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Nonclassical microwave radiation from the dynamical Casimir effect

J. R. Johansson,1,* G. Johansson,2 C. M. Wilson,2,3 P. Delsing,2 and Franco Nori1,4

1Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 Japan
2Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
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We investigate quantum correlations in microwave radiation produced by the dynamical Casimir effect in
a superconducting waveguide terminated and modulated by a superconducting quantum interference device.
We apply nonclassicality tests and evaluate the entanglement for the predicted field states. For realistic circuit
parameters, including thermal background noise, the results indicate that the produced radiation can be strictly
nonclassical and can have a measurable amount of intermode entanglement. If measured experimentally, these
nonclassicality indicators could give further evidence of the quantum nature of the dynamical Casimir radiation
in these circuits.
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I. INTRODUCTION

Vacuum fluctuations are fundamental in quantum mechan-
ics, yet so far they have not played an active role in the
rapidly advancing field of engineered quantum devices, e.g.,
for quantum information processing and communication. The
main reason for this is that it has been notably difficult to
observe dynamical consequences of the vacuum fluctuations
[1], let alone use them for applications. The dynamical Casimir
effect (DCE) [2,3] is a vacuum amplification process that can
produce pairs of photons from quantum vacuum fluctuations
by means of nonadiabatic changes in the mode structure of the
quantum field, e.g., by a changing boundary condition [4,5]
or index of refraction [6,7]. As such it could potentially be
applied as a source of entangled microwave photons.

For decades, the DCE eluded experimental demonstration,
largely due to the challenging prerequisite of nonadiabatic
changes in the mode structure with respect to the speed of
light. However, using a varying boundary condition in a su-
perconducting waveguide [8,9], the experimental observation
of the DCE was recently reported [10]. This experiment also
demonstrated that the dynamical Casimir radiation exhibits
the expected two-mode squeezing [9,11–13], which is a con-
sequence of a nonclassical pairwise photon-creation process
[14]. However, it was not directly shown that the strength of the
correlations in the emitted radiation exceeded what is possible
classically.

Whether the state of a quantum field is nonclassical, for
example due to two-mode correlations that cannot be described
by a classical probability distribution, may be demarcated by
evaluating certain carefully-designed inequalities [15–17] for
the field observables (nonclassicality tests). Such methods
where used in, for example, Refs. [18–21] to demonstrate
nonclassical microwave states. The theoretical analysis of the
microwave radiation produced by the DCE in superconducting
circuits shows that it can be distinctly nonclassical, even when
taking into account the background thermal noise [22,23] and
higher-order scattering processes. Using auxiliary quantum
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systems as detectors [24,25] could be an alternative to directly
measure the field quadratures, which could provide further
opportunities to detect nonclassical correlations, e.g., on the
single photon-pair level [26].

II. DCE IN SUPERCONDUCTING CIRCUITS

Superconducting circuits are strikingly favorable for
amplifying vacuum fluctuations because of their inherently
low dissipation, which allows the vacuum state to be reached,
and the in situ tunability of an essential circuit element,
namely the Josephson junction (JJ). A JJ is characterized by its
Josephson energy, and by arranging two such junctions in a su-
perconducting loop—a superconducting quantum interference
device (SQUID)—an effective tunable JJ can be produced.
The Josephson energy of the effective junction can be tuned
by applying a magnetic flux through the SQUID loop. This
in situ tunability can be used to produce waveguide circuits
with tunable boundary conditions [27–30], as employed in
the DCE experiment in Ref. [10], and tunable indices of
refraction [31–33]. Tunable JJs are also essential in related
DCE proposals based on circuit QED with tunable coupling
[34].

The electromagnetic field confined by a superconducting
coplanar waveguide can be described quantum mechanically
in terms of the flux operator �(x,t). It is related to the voltage
operator by �(x,t) = ∫ t

dt ′V (x,t ′), and to the gauge-invariant
superconducting phase operator ϕ = 2π�/�0, where �0 =
h/2e is the magnetic flux quantum. The flux field in the
transmission line obeys the massless, one-dimensional Klein-
Gordon wave equation,

∂xx�(x,t) − v−2∂tt�(x,t) = 0, (1)

which has independent left- and right-propagating compo-
nents. Using this decomposition, the field can be written in
the form

�(x,t) =
√

h̄Z0

4π

∫ ∞

−∞

dω√|ω|
× [a(ω)e−i(−kωx+ωt) + b(ω)e−i(kωx+ωt)], (2)
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transmission line SQUID effective
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FIG. 1. (Color online) A schematic representation of the system.
The SQUID imposes a boundary condition that can be viewed as
a mirror at an effective length Leff (t) from the physical end of the
transmission line. A time-dependent applied magnetic flux �ext(t)
through the SQUID corresponds to a moving effective mirror, and
results in frequency mixing in the input-output relation for the
incoming a and outgoing b fields in the transmission line. A sinusodial
�ext(t) with frequency ωd results in dynamical Casimir radiation and
correlated output modes b± = b(ωd/2 ± δω).

where a(ω) and b(ω) are the annihilation operators for photons
with frequency ω/2π > 0 propagating to the right (incoming)
and left (outgoing), respectively. Here we have used the
notation a(−ω) = a†(ω), and kω = ω/v is the wave number,
v is the speed of light in the waveguide, and Z0 is the
characteristic impedance.

Using the previously discussed flux-tunable SQUID termi-
nation of the waveguide, as shown in Fig. 1, one can produce
a tunable boundary condition (see also Refs. [35,36]) for the
quantum field [Eq. (2)],

�(0,t) + Leff(t)∂x�(x,t)|x=0 = 0, (3)

that can be characterized by an effective length

Leff(t) =
(

�0

2π

)2 1

EJ (t)L0
, (4)

where L0 is the characteristic inductance per unit length of
the waveguide and EJ (t) = EJ [�ext(t)] is the flux-dependent
effective Josephson energy. To arrive at this boundary con-
dition we have neglected the capacitance of the SQUID
and assumed small phase fluctuations, which is justified
for a large SQUID plasma frequency [8,9]. For sinusoidal
modulation with frequency ωd/2π and normalized amplitude
ε, EJ (t) = E0

J [1 + ε sin ωdt], we obtain an effective length
modulation amplitude δLeff = εL0

eff , where L0
eff = Leff(0). A

strong modulation, corresponding to an effective velocity

veff = δLeffωd (5)

that is a significant fraction of the speed of light in the
waveguide v, results in nonadiabatic changes in the mode
structure of the quantum field, and the emission of photons
as described by the DCE.

The DCE can be analyzed using scattering theory that
describes how the time-dependent boundary condition, or
region of the waveguide with a time-dependent index of
refraction, mixes the otherwise independent left and right prop-
agating modes [37]. The superconducting circuits considered
here were analyzed using this method in Refs. [8,9], where
the weak-modulation regime was studied analytically using
perturbation theory, and the strong-modulation regime was
studied using a higher-order numerical method.

In the perturbative regime, with

δLeff
√

ω−ω+/v ≈ εL0
effωd/2v (6)

as small parameter, the resulting output field is correlated
at modes with angular frequencies ω and ωd − ω, i.e., sym-
metrically around half the driving frequency. This intermode
symmetry is emphasized when the output field is written for
two such correlated modes:

b± = −a± − i
δLeff

v

√
ω+ω−a

†
∓, (7)

where we have introduced the short-hand notation a± = a(ω±)
and b± = b(ω±), and where

ω± = ωd/2 ± δω, (8)

with δω being the symmetric detuning. Here, even if the input
field is in the vacuum state, 〈a†

±a±〉 = 0, the output field
Eq. (7) has a nonzero, symmetric photon flux

〈b†±b±〉 =
(

δLeff

v

)2

ω+ω−, (9)

i.e., the dynamical Casimir radiation. Furthermore, correla-
tions between the photons in the two modes result in a violation
of the Cauchy-Schwarz inequality

|g(2)
+−(0)|[g(2)

− (0)g(2)
+ (0)]−1/2 � 1, (10)

since with Eq. (7) the left-hand side of the inequality is
[2(δLeff/v)2ω+ω−]−1 	 1. Here g

(2)
± and g

(2)
+− are the second-

order coherence and intensity correlation functions [38]. This
demonstrates that to first order, when starting from the vacuum
state the DCE process results in entangled photons and a
nonclassical field state.

For finite temperatures, where thermal noise is present in
the input field, and for a not so weak modulation, when for
example δLeff

√
ω+ω−/v no longer is a small parameter, it is not

obvious if, or to what extent, the above results apply. In these
cases, there are both classical and nonclassical contributions
to the photon flux in the output field, and it becomes necessary
to systematically compare the relative importance of such
contributions in order to tell if the resulting output field
remains nonclassical or not. In the following, we carry out
such an analysis using nonclassicality tests and by evaluating
the degree of entanglement in the predicted output field. We
focus on nonclassicality tests based on second-order field
correlations, as opposed to the fourth-order Cauchy-Schwarz
inequality mentioned above.

III. NONCLASSICALITY TESTS

The theory of nonclassicality tests has been well developed
in quantum optics, and here we briefly review the important
results in the notation introduced above for superconducting
waveguides. We consider an operator f̂ which is defined as
a function of the creation and annihilation operators. For the
Hermitian operator f̂ †f̂ it can then be shown [17], using the
Glauber-Sudarshan P function formalism, that any classical
state of the field satisfies

〈: f̂ †f̂ :〉 � 0, (11)
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where the condition for classicality that has been used is that
the P function must always be non-negative. The :: denotes
normal ordering.

For the two-mode quadrature-squeezed states that the DCE
is known to produce, the natural definition of f̂ is

f̂θ = eiθ b̂− + e−iθ b̂
†
− + i(eiθ b̂+ − e−iθ b̂

†
+), (12)

where θ is the angle that defines the principal squeezing axis.
With this definition of f̂θ , which measures the squeezing
of the uncertainty of two-mode quadrature difference below
the vacuum level, a pure two-mode squeezed state is known
to violate the inequality (11), see, e.g., Ref. [17], and
references therein. This choice of f̂θ is also suitable from an
experimental point of view, since 〈: f̂

†
θ f̂θ :〉 can be evaluated

from experimentally-accessible quadrature correlations.
We now evaluate the quantum-classical indicator

〈: f̂ †f̂ :〉 = min
θ

〈: f̂
†
θ f̂θ :〉 (13)

for the field state produced by the DCE, and discuss the
conditions under which this nonclassicality test is violated.
For weak driving, using the output field Eq. (7) and a thermal
input field, we obtain

〈: f
†
θ fθ :〉 = 2(nth

+ + nth
−)

− 4 cos 2θ
δLeff

v

√
ω+ω−(1 + nth

+ + nth
−), (14)

where nth
± = 〈a†

±a±〉 = (exp(h̄ω±/kBT ) − 1)−1 is the thermal
photon flux of the input mode with frequency ω±. In this case,
〈: f

†
θ fθ :〉 is minimized by taking θ = 0, and it is negative

if

δLeff

v

√
ω+ω− � (nth

+ + nth
−)/2, (15)

or, equivalently,

ε � v

ωdL
0
eff

(nth
+ + nth

−). (16)

This indicates that the field state in the form of Eq. (7) is
distinctly nonclassical for a vacuum input field, and potentially
also for low-temperature thermal input fields.

To investigate whether the nonclassical characteristics of
the DCE radiation remain for realistic input field temperatures
and when the driving amplitude is increased beyond the
perturbative regime, we also evaluate 〈: f

†
θ fθ :〉 by solv-

ing the scattering problem numerically. The results of this
calculation are presented in Fig. 2(a), showing that for
a sufficiently large driving amplitude 〈: f †f :〉 < 0, even
at typical temperatures for superconducting circuits, and
including higher-order scattering processes. We therefore
conclude that the nonclassical characteristics of the DCE
radiation can be sufficiently robust to remain important in
realistic experimental situations. Evaluating 〈: f †f :〉 from
experimentally-measured field quadratures therefore appears
be a viable method to conclusively demonstrate the quantum
statistics of the dynamical Casimir radiation.
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FIG. 2. (Color online) (a) The quantum-classical indicator
〈: f

†
θ fθ :〉 as a function of driving amplitude ε for a range of θ values

in the interval [0,π ] (blue), and for the optimal θ = θmin (red). In
the perturbation regime θmin ≈ 0. Due to the thermal input field,
〈: f

†
θ fθ :〉 > 0 for small ε. However, when ε is sufficiently large

〈: f †f :〉 < 0, which conclusively rules out that the field state is
of classical origin. (b) The two-mode squeezing σ2 as a function
of the dimensionless driving amplitude ε (red), together with the
right-hand side of Eq. (20) (black), which defines the boundary
between the classical and quantum regions. The parameters used
here are ωd/2π = 10 GHz, δω/ωd = 0.15, and T = 50 mK. Other
parameters are from Ref. [10].

IV. THE NONCLASSICALITY TEST IN TERMS OF σ2

For two-mode squeezed states [14], it is instructive to
formulate the nonclassicality test Eq. (11) in terms of two-
mode squeezing σ2, which is defined as

σ2 = 〈I−I+〉 − 〈Q−Q+〉
(〈I 2−〉 + 〈I 2+〉 + 〈Q2−〉 + 〈Q2+〉)/2

, (17)

where

I± = (h̄ω±Z0/8π )1/2(eiφb± + e−iφb
†
±), (18)

Q± = −i(h̄ω±Z0/8π )1/2(eiφb± − e−iφb
†
±), (19)

are the voltage quadratures. Using this expression for σ2, we
can write the inequality 〈: f

†
θ fθ :〉 < 0 as

σ2 >
2
√

ω+ω−(n+ + n−)

ω+[2n+ + 1] + ω−[2n− + 1]
, (20)

where n± = 〈b†±b±〉 is the photon flux (thermal and DCE) for
the output mode with frequency ω±, and where we have taken
θ = φ + π/4 to relate σ2 and 〈: f

†
θ fθ :〉.

Equation (20) suggests that a nonzero two-mode squeezing
does not necessarily imply that the field is a strictly non-
classical state [by the criterium of Eq. (11) and the current
definition of the operator f̂ ]. However, if the magnitude of the
two-mode squeezing exceeds the right-hand side of Eq. (20),
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the field is guaranteed to be distinctively nonclassical. Since
the expectation values in the right-hand side of Eq. (20) can be
measured experimentally, this could be a practical formulation
for the experimental evaluation of the nonclassicality test.

Figure 2(b) shows the two-mode squeezing together with
the boundary between the classical and quantum regimes, as
defined by Eq. (20). With the parameters used in Fig. 2, the
boundary corresponds to the squeezing σ2 ≈ 0.04. Here we
do not attempt to carry out a quantitative modeling of any
particular experimental situation, which would require detailed
characterization of the mode density in the transmission line
and other experimental parameters. We note that an increased
photon flux increases the right-hand side of the boundary
in Eq. (20) and makes the violation of the inequality more
demanding. To increase the visibility of a potential violation,
it could therefore be useful to reduced the driving strength
to get a lower photon flux and a relatively larger violation of
the nonclassicality test Eq. (20), although this may require an
increased measurement time and averaging to obtain sufficient
sensitivity.

V. ENTANGLEMENT

The two-mode squeezing and the nonclassicality tests
discussed above demonstrate that the DCE radiation is
nonclassical. The quantum nature of the radiation originates
from the entanglement in individual pairs of photons. To
quantify the entanglement between two entire modes with
frequencies adding up to the driving frequency, we evaluate
the logarithmic negativityN [15,16], which is an entanglement
measure for Gaussian states that is frequently used in quantum
optics, and recently also in microwave circuits [19,21] and
nanomechanical systems [39]. The logarithmic negativity is
positive for entangled states, and it can be calculated from the
covariance matrix

Vαβ = 1
2 〈RαRβ + RβRα〉, (21)

where RT = (q−,p−,q+,p+) is a vector with the quadratures
as elements:

q± = (b± + b
†
±)/

√
2, (22)

p± = −i(b± − b
†
±)/

√
2. (23)

The covariance matrix can be evaluated both analyti-
cally and numerically, and also constructed from experi-
mental quadrature measurements. The numerically calculated
covariance matrix is shown in the inset of Fig. 3 for typical
parameters. Given the covariance matrix for the two selected
modes, it is straightforward to evaluate the logarithmic
negativity, defined as

N = max[0,− log(2ν−)], (24)

where

ν− = [σ/2 − (σ 2 − 4 det V )1/2/2]1/2, (25)

and σ = det A + det B − 2 det C, where A,B, and C are 2 × 2
submatrices of the covariance matrix

V =
(

A C

CT B

)
. (26)

FIG. 3. (Color online) The logarithmic negativity N as a function
of the normalized driving amplitude ε. The onset of nonzero N is
ε0. The parameters are the same as in Fig. 2. Inset: The covariance
matrix for ε = 0.5. The diagonal quadrature correlations correspond
to the vacuum fluctuations and the photon flux due to the DCE and
of thermal origin. The nonzero, off-diagonal elements correspond to
the two-mode correlations produced by the DCE.

The logarithmic negativity for the DCE (see also Ref. [40])
is shown in Fig. 3. At zero temperature and small drive
amplitudes, it is proportional to the driving amplitude,

N = εL0
effωd/v. (27)

For finite temperatures and small detuning δω, the onset of
nonzero logarithmic negativity is at

ε0 ≈ 2v

ωdL
0
eff

√
nth+nth−, (28)

after which it increases with the driving amplitude. The two
matching output modes are therefore entangled for sufficiently
large driving amplitudes, ε > ε0, which corresponds to the
regime where the quantum correlations produced by the DCE
overcome the thermal noise. For example, with the parameters
used in Fig. 2, this onset occurs at ε0 ≈ 0.06. Comparing
Figs. 2 and 3 implies that the logarithmic negativity is a
stronger indicator of the nonclassicality of the field state than
the inequality (11) with our definition of f̂ . This is also
shown in Fig. 4, which visualizes the nonclassical regions as a
function of temperature and detuning, as well as the sensitivity
to uncorrelated classical quadrature noise introduced in the
detector (the one-σ contour line). However, when taking this
sensitivity into consideration, the two measures appear to be
of similar practical usefulness.

VI. CONCLUSION

We have theoretically investigated quantum correlations
in the radiation produced by the DCE in a superconducting
waveguide by evaluating nonclassicality tests and the loga-
rithmic negativity. We have formulated practical inequalities

043804-4



NONCLASSICAL MICROWAVE RADIATION FROM THE . . . PHYSICAL REVIEW A 87, 043804 (2013)

0 0.2 0.4
δω/ωd

0

20

40

60

80

T
[m

K
] 0.0

σ

max[0,− : f †f : ]

0 0.2 0.4
δω/ωd

0.0

σ

N

0.00

0.02

0.04

0.06

0.08

0.10

FIG. 4. (Color online) The region of nonclassical radiation (blue),
visualized using −〈: f †f :〉 (left) and the logarithmic negativity
N (right), as a function of the temperature T and the detuning
δω, for ε = 0.15 and other parameters as in Fig. 2. Although the
nonclassical region is larger for N than for 〈: f †f :〉, N is small in
the region where 〈: f †f :〉 is non-negative (white), and the regions
where the measures violate classicality with a one-σ confidence are
quite similar.

with experimentally obtainable observables that could be
used to directly verify the quantum nature of the measured
radiation in future DCE experiments. Our results indicate that
nonclassical nature of the dynamical Casimir radiation remains
at small finite temperatures, but vanishes above a certain
measure-dependent threshold temperature (see Fig. 4). For
realistic experimental parameters, the threshold temperature
above which nonclassical correlations vanishes is predicted
to be in the experimentally accessible regime of 50–70 mK,
and it therefore appears feasible to measure the nonclassical
correlations in the DCE radiation. Indeed, thermal noise is

the main limiting factor for whether the quantum regime can
be reached or not in a particular experiment, and is therefore
important to take into consideration. Note that for example
amplifier noise does not on average contribute to, for example,
the squeezing parameter σ2 under the assumption that the
noise is independent at different frequencies. Such amplifier
noise can therefore, in principle, be eliminated with sufficient
averaging, but this is not the case for thermal noise at the
boundary where the DCE occurs.

We also note that recently two-mode squeezed states have
been generated in microwave circuits using other mechanisms,
for example parametric amplification using the nonlinear
response [18,31] or time-varying index of refraction [33]
of SQUID arrays and JJs [19,21,41]. The nonclassicality
tests discussed here could also be applied to analyze the
radiation produced in these experiments. We believe that
a demonstration of a nonclassicality violation in super-
conducting circuits, or other promising systems [42–46],
could pave the way to the experimental exploration of the
continuous production of entangled microwave photons by
the DCE, and possible applications thereof, for example, in
quantum information processing [47–49]. As such it could
become a practical application of microwave quantum vacuum
fluctuations.
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Lett. 93, 193601 (2004).
[8] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys.

Rev. Lett. 103, 147003 (2009).
[9] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys.

Rev. A 82, 052509 (2010).
[10] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simonen,

J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature
(London) 479, 376 (2011).

[11] V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A
149, 225 (1990).

[12] V. V. Dodonov and M. A. Andreata, J. Phys. A 32, 6711 (1999).
[13] F. X. Dezael and A. Lambrecht, Europhys. Lett. 89, 14001

(2010).
[14] C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[15] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[16] G. Adesso and F. Illuminati, J. Phys. A 40, 7821 (2007).
[17] A. Miranowicz, M. Bartkowiak, X. Wang, Y.-X. Liu, and F. Nori,

Phys. Rev. A 82, 013824 (2010).
[18] C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J. M. Fink,

S. Filipp, and A. Wallraff, Phys. Rev. Lett. 107, 113601 (2011).
[19] E. Flurin, N. Roch, F. Mallet, M. H. Devoret, and B. Huard,

Phys. Rev. Lett. 109, 183901 (2012).
[20] N. Bergeal, F. Schackert, L. Frunzio, and M. H. Devoret, Phys.

Rev. Lett. 108, 123902 (2012).
[21] E. P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong,

M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester
et al., Phys. Rev. Lett. 109, 250502 (2012).

043804-5

http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://arXiv.org/abs/arXiv:1006.4790
http://dx.doi.org/10.1063/1.1665432
http://dx.doi.org/10.1098/rspa.1976.0045
http://dx.doi.org/10.1098/rspa.1976.0045
http://dx.doi.org/10.1103/PhysRevLett.62.1742
http://dx.doi.org/10.1103/PhysRevLett.93.193601
http://dx.doi.org/10.1103/PhysRevLett.93.193601
http://dx.doi.org/10.1103/PhysRevLett.103.147003
http://dx.doi.org/10.1103/PhysRevLett.103.147003
http://dx.doi.org/10.1103/PhysRevA.82.052509
http://dx.doi.org/10.1103/PhysRevA.82.052509
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1016/0375-9601(90)90333-J
http://dx.doi.org/10.1016/0375-9601(90)90333-J
http://dx.doi.org/10.1088/0305-4470/32/39/301
http://dx.doi.org/10.1209/0295-5075/89/14001
http://dx.doi.org/10.1209/0295-5075/89/14001
http://dx.doi.org/10.1103/PhysRevA.31.3068
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1088/1751-8113/40/28/S01
http://dx.doi.org/10.1103/PhysRevA.82.013824
http://dx.doi.org/10.1103/PhysRevLett.107.113601
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.108.123902
http://dx.doi.org/10.1103/PhysRevLett.108.123902
http://dx.doi.org/10.1103/PhysRevLett.109.250502


JOHANSSON, JOHANSSON, WILSON, DELSING, AND NORI PHYSICAL REVIEW A 87, 043804 (2013)
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