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Abstract
Seventy five years ago, three remarkable papers by Schrödinger, Kennard and Darwin were
published. They were devoted to the evolution of Gaussian wave packets for an oscillator, a free
particle and a particle moving in uniform constant electric and magnetic fields. From the
contemporary point of view, these packets can be considered as prototypes of the coherent and
squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Moreover,
these states are frequently used in many other areas, from solid state physics to cosmology.
This paper gives a review of studies performed in the field of so-called ‘nonclassical states’
(squeezed states are their simplest representatives) over the past seventy five years, both in
quantum optics and in other branches of quantum physics.

My starting point is to elucidate who introduced different concepts, notions and terms,
when, and what were the initial motivations of the authors. Many new references have been
found which enlarge the ‘standard citation package’ used by some authors, recovering many
undeservedly forgotten (or unnoticed) papers and names. Since it is practically impossible to
cite several thousand publications, I have tried to include mainly references to papers
introducing new types of quantum states and studying their properties, omitting many
publications devoted to applications and to the methods of generation and experimental
schemes, which can be found in other well known reviews. I also mainly concentrate on the
initial period, which terminated approximately at the border between the end of the 1980s and
the beginning of the 1990s, when several fundamental experiments on the generation of
squeezed states were performed and the first conferences devoted to squeezed and
‘nonclassical’ states commenced. The 1990s are described in a more ‘squeezed’ manner: I have
confined myself to references to papers where some new concepts have been introduced, and to
the most recent reviews or papers with extensive bibliographical lists.

Keywords: Nonclassical states, squeezed states, coherent states, even and odd coherent states,
quantum superpositions, minimum uncertainty states, intelligent states, Gaussian packets,
non-Gaussian coherent states, phase states, group and algebraic coherent states, coherent states
for general potentials, relativistic oscillator coherent states, supersymmetric states,
para-coherent states, q-coherent states, binomial states, photon-added states, multiphoton
states, circular states, nonlinear coherent states

1. Introduction

The terms ‘coherent states’, ‘squeezed states’ and ‘nonclassical
states’ can be encountered in almost every modern paper on

1 On leave from the Moscow Institute of Physics and Technology and the
Lebedev Physics Institute, Moscow, Russia.

quantum optics. Moreover, they are frequently used in many
other areas, from solid state physics to cosmology. In 2001
and 2002 it will be seventy five years since the publication of
three papers by Schrödinger [1], Kennard [2] and Darwin [3], in
which the evolutions of Gaussian wavepackets for an oscillator,
a free particle and a particle moving in uniform constant
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electric and magnetic fields were considered. From the
contemporary point of view, these packets can be considered
as prototypes of the coherent and squeezed states, which are,
in a sense, the cornerstones of modern quantum optics. Since
the squeezed states are the simplest representatives of a wide
family of ‘nonclassical states’ in quantum optics, it seems
appropriate, bearing in mind the jubilee date, to give an updated
review of studies performed in the field of nonclassical states
over the past seventy five years.

Although extensive lists of publications can be found
in many review papers and monographs (see, e.g., [4–7]),
the subject has not been exhausted, because each of them
highlighted the topic from its own specific angle. My
starting point was to elucidate who introduced different
concepts, notions and terms, when, and what were the initial
motivations of the authors. In particular, while performing the
search, I discovered that many papers and names have been
undeservedly forgotten (or have gone unnoticed for a long
time), so that ‘the standard citation package’ used by many
authors presents a sometimes rather distorted historical picture.
I hope that the present review will help many researchers,
especially the young, to obtain a less deformed vision of the
subject.

One of the most complicated problems for any author
writing a review is an inability to supply the complete
list of all publications in the area concerned, due to their
immense number. In order to diminish the length of the
present review, I tried to include only references to papers
introducing new types of quantum states and studying their
properties, omitting many publications devoted to applications
and to the methods of generation and experimental schemes.
The corresponding references can be found, e.g., in other
reviews [4–6]. I also concentrate mainly on the initial period,
which terminated approximately at the border between the end
of the 1980s and the beginning of the 1990s, when several
fundamental experiments on the generation of squeezed states
were performed and the first conferences devoted to squeezed
and ‘nonclassical’ states commenced. The 1990s are described
in a more ‘squeezed’ manner, because the recent history will
be familiar to the readers. For this reason, describing that
period, I have confined myself to references to papers where
some new concepts have been introduced, and to the most
recent reviews or papers with extensive bibliographical lists,
bearing in mind that in the Internet era it is easier to find recent
publications (contrary to the case of forgotten or little known
old publications).

2. Coherent states

It is well known that it was Schrödinger [1] who constructed
for the first time in 1926 the ‘nonspreading wavepackets’ of
the harmonic oscillator. In modern notation, these packets can
be written as (in the units h̄ = m = ω = 1):

〈x|α〉 = π−1/4 exp(− 1
2x

2 +
√

2xα − 1
2α

2 − 1
2 |α|2). (1)

A complex parameter α determines the mean values of the
coordinate and momentum according to the relations:

〈x̂〉 =
√

2 Re α, 〈p̂〉 =
√

2 Im α.

The variances of the coordinate and momentum operators,
σx = 〈x̂2〉 − 〈x̂〉2 and σp = 〈p̂2〉 − 〈p̂〉2, have equal values,
σx = σp = 1/2, so their product assumes the minimal value
permitted by the Heisenberg uncertainty relation,

(σxσp)min = 1/4

(in turn, this relation, which was formulated by Heisenberg [8]
as an approximate inequality, was strictly proven by
Kennard [2] and Weyl [9]).

The simplest way to arrive at formula (1) is to look for the
eigenstates of the non-Hermitian annihilation operator

â = (
x̂ + ip̂

)
/
√

2 (2)

satisfying the commutation relation

[â, â†] = 1, (3)

so that:
â|α〉 = α|α〉. (4)

For example, this was done by Glauber in [10], where the
name ‘coherent states’ appeared in the text for the first time.
However, several authors did similar things before him. The
annihilation operator possessing property (3) was introduced
by Fock [11], together with the eigenstates |n〉 of the number
operator n̂ = â†â, known nowadays as the ‘Fock states’
(the known eigenfunctions of the harmonic oscillator in the
coordinate representation in terms of the Hermite polynomials
were obtained by Schrödinger in [12]). And it was Iwata
who considered for the first time in 1951 [13] the eigenstates
of the non-Hermitian annihilation operator â, having derived
formula (1) and the now well known expansion over the Fock
basis:

|α〉 = exp(−|α|2/2)
∞∑
n=0

αn√
n!

|n〉. (5)

The states defined by means of equations (4) and (5) were used
as some auxiliary states, permitting to simplify calculations, by
Schwinger [14] in 1953. Later, their mathematical properties
were studied independently by Rashevskiy [15], Klauder [16]
and Bargmann [17], and these states were discussed briefly by
Henley and Thirring [18].

The coherent state (5) can be obtained from the vacuum
state |0〉 by means of the unitary displacement operator:

|α〉 = D̂(α)|0〉, D̂(α) = exp(αâ† − α∗â) (6)

which was actually used by Feynman and Glauber as far back as
1951 [19,20] in their studies of quantum transitions caused by
the classical currents (which are reduced to the problem of the
forced harmonic oscillator, studied, in turn, in the 1940s–1950s
by Bartlett and Moyal [21], Feynman [22], Ludwig [23],
Husimi [24] and Kerner [25]).

However, only after the works by Glauber [10] and
Sudarshan [26] (and especially Glauber’s work [27]), did the
coherent states became widely known and intensively used
by many physicists. The first papers published in magazines,
which had the combination of words ‘coherent states’ in their
titles, were [27, 28].

Coherent states have always been considered as ‘the
most classical’ ones (among the pure quantum states, of
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course): see, e.g., [29]. Moreover, they can serve [27] as a
starting point to define the ‘nonclassical states’ in terms of the
Glauber–Sudarshan P -function, which was introduced in [10]
to represent thermal states and in [26] for arbitrary density
matrices:

ρ̂ =
∫
P(α)|α〉〈α| d Re α d Im α,

∫
P(α) d Re α d Im α = 1.

(7)

Indeed, the following definition was given in [27]: ‘If the
singularities of P(α) are of types stronger than those of
delta function, e.g., derivatives of delta function, the field
represented will have no classical analog’.

In this sense, the thermal (chaotic) fields are classical,
since their P -functions are usual positive probability
distributions. The states of such fields, being quantum
mixtures, are described in terms of the density matrices
(introduced by Landau [30]). Also, the coherent states are
‘classical’, because the P -distribution for the state |β〉 is,
obviously, the delta function, Pβ(α) = δ(α − β). On
the other hand, these states lie ‘on the border’ of the set
of the ‘classical’ states, because the delta function is the
most singular distribution admissible in the classical theory.
Consequently, it is enough to make slight modifications in
each of the definitions (1), (4), (5), or (6), to arrive at various
families of states, which will be ‘nonclassical’. For this
reason, many classes of states which are labelled nowadays
as ‘nonclassical’, appeared in the literature as some kinds of
‘generalized coherent states’. At least four different kinds of
generalizations exist.

(I) One can generalize equations (1) or (5), choosing different
sets of coefficients {cn} in the expansion

|ψ〉 =
∑
n

cn|n〉 (8)

or writing different explicit wavefunctions in other
(continuous) representations (coordinate, momentum,
Wigner–Weyl, etc).

(II) One can replace the exponential form of the operator D̂(α)
in equation (6) by some other operator function, also using
some other set of operators Âk instead of operator â (e.g.,
making some kinds of ‘deformations’ of the fundamental
commutation relations like (3)), and taking the ‘initial’
state |ϕ〉 other than the vacuum state. This line leads to
states of the form

|ψλ〉 = f (Âk, λ)|ϕ〉, (9)

where λ is some continuous parameter.
(III) One can look for the ‘continuous’ families of eigenstates

of the new operators Âk , trying to find solutions to the
equation:

Âk|ψµ〉 = µ|ψµ〉. (10)

(IV) One can try to ‘minimize’ the generalized Heisenberg
uncertainty relation for Hermitian operators Â and B̂
different from x̂ and p̂,

�A�B � 1
2 |〈[Â, B̂]〉|, (11)

looking, for instance, for the states for which (11) becomes
the equality.

Actually, all these approaches have been used for several
decades of studies of ‘generalized coherent states’. Some
concrete families of states found in the framework of each
method will be described in the following sections.

The ‘nonclassicality’ of the Fock states and their finite
superpositions was mentioned in [31]. A simple criterium
of ‘nonclassicality’ can be established, if one considers a
generic Gaussian wavepacket with unequal variances of two
quadratures, whose P -function reads [32] (in the special case
of the statistically uncorrelated quadrature components)

PG(α) = N exp

[
− (Re α − a)2

σx − 1/2
− (Im α − b)2

σp − 1/2

]
(12)

(a and b give the position of the centre of the distribution
in the α-plane; the symbol N hereafter is used for the
normalization factor). Since function (12) exists as a
normalizable distribution only for σx � 1/2 and σp � 1/2, the
states possessing one of the quadrature component variances
less than 1/2 are nonclassical. This statement holds for any
(not only Gaussian) state. Indeed, one can easily express the
quadrature variance in terms of the P -function:

σx = 1
2

∫
P(α)[(α + α∗ − 〈â + â†〉)2 + 1] d Re α d Im α.

If σx < 1/2, then function P(α)must assume negative values,
thus it cannot be interpreted as a classical probability [32].

Another example of a ‘nonclassical’ state is a
superposition of two different coherent states [33]. As a
matter of fact, all pure states, excepting the coherent states,
are ‘nonclassical’, both from the point of view of their
physical contents [34] and the formal definition in terms of
the P -function given above [35]. However, speaking of
‘nonclassical’ states, people usually have in mind not an
arbitrary pure state, but members of some families of quantum
states possessing more or less useful or distinctive properties.
One of the aims of this paper is to provide a brief review of
the known families which have been introduced whilst trying
to follow the historical order of their appearance.

According to the Web of Science electronic database of
journal articles, the combination of words ‘nonclassical states’
appeared for the first time in the titles of the papers by
Helstrom, Hillery and Mandel [36]. The first three papers
containing the combination of words ‘nonclassical effects’
were published by Loudon [37], Zubairy, and Lugiato and
Strini [38]. ‘Nonclassical light’ was the subject of the first three
studies by Schubert, Janszky et al and Gea-Banacloche [39].

3. Squeezed states

3.1. Generic Gaussian wavepackets

Historically, the first example of the nonclassical (squeezed)
states was presented as far back as in 1927 by Kennard [2] (see
the story in [40]), who considered, in particular, the evolution
in time of the generic Gaussian wavepacket

ψ(x) = exp(−ax2 + bx + c) (13)

of the harmonic oscillator. In this case, the quadrature
variances may be arbitrary (they are determined by the real
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and imaginary parts of the parameter a), but they satisfy the
Heisenberg inequality σxσp � 1/4. Within twenty five years,
Husimi [41] found the following family of solutions to the time-
dependent Schrödinger equation for the harmonic oscillator
(we assume here ω = m = h̄ = 1)

ψ(x, t) = [2π sinh(β + it)]−1/2

× exp{− 1
4 [tanh[ 1

2 (β + it)](x + x ′)2

+ coth
[

1
2 (β + it)

]
(x − x ′)2]}, (14)

where x ′ and β > 0 are arbitrary real parameters. He showed
that the quadrature variances oscillate with twice the oscillator
frequency between the extreme values 1

2 tanh β and 1
2 coth β. A

detailed study of the Gaussian states of the harmonic oscillator
was performed by Takahasi [42].

3.2. The first appearance of the squeezing operator

An important contribution to the theory of squeezed states was
made by Infeld and Plebański [43–45], whose results were
summarized in a short article [46]. Plebański introduced the
following family of states

|ψ̃〉 = exp
[
i
(
ηx̂ − ξp̂)] exp

[
i

2
log a

(
x̂p̂ + p̂x̂

)] |ψ〉,
(15)

where ξ , η and a > 0 are real parameters, and |ψ〉 is
an arbitrary initial state. Evidently, the first exponential in
the right-hand side of (15) is nothing but the displacement
operator (6) written in terms of the Hermitian quadrature
operators. Its properties were studied in the first article [43].
The second exponential is the special case of the squeezing
operator (see equation (21)). For the initial vacuum state,
|ψ0〉 = |0〉, the state |ψ̃0〉 (15) is exactly the squeezed state
in modern terminology, whereas by choosing other initial
states one can obtain various generalized squeezed states. In
particular, the choice |ψn〉 = |n〉 results in the family of the
squeezed number states, which were considered in [45, 46].
In the case a = 1 (considered in [43]) we arrive at the
states known nowadays by the name displaced number states.
Plebański gave the explicit expressions describing the time
evolution of the state (15) for the harmonic oscillator with
a constant frequency and proved the completeness of the
set of ‘displaced’ number states. Infeld and Plebański [44]
performed a detailed study of the properties of the unitary
operator exp(iT̂ ), where T̂ is a generic inhomogeneous
quadratic form of the canonical operators x̂ and p̂ with
constant c-number coefficients, giving some classification
and analysing various special cases (some special cases of
this operator were discussed briefly by Bargmann [17]).
Unfortunately, the publications cited appeared to be practically
unknown or forgotten for many years.

3.3. From ‘characteristic’ to ‘minimum uncertainty’ states

In 1966, Miller and Mishkin [47] deformed the defining
equation (4), introducing the ‘characteristic states’ as the
eigenstates of the operator

b̂ = uâ + vâ† (16)

(for real u and v). In order to preserve the canonical
commutation relation [b̂, b̂†] = 1 one should impose the
constraint |u|2 − |v|2 = 1.

Similar states were considered by Lu [48], who called
them ‘new coherent states,’ and by Bialynicki-Birula [49]. The
general structure of the wavefunctions of these states in the
coordinate representation is

〈x|β〉 = (πw2
−)

−1/4 exp

[√
2βx

w−
− w+x

2

2w−
− w∗

−β
2

2w−
− |β|2

2

]
,

(17)
where w± = u± v and b̂|β〉 = β|β〉.

Wavefunction (17) also arises if one looks for states in
which the uncertainty product σxσp assumes the minimal
possible value 1/4. This approach was used in [29, 50–52].
The variances in the state (17) are given by

σx = 1
2 |u− v|2, σp = 1

2 |u + v|2 (18)

so that for real parameters u and v one has σxσp = 1/4 due
to the constraint |u|2 − |v|2 = 1. In this case one can express
the ‘transformed’ operator b̂ in (16) in terms of the quadrature
operators

x̂ = (â + â†)/
√

2 p̂ = (â − â†)/(i
√

2), (19)

as:

b̂ = (
λ−1x̂ + λp̂

)
/
√

2, λ−1 = u + v, λ = u− v. (20)

The term ‘minimum uncertainty states’ (MUS) seems to be
used for the first time in the paper by Mollow and Glauber [32],
where it was applied to the special case of the Gaussian
states (12) with σxσp = 1/4. Stoler [51] showed that the MUS
can be obtained from the oscillator ground state by means of
the unitary operator:

Ŝ(z) = exp[ 1
2 (zâ

2 − z∗â†2)]. (21)

In the second paper of [51] the operator Ŝ(z) was written for
real z in terms of the quadrature operators as exp[ir(x̂p̂+ p̂x̂)],
which is exactly the form given by Plebański [46]. The
conditions under which the MUS preserve their forms were
studied in detail in [51, 53].

3.4. Coherent states of nonstationary oscillators and
Gaussian packets

The operators like (16) and the state (17) arise naturally
in the process of the dynamical evolution governed by the
Hamiltonian

Ĥ = ωâ†â + κâ†2e−2iωt−iϕ + h.c., (22)

which describes the degenerate parametric amplifier. This
problem was studied in detail by Takahasi in 1965 [42].
Similar two-mode states were considered implicitly in 1967
by Mollow and Glauber [32], who developed the quantum
theory of the nondegenerate parametric amplifier, described
by the interaction Hamiltonian between two modes of the form
Ĥint = â†b̂†e−iωt + h.c.

In the case of an oscillator with arbitrary time-dependent
frequency ω(t), the evolution of initially coherent states
was considered in [54], where the operator exp[(â†2 + â2)s]
naturally appeared. The generalizations of the coherent
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state (4) as the eigenstates of the linear time-dependent integral
of motion operator

Â = [ε(t)p̂ − ε̇(t)x̂]/
√

2, [Â, Â†] = 1, (23)

where function ε(t) is a specific complex solution of the
classical equation of motion

ε̈ + ω2(t)ε = 0, Im = 1(ε̇ε∗), (24)

have been introduced by Malkin and Man’ko [55]. The integral
of motion (23) satisfies the equation

i∂Â/∂t = [Ĥ , Â]

(where Ĥ is the Hamiltonian) and it has the structure (16),
with complex coefficients u(t) and v(t), which are certain
combinations of the functions ε(t) and ε̇(t). The eigenstates
of Â have the form (17). They are coherent with respect
to the time-dependent operator Â (equivalent to b̂(t) (16)
and generalizing (20)), but they are squeezed with respect to
the quadrature components of the ‘initial’ operator â defined
via (19). For the most general forms in the case of one degree
of freedom see, e.g., [56] and the review [57].

Coherent states of a charged particle in a constant
homogeneous magnetic field (generalizations of Darwin’s
packets [3]) have been introduced by Malkin and Man’ko
in [58] (see also [59]). Generalizations of the nonstationary
oscillator coherent states to systems with several degrees
of freedom, such as a charged particle in nonstationary
homogeneous magnetic and electric fields plus a harmonic
potential, were studied in detail in [60–62]. Multidimensional
time-dependent coherent states for arbitrary quadratic
Hamiltonians have been introduced in [63]. Their
wavefunctions were expressed in the form of generic Gaussian
exponentials of N variables. From the modern point of view,
all those states can be considered as squeezed states, since
the variances of different canonically conjugated variables
can assume values which are less than the ground state
variances. Similar one-dimensional and multidimensional
quantum Gaussian states were studied in connection with the
problems of the theories of photodetection, measurements, and
information transfer in [64, 65]. The method of linear time-
dependent integrals of motion turned out to be very effective for
treating both the problem of an oscillator with time-dependent
frequency (other approaches are due to Fujiwara, Husimi and,
especially, Lewis and Riesenfeld [24,66]) and generic systems
with multidimensional quadratic Hamiltonians. For detailed
reviews see, e.g., [57, 67].

Approximate quasiclassical solutions to the Schrödinger
equation with arbitrary potentials, in the form of the Gaussian
packets whose centres move along the classical trajectories,
have been extensively studied in many papers by Heller and
his coauthors, beginning with [68]. The first coherent states
for the relativistic particles obeying the Klein–Gordon or Dirac
equations have been introduced in [69].

3.5. Possible applications and first experiments with
‘two-photon’ and ‘squeezed’ states

The first detailed review of the states defined by the
relations (16) and (17) was given in 1976 by Yuen [70], who

proposed the name ‘two-photon states’. Up to that time,
it was recognized that such states can be useful for solving
various fundamental physical and technological problems. In
particular, in 1978, Yuen and Shapiro [71] proposed to use the
two-photon states in order to improve optical communications
by reducing the quantum fluctuations in one (signal) quadrature
component of the field at the expense of the amplified
fluctuations in another (unobservable) component. Also, the
states with the reduced quantum noise in one of the quadrature
components appeared to be very important for the problems of
measurement of weak forces and signals, in particular, for the
detectors of gravitational waves and interferometers [72–76].
With the course of time, the terms ‘squeezing’, ‘squeezed
states’ and ‘squeezed operator’, introduced in the papers by
Hollenhorst and Caves [72, 75], became generally accepted,
especially after the article by Walls [77], and they have replaced
other names proposed earlier for such states. It is interesting
to notice in this connection, that exactly at the same time, the
same term ‘squeezing’ was proposed (apparently completely
independently) by Brosa and Gross [78] in connection with the
problem of nuclear collisions (they considered a simple model
of an oscillator with time-dependent mass and fixed elastic
constant, whereas in the simplest quantum optical oscillator
models squeezed states usually appear in the case of time-
dependent frequency and fixed mass). The words ‘squeezed
states’ were used for the first time in the titles of papers [79–82],
whereas the word ‘squeezing’ appeared in the titles of studies
(in the field of quantum optics) [83–85], and ‘squeezed light’
was discussed in [86].

At the end of the 1970s and the beginning of the 1980s,
many theoretical and experimental studies were devoted to
the phenomena of antibunching or sub-Poissonian photon
statistics, which are unequivocal features of the quantum
nature of light. The relations between antibunching and
squeezing were discussed, e.g., in [87], and the first experiment
was performed in 1977 [88] (for the detailed story see, e.g.,
[37, 89]). Many different schemes of generating squeezed
states were proposed, such as the four-wave mixing [90], the
resonance fluorescence [91, 92], the use of the free-electron
laser [80, 93], the Josephson junction [80, 94], the harmonic
generation [84, 95], two- and multiphoton absorption [83, 96]
and parametric amplification [79, 83, 97], etc. In 1985
and 1986 the results of the first successful experiments on
the generation and detection of squeezed states were reported
in [98] (backward four-wave mixing), [99] (forward four-wave
mixing) and [100] (parametric down conversion). Details and
other references can be found, e.g., in [101].

3.6. Correlated, multimode and thermal states

The states (17) with complex parameters u, v do not minimize
the Heisenberg uncertainty product. But they are MUS for the
Schrödinger–Robertson uncertainty relation [102]

σxσp − σ 2
px � h̄2/4, (25)

which can also be written in the form

σpσx � h̄2/[4(1 − r2)], (26)
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where r is the correlation coefficient between the coordinate
and momentum:

r = σpx/√σpσx σpx = 1
2 〈p̂x̂ + x̂p̂〉 − 〈p̂〉〈x̂〉.

For arbitrary Hermitian operators, inequality (25) should be
replaced by [102]:

σAσB − σ 2
AB � |〈[Â, B̂]〉|/4.

For further generalizations see, e.g., [103, 104].
Actually, the left-hand side of (26) takes on the minimal

possible value h̄2/4 for any pure Gaussian state (this fact was
known to Kennard [2]), which can be written as:

ψ(x) = N exp

[
− x2

4σxx

(
1 − ir√

1 − r2

)
+ bx

]
. (27)

In order to emphasize the role of the correlation coefficient,
state (27) was named the correlated coherent state [105].
It is unitary equivalent to the squeezed states with complex
squeezing parameters, which were considered, e.g., in [106].
The dynamics of Gaussian wavepackets possessing a nonzero
correlation coefficient were studied in [107]. Correlated
states of the free particle were considered (under the name
‘contractive states’) in [108]. Gaussian correlated packets
were applied to many physical problems: from neutron
interferometry [109] to cosmology [110]. Reviews of
properties of correlated states (including multidimensional
systems, e.g., a charge in a magnetic field) can be found
in [57, 111–113].

In the 1990s, various features of squeezed states (including
phase properties and photon statistics) were studied and
reviewed, e.g., in [114]. Different kinds of two-mode squeezed
states, generated by the two-mode squeeze operator of the form
exp(zâb̂ − z∗â†b̂† + · · ·), were studied (sometimes implicitly
or under different names, such as ‘cranked oscillator states’
or ‘sheared states’) in [115]. Multimode squeezed states
were considered in [116]. The properties of generic (pure
and mixed) Gaussian states (in one and many dimensions)
were studied in [117–121]. Their special cases, sometimes
named mixed squeezed states or squeezed thermal states, were
discussed in [122–124]. Mixed analogues of different families
of coherent and squeezed states were studied in [125]. Grey-
body states were considered in [126]. ‘Squashed states’ have
been introduced recently in [127].

Implicitly, the squeezed states of a charged particle
moving in a homogeneous (stationary and nonstationary)
magnetic field were considered in [60,61]. In the explicit form
they were introduced and studied in [111] and independently
in [128]. For further studies see, e.g., [129–131]. In the case
of an arbitrary (inhomogeneous) electromagnetic field or an
arbitrary potential, the quasiclassical Gaussian packets centred
on the classical trajectories (frequently called trajectory-
coherent states) have been studied in [132].

The specific families of two- and multimode quantum
states connected with the polarization degrees of freedom of
the electromagnetic field (biphotons, unpolarized light) have
been introduced by Karassiov [133]. For other studies see,
e.g., [134].

3.7. Invariant squeezing

The instantaneous values of variances σx , σp and σxp cannot
serve as true measures of squeezing in all cases, since they
depend on time in the course of the free evolution of an
oscillator. For example,

σx(t) = σx(0) cos2(t) + σp(0) sin2(t) + σxp(0) sin (2t)

(in dimensionless units), and it can happen that both variances
σx and σp are large, but nonetheless the state is highly
squeezed due to large nonzero covariance σxp. It is reasonable
to introduce some invariant characteristics which do not
depend on time in the course of free evolution (or on phase
angle in the definition of the field quadrature as Ê(ϕ) =[
â exp(−iϕ) + â† exp(iϕ)

]
/
√

2 [135]). They are related to
the invariants of the total variance matrix or to the lengths
of the principal axes of the ellipse of equal quasiprobabilities,
which gives a graphical image of the squeezed state in the
phase space [136] (this explains the name ‘principal squeezing’
used in [137]). The minimal σ− and maximal σ+ values of the
variances σx or σp can be found by looking for extremal values
of σx(t) as a function of time [130]

σ± = E ±
√

E2 − d , (28)

where E = 1
2 (σx + σp) ≡ 1

2 + 〈â†â〉 − |〈â〉|2 is the
energy of quantum fluctuations (which is conserved in the
process of free evolution), whereas parameter d = σxσp −
σ 2
xp, coinciding with the left-hand side of the Schrödinger–

Robertson uncertainty relation (25), determines (for Gaussian
states) the quantum ‘purity’ [118] Trρ̂2

Gauss = 1/
√

4d, being
the simplest example of the so-called universal quantum
invariants [138]. The expressions equivalent to (28) were
obtained in [135–137]. Evidently, E � 1

2 + n̄, where n̄ is the
mean photon number. Then one can easily derive from (28)
the inequalities:

σ− � n̄ + 1/2 −
√
(n̄ + 1/2)2 − d > d

1 + 2n̄
. (29)

For pure states (d = 1/4) these inequalities were found
in [139]. For quantum mixtures, squeezing (σ− < 1/2) is
possible provided n̄ � d2 − 1/4.

3.8. General concepts of squeezing

The first definition of squeezing for arbitrary Hermitian
operators Â, B̂ was given by Walls and Zoller [91]. Taking into
account the uncertainty relation (11), they said that fluctuations
of the observable A are ‘reduced’ if:

(�A)2 < 1
2 |〈[Â, B̂]〉|. (30)

This definition was extended to the case of several variables
(whose operators are generators of some algebra) in [140] and
specified in [141].

Hong and Mandel [142] introduced the concept of higher-
order squeezing. The state |ψ〉 is squeezed to the 2nth order
in some quadrature component, say x̂, if the mean value
〈ψ |(�x̂)2n|ψ〉 is less than the mean value of (�x̂)2n in the
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coherent state. If x̂ is defined as in (19), then the condition of
squeezing reads:

〈(�x̂)2n〉 < 2−n(2n− 1)!!.

In particular, for n = 2 we have the requirement
〈(�x̂)4〉 < 3/4. Hong and Mandel showed that the usual
squeezed states are squeezed to any even order 2n. The
methods of producing such squeezing were proposed in [143].

Other definitions of the higher-order squeezing are usually
based on the Walls–Zoller approach. Hillery [144] defined the
second-order squeezing taking in (30):

Â = (â2 + â†2)/2, B̂ = (â2 − â†2)/(2i).

A generalization to the kth-order squeezing, based on the
operators Â = (âk+â†k)/2 and B̂ = (âk−â†k)/(2i), was made
in [145]. The uncertainty relations for higher-order moments
were considered in [103]. For other studies on higher order
squeezing see, e.g., [124, 146–149].

The concepts of the sum squeezing and difference
squeezing were introduced by Hillery [150], who considered
two-mode systems and used sums and differences of various
bilinear combinations constructed from the creation and
annihilation operators. These concepts were developed
(including multimode generalizations) in [151]. A method
of constructing squeezed states for general systems (different
from the harmonic oscillator) was described in [152], where
the eigenstates of the operator µâ2 + νâ†2 were considered as
an example (see also [153]).

The concept of amplitude squeezing was introduced
in [154]. It means the states possessing the property �n <√〈n〉 (for the coherent states, �n = √〈n〉, where n is the
photon number). For further development see, e.g., [155].
Physical bounds on squeezing due to the finite energy of real
systems were discussed in [156].

3.9. Oscillations of the distribution functions

While the photon distribution function pn = 〈n|ρ̂|n〉 is rather
smooth for the ‘classical’ thermal and coherent states (being
given by the Planck and Poisson distributions, respectively), it
reveals strong oscillations for many ‘nonclassical’ states. The
function pn for a generic squeezed state was given in [70]

pn = |v/(2u)|n
n!|u| exp

[
Re

(
β2v∗

u

)
− |β|2

] ∣∣∣∣Hn
(

β√
2uv

)∣∣∣∣
2

,

where Hn(z) is the Hermite polynomial. The graphical
analysis of this distribution made in [157] showed that for
certain relations between the squeezing and displacement
parameters, the photon distribution function exhibits strong
irregular oscillations, whereas for other values of the
parameters it remains rather regular. Ten years later, these
oscillations were rediscovered in [158–162], and since that
time they have attracted the attention of many researchers,
mainly due to their interpretation [163] as the manifestation
of the interference in phase space (a method of calculating
quasiclassical distributions, based on the areas of overlapping
in the phase plane, was used earlier in [164]).

It is worth mentioning that as far back as 1970, Walls
and Barakat [165] discovered strong oscillations of the photon

distribution functions, calculating eigenstates of the trilinear
Hamiltonian ĤWB = ∑3

k=1 ωkâ
†
k âk + κ(â1â

†
2 â

†
3 + h.c.).

The parametric amplifier time-dependent Hamiltonian (22),
which ‘produces’ squeezed states, can be considered as the
semiclassical approximation to ĤWB . For recent studies on
trilinear Hamiltonians and references to other publications
see [166].

The photocount distributions and oscillations in the two-
mode nonclassical states were studied in [167]. The influence
of thermal noise was studied in [123, 159, 168, 169]. The
cumulants and factorial moments of the squeezed state photon
distribution function were considered in [162, 168]. They
exhibit strong oscillations even in the case of slightly squeezed
states [170]. For other studies see, e.g., [171].

4. Non-Gaussian oscillator states

4.1. Displaced and squeezed number states

These states are obtained by applying the displacement
operator D̂(α) (6) or the squeezing operator Ŝ(z) (21) to the
states different from the vacuum oscillator state |0〉. As a
matter of fact, the first examples were given by Plebański [43],
who studied the properties of the state |n, α〉 = D̂(α)|n〉.
His results were rediscovered in [172], where the name
semicoherent state was used. The general construction
D̂(α)|ψ0〉 for an arbitrary fiducial state |ψ0〉 was considered by
Klauder in [16]. The special case of the states |n, z〉 = Ŝ(z)|n〉
(known now under the name squeezed number states) for real
z was considered in [45, 46]. These states were also briefly
discussed by Yuen [70]. The displaced number states were
considered in connection with the time-energy uncertainty
relation in [173]. They can be expressed as [174]:

|n, α〉 = D̂(α)|n〉 = N (â† − α∗)n|α〉. (31)

The detailed studies of different properties of displaced and
squeezed number states were performed in [123, 146, 175].

4.2. First finite superpositions of coherent states

Titulaer and Glauber [176] introduced the ‘generalized
coherent states’, multiplying each term of expansion (5) by
arbitrary phase factors:

|α〉g = exp(−|α|2/2)
∞∑
n=0

αn√
n!

exp(iϑn)|n〉. (32)

These are the most general states satisfying Glauber’s criterion
of ‘coherence’ [27]. Their general properties and some special
cases corresponding to the concrete dependences of the phases
ϑn on n were studied in [177, 178].

In particular, Bialynicka-Birula [177] showed that in
the periodic case, ϑn+N = ϑn (with arbitrary values
ϑ0, ϑ1, . . . , ϑN−1), state (32) is the superposition of N
Glauber’s coherent states, whose labels are uniformly
distributed along the circle |α| = const :

|φ〉 =
N∑
k=1

ck|α0 exp(iφk)〉, φk = 2πk/N. (33)
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The amplitudes ck are determined from the system of N
equations (m = 0, 1, . . . , N − 1)

N∑
k=1

ck exp(imφk) = exp(iϑm), (34)

and they are different in the generic case. Stoler [178] has
noticed that any sum (33) is an eigenstate of the operator âN

with the eigenvalue αN0 , therefore it can be represented as a
superposition of N orthogonal states, each one being a certain
combination of N coherent states |α0 exp(iφk)〉.

4.3. Even and odd thermal and coherent states

An example of ‘nonclassical’ mixed states was given by Cahill
and Glauber [33], who discussed in detail the displaced thermal
states (such states, which are obviously ‘classical’, were also
studied in [32, 179]) and compared them with the following
quantum mixture:

ρ̂ev−th = 2

2 + n

∞∑
n=0

(
n

2 + n

)n
|2n〉〈2n|. (35)

The even and odd coherent states

|α〉± = N± (|α〉 ± | − α〉) , (36)

where N± = (2[1 ± exp(−2|α|2)])−1/2, have been introduced
by Dodonov et al [180]. They are not reduced to the
superpositions given in (33), since coefficients c1 = ±c2 can
never satisfy equations (34) for real phases ϑ0, ϑ1. Besides,
the photon statistics of the states (36) are quite different from
the Poissonian statistics inherent to all states of the form (32).
Even/odd states possess many remarkable properties: if
|α| � 1, they can be considered as the simplest examples
of macroscopic quantum superpositions or ‘Schrödinger cat
states’; being eigenstates of the operator â2 (cf equation (10)),
the states |α〉± are the simplest special cases of the multiphoton
states (see later); they can be obtained from the vacuum by the
action of nonexponential displacement operators

D̂+(α) = cosh(αâ† − α∗â) D̂−(α) = sinh(αâ† − α∗â)

(cf equation (9)), etc. Moreover, from the modern point of
view, the special cases of the time-dependent wavepacket
solutions of the Schrödinger equation for the (singular)
oscillator with a time-dependent frequency found in [180] are
nothing but the odd squeezed states.

Parity-dependent squeezed states

[Ŝ(z1)=̂+ + Ŝ(z2)=̂−]|α〉
where =̂± are the projectors to the even/odd subspaces of
the Hilbert space of Fock states, were studied in [181]. The
actions of the squeezing and displacement operators on the
superpositions of the form |α, τ, ϕ〉 = N (|α〉 + τeiϕ| − α〉)
(which contain as special cases even/odd, Yurke–Stoler, and
coherent states) were studied in [182] (the special case τ = 1
was considered in [183]). For other studies see, e.g., [6, 184–
188]. Multidimensional generalizations have been studied
in [189].

The name shadowed states was given in [190] to the
mixed states whose statistical operators have the form ρ̂sh =∑
pn|2n〉〈2n| (i.e., generalizing the even thermal state (35)).

Mixed analogues of the even and odd states were considered
in [191].

5. Coherent phase states

The state of the classical oscillator can be described either
in terms of its quadrature components x and p, or in terms
of the amplitude and phase, so that x + ip = A exp(iϕ).
Moreover, in classical mechanics one can introduce the action
and angle variables, which have the same Poisson brackets
as the coordinate and momentum: {p, x} = {I, ϕ} = 1.
However, in the quantum case we meet serious mathematical
difficulties trying to define the phase operator in such a way
that the commutation relation [n̂, ϕ̂] = i would be fulfilled,
if the photon number operator is defined as n̂ = â†â. These
difficulties originate in the fact that the spectrum of operator n̂
is bounded from below.

The first solution to the problem was given by Susskind
and Glogower [192], who introduced, instead of the phase
operator itself, the exponential phase operator

Ê− ≡ Ĉ + iŜ ≡
∞∑
n=1

|n− 1〉〈n| = (ââ†)−1/2â, (37)

which can be considered, to a certain extent, as a quantum
analogue of the classical phase eiϕ [29, 193]. Operator Ê−
and its Hermitian ‘cosine’ and ‘sine’ components satisfy the
‘classical’ commutation relations:

[Ĉ, n̂] = iŜ, [Ŝ, n̂] = −iĈ, [Ê−, n̂] = Ê−. (38)

However, operator Ê− is nonunitary, since the commutator
with its Hermitially conjugated partner Ê+ ≡ Ê†

− is not equal
to zero:

[Ê−, Ê+] = 1 − Ĉ2 − Ŝ2 = |0〉〈0|. (39)

It is well known that the annihilation operator â has no inverse
operator in the full meaning of this term. Nonetheless, it
possesses the right inverse operator

â−1 =
∞∑
n=0

|n + 1〉〈n|√
n + 1

= â†(ââ†)−1 = Ê+(ââ
†)−1/2, (40)

which satisfies, among many others, the relations:

ââ−1 = 1, [â, â−1] = |0〉〈0|, [â†, â−1] = â−2.

This operator was discussed briefly by Dirac [194], who
noticed that Fock considered it long before. However, it has
only found applications in quantum optics in the 1990s (see
the paragraph on photon-added states later). Lerner [195]
noticed that the commutation relations (38) do not determine
the operators Ĉ, Ŝ uniquely. Earlier, the same observation
was made by Wigner [196] with respect to the triple {n̂, â, â†}
(see the next section). In the general case, besides the ‘polar
decomposition’ (37), which is equivalent to the relations

Ê−|n〉 = (1 − δn0)|n− 1〉, Ê+|n〉 = |n + 1〉, (41)

one can define operator Û = Ĉ + iŜ via the relation Û |n〉 =
f (n)|n−1〉, where function f (n) may be arbitrary enough,
being restricted by the requirement f (0) = 0 and certain other
constraints which ensure that the spectra of the ‘cosine’ and
‘sine’ operators belong to the interval (−1, 1). The properties
of Lerner’s construction were studied in [197].
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The states with the definite phase

|ϕ〉 =
∞∑
n=0

exp(inϕ)|n〉 (42)

were considered in [29, 192]. However, they are not
normalizable (like the coordinate or momentum eigenstates).
The normalizable coherent phase states were introduced
in [198] as the eigenstates of the operator Ê−:

|ε〉 = √
1 − εε∗

∞∑
n=0

εn|n〉, Ê−|ε〉 = ε|ε〉, |ε| < 1.

(43)
The pure quantum state (43) has the same probability
distribution |〈n|ε〉|2 as the mixed thermal state described by
the statistical operator

ρ̂th = 1

1 + n

∞∑
n=0

(
n

1 + n

)n
|n〉〈n|, (44)

if one identifies the mean photon number n with |ε|2/(1 −
|ε|2) [199].

The two-parameter set of states (κ �= −1)

|z; κ〉 = N
∞∑
n=0

[
B(n + κ + 1)

n!B(κ + 1)

]1/2 (
z√
κ + 1

)n
|n〉 (45)

has been introduced in [200] and studied in detail from different
points of view in [180, 199, 201]. These states are eigenstates
of the operator:

Âκ = Ê−

[
(κ + 1)n̂

κ + n̂

]1/2

≡
[
(κ + 1)

κ + 1 + n̂

]1/2

â. (46)

If κ = 0, Â0 = Ê−, and the state |z; 0〉 coincides with (43). If
κ → ∞, then Â∞ = â, and the state (45) goes to the coherent
state |z〉 (5). In the 1990s the state (45) appeared again under
the name negative binomial state (see (67) in section 8.4). In
the special case κ = −p−1, p = 1, 2, . . . , the state (45) goes
to the superposition of the first p + 1 Fock states

|z;p〉 = N
p∑
n=0

[
p!

n!(p − n)!
]1/2 (

z√
p

)n
|n〉, (47)

which is nothing other than the binomial state introduced in
1985 (see section 8.4).

Sukumar [202] introduced the states (α = (r/m)eiϕ ,
β = tanh r , m = 1, 2, . . .)

exp(αT̂ †
m − α∗T̂m)|0〉 =

√
1 − β2

∞∑
n=0

(βeiϕ)n|mn〉,

where T̂m = Êm− n̂ ≡ (n̂ + m)Êm− , and operators T̂± act on the
Fock states as follows:

T̂m|n〉 =
{
n|n−m〉, n � m
0, n < m,

T̂ †
m|n〉 = (n +m)|n +m〉.

For m = 1 one arrives again at the state (43).

The phase coherent state (43) was rediscovered in the
beginning of the 1990s in [203] as a pure analogue of the
thermal state. It was also noticed that this state yields a strong
squeezing effect. By analogy with the usual squeezed states,
which are eigenstates of the linear combination of the operators
â, â† (16), the phase squeezed states (PSS) were constructed
in [204] as the eigenstates of the operator B̂ = µÊ− + νÊ+.
The coefficients of the decomposition of PSS over the Fock
basis are given by

cn = N (zn+1
+ −zn+1

− ), z± =
(
β ±

√
β2 − 4µν

)/
(2µ),

where β is the complex eigenvalue of B̂ and N is the
normalization factor. It is worth noting, however, that
PSS have actually been introduced as far back as 1974
by Mathews and Eswaran [205], who minimized the ratio
(�C)2(�S)2/|〈[Ĉ, Ŝ]〉|2, solving the equation (v and λ are
parameters):

[(1 + v)Ê− + (1 − v)Ê+]|ψ〉 = λ|ψ〉. (48)

The continuous representation of arbitrary quantum states
by means of the phase coherent states (43) (an analogue of the
Klauder–Glauber–Sudarshan coherent state representation)
was considered in [206] (where it was called the analytic
representation in the unit disk), [207] (under the name
harmonious state representation), and [208]. Eigenstates of
operator Ẑ(σ ) = Ê−(n̂ + σ),

|z; σ 〉 =
∞∑
n=0

zn|n〉
B(n + σ + 1)

, Ẑ(σ )|z; σ 〉 = z|z; σ 〉,
(49)

were named as philophase states in [209]. If σ = 0, then (49)
goes to the special case of the Barut–Girardello state (54) with
k = 1/2.

The name ‘pseudothermal state’ was given to the state (43)
in [210], where it was shown that this state arises naturally
as an exact solution to certain nonlinear modifications of the
Schrödinger equation. Shifted thermal states, which can be
written as ρ̂(shift)

th = Ê+ρ̂thÊ−, have been considered in [211]
(see also [212]).

For the most recent study on phase states see [213].
Comprehensive discussions of the problem of phase in
quantum mechanics can be found, e.g., in [193, 214], and a
detailed list of publications up to 1996 was given in the tutorial
review [215].

6. Algebraic coherent states

6.1. Angular momentum and spin-coherent states

The first family of the coherent states for the angular
momentum operators was constructed in [216], actually
as some special two-dimensional oscillator coherent state,
using the Schwinger representation of the angular momentum
operators in terms of the auxiliary bosonic annihilation
operators â+ and â−:

Ĵ+ = â†
+â−, Ĵ− = â†

−â+, Ĵ3 = 1
2 (â

†
+â+ − â†

−â−).
(50)
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Such ‘oscillator-like’ angular momentum coherent states were
studied in [217]. A possibility of constructing ‘continuous’
families of states using different modifications of the unitary
displacement (6) and squeezing (21) operators was recognized
in the beginning of the 1970s. The first explicit example is
frequently related to the coherent spin states [218] (also named
atomic coherent states [219] and Bloch coherent states [220])

|ϑ, ϕ〉 = exp(ζ Ĵ+ − ζ ∗Ĵ−)|j,−j〉 ζ = (ϑ/2) exp(−iϕ),
(51)

where Ĵ± are the standard raising and lowering spin (angular
momentum) operators, |j,m〉 are the standard eigenstates
of the operators Ĵ2 and Ĵz, and ϑ, ϕ are the angles in the
spherical coordinates. However, the special case of these states
for spin- 1

2 was considered much earlier by Klauder [16], who

introduced the fermion coherent states |β〉 =
√

1 − |β|2 |0〉 +
β |1〉, whereβ could be an arbitrary complex number satisfying
the inequality |β| � 1. Also, Klauder studied generic states of
the form (51) in [221]. A detailed discussion of the spin-
coherent states was given in [222], whereas spin squeezed
states were discussed in [223]. For recent publications on
the angular momentum coherent states see, e.g., [224].

6.2. Group coherent states

The operators Ĵ±, Ĵz are the generators of the algebra su(2).
A general construction looks like

|ξ1, ξ2, . . . , ξn〉 = exp(ξ1Â1 + ξ2Â2 + · · · + ξnÂn)|ψ〉, (52)

where {ξk} is a continuous set of complex or real parameters,
Âk are the generators of some algebra, and |ψ〉 is some ‘basic’
(‘fiducial’) state. This scheme was proposed by Klauder as
far back as 1963 [221], and later it was rediscovered in [225].
A great amount of different families of ‘generalized coherent
states’ can be obtained, choosing different algebras and basic
states. One of the first examples was related to the su(1, 1)
algebra [225]

|ζ ; k〉 ∼ exp(ζ K̂+)|0〉 ∼
∞∑
n=0

[
B(n + 2k)

n!B(2k)

]1/2

ζ n|n〉, (53)

where k is the so-called Bargmann index labelling the concrete
representation of the algebra, and K̂+ is the corresponding
rising operator. Evidently, the states (45) and (53) are the same,
although their interpretation may be different. Some particular
realizations of the state (53) connected with the problem of
quantum ‘singular oscillator’ (described by the Hamiltonian
H = p2 + x2 + gx−2) were considered in [180, 201]. The
‘generalized phase state’ (45) and its special case (47) can
also be considered as coherent states for the groupsO(2, 1) or
O(3), with the ‘displacement operator’ of the form [199]:

D̂κ(z) = exp
(
z
√
n̂(n̂ + κ)Ê+ − z∗Ê−

√
n̂(n̂ + κ)

)
.

A comparison of the coherent states for the Heisenberg–
Weyl and su(2) algebras was made in [226] (see also [227]).
Coherent states for the group SU(n)were studied in [220,228],
whereas the groups E(n) and SU(m, n) were considered
in [229]. Multilevel atomic coherent states were introduced
in [230].

The name Barut–Girardello coherent states is used in
modern literature for the states which are eigenstates of some
non-Hermitian lowering operators. The first example was
given in [231], where the eigenstates of the lowering operator
K̂− of the su(1, 1) algebra were introduced in the form:

|z; k〉 = N
∞∑
n=0

zn|n〉√
n!B(n + 2k)

. (54)

The corresponding wavepackets in the coordinate representa-
tion, related to the problem of nonstationary ‘singular oscilla-
tor’, were expressed in terms of Bessel functions in [180].

The first two-dimensional analogues of the Barut–
Girardello states, namely, eigenstates of the product of
commuting boson annihilation operators âb̂,

âb̂|ξ, q〉 = ξ |ξ, q〉, Q̂|ξ, q〉 = q|ξ, q〉,
Q̂ = â†â − b̂†b̂,

(55)

were introduced by Horn and Silver [232] in connection with
the problem of pions production. In the simplified variant these
states have the form (actually Horn and Silver considered the
infinite-dimensional case related to the quantum field theory):

|ξ, q〉 = N
∞∑
n=0

ξn|n + q, n〉
[n!(n + q)!]1/2

. (56)

Operator Q̂ can be interpreted as the ‘charge operator’; for this
reason state (56) appeared in [233] under the name ‘charged
boson coherent state.’ Joint eigenstates of the operators â+â+

and â+â−, which generate the angular momentum operators
according to (50), were studied in [234]. The states (56) have
found applications in quantum field theory [235]. Nonclassical
properties of the states (56) (renamed as pair coherent states)
were studied in [236]. An example of two-mode SU(1, 1)
coherent states was given in [237]. The generalization
of the ‘charged boson’ coherent states (56) in the form
of the eigenstates of the operator µâb̂ + νâ†b̂†, satisfying
the constraint (â†â − b̂†b̂)|ψ〉 = 0, was studied in [238].
Nonclassical properties of the even and odd charge coherent
states were studied in [239].

The first explicit treatments of the squeezed states as the
SU(1, 1) coherent states were given in studies [140, 240],
whose authors considered, in particular, the realization of the
su(1, 1) algebra in terms of the operators:

K̂+ = â†2/2, K̂− = â2/2, K̂3 = (
â†â + ââ†

)
/4.
(57)

If (�K1)
2 < |〈K̂3〉|/2 or (�K2)

2 < |〈K̂3〉|/2 (where
K̂± = K̂1 ± iK̂2), then the state was named SU(1, 1)
squeezed [140] (in [144], similar states were named amplitude-
squared squeezed states). The relations between the squeezed
states and the Bogolyubov transformations were considered
in [241]. ‘Maximally symmetric’ coherent states have been
considered in [242]. SU(2) and SU(1, 1) phase states have
been constructed in [243]. The algebraic approaches in
studying the squeezing phenomenon have been used in [244].
Analytic representations based on the SU(1, 1) group coherent
states and Barut–Girardello states were compared in [245].
SU(3)-coherent states were considered in [246]. Coherent
states defined on a circle and on a sphere have been studied
in [247]. For other studies on group and algebraic states and
their applications see, e.g., [7, 248, 249].
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7. ‘Minimum uncertainty’ and ‘intelligent’ states

For the operators Â and B̂ different from x̂ and p̂, the right-hand
side of the uncertainty relation (11) depends on the quantum
state. The problem of finding the states for which (11) becomes
the equality was discussed by Jackiw [50], who showed that it
is reduced essentially to solving the equation:

(Â− 〈Â〉)|ψ〉 = λ(B̂ − 〈B̂〉)|ψ〉. (58)

Jackiw found the explicit form of the states minimizing
one of several ‘phase–number’ uncertainty relations, namely

(�n̂)2(�Ĉ)2/〈Ŝ〉2 � 1/4 , (59)

in the form |ψ〉 = N ∑∞
n=0(−i)nIn−λ(γ )|n〉, where Iν(γ ) is

the modified Bessel function, and λ, γ are some parameters.
Eswaran considered the n̂–Ĉ pair of operators and solved

the equation (n̂+iγ Ĉ)|ψ〉 = λ|ψ〉 [197]. If the product�n�ϕ
of the number and phase ‘uncertainties’ remains of the order
of 1, then we have the number–phase minimum uncertainty
state [250]. The methods of generating the MUS for the
operators N̂, Ĉ, Ŝ (37) were discussed in [251]. For recent
studies see, e.g., [252].

Multimode generalizations of the (Gaussian) MUS were
discussed in [253], and their detailed study was given in [254].
Noise minimum states, which give the minimal value of the
photon number operator fluctuation σn for the fixed values of
the lower order moments, e.g., 〈â〉, 〈â2〉, 〈n̂〉, were considered
in [255]. This study was continued in [256], where eigenstates
of operator â†â − ξ ∗â − ξ â† were found in the form

|ξ ;M〉 = (â† + ξ ∗)M |ξ〉coh (60)

(these states differ from (31), due to the opposite sign of the
term ξ ∗). Different families of MUS related to the powers of the
bosonic operators were considered in [257]. The eigenstates of
the most general linear combination of the operators â, â†, â2,
â†2, and â†â were studied in [182], where the general concept
of algebra eigenstates was introduced. These states were
defined as eigenstates of the linear combination ξ1Â1 + ξ2Â2 +
· · ·+ξnÂn, where Âk are generators of some algebra. In the case
of two-photon algebra these states are expressed in terms of
the confluent hypergeometric function or the Bessel function,
and they contain, as special cases, many other families of
nonclassical states [258].

The case of the spin (angular momentum) operators
was considered in [259], where the name intelligent states
was introduced. The relations between coherent spin states,
intelligent spin states, and minimum-uncertainty spin states
were discussed in [260]. For recent publications see,
e.g., [261]. Nowadays the ‘intelligent’ states are understood to
be the states for which the Heisenberg uncertainty relation (11)
becomes the equality, whereas the MUS are those for which
the ‘uncertainty product’�A�B attains the minimal possible
value (for arbitrary operators Â, B̂ such states may not
exist [50]). The relations between squeezing and ‘intelligence’
were discussed, e.g., in papers [104,258,262]. The properties
and applications of the SU(1, 1) and SU(2) intelligent
states were considered in [263]. The intelligent states for
the generators K̂1,2 of the su(1, 1) algebra were named

Hermite polynomial states in [264], since they have the
form Ŝ(z)Hm(ξ â

†)|0〉, thus being finite superpositions of the
squeezed number states. Such states were studied in [265].
The minimum uncertainty state for sum squeezing in the
form Ŝ(ξ)Hpq(µâ

†
1, µâ

†
2)|00〉 was found in [266]. Here Hpq

is a special case of the family of two-dimensional Hermite
polynomials, which are useful for many problems of quantum
optics [67, 120, 267].

8. Non-Gaussian and ‘coherent’ states for
nonoscillator systems

There exist different constructions of ‘coherent states’ for
a particle moving in an arbitrary potential. MUS whose
time evolution is as close as possible to the trajectory of a
classical particle have been studied by Nieto and Simmons
in a series of papers, beginning with [268, 269]. In [270]
‘coherent’ states were defined as eigenstates of operators like
Â = f (x)+iσ(x)d/dx. However, such packets do not preserve
their forms in the process of evolution, losing the important
property of the Schrödinger nonspreading wavepackets.

At least three anharmonic potentials are of special inter-
est in quantum mechanics. The closest to the harmonic os-
cillator is the ‘singular oscillator’ potential x2 + gx−2 (also
known as the ‘isotonic,’ ‘pseudoharmonical,’ ‘centrifugal’
oscillator, or ‘oscillator with centripetal barrier’). Differ-
ent coherent states for this potential have been constructed
in [180, 201, 269, 271–273].

MUS for the Morse potential U0(1 − e−ax)2 were
constructed in [274]; the cases of the Pöschl–Teller and
Rosen–Morse potentials, U0 tan2(ax) and U0 tanh2(ax), were
considered in [269]. Algebraic coherent states for these
potentials, based, in particular, on the algebras su(1, 1) or
so(2, 1), have been proposed in [275], for recent constructions
see, e.g., [272, 276]. Coherent states for the reflectionless
potentials were constructed in [277]. The intelligent states for
arbitrary potentials, with concrete applications to the Pöschl–
Teller one, were considered recently in [278].

Klauder [279] has proposed a general construction of
coherent states in the form

|z; γ 〉 =
∑
n

zn√
ρn

exp(−ienγ )|n〉, Ĥ |n〉 = en|n〉,
(61)

where positive coefficients {ρn} satisfy certain conditions,
while the discrete energy spectrum {en} may be quite arbitrary.
This construction was applied to the hydrogen atom in [280].
Another special case of states (61) is the Mittag–Leffler
coherent state [281]:

|z;α, β〉 = N
∞∑
n=0

zn√
B(αn + β)

|n〉. (62)

Penson and Solomon [282] have introduced the state |q, z〉 =
ε(q, zâ†)|0〉, where function ε(q, z) is a generalization of the
exponential function given by the relations:

dε(q, z)/dz = ε(q, qz), ε(q, z) =
∞∑
n=0

qn(n−1)/2zn/n!.
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The Gaussian exponential form of the coefficients ρn in (61)
was used in [283] to construct localized wavepackets for the
Coulomb problem, the planar rotor and the particle in a box.
For the most recent studies see, e.g., [278, 284].

8.1. Coherent states and packets in the hydrogen atom

Introducing the nonspreading Gaussian wavepackets for the
harmonic oscillator, Schrödinger wrote in the same paper [1]2

‘We can definitely foresee that, in a similar way, wave
groups can be constructed which would round highly quantized
Kepler ellipses and are the representation by wave mechanics
of the hydrogen electron. But the technical difficulties in the
calculation are greater than in the especially simple case which
we have treated here.’

Indeed, this problem turned out to be much more
complicated than the oscillator one. One of the first attempts to
construct the quasiclassical packets moving along the Kepler
orbits was made by Brown [285] in 1973. A similar approach
was used in [286]. Different nonspreading and squeezed
Rydberg packets were considered in [287].

The symmetry explaining degeneracy of hydrogen energy
levels was found by Fock [288] (see also Bargmann [289]): it
is O(4) for the discrete spectrum and the Lorentz group (or
O(3, 1)) for the continuous one. The symmetry combining
all the discrete levels into one irreducible representation
(the dynamical group O(4, 2)) was found in [290] (see
also [291]). Different group related coherent states
connected to these dynamical symmetries were discussed
in [292]. The Kustaanheimo–Stiefel transformation [293],
which reduces the three-dimensional Coulomb problem to the
four-dimensional constrained harmonic oscillator [294], was
applied to obtain various coherent states of the hydrogen atom
in [295]. For the most recent publications see, e.g., [272,296].

8.2. Relativistic oscillator coherent states

One of the first papers on the relativistic equations with
internal degrees of freedom was published by Ginzburg and
Tamm [297]. The model of ‘covariant relativistic oscillator’
obeying the modified Dirac equation

(γµ∂/∂xµ + a[ξµξµ − ∂2/∂ξµ∂ξµ] +m0)ψ(x, ξ) = 0, (63)

where x is the 4-vector of the ‘centre of mass’, and 4-vector
ξ is responsible for the ‘internal’ degrees of freedom of
the ‘extended’ particle, was studied by many authors [298].
Coherent states for this model, related to the representations
of the SU(1, 1) group and the ‘singular oscillator’ coherent
states of [180], have been constructed in [299]. Coherent states
of relativistic particles obeying the standard Dirac or Klein–
Gordon equations were discussed in [300].

Different families of coherent states for several new
models of the relativistic oscillator, different from the
Yukawa–Markov type (63), have been studied during the
1990s. Mir-Kasimov [301] constructed intelligent states (in
terms of the Macdonald function Kν(z)) for the coordinate
and momentum operators obeying the ‘deformed relativistic
uncertainty relation’:

[x̂, p̂] = ih̄ cosh[(ih̄/2mc) d/dx].

2 Translation given in: Schrödinger E 1978 Collected Papers on Wave
Mechanics (New York: Chelsea) pp 41–4.

Coherent states for another model, described by the equation

i∂ψ/∂t = [
αk
(
p̂k − imωx̂kβ

)
+mβ

]
ψ (64)

and named ‘Dirac oscillator’ in [302] (although similar
equations were considered earlier, e.g., in [303]), have been
studied in [304]. Aldaya and Guerrero [305] introduced
the coherent states based on the modified ‘relativistic’
commutation relations:

[Ê, x̂] = −ih̄p̂/m, [Ê, p̂] = imω2h̄x̂,

[x̂, p̂] = ih̄(1 + Ê/mc2).

These states were studied in [306].

8.3. Supersymmetric states

The concept of supersymmetry was introduced by Gol’fand
and Likhtman [307]. The nonrelativistic supersymmetric
quantum mechanics was proposed by Witten [308] and studied
in [309]. Its super-simplified model can be described in terms
of the Hamiltonian which is a sum of the free oscillator and
spin parts, so that the lowering operator can be conceived as a
matrix

Ĥ = â†â − 1
2 σ3, Â =

∥∥∥∥ â 1
0 â

∥∥∥∥
(σ3 is the Pauli matrix). Then one can try to construct various
families of states applying the operators like exp(αÂ†) to the
ground (or another) state, looking for eigenstates of Â or
some functions of this operator, and so on. The first scheme
was applied by Bars and Günaydin [310], who constructed
group supercoherent states. The same (displacement operator)
approach was used in [311]. The second way was chosen by
Aragone and Zypman [312], who constructed the eigenstates
of some ‘supersymmetric’ non-Hermitian operators.

Different coherent states for the Hamiltonians obtained
from the harmonic oscillator Hamiltonian through various
deformations of the potential (by the Darboux transformation,
for example) have been studied in [313]. ‘Supercoherent’ and
‘supersqueezed’ states were studied in [314].

8.4. Binomial states

The finite combinations of the first M + 1 Fock states in the
form [315, 316]

|p,M; θn〉 =
M∑
n=0

eiθn

[
M!

n! (M − n)! p
n(1 − p)M−n

]1/2

|n〉

(65)

were named ‘binomial states’ in [315] (see also [317]). As
a matter of fact, they were studied much earlier in the
paper [199]: see equation (47). Binomial states go to the
coherent states in the limit p → 0 and M → ∞, provided
pM = const, so they are representatives of a wider class
of intermediate, or interpolating, states. The special case
of M = 1 (i.e., combinations of the ground and the first
excited states) was named Bernoulli states in [315]. Other
‘intermediate’ states are (they are superpositions of an infinite
number of Fock states) logarithmic states [318]

|ψ〉log = c|0〉 + N
∞∑
n=1

zn√
n

|n〉 (66)
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and negative binomial states [319]

|ξ, µ; θn〉 =
∞∑
n=0

eiθn

[
(1 − ξ)µ B(µ + n)

B(µ)n!
ξn
]1/2

|n〉, (67)

where µ > 0, 0 � ξ < 1. One can check that for
θn = nθ0 the state (67) coincides with the generalized phase
state (45) introduced in [199,200]. Mixed quantum states with
negative binomial distributions of the diagonal elements of
the density matrix in the Fock basis appeared in the theory of
photodetectors and amplifiers in [320].

Reciprocal binomial states

|M;M〉 = N
M∑
n=0

einφ
√
n!(M − n)! |n〉 (68)

were introduced in [321], and schemes of their generation
were discussed in [322]. Intermediate number squeezed
states Ŝ(z)|η,M〉 (where |η,M〉 is the binomial state) were
introduced in [323] and generalized in [324]. Multinomial
states have been introduced in [325]. Barnett [326] has
introduced the modification of the negative binomial states
of the form:

|η,−(M + 1)〉 ∼
∞∑
n=M

[
n!

(n−M)!η
M+1(1 − η)n−M

]1/2

|n〉.

The binomial coherent states

|λ;M〉 ∼ (â†+λ)M |0〉 ∼
M∑
n=0

λM−n|n〉
(M−n)!√n!

∼ D̂(−λ)â†MD̂(λ)|0〉 (69)

(here λ is real and D̂(λ) is the displacement operator) were
studied in [327, 328]. State (69) is the eigenstate of operator
â†â + λâ with the eigenvalue M . The superposition states
|λ;M〉 + exp(iϕ)| − λ;M〉 were studied in [329]. Replacing
operator â† in the right-hand side of (69) by the spin raising or
lowering operators Ŝ± one arrives at the binomial spin-coherent
state [328]. For other studies on binomial, negative binomial
states and their generalizations see, e.g., [206, 330].

8.5. Kerr states and ‘macroscopic superpositions’

The main suppliers of nonclassical states are the media
with nonlinear optical characteristics. One of the simplest
examples is the so-called Kerr nonlinearity, which can be
modelled in the single-mode case by means of the Hamiltonian
Ĥ = ωn̂ + χn̂2 (where n̂ = â†â). In 1984, Tanaš [331]
demonstrated a possibility of obtaining squeezing using this
kind of nonlinearity. In 1986, considering the time evolution
of the initial coherent state under the action of the ‘Kerr
Hamiltonian’, Kitagawa and Yamamoto [250] showed that
the states whose initial shapes in the complex phase plane
α were circles (these shapes are determined by the equation
Q(α) = const, where the Q-function is defined as Q(α) =
〈α|ρ̂|α〉), are transformed to some ‘crescent states’, with
essentially reduced fluctuations of the number of photons:
�n ∼ 〈n〉1/6 (whereas in the case of the squeezed states one
has �n � 〈n〉1/3).

The behaviour of the Q-function was also studied by
Milburn [332], who (besides confirming the squeezing effect)

discovered that under certain conditions, the initial single
Gaussian function is split into several well-separated Gaussian
peaks. Yurke and Stoler [333] gave the analytical treatment
to this problem, generalizing the nonlinear term in the
Hamiltonian as n̂k (k being an integer). The initial coherent
state is transformed under the action of the Kerr Hamiltonian
to the Titulaer–Glauber state (32)

|α; t〉 = exp(−|α|2/2)
∞∑
n=0

αnt√
n!

exp(−iχnkt)|n〉, (70)

where αt = α exp(−iωt). Yurke and Stoler noticed that for
the special value of time t∗ = π/2χ , state (70) becomes the
superposition of two or four coherent states, depending on the
parity of the exponent k:

|α; t∗〉 =
{

[e−iπ/4|αt 〉 + eiπ/4| − αt 〉]/
√

2, k even

[|αt 〉 − |iαt 〉 + | − αt 〉 + | − iαt 〉]/2, k odd.
(71)

Notice that the first superposition (for k even) is different
from the even or odd states (36). The even and odd states
arise in the case of the two-mode nonlinear interaction Ĥ =
ω(â†â + b̂†b̂) + χ(â†b̂ + b̂†â)2 considered by Mecozzi and
Tombesi [334]. In this case, the initial state |0〉a|β〉b is
transformed at the moment t∗ = π/4χ to the superposition:

|out, t∗〉 = 1
2 e−iπ/4(|βt 〉b − | − βt 〉b)|0〉a

+ 1
2 |0〉b(| − iβt 〉a + |iβt 〉a).

In the course of time, such ‘macroscopic superpositions’ of
quantum states attracted great attention, being considered
as simple models of the ‘Schrödinger cat states’ [335]. In
particular, they were studied in detail in [336]. Other
superpositions of quantum states of the electromagnetic field,
which can be created in a cavity due to the interaction with
a beam of two-level atoms passing one after another, were
considered in [337]. Some of them, described in terms of
specific solutions of the Jaynes–Cummings model [338], were
named tangent and cotangent states in [339]. The squeezed
Kerr states were analysed in [340].

Searching for the states giving maximal squeezing,
various superpositions of states were considered. In particular,
the superpositions of the Fock states |0〉 and |1〉 (Bernoulli
states) were studied in [315, 341], similar superpositions
(plus state |2〉) were studied in [342]. The superposition of
two squeezed vacuum states was considered in [343]. The
superpositions of the coherent states |αeiϕ〉 and |αe−iϕ〉 were
considered in [344]. Entangled coherent states have been
introduced by Sanders in [345]. Their generalizations and
physical applications have been studied in [346]. Various
superpositions of coherent, squeezed, Fock, and other states, as
well as methods of their generation, were considered in [347].

Representations of nonclassical states (including quadra-
ture squeezed and amplitude squeezed) via linear integrals over
some curve C (closed or open, infinite or finite) in the complex
plane of parameters,

|g〉 =
∫

C
g(z)|z〉 dz, (72)

were studied in [348]. Originally, |z〉 was the coherent state,
but it is clear that one may choose other families of states,
as well.
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8.6. Photon-added states

An interesting class of nonclassical states consists of the
photon-added states

|ψ,m〉add = Nmâ
†m|ψ〉, (73)

where |ψ〉 may be an arbitrary quantum state, m is a positive
integer—the number of added quanta (photons or phonons),
and Nm is a normalization constant (which depends on the basic
state |ψ〉). Agarwal and Tara [349] introduced these states
for the first time as the photon-added coherent states (PACS)
|α,m〉, identifying |ψ〉 with Glauber’s coherent state |α〉 (5).
These states differ from the displaced number state |n, α〉 (31).
Taking the initial state |ψ〉 in the form of a squeezed state, one
obtains photon-added squeezed states [350]. The even/odd
photon-added states were studied in [351]. One can easily
generalize the definition (73) to the case of mixed quantum
states described in terms of the statistical operator ρ̂: the
statistical operator of the mixed photon-added state has the
form (up to the normalization factor) ρ̂m = â†mρ̂âm. A
concrete example is the photon-added thermal state [352]. A
distinguishing feature of all photon-added states is that the
probability of detecting n quanta (photons) in these states
equals exactly zero for n < m. These states arise in a
natural way in the processes of the field–atom interaction
in a cavity [349]. Replacing the creation operator â† in the
definition (73) by the annihilation operator â one arrives at the
photon-subtracted state |ψ,m〉subt = Nmâ

m|ψ〉. The methods
of creating photon-added/subtracted states via conditional
measurements on a beamsplitter were discussed in [353,354].

Photon-added states are closely related to the boson
inverse operator (40), whose properties were studied in [355].
It was shown in [356] that PACS |α,m〉add is an eigenstate of the
operator â − mâ†−1 with eigenvalue α. The photon-depleted
coherent states |α,m〉depl = Nmâ

†−m|α〉 have been introduced
in [356]. For the most recent studies on photon-added states
see [357].

8.7. Multiphoton and ‘circular’ coherent and squeezed states

Multiphoton states, defined as eigenstates of operator âk ,
were studied in [358, 359]. The case of k = 3 was
considered in [360]. Four-photon states (k = 4) [359, 361]
can be represented as superpositions of two even/odd coherent
states (36) |α〉± and |iα〉± whose labels are rotated by 90◦

in the parameter complex plane. For this reason, the state
|α〉+ + |iα〉+ was called the orthogonal-even state in [362].
General schemes of constructing multiphoton coherent and
squeezed states of arbitrary orders were given in [363].

There exist k orthogonal multiphoton states of the form

|α; k, j〉=N
∞∑
n=0

αnk+j√
(nk + j)!

|nk+j〉, j = 0, 1, . . . , k−1,

(74)
which can also be expressed as the superpositions of k coherent
states uniformly distributed along the circle:

|α; k, j〉 = N
k−1∑
n=0

exp(−2π inj/k) |α exp(2π in/k)〉. (75)

Such orthogonal ‘circular’ states were studied in [364].
The difference between the Bialynicki-Birula states (33)
and states (75) is in the ‘weights’ of each coherent state
in the superposition. In the case of (33) these weights
are different, to ensure the Poissonian photon statistics,
whereas in the ‘circular’ case all the coefficients have the
same absolute value, resulting in non-Poissonian statistics.
Eigenstates of the operator (µâ + νâ†)k were considered
in [365] (with the emphasis on the case k = 2). Eigenstates
of products of annihilation operators of different modes,
âkb̂l · · · ĉm|η〉 = η|η〉, have been found in [366] in the form
of finite superpositions of products of coherent states. For
example, in the two-mode case one has (M is an integer):

|η〉 = N
Mkl−1∑
n=0

cj

∣∣∣∣α exp

[
2π i

n(M + 1)

kM

]〉

⊗
∣∣∣β exp

(
−2π i

n

lM

)〉
, η = αkβl.

‘Crystallized’ Schrödinger cat states have been introduced
in [367]. For the most recent studies on the ‘multiphoton’
or ‘circular’ states and their generalizations see [149, 368].

8.8. ‘Intermediate’ and ‘polynomial’ states

After the papers by Pegg and Barnett [369], where the finite-
dimensional ‘truncated’ Hilbert space was used to define the
phase operator, various ‘truncated’ versions of nonclassical
states have been studied. Properties of the state

∑M
n=0

(1 +n)−1|n〉 were discussed in [204,370]. Quasiphoton phase
states

∑s
n=0 exp(inϑ)|n〉g , where |n〉g is the squeezed number

state, were considered in [371]. The ‘finite-dimensional’
and ‘discrete’ coherent states were considered in [372]. The
generalized geometric state |y;M〉 = ∑M

n=0 y
n/2|n〉 was

introduced in [373], and its even variant in [374]. In the limit
M → ∞ this state goes to the phase coherent states (43)
(called geometric states in [373, 374], due to the geometric
progression form of the coefficients in the Fock basis). For
other examples see [375].

The Laguerre polynomial state LM(−yR̂†)|0〉, where

R̂† = â†
√
N̂ + 1 , was introduced in [376]. A more general

definition LM(ξ Ĵ+)|k, 0〉 (where Ĵ+ is one of the generators
of the su(1, 1) algebra, and |k, n〉 is the discrete basis state
labelled by the representation index k) has been given in [377].
The properties of these states were studied in [378].

Jacobi polynomial states were introduced in [354].
Several modifications of the binomial distributions have been
used to define Pólya states [379], hypergeometric states [380],
and so on. For example, the states introduced in [381]

|N,α, β〉 ∼
N∑
n=0

[
(α + 1)n(β + 1)N−n
n!(N − n)!

]1/2

|n〉

are related to the Hahn polynomials. They contain, as special
or limit cases, usual binomial and negative binomial states.

9. ‘Quantum deformations’ and related states

9.1. Para-coherent states

In 1951, Wigner [196] pointed out that to obtain an equidistant
spectrum of the harmonic oscillator, one could use, instead of
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the canonical bosonic commutation relation (3), more weak
conditions:

[âε, Ĥ ] = âε, [â†
ε , Ĥ ] = −â†

ε ,

Ĥ = (
â†
ε âε + âε â

†
ε

)
/2.

(76)

Then the spectrum of the oscillator becomes (in the
dimensionless units) En = n + ε, n = 0, 1, . . . , with an
arbitrary possible lowest energy ε (for the usual oscillator
ε = 1/2). Wigner’s observation is closely related to the
problem of parastatistics (intermediate between the Bose and
Fermi ones) [382], which was studied by many authors in the
1950s and 1960s; see [383, 384] and references therein. In
1978, Sharma et al [385] introduced para-Bose coherent states
as the eigenstates of the operator âε satisfying the relations (76)

|α〉ε ∼
∞∑
n=0

{
B
([[n

2

]]
+ 1
)
B

([[
n + 1

2

]]
+ ε

)}−1/2

×
(
α√
2

)n
|n〉ε, (77)

where |n〉ε ∼ â†n
ε |0〉ε , |0〉ε is the ground state, and [[u]] means

the greatest integer less than or equal to u. Introducing the
Hermitian ‘quadrature’ operators in the same manner as in (19)
(but with a different physical meaning), one can check that
�xε�pε = |〈[x̂ε, p̂ε]〉|/2 in the state (77), i.e., this state is
‘intelligent’ for the operators x̂ε and p̂ε [386].

Another kind of ‘para-Bose operator’ was considered
in [387] on the basis of a nonlinear transformation of the
canonical bosonic operators:

Â = F ∗(n̂ + 1)â, Â† = â†F(n̂ + 1), n̂ = â†â.

(78)
The transformed operators satisfy the relations:

[Â, n̂] = Â, [Â†, n̂] = −Â†, n̂ = â†â. (79)

Defining the ‘para-coherent state’ |λ〉 as an eigenstate of the
operator Â, Â|λ〉 = λ|λ〉, one obtains:

|λ〉 = N
(

|0〉 +
∞∑
n=1

λn|n〉√
n!F ∗(1) · · ·F ∗(n)

)
. (80)

Evidently, the choice F(n) = √
n + 2k − 1 reduces the

state (80) to the Barut–Girardello state (54). Nowadays
the states (80) are known mainly under the name nonlinear
coherent states (NLCS): see section 9.4. Varios ‘para-states’
were considered in [388–390]. In particular, the generalized
‘para-commutator relations’

[n̂, â†] = â†, [n̂, â] = −â,
â†â = φ(n̂), ââ† = φ(n̂ + 1)

have been resolved in [389] by means of the nonlinear
transformation to the usual bosonic operators b̂, b̂†

â =
√
φ(n̂ + 1)

n̂ + 1
b̂, Â = n̂ + 1

φ(n̂ + 1)
â, [Â, â†] = 1,

(81)
and coherent states were defined as |α〉 ∼ exp(αÂ†)|0〉.

9.2. q-coherent states

One of the most popular directions in mathematical physics
of the last decades of the 20th century was related to various
deformations of the canonical commutation relations (3) (and
others). Perhaps, the first study was performed in 1951 by
Iwata [391], who found eigenstates of the operator â†

q âq ,
assuming that âq and â†

q satisfy the relation (he used letter
ρ instead of q):

âq â
†
q − q â†

q âq = 1, q = const. (82)

Twenty five years later, the same relation (82) and its
generalizations to the case of several dimensions were
considered by Arik and Coon [392, 393], Kuryshkin [394],
and by Jannussis et al [395]. A realization of the commutation
relation (82) in terms of the usual bosonic operators â, â† by
means of the nonlinear transformation was found in [395]:

âq = F(n̂)â, n̂ = â†â. (83)

For real functions F(n) equation (82) is equivalent to the
recurrence relation (n+1)[F(n)]2−qn[F(n−1)]2 = 1, whose
solution is

F(n) = {
[n + 1]q/(n + 1)

}1/2
, (84)

where symbol [n]q means:

[n]q = (qn − 1)/(q − 1) ≡ 1 + q + · · · + qn−1. (85)

The operators given by (83) obey the relations (79). Using
the transformation (83) one can obtain the realizations of more
general relations than (82):

ÂÂ† = 1 +
K∑
k=1

qkÂ
†kÂk.

The corresponding recurrence relations for F(n) were given
in [395].

Coherent states of the pseudo-oscillator, defined by the
‘inverse’ commutation relation [â, â†] = −1, were studied
in [396]. These states satisfy relations (5) and (4), but in the
right-hand side of (5) one should write −α instead of α.

The q-coherent state was introduced in [393, 395] as

|α〉q = expq(−|α|2/2) expq(αâ
†
q)|0〉q, (86)

where:

expq(x) ≡
∞∑
n=0

xn

[n]q!
, [n]q! ≡ [n]q[n− 1]q · · · [1]q .

Assuming other definitions of the symbol [n]q , but the same
equations (83) and (84), one can construct other ‘deformations’
of the canonical commutation relations. For example, making
the choice

[x]q ≡ (qx − q−x)/(q − q−1) (87)

one arrives at the relation

âq â
†
q − q â†

q âq = q−n̂ (88)

considered by Biedenharn in 1989 in his famous paper [397],
which gave rise (together with several other publications [398])
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to the ‘boom’ in the field of ‘q-deformed’ states in quantum
optics.

Squeezing properties of q-coherent states and different
types of q-squeezed states were studied in [399, 400]. For
example, in [399] the q-squeezed state was defined as a
solution to equation

(
âq − αâ†

q

) |α〉q−sq = 0 (cf (16) and (17)).
It has the following structure:

|α〉q−sq = N
∞∑
n=0

αn
(

[2n− 1]q!!

[2n]q!!

)1/2

|2n〉. (89)

Two families of coherent states for the difference analogue
of the harmonic oscillator have been studied in [401], and
one of them coincided with the q-coherent states. The
‘quasicoherent’ state expq(zâ

†
q) expq(z

∗â†
q)|0〉 was considered

in [402]. Coherent states of the two-parameter quantum
algebra supq(2) have been introduced in [403], on the basis
of the definition:

[x]pq = (qx − p−x)/(q − p−1).

Analogous construction, characterized by the deformations of
the form

ââ† = q2
1 â

†â + q2n̂
2 = q2

2 â
†â + q2n̂

1 ,

[n] = (q2n
1 − q2n

2 )/(q
2
1 − q2

2 ),

has been studied in [404] under the name ‘Fibonacci
oscillator.’ Even and odd q-coherent states have been studied
in [405]. The q-binomial states were considered in [406].
Multimode q-coherent states were studied in [407]. Various
families of ‘q-states’, including q-analogues of the ‘standard
sets’ of nonclassical states, have been studied in [186, 408].
Interrelations between ‘para’- and ‘q-coherent’ states were
elucidated in [389, 409].

9.3. Generalized k-photon and fractional photon states

The usual coherent states are generated from the vacuum by
the displacement operator Û1 = exp(zâ† − z∗â), whereas
the squeezed states are generated from the vacuum by
the squeeze operator Û2 = exp(zâ†2 − z∗â2). It seems
natural to suppose that one could define a much more
general class of states, acting on the vacuum by the operator
Ûk = exp(zâ†k − z∗âk). However, such a simple definition
leads to certain troubles [410], for instance, the vacuum
expectation value 〈0|Ûk|0〉 has zero radius of convergence as
a power series with respect to z, for any k > 2. Although
this phenomenon was considered as a mathematical artefact
in [411], many people preferred to modify the operators â†k

and âk in the argument of the exponential in such a way that
no questions on the convergence would arise.

One possibility was studied in a series of papers [412].
Instead of a simple power â†k in Ûk , it was proposed to use the
k-photon generalized boson operator (introduced in [384])

Â
†
(k) =

([[
n̂

k

]]
(n̂− k)!
n̂!

)1/2

(â†)k n̂ = â†â, (90)

which satisfies the relations (note that Â(1) = â, but Â(k) �= âk
for k � 2):[

Â(k) , Â
†
(k)

]
= 1,

[
n̂ , Â(k)

]
= −kÂ(k). (91)

The related concept of coherent and squeezed fractional photon
states was used in [413].

Bužek and Jex [414] used Hermitian superpositions of
the operators Â(k) and Â†

(k) in order to define the kth-order
squeezing in the frameworks of the Walls–Zoller scheme (30).
The multiphoton squeezing operator can be defined as Ŝ(k) =
exp[zÂ†

(k) − z∗Â(k)]. As a matter of fact, we have an
infinite series of the products of the operators (â†)l âl+k and
their Hermitially conjugated partners in the argument of the
exponential function. The generic multiphoton squeezed state
can be written as |α, z〉(k) = D̂(α)Ŝ(k)(z)|ψ〉 (in the cited
papers the initial state |ψ〉 was assumed to be the vacuum state).
An alternative definition (in the simplest case of α = ψ = 0)

|z; k〉 = exp(−|z|2/2)
∞∑
n=0

zn

n!
Â

†n
(k)|0〉 (92)

results in the superposition of the states with 0, k, 2k, . . .
photons of the form:

|z; k〉 = exp(−|z|2/2)
∞∑
n=0

zn√
n!

|kn〉. (93)

9.4. Nonlinear coherent states

The NLCS were defined in [415, 416] as the right-hand
eigenstates of the product of the boson annihilation operator â
and some function f (n̂) of the number operator n̂:

f (n̂)â|α, f 〉 = α|α, f 〉. (94)

Actually, such states have been known for many years under
other names. The first example is the phase state (43) or its
generalization (45) (known nowadays as the negative binomial
state or the SU(1, 1) group coherent state), for which f (n) =
[(1 + κ)/(1 + κ + n)]1/2. The decomposition of the NLCS over
the Fock basis has the form (80), consequently, NLCS coincide
with ‘para-coherent states’ of [387]. Many nonclassical states
turn out to be eigenstates of some ‘nonlinear’ generalizations
of the annihilation operator. It has already been mentioned
that the ‘Barut–Girardello states’ belong to the family (80).
Another example is the photon-added state (73), which
corresponds to the nonlinearity function f (n) = 1 − m/(1 +
n) [417]. The physical meaning of NLCS was elucidated
in [415, 416], where it was shown that such states may appear
as stationary states of the centre-of-mass motion of a trapped
ion [415], or may be related to some nonlinear processes (such
as a hypothetical ‘frequency blue shift’ in high intensity photon
beams [416]). Even and odd NLCS, introduced in [418], were
studied in [419], and applications to the ion in the Paul trap
were considered in [420]. Further generalizations, namely,
NLCS on the circle, were given in [421] (also with applications
to the trapped ions). Nonclassical properties of NLCS and their
generalizations have been studied in [422, 423].

10. Concluding remarks

We see that the nomenclature of nonclassical states studied by
theoreticians for seventy five years (most of them appeared
in the last thirty years) is rather impressive. Now the main
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problem is to create them in laboratory and to verify that
the desired state was indeed obtained. Therefore to conclude
this review, I present a few references to studies devoted to
experimental aspects and applications in other areas of physics
(different from quantum optics). This list is very incomplete,
but the reader can find more extensive discussions in the papers
cited later.

10.1. Generation and detection of nonclassical states

The first proposals on different schemes of generating ‘the
most nonclassical’ n-photon (Fock) states appeared in [424].
The problem of creating Fock states and their arbitrary
superpositions in a cavity (in particular, via the interaction
between the field and atoms passing through the cavity),
named quantum state engineering in [425], was studied, e.g.,
in [425,426]. Different methods of producing ‘cat’ states were
proposed in [427]. The use of beamsplitters to create various
types of nonclassical states was considered in [354,428]. The
problem of generating the states with ‘holes’ in the photon-
number distribution was analysed in [429]. A possibility of
creating nonclassical states in a cavity with moving mirrors
(which can mimic a Kerr-like medium) was studied in [430]
(for a detailed review of studies on the classical and quantum
electrodynamics in cavities with moving boundaries, with
the emphasis on the dynamical Casimir effect, see [431]).
The results of the first experiments were described in [432]
(nonclassical states of the electromagnetic field inside a cavity)
and [433] (nonclassical motional states of trapped ions). For
details and other proposals see, e.g., [6, 434, 435]. Various
aspects of the problem of detecting quantum states and their
‘recognition’ or reconstruction were treated in [436–438].

Different schemes of the conditional generation of special
states (in cavities, via continuous measurements, etc) were
discussed, e.g., in [439].

Several specific kinds of quantum states became popular
in the last decade. Dark states [440] are certain superpositions
of the atomic eigenstates, whose typical common feature is
the existence of some sharp ‘dips’ in the spectra of absorption,
fluorescence, etc, due to the destructive quantum interference
of transition amplitudes between different energy levels
involved. These states are connected with the NLCS [415].
For reviews and references see, e.g., [441,442]. Greenberger–
Horne–Zeilingler states (or GHZ-states) [443], which are
certain states of three or more correlated spin- 1

2 particles,
are popular in the studies related to the EPR-paradox, Bell
inequalities, quantum teleportation, and so on. For methods of
their generation and other references see, e.g., [444].

10.2. Applications of nonclassical states in different areas
of physics

The squeezed and ‘cat’ states in high energy physics were
considered in [445]. Applications of the squeezed and other
nonclassical states to cosmological problems were studied
in [446]. Squeezed and ‘cat’ states in Josephson junctions were
considered in [447]. Squeezed states of phonons and other
bosonic excitations (polaritons, excitons, etc) in condensed
matter were studied in [448]. Spin-coherent states were
used in [449]. Nonclassical states in molecules were studied
in [450]. Nonclassical states of the Bose–Einstein condensate
were considered in [435, 451].
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[85] Tanaś R and Kielich S 1983 Self-squeezing of light
propagating through non-linear optically isotropic media
Opt. Commun. 45 351–6

[86] Milburn G J 1984 Interaction of a two-level atom with
squeezed light Opt. Acta 31 671–9

[87] Stoler D 1974 Photon antibunching and possible ways to
observe it Phys. Rev. Lett. 33 1397–400
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Lukš A and Peřinová V 1994 Presumable solutions of
quantum phase problem and their flaws Quantum Opt. 6
125–67

Lynch R 1995 The quantum phase problem: a critical review
Phys. Rep. 256 367–437
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[342] Wódkiewicz K, Knight P L, Buckle S J and Barnett S M 1987
Squeezing and superposition states Phys. Rev. A 35
2567–77

[343] Sanders B C 1989 Superposition of two squeezed vacuum
states and interference effects Phys. Rev. A 39 4284–7

[344] Schleich W, Pernigo M and Kien F L 1991 Nonclassical state
from two pseudoclassical states Phys. Rev. A 44 2172–87

[345] Sanders B C 1992 Entangled coherent states Phys. Rev. A 45
6811–15

[346] Gerry C C 1997 Generation of Schrödinger cats and
entangled coherent states in the motion of a trapped ion by
a dispersive interaction Phys. Rev. A 55 2478–81

Rice D A and Sanders B C 1998 Complementarity and
entangled coherent states Quantum Semiclass. Opt. 10
L41–7

Recamier J, Castaños O, Jáuregi R and Frank A 2000
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[372] Bužek V, Wilson-Gordon A D, Knight P L and Lai W K 1992
Coherent states in a finite-dimensional basis: their phase
properties and relationship to coherent states of light Phys.
Rev. A 45 8079–94

Kuang L-M and Chen X 1994 Phase-coherent states and their
squeezing properties Phys. Rev. A 50 4228–36

Galetti D and Marchiolli M A 1996 Discrete coherent states
and probability distributions in finite-dimensional spaces
Ann. Phys., NY 249 454–80

[373] Obada A S F, Hassan S S, Puri R R and Abdalla M S 1993
Variation from number-state to chaotic-state fields: a
generalized geometric state Phys. Rev. A 48 3174–85

[374] Obada A S F, Yassin O M and Barnett S M 1997 Phase
properties of coherent phase and generalized geometric
state J. Mod. Opt. 44 149–61

[375] Figurny P, Orlowski A and Wódkiewicz K 1993 Squeezed
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1997 Generating Schrödinger-cat-like states by means of
conditional measurements on a beam splitter Phys. Rev. A
55 3184–94

[429] Baseia B, Moussa M H Y and Bagnato V S 1998 Hole
burning in Fock space Phys. Lett. A 240 277–81

[430] Mancini S, Man’ko V I and Tombesi P 1997 Ponderomotive
control of quantum macroscopic coherence Phys. Rev. A
55 3042–50

Bose S, Jacobs K and Knight P L 1997 Preparation of
nonclassical states in cavities with a moving mirror Phys.
Rev. A 56 4175–86

Zheng S-B 1998 Preparation of even and odd coherent states
in the motion of a cavity mirror Quantum Semiclass. Opt.
10 657–60

[431] Dodonov V V 2001 Nonstationary Casimir effect and
analytical solutions for quantum fields in cavities with
moving boundaries Modern Nonlinear Optics, Advances
in Chemical Physics vol 119, Part 1, 2nd edn, ed
M W Evans (New York: Wiley) pp 309–94

[432] Haroche S 1995 Mesoscopic coherences in cavity QED
Nuovo Cimento B 110 545–56

[433] Meekhof D M, Monroe C, King B E, Itano W M and
Wineland D J 1996 Generation of nonclassical motional
states of a trapped atom Phys. Rev. Lett. 76
1796–9

Monroe C, Meekhof D M, King B E and Wineland D J 1996
A ‘Schrödinger cat’ superposition state of an atom Science
272 1131–6

[434] Schleich W and Rempe G (ed) 1995 Fundamental Systems in
Quantum Optics, Appl. Phys. B 60 N 2/3 (Suppl.) S1–S265

Cirac J I, Parkins A S, Blatt R and Zoller P 1996 Nonclassical
states of motion in ion traps Adv. At. Mol. Opt. Phys. 37
237–96

Davidovich L 1996 Sub-Poissonian processes in quantum
optics Rev. Mod. Phys. 68 127–73
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