J. Appl. Genet. 44(1), 2003, pp. 1-19

Invited Editorial

Noncoding RNA transcripts

Maciej SZYMAŃSKI, Mirosława Z. BARCISZEWSKA, Marek ŻYWICKI, Jan BARCISZEWSKI

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

Abstract. Recent analyses of the human genome and available data about the other higher eukaryotic genomes have revealed that, in contrast to Eubacteria and Archaea, only a small fraction of the genetic material (ca 1.5%) codes for proteins. Most of genomic DNA and its RNA transcripts are involved in regulation of gene expression, which can be exerted at either the transcriptional level, controlling whether a gene is transcribed and to what extent, or at the post-translational level, regulating the fate of the transcribed RNA molecules, including their stability, efficiency of their translation and subcellular localization. Noncoding RNA genes produce functional RNA molecules (ncRNAs) rather than encoding proteins. These stable RNAs act by multiple mechanisms such as RNA-RNA base pairing, RNA-protein interactions and intrinsic RNA activity, as well as regulate diverse cellular functions, including RNA processing, mRNA stability, translation, protein stability and secretion. Non-protein-coding RNAs are known to play significant roles. Along with transfer RNAs, ribosomal RNAs and mRNAs, ncRNAs contribute to gene splicing, nucleotide modification, protein transport and regulation of gene expression.

Key words: gene expression, imprinting, noncoding RNA, silencing.

Introduction

The regulation of gene expression is a fundamental aspect of biological phenomena, such as the responses to environmental conditions, development of multicellular organisms, morphology and disease. Gene regulatory patterns are extraordinarily diverse and complex, yet the regulation of each gene is precise

Received: June 6, 2002. Accepted: September 12, 2002.

Correspondence: J. BARCISZEWSKI, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland, e-mail: jan.barciszewski@ibch.poznan.pl

M. Szymański et al.

with respect to when and how much expression occurs. Gene regulation is remarkably flexible, both to rapidly alter the network of genes expressed in response to new conditions and to accommodate to evolutionary demands.

Currently, we are far away from an initial view of molecular mechanisms underlying cellular functions that was established over forty years ago. The central dogma of molecular biology defined a general pathway for the expression of genetic information stored in DNA, transcribed into transient messenger RNAs and decoded on ribosomes with the help of adapter RNAs (transfer RNAs) to produce proteins that were supposed to perform all enzymatic and structural functions in the cell. According to that model, ribonucleic acids (RNAs) plays a rather accessory role and the complexity of organisms is defined solely by the number of proteins encoded in a genome according to the "one gene-one protein" rule. That rather simple picture got complicated with finding of primary transcripts of eukaryotic protein genes in which coding sequences were interrupted by noncoding fragments (introns) that are excised and discarded during pre-mRNA maturation (pre-mRNA splicing). Subsequently, it was realized that in some cases they also provide means for synthesis of more than one protein product from a single gene by alternative splicing.

During the past twenty years it has been shown that in the cell there is a variety of RNA molecules that display a remarkable range of functions far beyond those already known for messenger (mRNA), ribosomal (rRNA) and transfer RNA (tRNA). This huge versatility is mainly due to chemical properties of RNA, which allow it to form complex tertiary structures capable of performing many roles that for many years were thought to be an exclusive domain of proteins.

General properties of ribonucleic acids

RNA is a ubiquitous cellular biopolymer (20% of *E. coli* dry weight), (MATTICK 2001). It is involved in all aspects of the maintenance, transfer and processing of genetic information. RNA shows unique properties as a biomolecule, since it can serve a role in the coding and decoding (by specific Watson-Crick base pairing) as well as processing of genetic information by forming intricately structured, often catalytically active components of the processing machinery. It acquires complex folded conformations that can participate in sophisticated recognition processes. RNAs provide recognition elements for protein binding, form large macromolecular complexes, and directly (RNA catalysis) or indirectly (RNP catalysis) catalyse numerous chemical reactions in the cell. RNA tertiary structures can form a virtually unlimited number of highly specific ligand-binding sites. RNA can interact with chemically and structurally diverse sets of small compounds, which exert profound effects on the biological function of the target. Detailed structural studies of antibiotics bound to the ribosome have revealed that the small-molecular-compound recognition mechanism involving rRNA is based

on combination of shape recognition and both electrostatic and hydrogen bonding interactions (MOORE, STEITZ 2002). However, the dynamic nature of RNA structures, together with the presence of associated proteins that could displace the most strongly bound ligand, makes RNA an especially difficult species to target with high-affinity molecules (aptamers).

The higher-order structures of many RNAs remain unknown, and the catalytic mechanisms for RNAs are poorly understood in general. The genetic information encoded as DNA in most living organisms is copied into mature RNAs which are folded into arrays of tertiary structures. Although there are many steps at which mRNA expression can be regulated, the only ones where stable higher-order complexes are known to reproducibly and predictably inhibit mRNA function are at the level of splicing and translation (FILIPOWICZ, POGACIC 2002). The high complexity of regulation of gene expression through RNA metabolism increases with organism and tissue organization, e.g. brain cells provide unusually abundant examples of regulation by alternative RNA processing and small noncoding RNAs (EDDY 2001). When RNA and protein bind each other, recognition occurs by induced fit mechanism rather than by rigid "lock and key" docking (MOORE, STEITZ 2002).

In addition to protein synthesis, several RNA-based processes are known and regulatory mechanisms have been documented (ERDMANN et al. 2001). Many fascinating discoveries of the last two decades, together with a fast-growing number of new functional RNAs, led to a hypothesis of a primordial RNA world, where both information and enzymatic functions are carried out by RNA molecules (EDDY 2001). However, in the course of evolution, most of the catalytic functions were taken over by proteins and the role of a major carrier of genetic information was acquired by chemically more stable DNA. It seems that those catalytic RNAs are not only molecular fossils left from all-RNA organisms, but they play important roles in extant organisms. This is particularly clear seeing the results of genome sequencing, which show that the protein-coding genes alone are not enough to account for the observed complexity of higher organisms.

Noncoding RNA

The draft of the human genome, though still incomplete, clearly reveals that coding sequences account only for less than 2% of its total (Table 1). A similar phenomenon is observed in other eukaryotic genomes (SZYMAŃSKI, BARCISZEWSKI 2002). Repeated sequences make up at least 50% of the total human genome. Among the different types of repeats, transposon-derived ones predominate (~45% of the genome), particularly retroelements including short interspersed nuclear elements (SINEs or Alu repeats, ~13%), long interspersed nuclear elements (LINEs, ~20%) and long terminal repeats (LTR) containing retroelements (~8%). Of other types of repeat, the most frequent are short tandem repeats (STRs), such

7/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	obium loti genome has not been analysed. because its file is deposited without a CDS (coding sequence annotation)	Genome size (bp) Noncoding part size (%) Noncoding part size (%) Protein-coding part size (%) Protein-coding part size (%) Max. gene size (bp) Max. gene size (bp) Min. G+C in coding part (%) Min. G+C in coding part (%) G+C in coding part (%) G+C in coding part (%) G+C in coding part (%) (%) G+C in senome (%) G+C in senome (%) (%) (%) (%) (%) (%) (%) (%)	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	6413771 19 1229654 81 5184117 5230 9789 54 991 41 42 56 24 1.024 37 0.902 5	6264403 15 923230 85 5341173 5236 16884 72 1020 67 67 76 30 1.000 64 0.955 3	4857432 17 833058 83 4024374 4144 16680 45 971 52 53 70 23 1.019 47 0.904 6	4809037 16 787416 84 4021621 4314 10875 30 932 52 53 73 21 1.019 47 0.904 6	4653728 19 901595 81 3752133 3840 11118 45 977 48 49 63 24 1.021 43 0.896 6	4639221 16 743997 84 3895224 3987 7152 45 977 51 52 67 27 1.017 45 0.882 7	4403836 16 694741 84 3709095 3760 12456 93 986 66 66 81 48 1.000 65 0.985 1	4202353 18 775154 82 3427199 3845 5451 36 891 44 44 55 18 1.000 41 0.932 3	2961149 17 490847 83 2470302 2531 13677 81 976 48 48 56 26 1.000 45 0.937 3	1072315 18 194872 82 877443 1020 9792 93 860 47 48 56 26 1.021 44 0.936 4	4016947 15 600730 85 3416217 3417 7440 93 1000 67 68 76 36 1.015 65 0.970 3	3940880 17 651569 83 3289311 3526 8613 87 933 31 32 46 17 1.032 28 0.903 4	
Anizobium loti genutiviziobium loti genutiviziobium loti genutivizio denome size (bp) Cenome size (bp) 019 6413771 1 020 6413771 1 03 3 3 019 6413771 1 019 6413771 1 019 6413771 1 019 6413771 1 010 6264403 1 110 64033728 1 010 64033728 1 010 6264403 1 011 6433221 1 012 4653728 1 012 4403836 1 012 1072315 1 13 4016947 1 137 3940880 1	ome has not been ar	Noncoding part size (%) Noncoding part size (bp) Protein-coding part size (%)	4 5 6	9 1229654 81	5 923230 85	7 833058 83	6 787416 84	9 901595 81	6 743997 84	6 694741 84	18 775154 82	17 490847 83	18 194872 82	15 600730 85	17 651569 83	
	orhizobium loti genc	Accession number Genome size (bp)	2 3 4	0019 6413771 1	4091 6264403 1	468 4857432 1	3382 4809037 1	1842 4653728 1	6 4639221 1	0516 4403836 1	0004 4202353 1	3852 2961149 1	3853 1072315 1	5673 4016947 1	1437 3940880 1	

0.936 0.896 0.948

1.000 1.021 1.017

59

58

85 82

AB001339 AL591688

Synechocystis PCC6803

M. leprae

S. meliloti

AL450380

Table 1. Results of an analysis of features of genomes. based on their complete DNA sequences. Protein-coding part size means size of all open reading frames; number of genes number of protein-coding genes; gene size means length of open reading frame. $\Delta G/C$ means difference between G/C rate in coding and noncoding part.

1	2	3	4	5	9	7	8	6	10	Π	12	13	14	15	16	11	18	19
L. innocua	AL592022	3011208	15	437928	85	2573280	2804	6504	114	918	37	38	52	23	1.027	35	0.946	я
L. monocytogenes EGD-e	NC_003210	2944528	14	419965	86	2524563	2698	6135	87	936	38	38	52	24	1.000	35	0.921	ŝ
S. aureus subsp. aureus Mu50	BA000017	2878040	19	559987	81	2318053	2558	20142	51	906	33	34	53	19	1.030	30	606.0	4
A. tumefaciens	AE007869	2841581	16	457745	84	2383836	2481	8409	93	961	59	09	69	37	1.017	55	0.932	5
D. radiodurans chl	AE000513	2648638	17	452620	83	2196018	2366	5823	114	928	67	89	Ľ	34	1.015	2	0.955	4
D. radiodurans ch2	AE001825	412348	19	80215	81	332133	308	4881	168	1078	67	67	76	37	1.000	65	0.970	7
X. fastidiosa	AE003849	2679306	21	564504	62	2114802	2538	10368	93	833	53	54	72	20	1.019	49	0.924	5
L. lactis subsp. lactis	AE005176	2365589	18	429929	82	1935660	2148	5952	96	106	35	36	47	19	1.028	31	0.886	4
N. meningitidis	AE002098	2272351	24	547687	76	1724664	1938	8112	69	890	52	53	65	18	1.019	46	0.885	٢
P. multocida	AE004439	2257487	13	295205	87	1962282	1941	11760	114	1011	40	41	48	23	1.025	36	006.0	S
S. pneumoniae	AE007317	2038615	18	374374	82	1664241	1872	7656	63	889	4	41	49	21	1.025	36	006.0	S
T. maritima	AE000512	1860725	17	317516	83	1543209	1555	5073	93	992	46	46	68	30	1.000	45	0.978	I
H. influenzae Rd	L42023	1830138	17	310596	83	1519542	1628	5085	99	933	38	39	50	21	1.026	35	0.921	4
H. pylori 26695	AE000511	1667867	15	252830	85	1415037	1449	8682	39	116	39	40	61	22	1.026	35	0.897	S
C. jejuni	AL111168	1641481	15	238121	85	1403360	1429	4554	45	982	31	31	4	10	1.000	28	0.903	3
A. aeolicus	AE000657	1551335	18	284576	82	1266759	1267	4725	144	1000	43	4	51	26	1.023	42	0.975	2
R. conorii	AE006914	1268755	23	289972	1	978783	1269	6066	69	171	32	33	46	17	1.031	31	0.969	7
C. pneumoniae AR39	AE002161	1229858	16	191771	84	1038087	1024	5481	93	1014	41	41	53	20	1.000	37	0.902	4
T. pallidum	AE000520	1138011	16	177288	84	960723	606	4602	93	1057	53	53	69	38	1.000	54	1.019	7
R. prowazekii	AJ235269	1111523	27	302393	73	809130	788	7023	69	1027	29	30	42	19	1.034	25	0.862	S
M. pulmonis	AL445566	963879	15	140511	85	823368	714	9651	114	1153	27	27	53	17	1.000	22	0.815	S
M. pneumoniae	U00089	816394	19	152476	81	663918	620	5649	114	1071	40	41	56	28	1.025	36	006.0	S
U. urealyticum	AF222894	751719	12	60906	88	661110	577	15018	105	1146	25	26	38	16	1.040	23	0.920	3
M. genitalium	L43967	580074	19	109254	81	470820	414	5418	114	1137	32	32	4	21	1.000	32	1.000	0

[5]

	(%) →+⊖ ⊽	4	9	3	9	3		e	80		3	3	5	٢
	O+C in noncoding part/O+C in genome	116	606'	1961	1918	956		.933	0.860		1.929	3.935	006.0	0.870
	C+C in noncoding part (%)	3 0	0	0 61	15 0	55 0		12	13 0		39	62	36	9
1000		8	0	0	0	0		0	0		0	5	ŝ	5
	ni O+O / Dag gaibo ni O+O	1.02	1.03	1.02	1.00	1.00		1.00	1.02	10	1.00	1.03	1.02	1.02
	(%) Ang garibos ni O+O .niM	23	19	17	28	40		32	26		29	21	20	28
	(%) neq gaibos in C+O. XBM	58	67	75	61	78		56	99		70	47	50	60
(200	(%) fag gaibos ni O+O	37	34	52	49	68		45	51		42	32	41	47
	smonsg ni D+D	36	33	51	49	89		45	50		42	31	6	46
	Average gene size (bp)	877	853	187	867	877		952	868		926	866	916	952
	Min. gene size (bp)	123	153	57	78	93		57	108		71	69	153	138
enosilor	Max. gene size (bp)	4281	4329	8358	7278	4113		6369	5364		13311	8685	6231	6246
	Gene number	2610	2436	2255	2035	1908		1523	1742		1636	1599	1384	1339
a genome	(qd) sziz rag gaibos-nistorf	2289633	2077113	1775670	1763433	1673244		1449305	1512228		1514547	1385253	1268221	1274538
nuad 1	Protein-coding part size (%)	11	11	80	81	83		82	86		87	83	80	81
veropyrum	(qd) əziz tısq gaiboənoN	702612	617652	446760	414967	340995		315813	239149		223958	279717	316583	290368
IO II	Noncoding part size (%)	23	23	20	61	17		18	14		13	17	20	19
I annotauc	Genome size (bp)	2992245	2694765	2222430	2178400	2014239		1765118	1751377		1738505	1664970	1584804	1564906
inotation, pu	Ассеззіоп питрег	AE006641	BA000023	AE009441	AE000782	AE00437		AL096836	AE000666		BA00001	L1117	BA000011	AL139299
WITHOUT CLUS AL	mzinagrO	S. solfataricus	S. tokodaii	P. aerophilum	A. fulgidus	Halobacterium	sp. NRC-1	P. abyssi	M. thermo-	autotrophicum	P. horikoshii	M. jannaschii	T. volcanium	T. acidophilum

Table 1B. Archaeal genomes. Two already known archaeal genomes have not been taken into account: *Pyrococcus furiosus* genome file is deposited without CDS annotation, but annotation of *Aeropyrum pernix* genome file is erroneous (NATALE et al. 2000)

ROT (The Arabidopsis Genome 15: The C. elegans Sequencing	012-2018; see also ADAMS et al.	ons; gene size means total exons	eomorph genome
from SWISSF ture. 408. 796-	. Science 282,	total size of ex	electivity of nuc
nan protein set is thaliana. Nat	igating biology	art size means	cause of high se
mation on hun lant Arabidonsi	tform for invest	rotein-coding p	nto account, bec
published infor he flowering pl	. elegans: a plat	et al. 2002). P	not been taken in
is is based on sequence of t	the nematode C	d. 2001, Wood	h genome has r
nomes. Analys	ne sequence of	11, VENTER et a	eta nucleomorp
Eukaryotic ge 2000: Analysis	n, 1998; Genon	INKA et al. 200	e. Guilardia th
Table 1C.	Consortium	2000; KAT	size of gen

(%)	~	ı	П	į	6	٢	2
G+C in noncoding part / G+C in genome	1.024	ı	0.971	1	0.861	0.868	0.978
G+C in noncoding part (%)	42	1	33	I	31	33	45
G+C in coding part A G+C in genome	1.219	I	1.294	ı	1.111	1.053	1.022
Heq gailoco ni O+O (%)	50	ı	4	ı	4	40	47
omonsg ni O+Đ (%)	41	57.7	34.9	36	36	38.3	46
Average gene size (qd)	1544*	1773	1303	1421	1426	1497	1307
Gene number	39114	13601	25498	18424	4824	5651	1997
Protein-coding part size (bp)	60392016	24100000	33249250	26190000	7103703	8460000	2610000
Protein-coding part size (%)	2	13.4	28.8	27	57	70.5	8
Noncoding part size (bp)	2849607984	155900000	82160699	70810000	5358934	3540000	290000
Noncoding part size (%)	98	86.6	71.2	73	43	29.5	10
(qd) əziz əmonəD	291000000	18000000	115409949	00000026	12462637	1200000	290000
msinsgaO	H. sapiens	D. melanogaster	A. thaliana	C. elegans	S. pombe	S. cerevisiae	E. cuniculi

Table 1D. Viral RNA genomes

7€+C	0	4	0	٢	0	-12
G+C in structural part / G+C in particle	1.279	1.204	1.167	1.091	1.130	1.057
G+C in structural (%) Inteq	55	65	63	99	52	56
G+C in noncoding part / G+C in particle	1.000	0.944	1.000	0.873	1.000	1.019
G+C in noncoding (%) Tigg	43	51	54	48	8	54
G+C in coding part \ G+C in particle	1.000	1.018	1.000	1.000	1.000	0.792
D+C in coding part (%)	43	55	\$	55	46	42
G+C in particle (%)	43	54	54	55	4	53
Number of genes	9	3	3	3	7	1
Coding part size (bp)	6123	6199	8609	6128	590	33
Coding part size (%)	96	16	96	16	56	6
Noncoding part size (bp)	272	163	233	191	468	330
Noncoding part (%) sziz	4	3	4	3	4	16
Particle size	6395	6362	6331	6319	1058	363
19dmun noizessosA	NC_001367	NC_001746	NC_001480	NC_001509	NC_003796	ECU68074
Particle name	Tobacco mosaic virus	Kennedya yellow mosaic virus	Eggplant mosaic virus	Turnip yellow mosaic virus	Satellite tobacco mosaic virus	Escherichia coli tmRNA

as $(A)_n$, $(CA)_n$ or $(CGG)_n$. Although these occupy only about 1% of the genome, the total number of such repeats in the genome is about 10⁵ (MATTICK 2001).

In proteome-oriented analyses of genomic sequences, only mRNA-coding genes are taken into account, and those that produce non-protein-coding transcripts are often ignored. From genomic analyses it is however evident that with an increase in organism complexity, the protein-coding contribution of a genome decreases (Table 1). It is estimated, that up to 98% of the transcriptional output of eukaryotic genomes consist of RNA that does not encode protein (ADAMS et al. 2000). This includes introns and transcripts from other non-protein-coding genes, which can account for 50-75% of all transcription in higher eukaryotes. Over the past 10 years, RNA molecules not encoding proteins, called noncoding RNAs (ncRNAs) turned out to be remarkably versatile and to play various roles in prokaryotic and eukaryotic cells (EDDY 2001, ERDMANN et al. 2000, 2001).

Numbers of protein-coding RNA genes in complete eukaryotic genomes are much lower than initially expected (Table 1) (WOOD et al. 2002). Caenorhabditis elegans and Drosophila melanogaster genomes contain only twice as much genes as yeasts or some bacteria. In the human genome the number is doubled relative to invertebrates (ADAMS et al. 2000, VENTER et al. 2001). About 99% of the estimated 40 000 human protein-coding genes have orthologs within the mouse genome. The analyses of the human genomic sequences showed that about 99.9% of differences between genomes of individual humans are located outside sequences encoding proteins. They essentially do not work at all for one class of genes - the noncoding RNA genes, which produce transcripts that function directly as structural, catalytic or regulator RNAs (Table 2). The knowledge of ncRNAs is still limited to biochemically abundant species and occasional discoveries (Table 3). Due to the lack of rigorous methods of detection it is not known how many ncRNA genes exist, how important they are and what functions they play, what the relative amounts of them are, when and how they are expressed, how stable they are, whether they contain modified bases, what their secondary and tertiary structures are like and finally why they substitute proteins (EDDY 2001, ERDMANN et al. 2001, SCHATTNER 2002, STORZ 2002).

Noncoding RNAs range in size from about 20 nucleotides for the large family of microRNA that modulate development in *C. elegans*, *D. melanogaster* and mammals, to 100-200 nucleotides for small RNAs commonly found as translational regulators in bacteria, and finally to over 10 000 nucleotides for RNA involved in gene silencing in higher eukaryotes (HUTVAGNER, ZAMORE 2002, STORZ 2002).

Functions of ncRNAs

It is now clear that all organisms contain a wealth of small untranslated RNAs that function in a variety of cellular processes. The widespread use of RNA molecules as riboregulators may in part be due to their quick and easy production, as no pro-

Table 2.	Functional	classification	of non-prote	in-coding I	RNA trans	cripts (SZYI	MANSKI,
BARCISZ	EWSKI 2002	2)					

Pro-	Noncoding	g transcripts
tein-coding transcripts	housekeeping RNAs	regulatory RNAs
mRNA	<pre>tRNA translation of genetic information rRNA ribosome components, catalysis of pep- tide bond formation snRNA pre-mRNA splicing, spliceosome com- ponents snoRNA RNA modification – 2'-O-methylation and pseudourydilation RNase P RNA maturation of 5'-ends of pre-tRNA telomerase RNA telomerase RNA telomerase RNA protein export in bacteria 7SL RNA protein export in eucaryotes tmRNA trans-translation hY RNA Ro RNP components, function un- known RNase MRP RNA processing</pre>	 transcriptional regulators chromatin remodelling structure associated with X-chromosome inactivation and dosage compensation in eukaryotes (roX RNAs, Xist/Tsix transcripts), regulation of expression of imprinted genes (H19, antisense transcripts from imprinted chromosomal regions) post-transcriptional regulators antisense RNA:RNA interactions repress or stimulate translation of regulated mRNAs in eukaryotic and prokaryotic cells (DsrA, MicF, lin-4, let-7, microRNAs) protein function modulators RNA-protein interactions modulate activity of protein (6S RNA, OxyS, SRA RNA) RNA distribution regulators specific subcellular location of RNA influences localization of mRNA or pre-mRNA (hsr-, Xlsirt, BC1, BC200)

tein synthesis is required. RNA molecules may be destroyed, making them well suited for transient modulation of gene expression. In addition to transfer and ribosomal RNAs, many new non-protein-coding transcripts, with diverse functions, have been identified. There is a growing number of untranslated RNAs involved in regulation of gene expression in eukaryotes (Table 2).

These genes encode RNAs that lack open reading frames and function as their final products. Small nontranslated RNAs are engaged in a wide variety of molecular tasks and perform a multitude of functions in the cell, e.g. tRNAs function as adapters in translation, small nuclear RNAs are involved in RNA splicing, and small nucleolar RNAs direct modification of ribosomal RNAs (MIGNONE et al. 2002, FILIPOWICZ, POGACIC 2002). Alu elements and many other types of repeats, can produce noncoding RNAs, which are potentially capable of taking part in the regulation of gene activity through mechanisms of post-transcriptional gene

Noncoding RNA	Size	EMBL/GenBank Acc. No. or Ref	Remarks
1	2	3	4
A. DNA markers			
1. Dosage compensation RNAs			
Homo sapiens	16.5 kb	M97168	
Mus musculus	14.7 kb	L04961	
Bos taurus	n/d	AF104906	partial sequence
Equus caballus	n/d	U50911	partial sequence
Oryctolagus cuniculus	n/d	U50910	partial sequence
Drosophila melanogaster roX1	3749 nt	U85980	
Drosophila melanogaster roX2	1293 nt	U85981	
HZ-1 virus PAT-1	937 nt	U03488	
Homo sapiens Tsix	40 kb	Ref. 12	
Mus musculus XistAS	n/d	Ref. 13	
2. H19			
Homo sapiens	2313 nt	M32053	
Mus musculus	1899 nt	X58196	
Rattus rattus	2297 nt	X59864	
Orvetolagus cuniculus	1842 nt	M97348	partial sequence
Pongo pygmaeus	1644 nt	AF190058	partial sequence
Felis catus	1747 nt	AF190057	partial sequence
Lynx lynx	879 nt	AF190056	partial sequence
Ovis aries	397 nt	AF105429	partial sequence
Thomomys monticola	875 nt	AF190055	partial sequence
<i>Elephantidae</i> gen. sp.	856 nt	AF190054	partial sequence
Peromyscus maniculatus	2094 nt	AF214115	1 1
3. IPW			
Homo sapiens	2075 nt	U12897	
Mus musculus	734 nt	U69888	partial sequence
B. Gene regulators			
1. NTT			
Homo sapiens	17 kb	U54776	
2. DGCR5			
Homo sapiens	1284 nt	X91348	
3. KvLQT ₁ -AS			
Homo sapiens	n/d	n/a	
Mus musculus	n/d	AF119385	partial intron se- quence
4. Nesp/GNAS			.1
Homo sapiens	828 nt	AJ251760	partial sequence
Mus musculus	1083 nt	AF173359	-
5. SCA8			
Homo sapiens	32.3 kb	AF252279	partial sequence

Table 3. Examples of non-coding RNAs and their characteristics (kb = kilo bases; n/d =not determined; n/a = not available; nt = nucleotides) (ERDMANN et al. 2001)

1	2	3	4
6. CMPD associated RNA			
Homo sapiens	3414	D43770	
7. Developmental timing			
Caenorhabditis brigsae let-7	21 nt	AF210771	
Caenorhabditis elegans lin-4	22 nt / 61 nt	U01830	
8. Other noncoding RNA tran-			
scripts			
Homo sapiens UBE3A antisense	n/d	n/a	
Homo sapiens DISC2	15 kb	AF222981	
Homo sapiens ZNF 127 AS	1827 nt	U19107	
Styela clava SCYc RNA	1.1 kb	L42757	
9. Antisense plasmid			
sok RNA	66 nt	AP000342	R100 plasmid
finP RNA	2778 nt	AP000342	R100 plasmid
CopA	186 nt	V00326	R1 plasmid
RNA I-	107 nt	J01566	ColE1 plasmid
Selenomonas ruminantium CtRNA	88 nt	Z49917	pJJM1 plasmid
Escherichia coli Incl	363 nt	M34837	Col Ib-P9 plasmic
Streptococcus pneumoniae RNA II	111 nt	S81045	pLS1 plasmid
Streptococcus agalactiae RNA II		L03355	pIP501 plasmid
Escherichia coli RNA I	73 nt	M28718	pMU 720 plasmic
C. Abiotic stress signals			1 1
1. gadd7/adapt15, adapt33, vseap1			
Cricetulus griseus gadd7	754 nt	L40430	
	746 nt	U26833	adapt15-P9
Cricetulus griseus adapt15	753 nt	U26834	adapt15-P8
Cricatulus grisaus adapt33	1290 nt	U29660	adapt33A
Cricelaius griseus adaptes	1186 nt	U29661	adapt33B
Cric etulus griseus vseapl	0.9 kb	AJ003192	
~ .	3.1 KD		
2. hsr- (0)	1151		
Drosophila melanogaster	1174 nt		
Drosophila hydei	1190 1120 nt	M14558. 102620	
Drosophila pseudoobseura	1129 III 1213 nt	X16337. X16157.	
3 C90	1213 III	A10557, A10157,	
Mus musculuss	1357 nt	A [127/22	
A OvvS	1 <i>55 /</i> III	AJ1J24JJ	
Fischerichia coli	110 nt	1187300	
5 DsrA	110 III	00/390	
S. DSIA Escherichia coli	96	1117126	
Escherichia con Salmonella typhimurium	80 nt 82 nt	U1/136 AF090431	putative
Klebsiella pneumoniae	82 nt	AF090431	
6. DD3/PCGEM1			
Homo saniens	3800 nt	AF103907	
110mo supreno	1600 nt	AF22389	

Table 3 (cont.)			
1	2	3	4
D. Biotic stress signals			
1. His-1			
Homo sapiens	nd	U56440	gene sequence, exon structure un- known
Mus musculus	3053 nt 3003	U09772 U10269	alternatively spliced forms of same pre-mRNA
2. ENOD40			1
Glycine max	679 nt 617 nt	X69154 X69155	ENOD40-1 ENOD40-2
Pisum sativum	702 nt	X81064	
Phaseolus vulgaris	600 nt	X86441	
Vicia sativa	718 nt	X83683	
Trifolium repens	631 nt	AJ000268	
Lotus japonicus	770 nt	AF013594	
Medicago sativa	626 nt 733 nt	X80263 L32806	
Medicago truncatula	920 nt	X80262	
Nicotiana tabacum	470 nt	X98716	
Vigna radiata	331 nt	AF061818	partial sequence
Sesbania rostrata	638 nt	Y12714	
3. IbiRNA			
Bacteriophage Acm1	97 nt	Z30964	
4. CR20			
Cucumis sativus	1108 nt	D79216	
Arabidopsis thaliana	758 nt	D79218	
5. GUT15			
Arabidopsis thaliana	1377 nt	U84973	
Nicotiana tabacum	1670 nt	U84972	
E. Other functions			
1. Bsr RNA			
Rattus norvegicus	4723 nt 920 nt	AB014883 AB014882	isolated clones
	2032 nt	AB014881	number of ~0.9 kb
	1198 nt	AB014880	repeat units
	1773 nt	AB014879	
	2244 nt	AB014878	
BC1 DNA	1755 III	AD0140//	
Pattus rattus	152 nt	M16112	
Peromyscus maniculatus	391 nt	U33851	
Peromyscus californicus	359 nt	U33850	
Meriones unguiculatus	350 nt	U33852	
Mus musculuss	152 nt	U01310	
Mesocricetus auratus Cavia porcellus	142 nt 165 nt	UU1309 U01304	

Noncoding RNA transcripts

1	2	3	4
BC200 RNA			
Homo sapiens	200 nt	A E020057 JU01206	
		AF020037, 001300	
Saguinus oedipus	195 nt	ΔΕ067787	
Saguinus imperator	194 nt	AF067786	
Aotus trivirgatus	196 nt	AF067785	
Macaca fascicularis	200 nt	AF067784	
Macaca mulatta	200 nt	AF067783	
Chlorocebus aethiops	205 nt	AF067782	
Papio hamadryas	197 nt	AF067781	
Hylobates lar	203 nt	AF067780	
Pongo pygmaeus	198 nt	AF067779	
Gorilla gorilla	204 nt	AF067778	
Pan paniscus	205 nt		
2. SRA			
Homo sapiens	875 nt	AF092038	
Mus musculus	829 nt	AF092039	
3. meiRNA			
Schizosaccharomyces pombe	508 nt	D31852	
4. UHG			
Homo sapiens U22HG	1114 nt	U40580	
Mus musculus U22HG	590 nt	U40654	
Homo sapiens U17HG	885 nt	AJ006834	variant A
	2139 nt	AJ006835	variant AB
Mus musculus U17HG	1682 nt	AJ006836	
	383 nt	AJ006837	
Homo sapiens U19HG	681 nt	AJ224167	
	785 nt	AJ224166	
	310 nt	AJ224170	
	375 nt	AJ224169	
	666 nt	AJ224168	
Homo sapiens Gas5	4055 nt	AF141346	
5. Xlsirt RNA			
Xenopus laevis	76 nt	S67412	single repeat se-
*	79 nt	S67413	quences
	78 nt	S67414	•
	80 nt	S67415	

silencing. It probably acts to suppress transposon activity and repress the expression of other repeated genes. It is known that a strong increase in the number of Alu transcripts occurs when cells are placed under stress, as a result of viral infection or inhibition of translation (EDDY 2001). Genes encoding housekeeping RNAs (transfer, ribosomal, small nuclear, nucleolar, vault, telomerase, etc.) have been annotated (Table 2). Rapidly accumulating evidence indicates that ncRNAs can play critical roles in a wide range of cellular processes, from protein secretion to gene regulation. In many cases important developmental decisions such as gene dosage, silencing or genome imprinting, are related to expression of small ncRNAs (ERDMANN et al. 2001). RNA is detected as component of chromatin,

but this has traditionally been attributed to the presence of either nascent transcripts or small RNAs involved in splicing or transcript processing. Many studies show that untranslated RNA play a role in maintaining and regulation of chromosome structure, and several recent findings suggest that RNA molecules may have more central roles in silencing of genes and chromatin regulation than previously believed. The chromodomain, a motif common in proteins that have a role in regulation of gene expression, has been shown to interact with ncRNAs *in vitro*. Human *Xist* RNA is required for X-chromosome inactivation and mouse *AIR* RNA is required for autosomal gene imprinting (SLEUTELS el al. 2002). The *Xist* RNA is produced by the inactive X-chromosome and spreads in *cis* along the chromosome. The chromosome-associated RNA has been proposed to recruit proteins that affect chromatin structure and establish or maintain gene silencing (ERDMANN et al. 2000, SZYMANSKI, BARCISZEWSKI 2002).

The variety of ncRNA genes known today is fairly small relative to protein-coding genes, although the number of members within a single RNA gene family is substantial.

Some are naturally occurring antisense RNAs, whereas others have more complex structures (BRANDL 2002). In addition to that, there are small interfering RNAs (siRNA) and small temporary RNA (stRNA), which mediate down regulation of gene expression. siRNA involves RNA interference, for which target mRNAs are degraded but stRNAs inhibit expression of target RNAs after translation initiation without affecting mRNA stability (HUTVAGNER, ZAMORE 2002). Most mammalian imprinted genes occur in clusters that contain noncoding RNAs. Their expression from one parental allele correlates with repression of linked protein-coding genes, which suggests that ncRNAs are involved in the silencing mechanism (Table 2).

There are many pieces of evidence that suggest a functional role for sense-antisense pairings in mammalian gene regulation at a surprising variety of levels (BRANDL 2002). It includes genomics imprinting, RNA interference, translational regulation, alternative splicing, X-chromosome inactivation and RNA editing. Although in a number of cases, where the mode of regulation has been explored in detail, they have proved uniquely intriguing, such that it is difficult to make generalizations.

Endogenous antisense RNAs can be broadly divided into two categories:

(i) antisense RNAs (*trans*-antisense) transcribed from loci distinct from their putative targets are generally short and have the potential to form imperfect duplexes with complementary regions of their sense counterparts,

(ii) antisense transcripts (*cis*-antisense RNAs) that originate from the same genomic region but with opposing orientation have, by virtue of their common but complementary origin, the potential to form long perfect duplexes. Various *cis*-antisense RNAs have been observed in prokaryotes, plants and animals, and their roles are unlikely to be limited to those in imprinting and chromatin

structure. Mutations in one *cis*-antisense RNA in humans (SCA 8) are found in patients with spinocerebellar ataxia (SZYMAŃSKI, BARCISZEWSKI 2002).

The mechanisms of action for ncRNAs can be grouped into several types: – ncRNAs where base-pairing with another RNA (ca 10 base pairs) is central to function, e.g. snoRNAs that direct RNA modification, the bacterial RNAs that modulate translation by forming base pairs with specific target mRNAs, microRNAs involved in silencing;

 ncRNAs resembling structures of other nucleic acids, e.g. 6S RNA is reminiscent of an open bacterial promoter or tmRNA that has features of both tRNAs and mRNAs;

- ncRNAs with catalytic function, e.g. ribonuclease P.

Most ncRNAs are associated with proteins that augment their functions, but some ncRNAs (snRNAs, SRP, telomere RNA, 7SK RNA) serve key structural roles in protein-RNA complexes (SZYMANSKI, BARCISZEWSKI 2002).

Taking into account the versatility of RNA and the fact that the properties of RNA provide advantages over peptides for some mechanisms, it is likely that a number of ncRNAs have evolved more recently.

A search for ncRNA genes in genomes

There is a lack of generalized computational methods for identifying new classes of RNA genes. Most of ncRNAs recognized to date were identified genetically or by accident, although recent data indicate that systematic approach should reveal many more cases. One of such approaches involves expressed RNA sequence tags (similarity to ESTs). However, the diversity of ncRNAs discovered is so great that it is difficult to categorize them except broadly on the basis of their occurrence and function but not on primary or secondary structure (ERDMANN et al. 2001). The first ncRNAs were identified almost 50 years ago on the basis of their high expression, direct labelling and isolation on polyacrylamide gel. Others were identified by fractionation of nuclear extracts or by association with specific proteins. In the "pregenomic era", one of the best approaches to understand the physiological role of an unknown gene product was to examine the phenotype of mutant strains and take clever guesses for its function, which would lead to biochemical experiments. Such process could sometimes take years to accomplish (SCHATTNER 2002).

In the genomic era and beyond, the best starting approach is to use an *in silico* method to compare the deduced sequence of the gene product with those of known function, and with a little bit of luck, one might get to the same place in a few hours. The search for ncRNAs has included large gaps between protein-coding genes, extended stretches of conservation between species with the same gene order, orphan promoter or terminator sequences, presence of G+C-rich regions in organisms with conserved RNA secondary structures with high A+T content (Ta-

M. Szymański et al.

ble 1). As one can see, the amount of noncoding sequences increases from Eubacteria to Eukaryota. In Eubacteria and Archaea the amount of noncoding sequences is similar but in eukaryotes it is much higher. Generally, the level of noncoding sequences in Eubacteria is between 12-27% (average 17.6%) and 13-23% (average 18.5%), while in Archaea seems to be random. There is no correlation with genome size. On the other hand, the amount of noncoding sequences in Eukaryota varies dramatically. One can suggest that its role is to protect DNA against random damage by lowering the possibility of damage to occur in regions important for cell functions (MATTICK 2001).

To better understand the role of G+C content, we compared some viral RNA genomes and transfer-messenger RNA (tmRNA). Interestingly, the G+C content of the tRNA-like part is much higher than those of viral genomes. Also the G+C content of the coding and noncoding part is different. However, there are two interesting observations. For TMV, EMV and STMV, the G+C content is the same within the coding and noncoding part. In addition, the G+C content of the noncoding part of tmRNA is close to that of the tRNA-like part (Table 1D). Bacterial genomes are gene-rich and noncoding DNA represents usually regulatory sequences (promoters) and non-transcribed mRNA portions. In contrast, less than 2% of the human genome encode proteins (Table 1). A question is what information, if any, is contained within the remaining 98% of a genome? How to find ncRNAs in the genome? One can look for the amount of G+C bases (Table 1). Generally there is no direct correlation between the contribution of G+C bases to coding and noncoding RNAs, although the differences between genomes are clearly visible. It varies from 30 to 70% among prokaryotes and is around 40-50% in eukaryotes although, G+C content of noncoding regions is smaller (Table 1).

Coding and noncoding genomic parts can be characterized by the ratio of G+C content of coding and noncoding regions to the G+C content of a whole genome. For Eubacteria and Archaea the ratio in protein-coding regions is above 1, but for the noncoding part ca 0.9 (Table 1). Greater differences are seen for eukaryotic genomes. The value for the coding part is 1-1.3 but for noncoding part it is 0.8-1. The same tendency can be observed for viral RNA genomes (Table 1). The ratio of G+C content of the coding part to the total G+C content of tobacco mosaic virus (TMV), is ca 1.3, almost identical to that the of coding part of *Arabidopsis thaliana*. Generally the G+C patterns of eukaryotic and viral genomes are very similar.

There are some limitations of current methods. Most of the computation approaches have focused on intergenic regions. It has been recently shown that some of the ncRNAs are processed from longer protein or RNA-encoding transcripts. It is also possible that ncRNAs are expressed from the opposite strand of protein-coding genes. If so, expression-based methods might miss ncRNAs that are synthesized under highly specific conditions (developmental signals, environmental signals, cell type). However, when results of these two approaches do not appear to make any sense with each other, new experiments must be done.

Perspectives

The ultimate goal of genome projects from bacterial to human, is not only to sequence their entire genomes in order to identify their complete set of genes, but also to obtain information as to when and where these genes are being expressed and whether their expression is possibly altered during unfavourable circumstances, such as disease, aging or stress. A great challenge is to understand how the genetic information results in the concerted action of gene products in time and space to generate function. The ever-growing realization of the variety of biochemical roles of RNA in all living organisms is leading to an increasing appreciation that cellular RNAs provide inviting targets to treat a variety of diseases.

Organism	Genome size	Number of chro- mosomes
Amoeba dubia	670,000,000,000	Several hundred
Trumpet lily (Lilium longiflorum)	90,000,000,000	12
Mouse (Mus musculus)	3,454,200,000	20
Human (Homo sapiens)	3,200,000,000	23
Carp (Cyprinus carpio)	1,700,000,000	49
Chicken (Gallus gallus)	1,200,000,000	39
Housefly (Musca domestica)	900,000,000	6
Tomato (Lycopersicon esculentum)	655,000,000	12
Yeast (Saccharomyces cerevisiae)	12,000,000	16
Escherichia coli	4,639,221	1
Agrobacterium tumefaciens	2,841,581	1
Mycoplasma genitalium	580,074	1

Table 4. Genome size and number of chromosomes for various organisms

In molecular medicine this is reflected in numerous disorders based on polygenic traits and the notion that the number of human diseases exceeds the number of genes in the genome. The availability of the complete human genome sequence has highlighted the need for tools to analyse its contents. It is known already that the total number of human genes which show only a tiny part of the whole genome does not differ substantially from the number of genes of *Arabidopsis thaliana*, although both genomes of 3.4×10^9 bp and 120×10^6 bp in size, respectively, varied strongly (Table 1). At the biochemical level, proteins or ribonucleic acids rarely act alone, but rather they interact with other proteins or RNA to perform a specific cellular job. It suggests that the organism complexity may partly rely on the contextual combination of the protein gene products and noncoding transcripts. These assembles represent more than the sum of their

parts by showing new functions. Most biologists and genome researchers concentrate mainly on protein-coding genes, and thus are not aware of the special issues involved in detecting RNA genes.

Various data discussed above indicate that a potentially important class of genes has largely escaped our detection. It seems that there is a large group of functional RNA molecules, which remains hidden between and sometimes within protein-coding regions (introns) and are unaccounted for. Recent discoveries in molecular and cellular biology encouraged structural biologists to analyse new ways in which RNAs can fold, interact with proteins and be catalytically active. Bioinformatics has made a strong entry into RNA research and it seems to be a safe prediction that this discipline will engage into a very close symbiosis with RNA biologists. Today's version of "pure RNA world" is the ribonucleoprotein world (RNP world), whose fertilizing winds blow across the entire RNA landscape from transcription, processing, editing, translation and RNP remodeling (HENTZE et al. 2000).

After years devoted to the isolation of individual genes involved in physiological or developmental processes, biology has entered the world of whole genome analysis (Table 1). One of the great achievements of molecular biology was the sequencing of the human genome, which is huge, but not the largest one. Still there are larger genomes (Table 4). Current genomic approaches rely primarily on technological innovations, such as large-scale DNA sequencing and DNA microarrays, which allow researchers to study all the genes involved in a given process. More important is the conceptual revolution induced by these innovations. Implications of genomics for the understanding and treatment of human diseases is obvious. Genomics will also increase our knowledge of genome organization and evolution, e.g. of gene content, genome organization at both the sequence and cytogenetic levels, promoter usage or alternative splicing. Faced with the avalanche of genomic sequences and data on their expression, scientists are confronting a frightening prospect: piles of information but only flakes of knowledge? How can genomic sequences being determined and deposited, and the thousands of expression profiles being generated by the new arrays methods, be synthesized into useful knowledge. The recent discovery of hundreds of new ncRNAs illustrates that the "RNome" (similar to genome) will need to be characterized before a complete tally of the number of genes encoded by a genome can be achieved. What form will this knowledge take? Can we throw some new light on RNA? These are questions to be addressed in the future. It is clear that the more we learn about RNA, the more is to explore. Still there is much to investigate before genome is over and there is much beyond genome.

Now it is clear that the human DNA sequence is not enough for complete interpretation of the entire human genome.

Acknowledgements. This work was supported within KBN research grants 6PO4A 063 21 and 6PO4C 105 20.

REFERENCES

- ADAMS M.D., CELNIKER S.E., HOLT R.A., EVANS C.A., GOCAYNE J.D., AMANATIDES P.G. et al. (2000). The genome sequence of *Drosophila melanogaster*. Science 287: 2185-2195.
- BRANDL S. (2002). Antisense-RNA regulation and RNA interference. Biochim. Biophys. Acta 1575: 15-25.
- EDDY S.R. (2001). Non-coding RNA genes and the modern RNA world. Nature Rev. 2: 919-929.
- ERDMANN V.A., SZYMAŃSKI M., HOCHBERG A., DE GROOT N., BARCISZEWSKI J. (2000). Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Research 28: 197-200.
- ERDMANN V.A., BARCISZEWSKA M.Z., HOCHBERG A., DE GROOT N., BARCISZEWSKI J. (2001). Regulatory RNAs. Cell. Mol. Life Sci. 58: 1-18.
- FILIPOWICZ W., POGACIC V. (2002). Biogenesis of small nucleolar ribonucleoproteins. Curr. Opin. Cell Biol. 14: 319-327.
- HENTZE M.W., IZAURRALDE E., SERAPHIN B. (2000). A new era for the RNA world. EMBO Rep. 1: 394-398.
- HUTVAGNER G., ZAMORE P.D. (2002). RNAi: nature abhors a double-strand. Curr. Opin. Gen. Develop. 12: 225-232.
- KATINKA M.D., DUPRAT S., CORNILLOT E., METENIER G., THOMARAT F., PRENSIER G. et al. (2001). Genome sequence and gene compaction of the eukaryote parasite *Encephalitozoon cuniculi*. Nature 414: 450-453.
- MATTICK J.S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2: 986-991.
- MIGNONE F., GISSI C., LIUNI S., PESOLE G. (2002). Untranslated regions of mRNAs. Gen. Biol. 3: 0004.1-0004.10.
- MOORE P.B., STEITZ T.A. (2002). The involvement of RNA in ribosome function. Nature 418: 229-235.
- NATALE D.A., SHANKAVARAM U.T., GALPERIN M.Y., WOLF Y.I., ARAVIND L., KOONIN E.V. (2000). Towards understanding the first genome sequence of a crenarcheon by genome annotation using clusters of orthologous groups of proteins (COGs). Gen. Biol. 1: 0009.1-0009.19.
- SCHATTNER P. (2002). Searching for RNA genes using base-composition statistics. Nucleic Acids Res. 30: 2076-2082.
- SLEUTELS F., ZWART R., BARLOW D.P. (2002). The non-coding *Air* RNA is required for silencing autosomal imprinted genes. Nature 415: 810-813.
- STORZ G. (2002). An expanding universe of noncoding RNAs. Science 296: 1260-1263.
- SZYMAŃSKI M., BARCISZEWSKI J. (2002). Beyond the proteome: non-coding regulatory RNAs. Gen. Biol. 3(5): 0005.1-0005.8.
- VENTER J.C., ADAMS M.D., MYERS E.W., LI P.W., MURAL R.J., SUTTON G.G. et al. (2001). The sequence of the human genome. Science 291: 1304-1351.
- WOOD V., GWILLIAN R., RAJANDREAM M.A., LYNE R., STEWART A. SGOUROS J. et al. (2002). The genome sequence of *Schizosaccharomyces pombe*. Nature 415: 871-880.