dR d R dR          = = ，   (44) 214 

The integration in Equations (43) and (44) is solved numerically since  and  change during the cavity 215 

expansion process to consider large deformation effects. As the numerical integration is often intractable, 216 

these equations are transformed to ODEs by taking the derivatives of Equations  (43) and (44) with respect 217 

to the kinematic parameter R: 218 

 ( ) ( ), , , ,z z

dz d z
v R v R

dR dR
   = =，   (45) 219 

 ( ) ( ), , , ,z z
z z

d d
R R

dR dR

 
     = =，   (46) 220 

The above equations can be considered an initial value problem (IVP), which can be solved using the 221 

Runge-Kutta method within an ODE solver. Furthermore, because the solutions are computed in the ζ-222 

plane, the complex variables z and z  should be transformed into the variables  and  . Considering 223 

+
dz z dz d

dR R d dR






=


 and +
d z z d z d

dR R dRd






=


, Equations (45) and (46) become: 224 

 ( ) ( )1, , , ,z

d d z
v R f R

dR dz R

 
   

 
= − = 

 
  (47) 225 

 ( ) ( )2, , , ,z

d d z
v R f R

dR Rd z

 
   

 
= − = 

 
  (48) 226 

 ( ) ( )3, , , ,
d

R f R
dR






    = =   (49) 227 

 ( ) ( )4, , , ,
d

R f R
dR






    = =   (50) 228 

Equations (47) to (50) can subsequently be condensed into matrix form as: 229 
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k

K
F

d

dR
=   (51) 230 

where K
T

    =    ,  1 2 3 4F
T

k f f f f=  . Equation (51) is the governing ODE for soil 231 

kinematics. To obtain the z-plane solution, the ζ-plane variables   and   can be mapped to the z-plane 232 

variables z  and z  using equation (3). 233 

MATHEMATICAL FORMULATION: EFFECTIVE STRESS 234 

Constitutive model equations 235 

The effective stress can be computed by substituting the obtained strain state into a suitable constitutive 236 

model for the soil (MCC in this case). For MCC, the mean effective stress p’ and deviatoric stress q can be 237 

written with respect to the stress components in a mapping coordinate system as:  238 

 

' ' '

'

3

w
p

   + +
=   (52) 239 

 ( )' ' 2 ' ' 2 ' ' 2 2 2 21
( ) ( ) ( ) 6

2
w w w wq               = − + − + − + + +   (53) 240 

For plane strain N-CCE, the shear stress components 
w  and 

w  are zero, and Equation (53) reduces to: 241 

 
' ' 2 ' ' 2 ' ' 2 21

( ) ( ) ( ) 6
2

w wq           = − + − + − +   (54) 242 

The elastic-plastic constitutive relation for MCC model is (detailed derivations given in Appendix C): 243 
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  

    
    
   = 
    
    
    

  
     

  (55) 244 

where the expressions for the matrix elements are given in Appendix B. 245 

For consistency, the strain components in Equation (55) should be written in complex variable form   246 
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and  . Since the constitutive relations contain four independent equations, two additional strains, namely 247 

the vertical strain w  and the volumetric strain v , are incorporated noting that both strains are zero (plane 248 

strain and incompressibility, respectively). Therefore, the constitutive equation (55) can be rewritten as: 249 
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'

w
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



 
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 
 
 
 
 
 
 
 
 
 

  (56) 250 

Equation (56) can be abbreviated as: 251 

 
E S

C
d d

dR dR
=   (57) 252 

Defining E ER d dR=  , 
1F C Es R

−=   and rearranging Equation (57), the constitutive equations can be 253 

rewritten as the following uniform matrix: 254 

 
S

Fs

d

dR
=   (58) 255 

Equation (58) is also a system of first-order ODEs and is coupled with Equation (51) through the soil 256 

position ( ,  ). 257 

GOVERNING EQUATIONS FOR KINEMATICS AND EFFECTIVE STRESS 258 

The solution for effective stress in Equation  (58) requires input of the strain state. Thus the kinematics 259 

described by Equation (51) may be combined with the constitutive laws in Equation (58) to achieve a total 260 

governing equation: 261 

 

K

F

FS

k

s

d

dR

d

dR

 
   

=   
  

  

  (59) 262 

which can be condensed further to: 263 
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X

F
d

dR
=   (60) 264 

The initial conditions are required to solve Equation (60): the initial soil position in the ζ-plane is ( 0 0  ， ) 265 

and the soil strain state is a zero vector. The initial condition for X, K and S can therefore be defined as: 266 

  0 0 0
X = K S

T
  (61) 267 

 0 0 0 0 0K =
T

  
    (62) 268 

 ' ' '

0 0 0 ,00S
T

w      =  
  (63) 269 

where the subscript ‘0’ indicates the initial condition for the corresponding variable or vector and 270 

' ' ' ' ' '

0 0 0 ,0 h0 h0 0= 0w v               . The transformations between strain and effective stress 271 

in the z- and ζ-planes are provided in Appendix D.  272 

MATHEMATICAL FORMULATION: PORE WATER PRESSURE 273 

Stress equilibrium equations in orthogonal curvilinear coordinates 274 

Considering only force balance in the expansion (horizontal) plane for plane strain conditions, the stress 275 

equilibrium equations in orthogonal curvilinear coordinates can be expressed as: 276 

 
( )1

1 2 0
H H

H H

    
   


    

−   
+ + + + = 

   
  (64) 277 

 
( )1

2 1 0
HH

H H

    
  


    

−  
+ − + + = 

   
  (65) 278 

Where 279 

 ( ) ( ) ( )'' ' '1
Re

H
H z z z

R
   



 =


= 
  

  (66) 280 

 ( ) ( ) ( )'' ' '1
Re

H
H i z z z

R
    



 = =
   

  (67) 281 

' '' and z z   are the first and second derivatives of the conformal mapping function with respect to   . 282 

Incorporating the effective stress principle, Equations (64) and (65) can be expressed as: 283 
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( )' ''

1
1 2 0

H Hu

H H

    
   


     

−   
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    
  (68) 284 

 
( )' ''

1 1
2 1 0

HHu

H H

    
  


      

−  
+ + − + + = 

    
  (69) 285 

Numerical integration solution along  direction 286 

Closed-form analytical solutions for Equations (68) and (69) are not guaranteed and therefore they are 287 

computed using numerical integration. The stress equilibrium equation (68)  along the    direction is 288 

selected for integration as: 289 

 ( )
( )' ''

0

1
1 2

H H
u u d

H H

    



   
   

    

  −   
 = + + + + + 
    

，   (70) 290 

MATHEMATICAL FORMULATION: SUBSEQUENT CONSOLIDATION 291 

To account for post-expansion consolidation, Terzaghi’s two-dimensional consolidation theory is adopted. 292 

The pore pressure u can be expressed as: 293 

 2

v

u
c u

t


= 


  (71) 294 

where cv is the coefficient of consolidation. When transformed to the ζ-plane, Equation (71) becomes: 295 

 
2 2
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2

22

1
(

1
)v

u u u u
c

t

d

dz  



 

   
= + +

   
  (72) 296 

The Crank-Nicolson finite difference method (FDM) is adopted to obtain the numerical solution of 297 

Equation (72). Applying the Crank–Nicolson discretization and letting ( ) , j,  ,  n

iu i j n t u    =  , 298 

2

,i jd z fd = , Equation (72) can be transformed as follows: 299 

 
( ) ( ) ( )

( ) ( ) ( )

1 +1 1 1 1

, 1, 1, , 1 , 1
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     

       

       
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− + + −

− + + −

+ − + − − − −

= + + − − + − + +
  (73) 300 

where , j

n

iu  defines the pore pressure at node (i, j) at step n and ,i jf  is independent of time t. In addition, 301 

( )2

,2= v i jtc f   , ( )2 2

,= 2v i jtc f    , ( ) ( )4= vc t  −   . 302 
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The boundary conditions and finite difference grids in the ζ-plane are shown in Figure 5. The cavity-soil 303 

interface is treated as impermeable ( 0u   = ). An artificial outer boundary of the computational domain 304 

with = b   is prescribed the initial (‘free-field’) pore pressure u0; to avoid boundary effects b  is selected 305 

as 50 times the maximum radius of the elastic-plastic boundary in the ζ-plane. Given the symmetry of the 306 

cavity shapes considered (see Figure 3), only a quarter of the model from =0  to = 2   is analysed and 307 

the pore pressure gradient tangential to the symmetry boundaries is zero. Subsequently, Equation (73) can 308 

be solved using the iterative successive over-relaxation (SOR) algorithm as follows: 309 

 
( )

( )1 1

, , ,

1

1 2 +2

n n n

i j i j i ju G G
  

+ += +
+

  (74) 310 

 ( ) ( )1 +1 1 1 1

, 1, 1, , 1 , 1=n n n n n

i j i j i j i j i jG u u u u        + + + +

− + + −+ + − + +   (75) 311 

 ( ) ( ), 1, 1, , 1 , 1=n n n n n

i j i j i j i j i jG u u u u        − + + −+ + − + +   (76) 312 

where ,  ( =1)n

i jG n  is already known and represents the initial excess pore pressure distribution. The initial 313 

value of 
+1

,  ( =1)n

i jG n   is unknown but can be assumed as ,  ( =1)n

i jG n   to start the iteration. Then, two 314 

additional parameters 1

,

n

i j old
u +  and 1

,

n

i j new
u +  are defined to represent the old and new calculated values of 315 

pore pressure (respectively). Substituting the two parameters and updating the expression of Equation (75): 316 

 ( ) ( )1 +1 1 1 1

, 1, 1, , 1 , 1=n n n n n

i j i j i j i j i jnew old old new
G u u u u        + + + +

− + + −+ + − + +   (77) 317 

Then, the final expression for FDM calculation can be obtained as: 318 
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( )

( )+1 +1 1
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1
= 1
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  (78) 319 

where 00 2   is a SOR factor. Setting an error tolerance ER for the iteration as: 320 

 

1 1

, ,
5

1

,

ER= 10

n n

i j i jnew old

n

i j new

u u

u

+ +

−

+

−
   (79) 321 

Equation (79) is repeatedly computed until ER ≤ 10-5.  322 



18 

 

VALIDATION 323 

Comparison of reduced CCE solutions with published solutions 324 

To validate the proposed methodology, calculations for the expansion of a circular cavity are compared 325 

with those determined using traditional CCE solutions. For undrained CCE, the kinematics including radial 326 

displacement, three strain components in polar coordinates system can be written as: 327 

 

2

1ru r r

R R R

 
= − − 

 
  (80) 328 

 

2 2
1 1

ln 1  ln 1  0
2 2

r r

R R

r r
   

      
= − − = − =      

         

， ，   (81) 329 

where ru  is the radial displacement of the soil and, in this case, the kinematic parameter R reduces to the 330 

radius of the cylindrical cavity after expansion; , ,  r r      are the three strain components in polar 331 

coordinates. For the calculation of the effective stress and excess pore pressure, the rigorous semi-332 

analytical solution proposed by Chen & Absouleiman (2012) is used here for comparison. Figure 6 333 

compares calculations of the development of normalized radial displacement, ur/R, and three polar strain 334 

components with normalized radial distance, r/R, using the proposed approach and the solutions of Chen 335 

& Absouleiman (2012). Similarly, calculations of the development of radial excess pore pressure at the 336 

cavity boundary, Δua (normalized by the undrained shear strength su) with normalized radial expansion, 337 

R/R0, are compared in  Figure 7 where R0 is the radius of the initial cylindrical cavity prior to expansion. 338 

In Figure 7, three different isotropic overconsolidation ratios, Roc, are considered where Roc=
' '

0cp p . 339 

Finally, calculations of the variation of the three cartesian effective stresses, normalized by su, with 340 

normalized radial distance is presented in Figures 8a (Roc = 1) and 8b (Roc = 10). In all cases, calculations 341 

using the present solutions are in exact agreement with those determined using the CCE solution proposed 342 

by Chen & Absouleiman (2012).  343 
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In addition, present calculations of pore water pressure dissipation are compared to those determined using 344 

the approach of Randolph & Wroth (1979) as a function of normalized radial distance (r/R) and normalized 345 

time (cvt/R
2) in Figure 9a and 9b respectively. For the sake of comparison, the initial excess pore pressure 346 

is also generated using the Randolph & Wroth (1979) solutions: ( )2lnu pu s r r = , where pr  is the 347 

radius of the plastic zone defined as p ur R G s= . The comparisons in Figure 9 show that present 348 

consolidations calculations are in excellent agreement with the Randolph & Wroth (1979) closed-form 349 

solutions.  350 

RESULTS: N-CCE DEFORMATION MECHANISMS  351 

Soil velocity vectors and displacement 352 

Figure 10 plots the soil velocity vector field caused by the expansion of a circular (Fig. 10(a)), elliptical 353 

(Fig. 10(b)), square (Fig. 10(c)) and X-shaped (Fig. 10(d)) cavity. Only the upper right-hand quadrant of 354 

the model is presented due to symmetry. For the non-circular cavities, the radial distance is normalized by 355 

the dimension of the major axis (Rcmax). For the circular cavity, soil velocity vectors are orientated in the 356 

radial direction only, which is consistent with traditional CCE theory. For the elliptical cavity, the 357 

deformation pattern is no longer symmetrical and expansion causes both radial and tangential soil velocities 358 

in the vicinity surrounding the cavity. The soil particle velocities at the cavity-soil interface act in a 359 

direction normal to the surface of the ellipse; the subsequent trajectory with increasing radial distance 360 

coincides with the ρ direction of the conformal mapping coordinate system (Fig. 3). For the square and X-361 

shaped cavities, the soil velocity trajectories exhibit more complex modes and do not coincide with the 362 

direction of ρ. In particular, both normal and tangential velocities now occur at the cavity-soil interface, 363 

with the exception of the symmetry axis where the tangential velocity is zero.  364 

Interestingly, the N-CCE velocity fields tend towards an equivalent CCE field as the radial distance from 365 

the cavity increases. This indicates that the influence of the cavity shape is limited to a certain zone of soil 366 
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surrounding the cavity. Figure 11 compares the distribution of expansion-induced normalized radial 367 

displacements, ur/ Rc(θ), for CCE (θ = any) with N-CCE along different axes of symmetry: θ = 0 and π/2 368 

(elliptical), θ = 0 and π/4 (square and X-shaped). It is found that the distribution of normalized radial 369 

displacement is highly dependent on the adopted radial direction θ. Results for the elliptical cavity are most 370 

sensitive to θ and provide both an upper (θ = π/2; minor axis) and lower (θ = 0; major axis) bound to all 371 

results, followed by the X-shaped and square cavities. 372 

Maximum shear strain 373 

For plane strain N-CCE, the maximum shear strain is obtained from the cartesian strain components as 374 

follows: 375 

 2 2 2 22
m 3ax ( ) 6x y x y xy    = − + + +   ( 82) 376 

Figure 12 shows contours of maximum shear strain, γmax, caused by the expansion of the four different 377 

cavity shapes. The circular cavity results are perfectly axisymmetric, which is again consistent with 378 

traditional CCE (Fig. 12(a)). As expected, this axisymmetry is not applicable to the non-circular cavities. 379 

For an elliptical cavity, the γmax contours near the cavity also resemble an elliptical shape, with the 380 

maximum value of γmax occurring at the cavity-soil interface at θ = 0 (see Fig. 12(b)). However, the 381 

geometric similarity between cavity shape and the γmax contours gradually disappears with increasing radial 382 

distance. For square and X-shaped cavity expansion, strain concentrations occur at the cavity corners (Figs. 383 

12(c) and 12(d) respectively). Near the cavity-soil interface, the γmax contours resemble a ‘smoothened’ 384 

version of the cavity shape which then transition towards a circular shape when the radial distance becomes 385 

sufficiently large.  386 
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RESULTS: N-CCE SOIL STRESS CHANGES  387 

Shear stress distribution immediately post cavity expansion 388 

The kinematics of the cavity expansion problem are independent of the soil model. For calculation of soil 389 

stresses and pore water pressures, parameters for Boston Blue clay (BBC) a were selected. The soil 390 

properties can be summarized as: λ = 0.15, κ = 0.03, M = 1.2, ν’ = 0.278, υcs= 2.74, K0=2, σ’
r0 =σ’

θ0 =144 391 

kPa, σ’
z0 =72 kPa, u0 =100 kPa, OCR=10 (Chen and Absouleiman (2012)). Note that OCR=

' '

0zc z  , which 392 

is different from Roc=
' '

0cp p  . Contours of normalized shear stress r us   immediately post cavity 393 

expansion are presented in Figure 13. Due to axisymmetry, traditional CCE does not cause shear stress 394 

development unlike the N-CCE calculations (see Figure 13(a)). As shown in Figure 13(b), contours of 395 

shear stress induced by elliptical cavity expansion form ‘stress bubbles’ emanating from the cavity-soil 396 

interface. The shear stress reaches a maximum value at the lower left-hand portion (0 4   ) of the 397 

interface and subsequently vanishes towards θ = 0 and θ = π/2 (owing to the axes of symmetry). For square 398 

cavity expansion, the shear stress contours are now ‘heart-shaped’ and are symmetric about θ = π/4 (see 399 

Figure 13(c)). In this case, the maximum shear stress occurs at the corner of the square cavity-soil interface 400 

(θ = π/4), where a stress concentration occurs. These findings are equally applicable to the ‘butterfly-401 

shaped’ contours for the X-shaped cavity in Figure 13(d) which also show stress concentrations at the 402 

cavity corners with one notable exception: the stress concentrations are notably smaller in size for the X-403 

shaped cavity compared to a square cavity.  404 

Effective stress distribution immediately post cavity expansion 405 

Figure 14 compares the distribution of normalized radial, tangential and vertical effective soil stress (σr′/su, 406 

σθ′/su and σw′/su, respectively) for CCE (θ = any) with N-CCE along different axes of symmetry: θ = 0 and 407 

π/2 (elliptical), θ = 0 and π/4 (square and X-shaped). It can be found that the cavity shape has a notable 408 
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influence on the radial distribution of effective stress. The effective soil stresses near the cavity boundary 409 

are independent of the cavity shape because undrained soil conditions have been achieved. Immediately 410 

outside the critical state zone, the soil is in a plastic state where the three normalized effective stress 411 

components show slight dependence on cavity shape due to the different levels of strain caused by the 412 

cavity expansion. When the distance to the cavity center is sufficiently large, the soil is in an elastic state 413 

and the effective stress is consistent across all shapes.  414 

The variation of normalized radial, tangential, vertical effective stress and shear stress with θ at the cavity-415 

soil interface is explored in Figure 15. For a circular cavity, the effective stress state at the cavity-soil 416 

interface is independent of θ (Figure 15(a)). In contrast, the four effective stress components are highly 417 

sensitive to θ for N-CCE. For an elliptical cavity, the variation in the stress state with θ is smooth with 418 

local optima occurring for all four stress components at 0.14   except for τrθ which occurs at 0.06   419 

(Figure 15(b)). These local minima depend on the shear stress distribution, which is related to the elliptic 420 

curvature of the cavity. An elliptical aspect ratio of β = 2 is considered in this study; the position of local 421 

optima will be different for alternative values of β. For a square cavity, θ = π/4 is a symmetry axis such 422 

that the results are mirrored (Figure 15(c)). These results show a more complex dependence on θ with 423 

notable stress concentrations occurring at the corners (θ = π/4). The tangential stress component, σ′θ, is 424 

most affected by a change in θ, followed by σ′r. In contrast, σ′w experiences little change. These findings 425 

are equally applicable to the X-shaped cavity results in Figure 15(d) though the trends are slightly more 426 

complex. For example, in the region 0.1π ≤ θ ≤ 0.4π (concave arc segment of X-shaped cavity) the 427 

distribution of σ′r resembles a ‘W’ shape, the distributions of σ′θ and σ′w are similar to a ‘U’ shape, while 428 

the distribution of the τrθ is a ‘V’ shape.  429 

Excess pore pressure distribution immediately after cavity expansion  430 

Figure 16 plots contours of normalized excess pore pressure, Δu/su, immediately post cavity expansion for 431 
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all four cavity shapes. Unlike the axisymmetric pore pressure field for CCE, the N-CCE results are more 432 

complex. In particular, a concentration in Δu occurs towards the cavity corners for the square and X-shaped 433 

cavities similar to what was observed for the shear stresses in Figure 13. As the radial distance from the 434 

cavity is increased, these distributions again revert towards circular distributions. Negative excess pore 435 

pressure also develops in the soil owing to the large OCR for BBC (OCR=10).  436 

Post-expansion consolidation 437 

Figure 17 shows the radial distribution (along symmetry axis) of the normalized excess pore pressure 438 

surrounding the cavity at four different stages of consolidation. At the cavity-soil interface, the excess pore 439 

pressures are positive for all cavity shapes except for the X-shaped cavity along a path of θ = π/4. These 440 

excess pore pressures gradually subside as consolidation progresses. It can also be seen that the radial 441 

distribution of Δu is sensitive to both the cavity shape and the adopted value of θ. 442 

Figure 18 plots the variation of Δu along the cavity-soil interface for all four cavities and considering the 443 

same four stages of consolidation. For CCE, the excess pore pressures at the cavity-soil interface are 444 

independent of θ and reduce uniformly during consolidation (Figure 18(a)). Interestingly, for an elliptical 445 

cavity the maximum excess pore pressure occurs at θ = 0 only once consolidation has commenced (Figure 446 

18(b)). As consolidation progresses, the distribution of Δu with θ becomes more uniform. This 447 

‘homogenization’ of excess pore pressures during consolidation is also observed for the square and X-448 

shaped cavities in Figure 18(c) and Figure 18(d), respectively. The initial excess pore pressure immediately 449 

after expansion for a square cavity expansion resembles an inverted V-shape, while the one at the concave 450 

arc segment for X-shaped cavity expansion is similar to an ‘M’ shape. Finally, negative excess pore 451 

pressures occur near the corner of X-shaped cavity, which were not immediately apparent from previous 452 

contours of Δu.  453 

CONCLUSIONS  454 
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In this paper, a general theoretical framework is proposed for undrained non-circular cavity expansion (N-455 

CCE) in soil obeying undrained soil mechanics. Closed-form solutions for the soil velocity and strain rate 456 

of N-CCE were derived by combining strain path method concepts with conformal mapping. Semi-457 

analytical solution for the soil displacement, strain and effective stress were obtained by solving a system 458 

of ordinary differential equations using the Runge-Kutta method. The cavity expansion induced excess 459 

pore pressure is calculated by solving the stress equilibrium equation through numerical integration and 460 

the subsequent consolidation process is captured by solving the consolidation equation using finite 461 

difference calculations.  462 

A parametric analysis was undertaken to explore the influence of three different non-circular cavities 463 

including ellipse, square and X-shaped. Distributions of soil displacement, strain, effective stress and 464 

excess pore pressure were presented with a focus on differences between present analytical predictions and 465 

conventional cylindrical cavity expansion theory. The results showed that soil velocities for elliptical cavity 466 

expansion coincide with the ρ direction of the conformal mapping coordinate system, unlike square and 467 

X-shaped cavities which show more complex modes. For non-circular sections, the distribution of 468 

normalized radial displacement was shown to be highly dependent on the adopted radial direction θ. In 469 

addition, shear stress contours for elliptical revealed the presence of ‘stress bubbles’ whereas ‘heart-shaped’ 470 

and ‘butterfly-shaped’ stress concentrations were observed for the square and X-shaped cavities 471 

respectively. Finally, the initially highly non-uniform excess pore pressures surrounding the cavity-soil 472 

interface gradually tend a uniform distribution (circumferentially) as consolidation progresses.  473 

The proposed semi-analytical solution can be implemented with any critical state-based soil model and can 474 

be applied to arbitrary non-circular cavity problems. It has significant potential for application to 475 

noncylindrical penetrators, (to evaluate the ‘smear’ effect for vertical drain installation and the installation 476 

effect of XCC pile), and flat dilatometers tests (interpretation of testing data).  477 

478 
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APPENDIX A：GOVERNING EQUATION FOR SOIL VELOCITY  479 

This paper focuses on cohesive soils such that the initial cavity expansion phase is undrained; volumetric 480 

strains and strain rates are therefore assumed zero during expansion of the cavity. The volumetric strain 481 

rate, ε̇v, can be written as the sum of the three strain rate components in the Cartesian coordinate system 482 

(
x , 

y  and 
w ) as: 483 

 = 0v x y w   + + =   (A1) 484 

Since cavity expansion only occurs in the x-y plane and 0w =  for plane strain conditions, Equation (A1) 485 

reduces to: 486 

 0x y + =   (A2) 487 

Incorporating the velocity-strain rate relationship, Equation (A2) becomes: 488 

 0
yx

vv

x y


+ =

 
  (A3) 489 

where 
xv  and 

yv  are the two velocity components in the Cartesian coordinate system. 490 

The SPM (Baligh, 1985) assumption that soil movement is nonrotational is also adopted here: 491 

 0
y x

v v

x y

 
− =

 
  (A4) 492 

Equations (A4) are the well-known Cauchy-Riemann equations, which require a potential function φ to 493 

satisfy the following relationships: 494 

 
xv

x


=


  (A5) 495 

 yv
y


=


  (A6) 496 

Substituting Equations (A5) and (A6) into Equation (A3) leads to: 497 

 

2 2

2 2
0

x y

  
+ =

 
  (A7) 498 
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APPENDIX B：TRANSFORMATION OF VELOCITY FROM PHASE PLANE TO PHYSICAL 499 

PLANE 500 

The transformation between physical and phase plane velocities can be derived as: 501 

 

( )'

           2 +2

1
            = 2 +2 =( )

x yv iv i i
x y x x y y

i i
x y x y z z

d
v iv

dz z
 

         

   

         

   

    

   

           
− = − = + − +  

            

            
= − + − =   

            

    
− 

    

  (B1) 502 

In addition, the following relationship is obtained: 503 

 ( ) ( ) e iv iv v iv 

   

−− = −   (B2) 504 

 ( ) ( )e i

x y rv iv v iv 



−− = −   (B3) 505 

APPENDIX C: ELASTIC-PLASTIC CONSTITUTIVE RELATION 506 

The yield function in the MCC model can be expressed as (Wood, 1990): 507 

 ( ) ( )' 2 2 ' ' ', , c cF p q p q M p p p = − −
 

  (C1) 508 

where 
'

cp  is the hardening parameter describing the preconsolidation pressure under isotropic compression. 509 

The incremental plastic strain component assuming associated plastic flow is: 510 

 
( )

( )
' 2 2

' '3
3

p
p M

d p 


 

 −
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  (C2) 511 
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' 2 2

' '3
3

p
p M

d p 


 

 −
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  (C3) 512 
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3

p

w w

p M
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
 

 −
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  (C4) 513 

 ( )3pd   =    (C5) 514 
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where 
( )

'

2 2'2 2 2

2
d dqp

Mp M





 



 −
 +

−+
=  

 
, '

q

p
 = . 515 

Equations (C2)-(C5) can be summarized in matrix form as: 516 
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  (C6) 517 

where the following notations are used as: 518 
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−
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3

a
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( )
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' '3
3

wwa
p M

p
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
−
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 3a =   (C11) 523 

In addition, the elastic constitutive relation is: 524 
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  (C12) 525 

where G  is shear modulus and  is Poisson’s ratio. 526 
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Subsequently, the elastic-plastic constitutive relation is: 527 

 

11 12 13 14

21 22 23 24
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where 529 
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wC a a C a a C a a C a

G
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APPENDIX D: TRANSFORMATION OF STRESS AND STRAIN FROM PHASE PLANE TO 534 

PHYSICAL PLANE 535 

The transformation between different coordinate systems for stress and strain can be summarized as: 536 

 
2
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i

p cS S e −=   (D1) 537 
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 ( ) ( )  ( ) ( )
2

-2 = =i z ze z z       (D4) 540 

where ( )_ phase 2  or  2pS i i          − + − +   defines the complex stress or strain components in 541 
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polar coordinates in the phase plane, ( )_ physical 2  or  2p r r r rS i i        − + − +  is the complex stress or 542 

strain components in polar coordinates in the physical plane, and 543 

( )_ physical 2  or  2c x y xy x y xyS i i     − + − +   is the complex stress or strain components Cartesian 544 

coordinates in the physical plane.  545 

APPENDIX E: EQUILIBRIUM EQUATION IN ORTHOGONAL CURVILINEAR 546 

COORDINATE SYSTEM 547 

Following Saada (2013), the stress equilibrium equation in an orthogonal curvilinear coordinate system 548 

can be expressed as: 549 
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  (E3) 552 

where y = (y1, y2, y3) is a three-dimensional vector in an orthogonal curvilinear coordinate system, 
s  is 553 

the soil density, 
iA and 

iF  ( 1,2,3i = ) define the acceleration and body force in the i direction, respectively, 554 

ih  is the scale factor and it is related to the metric coefficient 
ig  (

2

ih ). The expressions for 
ig  is: 555 
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where x = (x1, x2, x3) is a three-dimensional vector in the Cartesian coordinate system. For a two-557 

dimensional plane strain problem, the expression for gi (i = ρ, ω, w) reduces to: 558 
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For the conformal mapping coordinate system, Equations (E5) and (E6) can be written in complex variable 562 

form as: 563 
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Subsequently, the scale factor 
ih  can be expressed as: 566 

 ( ) ( )' ,h z RH   ==   (E10) 567 

 ( ) ( )' ,h z R H     ==   (E11) 568 

 1wh =   (E12) 569 

Considering only force balance in the expansion (horizontal) plane for plane strain conditions, the 570 

acceleration and body force are ignored such that Equations (E1) and (E2) can be simplified as: 571 
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The function ( ),H    can be written as: 574 

 ( ) ( ) ( ) ( )' ' '1 1
, = =H z z z

R R
       (E15) 575 
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The derivatives of ( ),H    with respect to   and   can be derived as: 576 
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' '' and z z  are the first and second derivatives of the conformal mapping function with respect to  . 579 
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Figure 1 Definition of N-CCE model 
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Figure 2 Conformal mapping from (a) an arbitrary non-circular cavity to (b) a unit circular cavity  
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Figure 3 Conformal mapping coordinate system (a) circle; (b) ellipse; (c) square; and (d) X-shaped shown in the physical 

plane(Red and blue lines are isolines of the variables   and   respectively) 
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Figure 4 Velocity components in the physical (z) and phase (ζ) planes 
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Figure 5 Boundary conditions and finite difference grid for pore water pressure analysis 

  



 

Figure 6 Comparison of the proposed N-CCE approach with the traditional CCE solution for the 

development of normalized radial displacement (ur/R) and three strain components (εr, εθ, εrθ) with 

normalized radial distance (r/R) for a circular cavity (See Table 1 for parameters) 
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 Figure 7 Comparison of the proposed N-CCE approach with Chen & Abousleiman (2012) for the 

development of normalized radial excess pore pressure at the cavity-soil interface (Δua/su) with normalized 

radial expansion (R/R0) for a circular cavity (See Table 1 for parameters) 
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Figure 8 Comparison of the proposed solution with Chen & Absouleiman (2012) for the development of 

effective stress with normalized radial distance based on traditional CCE: (a) Roc = 1; (b) Roc = 10 (See 

Table 1 for parameters) 
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Figure 9 Comparison of the proposed solution with the Randolph & Wroth (1979) closed-form solutions for 

the dissipation of normalized excess pore pressure at the interface of a circular cavity with (a) normalized 

radial distance and (b) dimensionless time  
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Figure 10 Soil velocity vector field plotted on a normalized x-y plane caused by the expansion of (a) 

circular, (b) elliptical, (c) square, and (d) X-shaped cavities 
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Figure 11 Influence of cavity shape on the distribution of expansion-induced normalized radial 

displacements with normalized radial distance along different axes of symmetry 
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Figure 12 Contours of N-CCE calculated maximum soil shear strains plotted on a normalized x-y plane 

induced by the expansion of (a) circular, (b) elliptical, (c) square, and (d) X-shaped cavities 
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Figure 13 Contours of N-CCE calculated soil shear stress plotted on a normalized x-y plane induced by the 

expansion of (a) circular, (b) elliptical, (c) square, and (d) X-shaped cavities in BBC 
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Figure 14 Development of N-CCE calculated normalized effective radial, tangential and vertical stress with 

normalized radial distance caused by the expansion of (a) circular, (b) elliptical, (c) square, and (d) X-

shaped cavities in BBC 
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Figure 15 Development of N-CCE calculated normalized effective radial, tangential, vertical and shear stress 

with polar angle caused by the expansion of (a) circular, (b) elliptical, (c) square, and (d) X-shaped cavities 

in BBC 
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Figure 16 Contours of N-CCE calculated excess pore pressure caused by the expansion of (a) circular, (b) 

elliptical, (c) square, and (d) X-shaped cavities in BBC  
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Figure 17 Radial distribution of N-CCE calculated normalized excess pore pressure surrounding the cavity 

for different stages of consolidation after cavity expansion for (a) circular, (b) elliptical, (c) square, and (d) 

X-shaped cavities 
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Figure 18 Circumferential variation of N-CCE calculated excess pore pressure at the cavity-soil interface for 

different stages of consolidation after cavity expansion for (a) circular, (b) elliptical, (c) square, and (d) X-

shaped cavities 
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