Noncoding Sequences from the Slowly Evolving Chloroplast Inverted Repeat in Addition to rbcL Data Do Not Support Gnetalean Affinities of Angiosperms

Vadim Goremykin，＊† Vera Bobrova，＊Jens Pahnke，\dagger Aleksey Troitsky，＊Andrew Antonov，＊ and William Martin \dagger

＊A．N．Belozersky Institute of Physicochemical Biology，Moscow State University；and †Institut für Genetik，Technische Universität Braunschweig

Abstract

We developed PCR primers against highly conserved regions of the rRNA operon located within the inverted repeat of the chloroplast genome and used these to amplify the region spanning from the 3^{\prime} terminus of the 23S rRNA gene to the 5^{\prime} terminus of the 5 S rRNA gene．The sequence of this roughly 500 －bp region，which includes the 4.5 S rRNA gene and two chloroplast intergenic transcribed spacer regions（cpITS2 and cpITS3），was determined from 20 angiosperms， 7 gymnosperms，and 16 ferns（ $21,700 \mathrm{bp}$ ）．Sequences for the large subunit of ribulose bisphosphate carboxylase／oxygenase（ $r b c \mathrm{~L}$ ）from the same or confamilial genera were analyzed in both separate and combined data sets．Due to the low substitution rate in the inverted repeat region，noncoding sequences in the cpITS region are not saturated with substitutions，in contrast to synonymous sites in $r b c \mathrm{~L}$ ，which are shown to evolve roughly six times faster than noncoding cpITS sequences．Several length polymorphisms with very clear phylogenetic dis－ tributions were detected in the data set．Results of phylogenetic analyses provide very strong bootstrap support for monophyly of both spermatophytes and angiosperms．No support for a sister group relationship between Gnetales and angiosperms in either cpITS or rbcL data was found．Rather，weak bootstrap support for monophyly of gym－ nosperms studied and for a basal position for the aquatic angiosperm Nymphaea among angiosperms studied was observed．Noncoding sequences from the inverted repeat region of chloroplast DNA appear suitable for study of land plant evolution．

Introduction

Many questions concerning the general course of seed plant evolution，and in particular angiosperm evo－ lution，are still not resolved（Chase et al．1993；Martin et al．1993；for a recent review see Crane，Friis，and Pedersen 1995）．Early molecular studies of higher plant evolution involved protein sequence comparisons（Boul－ ter et al．1972；Martin and Jennings 1983）．These were followed by nucleotide sequence analyses of rRNA （Hori，Lim，and Osawa 1985；Bobrova et al．1987；Zim－ mer et al．1989；Troitsky et al．1991）and nuclear genes （Niesbach－Klösgen et al．1987；Martin，Gierl，and Sae－ dler 1989）．With the advent of PCR techniques，cpDNA became the molecule of choice for plant molecular sys－ tematics（Palmer 1985；Palmer et al．1988；Clegg and Zurawski 1992；Downie and Palmer 1992）inter alia due to its conservative mode of evolution．The recent wide－ spread use of $r b c \mathrm{~L}$ as a marker for evolutionary studies has had impact on plant molecular systematics（Chase et al．1993；Baum 1994；Manhart 1994），yet further markers should be studied in order to derive a more

[^0]robust picture of plant evolution．Due to the very rate of nonsynonymous substitution in $r b c \mathrm{~L}$ on the ${ }_{\text {eqn }}$ hand and saturation of synonymous sites in $r b c L_{\infty}^{\infty}$ in comparisons involving taxa that diverged during the earr－ ly phases of land plant evolution on the other，$r b c \mathrm{~L} \overrightarrow{\mathbf{d}} \mathrm{e} \mathrm{e}-$ quences alone cannot resolve phylogeny at all taxonöm－ ic levels within higher plants（Martin et al．1993）．Ad－ ditional molecular markers from cpDNA are needed Noncoding DNA has an advantage over coding DNA in that the number of potentially polymorphic shtes per kilobase sequenced is higher（Böhle et al．1994）In the absence of functional constraints，noncoding cpDeA in the single copy regions should undergo substitution at a rate similar to that observed at synonymous s⿱宀⿻三人⿻刀二力灬丶丶tes （Nei 1987，pp．64－110）．But in the inverted repeat（ ${ }^{(1)} R$ ） region of cpDNA，the neutral substitution rate was es－ timated to be about threefold lower than that in the sin－ gle copy regions（Wolfe et al．1989）．We reasoned ghat due to this lower substitution rate，noncoding regions of the IR may bear suitable markers for plant evolutioe．

Here we report the use of conserved primers di－ rected against slowly evolving regions of the 5 S and 23 S rRNA genes for amplification of noncoding sequences from the IR region of cpDNA ．Because the chloroplast 4．5S rRNA gene is flanked by two ITS regions，cpDNA possesses three internal transcribed rDNA spacers in－ stead of two as in bacteria（Troitsky and Bobrova 1986）． The PCR fragment contains two of these（cpITS2 and
cpITS3），the 4.5 S rRNA gene and the termini of the flanking 23S and 5S rRNA genes，respectively（roughly 500 bp per sequence）．On the basis of sequences deter－ mined from 43 higher plants，we examined the utility of this region for reconstruction of plant phylogeny and compared it to $r b c \mathrm{~L}$ from the same or closely related （confamilial）taxa．

Materials and Methods

Plant Material
Plant material for this study was collected from the Botanical Garden of Moscow University，from the Bo－ tanical Gardens of the Russian Academy of Sciences， from the Botanical Garden of the University of Braun－ schweig，and from the Botanical Garden of the Univer－ sity of Berlin．Ceratopteris richardii was a gift of Prof． L．G．Hickok．Species investigated are listed in table 1.

Molecular Methods

Plant DNA was isolated from either fresh or ly－ ophilized leaf tissue ground in liquid nitrogen by the CTAB method（Murray and Thompson 1980）and sub－ sequently purified by diafiltration in Microcon 30 col－ umns（Amicon）according to the manufacturer＇s proto－ col．The diafiltration step was critical for DNA prepa－ rations from ferns and some gymnosperms．DNA was amplified using primers directed against highly con－ served regions of the 23S and 5S rRNA genes flanking the 4.5 S gene and spacers．The primers used were 5^{\prime} CCGGATAACTGCTGAAAGCATC 3^{\prime} and 5^{\prime} TCCT－ GGCGTCGAGCTATTTTTTCC 3^{\prime} ．Each PCR reaction contained $0.4 \mu \mathrm{M}$ of each primer， $3.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 50$ $\mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ Tris－ HCl （ pH 8.3 ）， $200 \mu \mathrm{M}$ of each dNTP，approx 10 ng DNA，and 2 units Taq polymerase （Perkin Elmer）in a final volume of $50 \mu \mathrm{l}$ ．

Amplification was started with 3 min denaturation at $95^{\circ} \mathrm{C}$ and continued for 28 cycles of $50 \mathrm{~s} 95^{\circ} \mathrm{C}, 40 \mathrm{~s}$ $58^{\circ} \mathrm{C}, 60 \mathrm{~s} 72^{\circ} \mathrm{C}$ ．PCR products were diluted to $400 \mu \mathrm{l}$ and extracted once with phenol／chloroform and centri－ fuged．Primers and salts from aqueous supernatants were removed in Microcon 30 （Amicon）ultrafiltration de－ vices according to the manufacturer＇s protocol using two additional diafiltration steps with $400 \mu \mathrm{l}$ of 10 mM Tris （pH 8．0）， 1 mM EDTA each．

Reverse－spin recovered amplification products of Poa，Peperomia，Magnolia，Delphinium，Fagopyrum， Ephedra，and Cycas were made blunt with Klenow polymerase as described（Sambrook，Fritsch，and Man－ iatis 1989），purified by diafiltration as above，and cloned in Escherichia coli nm522 using Sma I cut p－ BluescriptKS＋（Stratagene）．Plasmids from these spe－ cies were isolated from individual transformants and se－ quenced by the dideoxy method either with $\alpha{ }^{-32} \mathrm{P}$ dATP and T_{7} DNA polymerase（Tabor and Richardson 1987）
or by the automatic laser fluorescence method（Ansorge et al．1986）with a commercially available apparatus （Pharmacia）．All regions were sequenced from two in－ dependent subclones，in cases of ambiguity，a third clone was sequenced．

Aliquots of reverse－spin recovered amplification products from the other 35 species were electrophoresed against standards to determine DNA concentration．Ali－ quots were subjected to cycle sequencing in both direč tions with $\alpha-{ }^{35}$ S dATP using a commercially availab瓻 kit（Stratagene）according to the manufacturer＇s protocod except that 15 picomoles of the primers described above and 100 femtomoles of template were used．The ses quencing reaction was performed for 30 cycles of 40 § $95^{\circ} \mathrm{C}, 40$ s $58^{\circ} \mathrm{C}$ ， 60 s $72^{\circ} \mathrm{C}$ ．Sequences were resolved on 6% acrylamide gels（Sambrook，Fritsch，and Mang iatis 1989）．

Data Analysis

General sequence handling was performed with thè GCG（version 8．0）package（Devereux，Haeberli，an ी़ Smithies 1984）．The alignment was produced manuall with the Vostorg package（kindly provided by A．Rhze ${ }^{\text {⿷ }}$ sky and A．Zharkikh）．Programs of the Phylip（versio 3．5；Felsenstein 1981，1989）and Treecon（Van de Pee and De Wachter 1993）packages were used for tree con ${ }^{\stackrel{\omega}{\omega}}$ struction．For cpITS，divergence was estimated using the two－parameter method of Kimura（1980）as numbers of substitutions per site（for convenience，referred to heres as d_{k} ）or with the gamma distance（ Jin and Nei 1990）${ }_{-}^{\circ}$ A gamma parameter of 1.3 was estimated from the data using the method of Ota and Nei（1994）on the basis of the Kimura distance tree．For $r b c \mathrm{~L}$ sequences，sequenced divergence was estimated as numbers of synonymous and nonsynonymous substitutions per site（ K_{s} and $\mathrm{K}_{\bar{\beta}}$ respectively）with the methods of Li, Wu ，and $\mathrm{Lu}{ }_{\sigma}^{\circ}$ （1985）and Nei and Gojobori（1986）．Additional statise tical analyses were performed with the Kaleidagrap program for MacIntosh（Abelbeck Software，Inc．）．

Results

The cpITS Data Set
We determined 43 cpITS sequences from various land plants and retrieved seven others from the database for analysis．Each sequence entry spans from the 3 ， 5 念 bp of the 23 S rRNA gene to the $5^{\prime} 30 \mathrm{bp}$ of the 55° rRNA gene（fig．1）．In some cases the sequence of the initial ~ 20 nucleotides was not readable due to prox－ imity to the primer binding sites，a total of 21,700 bases were determined unambiguously．In order to obtain an overall impression of sequence conservation across the investigated region，we plotted the degree of sequence identity for each position in the 50 OTU alignment（fig． 1）．The cpITS region contains highly conserved（rDNA

Table 1
Species Investigated in This Study

Species (cpITS)	Acc. No. ${ }^{\text {a }}$	Family ${ }^{\text {b }}$	Species ($r b c \mathrm{~L}$)	Acc. No.
Angiosperms				
Epifagus virginiana	M81884*	Orobanch,	-	-
Conopholis americana	X58863*	Orobanch,	-	-
Fagopyrum sagittatum	L41604	Polygon'	Rheum \times cultorum	M77702
Nicotiana tabacum	Z00044*	Solan'	Nicotiana tabacum	J01450
Alnus incana	M75719*	Betul'	Betula niger	L01889
Alchemilla vulgaris	L41580	Ros'	Geum chiloense	L01921
Eryngium billardieri	L41602	Api'	Apium graveolens	L01885
Ferulago galbanifera	L41564	Api ${ }^{\prime}$	Conium maculatum	L11167
Pisum sativum	M37430*	Fab,	Pisum sativum	X03853
Delphinium elatum	L41598	Ranuncul'	Ranunculus trichophyllus	L08766
Caryota mitis	L41592	Arec'	Caryota mitis	M81811
Cryptocoryne ciliata	L41594	Ar'	Gymnostachys anceps	M91629
Bambusa multiplex	L41591	Po'	Bambusa multiplex	M91626
Poa pratensis	L41587	Po'	Pennisetum glaucum	L14623
Oryza sativa	X15901*	Po'	Oryza sativa	D00207
Molineria recurvata	L41547	Po'	Avena sativa	L15300
Semele androgyna	L41571	Rusc'	Danae racemosa	L05034
Tillandsia usneoides	L41573	Bromeli'	Tillandsia elizabethae	L19971
Strelitzia nicolaii	L41572	Magnoli'	Strelitzia nicolaii	L05461
Magnolia campbellii	L41568	Magnoli'	Magnolia salicifolia	L12656
Annona montana	L41582	Magnoli'	Anonna muricata	L12629
Eupomatia laurina	L41603	Magnoli'	Eupomatia bennettii	L12644
Drimys winterii	L41600	Magnoli'	Drimys winteri	L01905
Piper longum	L41586	Piper'	Piper betle	L12660
Peperomia glabrata	L41550	Piper'	Peperomia sp.	L12661
Nymphea coerulea	L41548	Nymphae'	Nymphaea odorata	M77034
Gymnosperms				
Zamia floridiana	L41556	Zami'	Zamia inermis	L12683
Cycas revoluta	L41596	Cycad'	Cycas circinalis	L12674
Ginkgo biloba	L41565	Ginkgo'	Ginkgo biloba	D10733
Pinus canariensis	L41585	Pin'	Pinus radiata	X58134
Welwitschia mirabilis	L41555	Welwitschi'	Welwitschia mirabilis	D10735
Gnetum gnemon	L41566	Gnet'	Gnetum gemon	L12680
Ephedra kokanica	L41601	Ephedr'	Ephedra tweediana	L12677
Ferns				
Phyllitis scolopendium	L41551	Aspleni'	Asplenium nidus	U05907
Polypodium aureum	L41588	Polypodi'	Colysis sintenensis	U05612
Davallia bullata	L41597	Davalli'	Davallia epiphylla	U05917
Athyrium sp.	L41583	Dryopteridi’	Athyrium felix-femina	U05908
Pteris cretica	L41570	Pterid'	Pteris fauriei	U05647
Adiantum capillus-veneris	L41579	Pterid'	Adiantum pedatum	U05602
Ceratopteris richardii	L41593	Pterid'	Ceratopteris thalictroides	U05609
Dicksonia antarctica	L41599	Dicksoni'	Dicksonia antarctica	U05618
Pilularia globulifera	L41584	Marsile'	Marsilea quadrifolia	L13480
Cyathea cooperi	L41595	Cyatha'	Cyathea lepifera	U05616
Azolla anabenae	L41590	Salvini'	Salvinia cucullata	U05649
Trichomanes radicans	L41554	Hymenophyll'	Cephalomanes thysanostomum	U05608
Osmunda regalis	L41549	Osmund'	Osmunda cinnamomea	D14882
Angiopteris palmiformis	L41581	Maratti'	Angiopteris evecta	L11052
Psilotum triquestrum	L41569	Psilot'	Psilotum nudum	L11059
Lycopods, Bryophytes				
Lycopodium bifurcatum	L41567	Lycopodi’	Lycopodium digitatum	L11055
Marchantia polymorpha	X04465*	Marchanti'	Marchantia polymorpha	X04465

[^1]

Fig. 1.-Identity profile across the 50 cpITS sequences and rRNA genes analyzed in this study. The PROFILE program of the Wisconsin package was applied to the prealigned sequences using a one-base window; identity of gaps was counted as dissimilarity. The drop in similarity in the 23 S and 5 S regions is due to the presence of undetermined bases in these regions in some sequences as a result of their proximity to the sequencing primer binding sites. An identity score of 1.0 indicates complete site conservation.
coding) and highly variable stretches. A considerable portion of variability observed is due to numerous indels present in the cpITS2 and cpITS3 regions. Despite the high degree of variation in length in both intergenic transcribed spacers, several shorter ($\sim 30 \mathrm{bp}$) regions exist within each with an identity score >0.6 that aid considerably in alignment (see also below). The total alignment of cpITS sequences covers 731 positions, but the average length of raw cpITS sequences we determined is only about 510 bp (fig. 2A). The shortest sequence analyzed was that of the parasitic angiosperm Conopholis (444 bp), the longest was 585 bp , found in the leptosporangiate fern Ceratopteris. In order to assess variation in $\mathrm{G}+\mathrm{C}$ content, we plotted the base composition for each sequence (fig. $2 B$). Nucleotide composition in the cpITS region is extremely homogeneous across land plant taxa. Only the sequence from the Marchantia displays a slightly lower G+C content, but because Marchantia is the outgroup in our phylogenetic analyses, varying $\mathrm{G}+\mathrm{C}$ content across ingroup OTUs should not pose problems in phylogenetic analyses.

A number of indels show a very clear phylogenetic distribution, such as an $8-\mathrm{bp}$ deletion shared by the three grasses Poa, Oryza, and Bambusa at position 197 of the alignment within the highly conserved region encompassing the 4.5 S rRNA gene (fig. 3). Outside of the rRNA coding regions, indels are much more abundant. In figure 4 the most highly variable region of the alignment is shown, corresponding to the region around position 500 in figure 1 . Although the placement of indels and identification of homologous regions within ferns and within spermatophytes are generally clear in this highly variable region, across these groups assignment of unambiguous positional homology in this segment of the alignment becomes tenuous. Despite the high degree of variability, several indels within this region also show a marked phylogenetic distribution. Examples are $\Delta 562-$ 576 in the two cycads, $\Delta 519-550$ in angiosperms, or
A.

Fig. 2.-Length and base composition variation in land plảt cpITS sequences. Species order from left to right corresponds to ver. tical order in table 1. A. Histogram of cpITS length across OTUs (ekcluding gaps). Gymno, gymnosperms; L, Lycopodium; M, Marchantiza. B. Base composition (in \%) of land plant cpITS sequences.
$\Delta 507-513$ in angiosperms surveyed except Nymphace. Other indels appear autapomorphic in this taxon sample but may show an ordered phylogenetic distribution 僉s more sequences are obtained. The general impression of positional homology in this difficult region of the aligement tended to improve as more taxa were introduced. Positions such as 506-510 in the gnetophytes Welwiw schia and Gnetum (and other positions in other OTU想 are still not clear because they entail short duplication; their placement is therefore somewhat ambiguous but ${ }_{\mathrm{d}}^{\mathrm{d}}$ s not wholly random in light of the surrounding motiffs found in other gymnosperms. In the region shown in figure 4, numbers of substitutions per site between distantly related taxa will be underestimated.

Due to this high degree of sequence dissimilarify in the most variable region of cpITS3, we examined po terns of sequence divergence prior to distance estimatiogn or tree construction. First we determined frequencies of transitions and transversions observed in the cpITS daina set. The numbers of transitions and transversions observed are positively correlated (fig. 5) $\left(R^{2}=0.83\right)$. Thée 15 or so values that scatter sparsely above the majorify of points plotted involve comparisons within ferns. Co $\overrightarrow{\vec{n}}-$ sidering the large number of comparisons under consid eration, the shape of the distribution is quite uniform. Transition-to-transversion ratios were calculated for cpITS sequences. The average transition/transversion ratio for all pairwise comparisons is 1.99. Largest deviations from the average ratio are observed at low values of total divergence where stochastic variation is greatest.

Positional homology in the functionally conserved rRNA coding regions of the alignment is unambiguous (fig. 3). We reasoned that if positional uncertainty in highly variable (nonconstrained) regions of the alignment introduces randomness into distance measure-

Fig. 3.-Segment of the nucleotide alignment in the region of the 4.5 S rRNA gene (marked by asterisks). Indels are indicated as dashes. Nucleotide positions indicated refer to the alignment used for phylogenetic analysis, in which the terminal base of the 23S gene is arbitrarity located at position 25. Subclass (spermatophytes) and family (ferns) assignments are indicated. Ag, angiosperms; Gy, gymnosperms; Le, leps tosporangiate ferns; Eu, eusporangiate fern; Ps, psilophyte; Ly, lycopsid; Br, bryophyte.
ments, then little correlation should be observed between distances estimated from the rDNA coding regions and those estimated from the noncoding regions of the alignment. We estimated the number of substitutions per site using the Kimura two parameter method $\left(\mathrm{d}_{k}\right)$ separately for rDNA and noncoding spacer regions of cpITS for pairwise comparisons of all OTUs. We excluded Epifagus and Conopholis in these comparisons, because we wished to compare divergence in cpITS regions to that in $r b c \mathrm{~L}$ (see below) and these species do not possess functional $r b c \mathrm{~L}$ genes (Wolfe, Morden, and Palmer 1992). Values of divergence in coding and noncoding regions of the cpITS region were plotted against one another (fig. 6A). The highest values of divergence for the noncoding region do not exceed 0.9 substitution per site even in comparisons between ferns and spermatophytes. Notably, there is a very positive correlation between sequence divergence in the coding and noncoding portions of the cpITS data ($R^{2}=0.922$). The average ratio of substitution rates in noncoding vs. coding cpITS regions for all comparisons is 2.05 ± 0.018. For more closely related sequences, i.e., for values of divergence in noncoding regions <0.3 (475 comparisons), the correlation becomes slightly weaker ($R^{2}=$
0.81, data not shown) and the average ratio of substit tution rates in noncoding $v s$. coding regions of the cpITTS becomes 1.66 ± 0.03. This drop in correlation is prof ably due to the very small number of rDNA coding sites (173) in the alignment. If divergence in the cpITS3 re gion alone is plotted against divergence in rDNA coding regions for all comparisons, the correlation remaias strongly positive ($R^{2}=0.767$, data not shown), indicat ing that also the most variable noncoding regions are not saturated with substitutions over most of their length, even in comparisons between spermatophytes and ferns, and that pairwise distances between nonco\&s ing regions-although high-are not randomized through saturation.

For comparison to other data widely used for the study of plant evolution, we plotted estimates of nunsbers of substitutions per site determined from constrained (nonsynonymous) and nonconstrained (synonymous) sites between $r b c \mathrm{~L}$ sequences from the same or congeneric species; in those cases where such sequences were not available in the database, we used $r b c \mathrm{~L}$ sequences from confamilial genera (see table 1). For $r b c L$, we measured divergence at synonymous and nonsynonymous sites using the method of Li, Wu, and Luo (1985)

Fig．4．－Segment of the nucleotide alignment in the region of highest variability．Designations as in the legend to figure 3.
and plotted these values against one another；similar re－ sults were obtained using the method of Nei and Go－ jobori（1986）（see below）．Figure 6A shows that the di－ vergence at nonsynonymous sites（ K_{a} ）for land plant $r b c \mathrm{~L}$ sequences surveyed is very low，less than 0.08 substitutions per site in all cases．At synonymous sites， by comparison，estimates of divergence between rbcL sequences（ K_{s} ）are very high，greater than one substi－ tution per site in most cases，and therefore very unreli－ able．The correlation between K_{a} and K_{s} is poor for the $r b c \mathrm{~L}$ land plant data set（ $R^{2}=0.18$ ）．Even in compar－

Fig．5．－Transitions and transversions in cpITS sequences．Plot of numbers of observed transitions vs．observed transversions in pairwise comparisons of cpITS sequences；each point represents the plot for one pairwise comparison．
isons at lower values of divergence for $r b c \mathrm{~L}\left(\mathrm{~K}_{s}<0.0 \mathrm{E}\right)$ ， the correlation between K_{a} and K_{s} is poor（ $R^{2}=0 . \mathrm{E}_{6}$ ， 266 comparisons）．It is quite obvious that the rate ${ }_{\Phi}^{\omega} \mathrm{f}$ substitution at synonymous sites is much higher in rbeL than at nonsynonymous sites．For all comparisons，the average ratio of $\mathrm{K}_{s} / \mathrm{K}_{a}$ is 29，for values of $\mathrm{K}_{s}<1$（571 comparisons），the average ratio of $\mathrm{K}_{s} / \mathrm{K}_{a}$ is 21 ；for vigl－ ues of $K_{s}<0.6(266)$ ，average ratio of K_{s} / K_{a} is 16 ．This is not surprising but stands in sharp contrast to assęr－ tions that the rates of substitution at synonymous afid nonsynonymous sites in $r b c \mathrm{~L}$ may be quite similar （Chase et al．1993）．This result also indicates that a sy tematic error exists in the calculations of Albert et 气㐅⿸厂万巾1． （1994），because they estimated substitution rates be－ tween $r b c \mathrm{~L}$ sequences by dividing the total proportion of nucleotide differences between sequences by esti－ mated divergence time．In light of the great differene between synonymous and nonsynonymous rates in $r b c \in$ ， Albert et al．＇s estimates of sequence divergence and subib stitution rate in $r b c \mathrm{~L}$ are erroneous．

A Low Substitution Rate in Noncoding cpITS Regions

Sequences within the inverted repeat region of chloroplast DNA have a lower neutral substitution rate than those in the single copy regions（Wolfe，Li，and Sharp 1987）．Using the data set at hand，we wished to

Fig. 6.-Comparison of sequence divergence $c p I T S$ and $r b c \mathrm{~L}$ sequences. A. Plot of sequence divergence (estimated by the two-parameter method (Kimura 1980)) at functionally constrained (rRNA coding) and unconstrained (noncoding) positions of cpITS sequences. Noncoding regions correspond to combined cpITS2 and cpITS3 regions as shown in figure 1 (avg. 370 positions). Scale units are substitutions per site. Each point represents the plot of respective values for an individual pairwise comparison. B. Plot of sequence divergence (estimated by the method of Li, Wu, and Luo [1985]) at functionally constrained (nonsynonymous) and unconstrained (synonymous) positions of $r b c \mathrm{~L}$ sequences (K_{a} and K_{s}, respectively). An average $r b c \mathrm{~L}$ pair compared here has 996 nonsynonymous and and 298 synonymous sites, respectively, less than complete sequences due to missing data in PCR entries. Note that axis scales are identical to those in (A) for direct comparison of divergence at constrained $v s$. unconstrained positions in rbcL and cpITS and for direct comparison of overall sequence divergence in the two markers. C. Numbers of synonymous and nonsynonymous substitutions per site in pairwise comparisons of land plant $r b c \mathrm{~L}$ sequences plotted against Kimura distance $\left(\mathrm{d}_{k}\right)$ between aligned cpITS sequences for the same (or confamilial) taxa (see table 1). Use of a single ordinate scale is intentional to underscore the low divergence at nonsynonymous sites in $r b c \mathrm{~L}$ sequences.

Table 2
Ratio of Substitution Rates at Synonymous Sites in rbcL to Kimura Distance in Noncoding cpITS Regions

Range of $\mathrm{K}_{s, r b c 1}$	$\begin{gathered} \text { Average } \\ \text { ratio } \\ \mathrm{K}_{s, r b c 1} / \\ \mathrm{d}_{k, \text { cp/TS2/3 }} \end{gathered}$	$\mathrm{N}^{\text {a }}$	Min	Max
<0.2	4.77	16	1.10	11.7
0.2-0.3	6.92	33	2.45	17.6
0.3-0.4	7.24	62	2.18	19.4
0.4-0.5	6.97	82	2.51	22.4
0.5-0.6	5.76	71	2.57	18.1
0.60 .7	5.18	84	2.07	16.6
0.7-0.8	4.44	62	1.77	13.9
0.8-0.9	2.97	75	1.24	6.92
0.9-1.0	2.74	84	1.63	4.22
>1.0	2.58	510	1.67	5.0
Average ${ }^{\text {b }} \mathrm{K}_{\text {s,rbc }}(<0.8)$	5.9	410		

${ }^{\text {a }} \mathbf{N}$ indicates number of pairwise comparisons in the given range of $\mathrm{K}_{s, r b c}{ }_{3}$ Minimum and maximum values of $\mathrm{K}_{s, r b c 1} / \mathrm{d}_{k, c p I T S 2 / 3}$ observed for the range afe indicated.
${ }^{\mathrm{b}}$ For calculation of the average, values from the range of $\mathrm{K}_{\mathrm{s}, \mathrm{rbcl}}>0.8$ wee excluded because saturation at synonymous sites is observed, particularly evide in the column for maximum values.
estimate the relative rates of nucleotide substitution $\overline{\text { at }}$ synonymous sites in rbcL and noncoding regions of cpITS. Values of K_{s} for $r b c \mathrm{~L}$ were divided by values of d_{k} in the noncoding cpITS regions (cpITS2 and cpITS $\mathscr{E}_{\tilde{W}^{2}}$ combined, designated here as cpITS2/3) for correspond ${ }^{\circ}$ ing comparisons. This was performed for several ranges of K_{s} in $r b c \mathrm{~L}$ (table 2). We did not perform a relative rate test prior to calculation of average rates, but the effects of the most rapidly and slowly evolving sequenco es in the relatively large data set probably counteragt one another. Both the average ratio of substitution rates and the maximum values of same decline sharply above values of $K_{s}>0.8$ substitutions per site, probably due to saturation and underestimation of divergence. In 41θ comparisons for values of $\mathrm{K}_{s}<0.8$, the average ratie of numbers of substitution per site at synonymous sites in $r b c \mathrm{~L}$ and $c p I T S 2 / 3$ was 5.9 . Thus, although the $c p^{2}$ ITS $2 / 3$ region is noncoding chloroplast DNA, its rate of substitution is about six times lower than that at $\operatorname{sym} \vec{p}$ onymous sites in $r b c \mathrm{~L}$. For the same 410 comparisons, the average ratio of substitution rate in $c p I T S 2 / 3$ to none ${ }^{-1}$ synonymous substitution rate in rbcL was sightly greatẹ than four, but with an extremely wide range, as evident from the wide variation in K_{a} at low values of K_{s} seen in figure $6 B$. The reduction in substitution rate for $c p$ ITS2/3 relative to K_{s} in $r b c \mathrm{~L}$ could either be due to structural constraints imposed by rRNA transcript processing, by copy correction in the inverted repeat, or both. These results indicate that the cpITS region, and perhaps other noncoding regions of the inverted repeat in cpDNA, are sufficiently conserved as to be phylo-

Fig．7．－Neighbor－joining（NJ）tree（Saitou and Nei 1987）for cpITS sequences using the Kimura distance．The scale bar indicates 0.1 substitutions per site．L，Lycopodiaceae；P，Psilotaceae；F，Filicatae； Eu ，eusporangiate； Le ，leptosporangiate．
genetically useful in comparisons of land plant taxa，the $r b c \mathrm{~L}$ sequences of which are saturated at synonymous sites．

Phylogenetic Analyses

Results in the previous section indicated that the cpITS region should be suitable for phylogenetic anal－ yses：the base composition is quite constant，the degree of divergence is not too extreme（ <0.3 substitutions per site in most cases for the entire region，<0.6 all cases）， and transitions are twice as frequent as transversions． The Kimura two－parameter distance（ d_{k} ）performs well under these parameters（Jin and Nei 1990）and was used here to estimate sequence divergence．But because sub－ stitution rate varies considerably across sites（fig．1），we also used the method of Jin and Nei（1990）for com－ parison．

Figure 7 shows the neighbor－joining（Saitou and Nei 1987）tree for cpITS sequences constructed from Kimura distance values and provides a general impres－ sion of the data．The most notable feature of the tree is the very low degree of divergence observed between most angiosperm taxa．Several angiosperm sequences are borne on long branches，suggesting an elevated sub－ stitution rate relative to other angiosperms（Pisum，Bam－ busa，Oryza，Poa，Epifagus，and Conopholis）．In the case of Pisum，this may be due to the loss of one copy
of the inverted repeat in the cpDNA（Palmer and Thompson 1981），because the presence of two copies of the inverted repeat appears to reduce the rate of nucle－ otide substitution in the IR region（Wolfe，Li，and Sharp 1987）．For the grasses，the elevated substitution rate in cpDNA reported for Poaceae（Gaut et al．1992）may also apply to the IR region．For Epifagus and Conopholis， the apparent elevation of substitution rate is likely due to loss of functional constraints in the cpDNA of these parasitic plants（Wolfe，Morden，and Palmer 199 ）． Considerably greater sequence divergence is observed in cpITS sequences in comparisons between ferns thän between seed plants．Spermatophytes are separated from remaining taxa by a very robust branch，the length of which may be exaggerated due to the difficulties aligning variable regions across this boundary．

The reliability of the topology was estimated bootstrapping．The 80% bootstrap proportion consensus NJ tree for cpITS sequences is shown in figure $8 A$ ；the threshold of 80% was chosen arbitrarily．Results \％f bootstrapping using the Kimura distance or Jin and N⿳⺈⿴囗十一⿺卜丿ici （1990）distance are summarized in the figure．The ga袬－ ma parameter of 1.3 estimated from the cpITS data ${ }^{3}$ s probably too low，but gamma parameters of 1.0 or 2 gave identical topologies at the $50 / 100$ bootstrap pros portion consensus level（data not shown）．Using either gamma distance，only one branch was found in $80 \stackrel{\oplus}{\oplus} \mathrm{r}$ more replicates（a common branch for Alchemilla abd Alnus in $82 / 100$ with a gamma parameter of 2 ，found $\underset{\substack{\text { in } \\ n}}{ }$ $72 / 100$ with d_{k} ）that was not found in 80 or more re $\stackrel{\rightharpoonup}{p}$－ licates using d_{k} ．Conversely，only one branch was de－ tected in 80 or more replicates using d_{k} that was foufid in less than 80 replicates using the gamma distances（the common branch for Ginkgo，Zamia，and Cycas，76／10ee）． Thus，the topologies obtained were very similar wîh different distance estimation methods，although absolựe branch lengths werc slightly（ $\sim 10 \%$ ）greater with the gamma distances as compared to those obtained for $\bar{\varphi} \bar{\varphi}$ ．

The position of the Gnetales relative to angio－ sperms and other gymnosperms is of interest，because several lines of data point to Gnetales as the sister grooup to angiosperms．This relationship is not resolved in fig̈－ ure $8 A$ ，which provides a conservative view of the $c p I{ }_{6}^{6} S$ gene phylogeny．As shown in figure $8 B$ ，the data do nọt support a sister group relationship between angiosperras and Gnetales，but rather provide weak support（abovit 50／100 replicates）for monophyly of gymnosperms sur－ veyed．Although divergence between cpITS sequences is rather high for maximum parsimony analyses，we constructed bootstrap parsimony trees for the alignment to see if it provided support for sister group affinities between Gnetales and angiosperms．Using parsimony， the branch shared by Pinus and Gnetales in figure 8 occurred in more than 90／100 replicates．

Fig．8．－Trees derived from cpITS sequences．Marchantia was used as the outgroup．A． 80% bootstrap proportion consensus NJ tree for Kimura distances between cpITS sequences．Numbers above branches indicate the number of times the branch occurred out of 100 replicates using the Kimura distance；less frequently occurring branch－ es are not shown．Numbers below branches indicate the number of times the branch occurred out of 100 replicates using the Jin and Nei （1990）distance with a gamma parameter of 2．0．Bootstrap values less than the consensus indicated are shown in parentheses．Abbreviations are as in the legend to figure 7．Higher taxon designations indicated are those of Ehrendorfer（1991，pp．471－282）（spermatophytes）and Kramer（1990，pp．49－52）（ferns）．B．Portion of the 50% bootstrap proportion consensus NJ tree for Kimura distances between cpITS se－ quences showing the common branch for gymnosperms detected in 58／ 100 replicates．

Thus，cpITS provide no support for the view that Gnetales are the sister group of angiosperms，in contrast to reports based on $r b c \mathrm{~L}$ sequences（see Discussion）．We reanalyzed published $r b c \mathrm{~L}$ data for the same or confam－ ilial genera as for cpITS．Synonymous sites are saturated in most $r b c \mathrm{~L}$ comparisons on this data set（see above）．

Fig．9．－Divergence in $r b c \mathrm{~L}$ sequences investigated estimated $\bar{\beta}$ d_{k}（Kimura two－parameter distance；Kimura 1980）at first and second codon positions of $r b c \mathrm{~L}\left(\mathrm{~d}_{k, r b c \mathrm{~L} 1+2 \text { pos }}\right)$ or numbers of nonsynonymo雷 substitutions per site estimated as d_{N} with the method of Nei and $G \stackrel{D}{0}-$ jobori（1986）（both ordinate）plotted against numbers of nonsynon $\overline{\overline{\text { E／}}}$ mous substitutions per site estimated as K_{a}（abscissa）with the methêd of Li, Wu ，and Luo（1985）．Plots of $\mathrm{K}_{a} v s$ ． d_{N} are indicated as hea ${ }^{9}$ points，the corresponding linear regression $\left(R^{2}=0.97\right)$ is indicated by the dashed line．Plots of $\mathrm{K}_{a} v s . \mathrm{d}_{k}$ are indicated as light points，the corresponding linear regression（ $R^{2}=0.86$ ）is indicated by the sohid line．The dotted line indicates the expectation for identical estimates obtained with K_{a} and the other two methods．

Divergence between $r b c \mathrm{~L}$ sequences should be estima $\frac{\overline{5}}{5}$ ed at synonymous and nonsynonymous sites indepe ${ }_{5}^{\mathbf{2}}$ dently（Martin，Somerville，and Loiseaux－deGoër 199※ Martin et al．1993）．But many groups currently using $r b c \mathrm{~L}$ to study plant evolution use mainly the progran ${ }_{3}{ }^{3}$ of PHYLIP or PAUP packages；to make our results more directly comparable to theirs，we removed third posi－ tions from the $r b c \mathrm{~L}$ alignment and then estimated dil vergence at first and second positions with the Kimuga method．Because about 75% of $r b c$ L＇s third positions a⿱̆⿶凵巳巳 synonymous in an average comparison，deleting thig d positions removes about $8 \%-10 \%$ of the nonsynons－ mous sites but also eliminates stochastic similarity from the data set in comparisons of divergent taxa．The feew （about 5\％）synonymous sites remaining at first positioes should not distort distance estimations heavily．This disio－ tance estimation（ d_{k} at first and second positions）ne glects the effects of alternative pathways of amino acid substitution or likelihood of amino acid replacemerus but permits us to use a single substitution model for both individual and concatenated $c p I T S$ and $r b c \mathrm{~L}$ sequencess． Because only a small fraction of first positions in rbč are synonymous，the correlation between the Kimura distance at first and second positions and K_{a} is quite positive（ $R^{2}=0.86$ ）yet lower than the correlation be－ tween K_{a} estimated with Li et al．＇s method and the same value estimated with Nei and Gojobori＇s method（ $R^{2}=$ 0.97 ）（fig．9）．Bootstrap resampling should counteract this effect sufficiently so that first position synonymous
rbcL 80\% BP Consensus

Fig. 10.- 80% bootstrap proportion consensus NJ tree for Kimura distances at first and second codon positions for $r b c \mathrm{~L}$ sequences (see text). Marchantia was used as the outgroup. Parentheses indicate that the consensus value of $38 / 100$ for monophyly of angiosperms is below the threshold for other branches in the figure. Abbreviations are as in the legend to figure 7. Three differences in 80% consensus branches relative to figure 8 are mentioned in the text.
sites should not have serious impact on trees constructed with d_{k} at first and second $r b c \mathrm{~L}$ positions.

The 80% bootstrap proportion NJ consensus tree for divergence at first and second $r b c \mathrm{~L}$ codon positions is shown in figure 10. Within angiosperms, all groups found at the 80% bootstrap proportion consensus level for cpITS were also found for rbcL. Three additional branches within angiosperms were detected for $r b c \mathrm{~L}$ in 80 or more replicates; these were Bambusa-Oryza (93/ 100), Bambusa-Oryza-Pennisetum-Avena (100/100), and Piper-Annona (91/100). With rbcL, angiosperms were detected as a monophyletic group in only $38 / 100$ replicates. We found no support for the view that $r b c \mathrm{~L}$ sequences suggest a sister group relationship between angiosperms and Gnetales. Because many recent reports using $r b c \mathrm{~L}$ have included all codon positions, we constructed bootstrap consensus NJ trees for complete $r b c \mathrm{~L}$ sequences from the same taxa. In those analyses, the group (Zamia, Cycas, Ginkgo, Pinus) was found in 99/ 100 replicates and was the sister group to angiosperms, the branch indicating a sister group relationship between these four gymnosperms and angiosperms was found in $86 / 100$ replicates. Thus, also analysis of complete rbcL sequences did not support claims of sister group affinities between angiosperms and Gnetales.

Finally, we concatenated cpITS (complete) and $r b c \mathrm{~L}$ sequences (first and second positions only) for the taxa indicated in table 1 and constructed the 80% consensus NJ tree (fig. 11). The result is based on an average of 1,486 nucleotides per comparison. Few changes in topology for the combined data set are evident relative to the cpITS topology in figure 8 . The only differ-
A. cplTS/rbcL 80\% BP Consensus

Fig. 11.-Trees derived from cpITS sequences concatenated with first and second positions of $r b c \mathrm{~L}$. Genus names refer to $c p I T \bar{S}_{\hat{\Phi}}$ sequences, for genus names of concatenated $r b c \mathrm{~L}$ sequences please refer to table 1. A. 80% consensus NJ tree for Kimura distances. Numbers above branches indicate bootstrap proportion using the Kimura distance. Numbers below branches indicate the bootstrap proportion using the Jin and Nei (1990) distance with a gamma parameter of 2.0 . Bbotstrap values less than the consensus indicated are shown in parentheses. Abbreviations are as in the legend to figure 7. B. Portion of the $\overline{5} 0 \%$ bootstrap proportion consensus NJ tree showing the common brănch for gymnosperms detected in $50 / 100$ replicates.
ences in consensus topology are the separation of Nhe two Piperales, Piper and Peperomia, and the lack of a common branch for ferns, Psilotum and Lycopodium. Relative to figure 10 , however, quite a few differences are evident, most notably increased resolution within ferns and more robust branching within spermatophytes. Thus, the gene tree of the combined data set generally reflects the cpITS topology, which is not surprising because many more substitutions are observed between cpITS sequences than between first and second positions
of $r b c \mathrm{~L}$ sequences. With the single exception of Piper, there are no conflicting branches for analyses of either marker alone or for the combined data set at the 80% consensus level.

Discussion

We previously addressed questions concerning the general course of angiosperm (Martin, Gierl, and Saedler 1989; Martin et al. 1993) and land plant evolution (Troitsky et al. 1991) with the help of relatively limited nucleotide sequence data sets. By employing PCR primers against conserved regions, data collection for study of plant evolution has become very simple. Recently, strong emphasis has been placed on $r b c \mathrm{~L}$ sequencing (Les, Garvin, and Wimpee 1991; Chase et al. 1993; Clegg 1993), but other markers are needed that increase the amount of data available per taxon for evolutionary investigation. The conserved primers from the rRNA operon in the inverted repeat region of cpDNA used here efficiently amplify a roughly 500 -bp fragment from land plants; we encountered no land plants from which we could not amplify this region. Sequence characteristics and divergence of cpITS are suitable for the study of land plant evolution.

Molecular Resolution within Angiosperms

The molecular phylogeny obtained with the combined $c p I T S-r b c \mathrm{~L}$ data set is probably more reliable than those obtained with either marker alone. The consensus tree in figure 11 contains several notable findings. Foremost, there is very strong evidence for the monophyly of angiosperms surveyed. The evidence for angiosperm monophyly, however, is not contained within the $r b c \mathrm{~L}$ data set (cf. fig. 10) but rather in the cpITS data (fig. 8). The monophyly of angiosperms is also very strongly supported by analyses of their morphological characters (for a lucid review, see Crane, Friis, and Pedersen 1995). Also, the indel $\Delta 519-550$ (fig. 4) shared by angiosperms surveyed supports monophyly of flowering plants, as does the region around $\Delta 567-571$.

Within angiosperms, no resolution at the subclass level was obtained at the 80% consensus level with either cpITS, rbcL, or the combined data set; this finding is also reflected in the very short internal branch lengths within angiosperms in figure 7 . With regard to the most primitive angiosperms sampled, we note that in nonbootstrapped NJ trees using either the Kimura or gamma distance for cpITS sequences, the aquatic angiosperm Nymphaea was basal on the flowering plant branch (fig. 7 and data not shown). Bootstrap support for this position was, however, very weak (47/100 with either Kimura or gamma $[\mathrm{a}=2]$ distance), and the branch separating Nymphaea from other angiosperms was not found at all in either the $r b c \mathrm{~L}$ or combined data sets.

But consistent with the basal position of Nymphaea, and perhaps more noteworthy, is a small stretch of 7 bp (positions $507-513$ in fig. 4) that appears to be shared between Nymphaea and gymnosperms (allowing for some substitutions) but is clearly absent from all other angiosperms surveyed. The alignment in this region can be modified, but even if portions of the alignment from positions 400-600 (or even positions 300-600) are excluded, Nymphaea retains its basal position among ang giosperms and receives increased bootstrap suppor (data not shown). The specific indel under consideratio兽 is therefore consistent with-but independent of-sub stitutions in the remainder of the alignment.

The finding that an aquatic angiosperm is weakl supported by cpITS data to be the earliest branchin: flowering plant is compatible with current views on the nature of primitive angiosperms (Endress 1994) and with the findings of Les, Garvin, and Wimpee (1991) io their study of $r b c \mathrm{~L}$ genes, although their taxon sampling was quite different from ours. They found that Cerato phyllum was the most primitive of several aquatic arê giosperms surveyed, although the use of outgroups othe\% than the one gymnosperm Pseudotsuga in that analysis may have produced different results. The phylogenet distribution of $\Delta 507-513$ in other (aquatic) angiosperm (such as Ceratophyllum) deserves further attention Also, more markers need to be employed in order increase the total number of bases for analysis. If ano giosperm evolution occurred as a true radiation, simila to the Cambrian explosion of invertebrate phyla (Herve, Chenuil, and Adoutte 1994), resolution in the basat regions of the angiosperm tree may be a very difficult molecular phylogenetic problem, and-as for inverte brates-a very large number of sites may be required (Lecointre et al. 1994).

Relationship of Gnetales to Angiosperms and Other Gymnosperms

Answers to the question of angiosperm origins are inextricably coupled to the identification of their sisterd group among extinct and extant taxa. A number of liness of morphological evidence point to members of the Gnes tales as the possible sister group to angiosperms among extant gymnoperms (Friedmann 1990, 1994; Nixon ef al. 1994; Crane, Friis, and Pedersen 1995), but molect ular support for this view is extremely weak at best. Albert et al. (1994) and Doyle, Donoghue, and Zimmer (1994) conducted parsimony analyses of molecular sequences combined with morphological characters and concluded that Gnetales are the sister group of angiosperms, but if molecular data are combined with character state data, the result cannot be regarded as an independent molecular test of hypotheses concerning morphological evolution. The power of molecular data to
reconstruct evolution independently of parallelisms at the morphological level is lost if the two types of data are combined. Therefore, the conclusions of such analyses cannot be taken as molecular support sensu strictu for sister group status between angiosperms and Gnetales. In Doyle, Donoghue, and Zimmer (1994), trees based purely on molecular (rRNA) data are also shown, but these do not include nonspermatophyte outgroups, in the absence of which sister group relationships between Gnetales and angiosperms cannot be addressed because outgroups may have dissected the angiospermgymnosperm branch. Hamby and Zimmer (1992) did include Equisetum and Psilotum as outgroups in some trees and found that the data did not permit resolution of the angiosperm-Gnetales relationship. Other studies of rRNA (Rakhimova et al. 1989; Troitsky et al. 1991; Chaw et al. 1994) and $r b c \mathrm{~L}$ sequences (Hasebe et al. 1992, 1993) that included outgroups suggested that no extant gymnosperm taxon is a sister taxon to angiosperms and that gymnosperms may be a monophyletic group. The latter findings are consistent with the results of our analyses on $c p I T S$ and $r b c \mathrm{~L}$ sequences, although we only have very weak bootstrap support for the monophyly of gymnosperms sampled. We find, however, very strong support for the monophyly of Gnetales with both markers (figs. 8, 10, and 11), which is incongruent with results of parsimony analyses on morphological characters recently presented by Nixon et al. (1994), in which Ephedra branched below angiosperms and other Gnetales.

Phylogenetic Analysis within
Ferns and Fern Allies
In the analyses of cpITS sequences from 16 pteridophytes (including representatives from the fern allies Lycopodium and Psilotum, as well as one eusporangiate and 13 leptosporangiate ferns), the phylogeny appears to yield better resolution than within spermatophytes, probably due to the less star-like topology of the pteridophyte tree. Resolution was considerably better with cpITS (figs. 7 and 8) or concatenated (fig. 11) sequences than with $r b c \mathrm{~L}$ sequences alone (fig. 10). Only one internal branch was found in the 80% consensus $r b c \mathrm{~L}$ tree within ferns (suggesting a close affinity between Davalliaceae and Dryopteridaceae to the exclusion of Polypodium). Notably, the degree of internal branch support that we found for $r b c \mathrm{~L}$ was much lower than that reported by Hasebe et al. (1994), in which all positions of $r b c \mathrm{~L}$ were considered. Within the fern $r b c \mathrm{~L}$ sequences sampled, average divergence at synonymous sites across 101 comparisons was >1.0, suggesting that these are saturated, or nearly so, in most comparisons (by contrast, average divergence between cpITS sequences of ferns is 0.35). We did not sample as many taxa as Has-
ebe et al. (1994) did, but we could not corroborate thr high bootstrap values they reported in the fern $r b c \mathrm{~L}$ tree Also, we found a major discrepancy between our topol ogies and those of Hasebe et al. in that the common branch shared by representatives of two families of tax onomically highly uncertain heterosporous ferns (Mar sileaceae and Salviniaceae, 100/100 replicates in Haseb، et al. 1994) was found in neither rbcL nor cpITS anal yses. Rather, we found a very close affinity betwee Marsileaceae and representatives of tree ferns (Dickso्ٍ iaceae and Cyathaceae) to the exclusion of Salviniaceal (although Azolla possess a very large deletion encoin passing the entire cpITS2 region). Otherwise, the top $\overrightarrow{9} 1$ ogy within leptosporangiate ferns with cpITS sequenee was largely congruent with that of Hasebe et al. (199 including the basal position of Hymenophyllaceae, Mair ratiaceae, and Osmundaceae. Deeper branches wit ${ }_{\text {Ril }}$ ferns in figure 7 find low bootstrap support (figs. 8, $\underline{\underline{\underline{D}} 0}$ and 11). The position of Lycopodium in figure 7 is com patible with data from cpDNA gene rearrangement: (Raubeson and Janson 1992). The inclusion of addition al OTUs and outgroups might be expected to have 部 fluence on the common branches shared by Psilotum h (Angiopteris, and the two primitive leptosporangiatt ferns Osmunda and Trichomanes, respectively.

Conclusions

Substitutions occur in the noncoding sequences $\stackrel{\omega}{\omega}_{\circ}^{\circ}$ cpITS regions in the inverted repeat at about one-sixil the rate of that found for synonymous sites in rbcl Despite this lower substitution rate, average divergener between 16 pteridophytes and 31 spermatophytes ${ }_{\infty}^{\circ} \mathrm{i}$: about 0.8 substitutions per site in the noncoding $c p \frac{1}{3}$: regions. This value is quite high but still can be es i mated with some degree of reliability (the average stăn dard error across these comparisons is about 0.2). Be cause synonymous sites in $r b c \mathrm{~L}$ evolve about six tinfe: faster, they are saturated in comparisons across the sper matophye-pteridophyte boundary and in most compă a isons within pteridophytes, where average divergencr between noncoding regions of cpITS is 0.35 substizd tions per site. Within spermatophytes, cpITS seems ${ }_{\text {ta }}^{\circ}($ be a very useful marker even though it is quite short ${ }_{\circ}^{\circ} \mathrm{I}$ can be used to increase the number of sites available comparison in studies of higher plant evolution, anc alignments reveal a number of indels with conspicuou: phylogenetic distribution. Our phylogenetic analyse: marshalled no support for the "anthophyte concept,' i.e., for the view that Gnetales and angiosperms are sis. ter groups and may be collectively designated anthophytes by virtue of the flower-like gnetalean reproductive structures (reviewed in Crane, Friis, and Pederser 1995). On the contrary, both cpITS and rbcL data sug.
gest with low bootstrap support that gymnosperms surveyed (conifers, cycads, gnetales, Ginkgo) may constitute a monophyletic group. Previous reports on the basis of $r b c \mathrm{~L}$ sequence data that gnetales may be the sister group of angiosperms entailed analyses of all $r b c \mathrm{~L}$ sites and may have contained a high number of stochastically similar nucleotides. Careful analyses of further molecular data are needed before conclusions about the general course of higher plant evolution can be drawn.

Acknowledgments

This work was supported by grant Ma 1426/1-3 from the Deutsche Forschungsgemeinschaft to W.M. and by grant N 93-04-6962 from the Russian Fund of Fundamental Science to A.A. V.G. gratefully acknowledges stipends from the DAAD and DFG. We thank H. Saedler for general support and the Gesellschaft für Biotechnologische Forschung, Braunschweig, for the generous use of their computer facilities. We thank S. Bünte and C. Köhler for excellent technical assistance and Dr. B. Zimmer and K. Baeske for fern material.

LITERATURE CITED

Albert, V. A., A. Backlund, K. Bremer, M. W. Chase, J. R. Manhardt, B. D. Mishler, and K. C. Nixon. 1994. Functional constraints and $r b c \mathrm{~L}$ evidence for land plant phylogeny. Ann. Mo. Bot. Gard. 81:534-567.
Ansorge, W., B. S. Sproat, J. Stegemann, and C. Schwager. 1986. A non-radioactive automated method for DNA sequence determination. J. Biochem. Biophys. Methods 13: 315-323.
Baum, D. 1994. rbcL and seed plant phylogeny. Trends Ecol. Evol. 9:39-41.
Bobrova, V. K., A. V. Troitsky, A. G. Ponomarev, and A. S. Antonov. 1987. Low-molecular-weight rRNA sequences and plant phylogeny reconstruction: nucleotide sequences of chloroplast 4.5 S rRNAs from Acorus calamus (Araceae) and Ligularia calthifolia (Asteraceae). Plant Syst. Evol. 156:1327.

Böhle, U.-R., H. H. Hilger, R. Cerff, and W. Martin. 1994. Non-coding chloroplast DNA for plant molecular systematics at the infrageneric level. Pp. 391-403 in B. Schierwater, B. Streit, G. Wagner, and R. Desalle, eds. Molecular ecology and evolution: approaches and applications. Birkhäuser, Basel.
Boulter, D., J. A. M. Ramshaw, E. W. Thompson, M. Richardson, and R. H. Brown. 1972. A phylogeny of higher plants based on the amino acid sequences of cytochrome c and its biological implications. Proc. R. Soc. Lond. B 181: 441-455.
Chase, M. W., D. E. Soltis, R. G. Olmstead et al. (42 coauthors). 1993. DNA sequence phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene $r b c \mathrm{~L} . \mathrm{Ann}. \mathrm{Mo}. \mathrm{Bot}. \mathrm{Gard}. \mathrm{80:528-580}$.
Chaw, S.-M., H.-M. Sung, H. Long, A. Zharkikh, and W.-H. Li. 1994. Phylogeny of the major subclasses of angiosperms
and date of the monocot-dicot divergence. Am. J. Bot. 81: S146.
Clegg, M. T. 1993. Chloroplast gene sequences and the study of plant evolution. Proc. Natl. Acad. Sci. USA 90:363-367.
Clegg, M. T., and G. Zurawski. 1992. Chloroplast DNA and the study of plant phylogeny. Pp. 1-13 in P. S. Soltis, J. J. Doyle, and D. E. Soltis, eds. Molecular systematics of plants. Chapman \& Hall, New York.
Crane, P. W., E. M. Fris, and K. R. Pedersen. 1995. The origin and early diversification of angiosperms. Nature 374 : 27-33.
Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387-395.
Downie, S. R., and J. D. Palmer. 1992. Use of chloroplast䨌 DNA rearrangements in reconstructing phylogeny. Pp. 1435 in P. S. Soltis, J. J. Doyle, and D. E. Soltis, eds. Molecular systematics of plants. Chapman \& Hall, New York.
Doyle, J. A., M. J. Donoghue, and E. A. Zimmer. 1994. Integration of morphological and ribosomal RNA data on the origin of the angiosperms. Ann. Mo. Bot. Gard. 81:419-450.
Ehrendorfer, F 1991. Evolution und Systematik. Pp. 666-826 in P. Sitte, H. Ziegler, F. Eherendorfer, and A. Brezinsky, eds. Lehrbuch der Botanik. Gustav Fischer Verlag, Stuttgart.
Endress, P. 1994. Floral structure and evolution of primitive angiosperms: recent advances. Pl Syst. Evol. 192:79-97.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum-likelihood appoach. J. Mol. Evol. 17:368-376.
—_ 1989. PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164-166.

Friedmann, W. 1990. Double fertilization in Ephedra, a non-ס flowering seed plant: its bearing on the origin of angiosperms. Science 247:951-954.
1994. The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. Am. J. Bot. 81:1468-1486.
Gaut, B. S., S. V. Muse, W. D. Clark, and M. T. Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Mol. Evol. 35:292-303.
Hamby, R. K., and E. A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 50-91 in P. S. . Soltis, J. J. Doyle, and D. E. Soltis, eds. Molecular sys-9 tematics of plants. Chapman \& Hall, New York.
Hasebe, M., M. Ito, R. Kofui, K. Ueda, and K. Iwatsuki. ${ }^{\text {d }}$ 1993. Phylogenetic relationships of ferns deduced from $r b c L_{\Phi}$ gene sequence. J. Mol. Evol. 37:476-482.
Hasebe, M., R. Kofui, M. Ito, M. Kato, K. Iwatsuki, and K. Ueda. 1992. Phylogeny of the gymnosperms inferred from $r b c \mathrm{~L}$ gene sequences. Bot. Mag. Tokyo 105:673-679.
Hasebe, M., T. Omori, M. Nakazawa, T. Sano, M. Kato, and K. Iwatsuki. 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. USA 91:5730-5734.
Herve, P., A. Chenuil, and A. Adoutte. 1994. Can the Cambrian explosion be inferred through molecular phylogeny? Development (Supplement) 15-25.

Hori, H., B.-L. Lim, and S. Osawa. 1985. Evolution of green plants as deduced from 5S rRNA sequences. Proc. Natl. Acad. Sci. USA 82:820-823.
Jin, L., and M. Nei. 1990. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 7: 82-102.
Kimura, M. 1980. A simple method for estimating evolutionary rate of base subsitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.
Kramer, K. U. 1990. Notes on the higher level classsification of the recent ferns. Pp. 49-52 in K. U. Kramer and P. S. Green, eds. The families and genera of vascular plants. Vol. I. Pteridophytes and gymnosperms. Springer Verlag, Berlin.

Lecointre, G., P. Hervé, H. L. V. Le, and H. Le Guyader. 1994. How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Mol. Phylogenet. Evol. 3: 292-309.
Les, D. H., D. K. Garvin, and C. F. Wimpee. 1991. Molecular evolutionary history of ancient aquatic angiosperms. Proc. Natl. Acad. Sci. USA 88:10119-10123.
LI, W.-H., C.-I. WU, and C.-C. Luo. 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2:150-174.
Manhart, J. R. 1994. Phylogenetic analysis of green plant $r b c \mathrm{~L}$ sequences. Mol. Phylogenet. Evol. 3:114-127.
Martin, P. G., and A. C. Jennings. 1983. The study of plant phylogeny using amino acid sequences of ribulose-1,5-bisphosphate carboxylase. Aust. J. Bot. 31:395-409.
Martin, W., A. Gierl, and H. Saedler. 1989. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:4648.

Martin, W., D. Lydiate, H. Brinkmann, G. Forkmann, H. Saedler, and R. Cerff. 1993. Molecular phylogenies in angiosperm evolution. Mol. Biol. Evol. 10:140-162.
Martin, W., C. C. Somerville, and S. Loiseaux-de Goër. 1992. Molecular phylogenies of plastid origins and algal evolution. J. Mol. Evol. 35:385-403.
Murray, M. G., and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325.
Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
Nei, M., and T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous substitutions. Mol. Biol. Evol. 3:418-426.
Niesbach-Klösgen, U., E. Barzen, J. Bernhardt, W. Rohde, Zs. Schwarz-Sommer, H.-J. Reif, U. Wienand, and H. Safdifr. 1987. Chalcone synthase genes in plants: a tool to study evolutionary relationships. J. Mol. Evol. 26:213-225.
Nixon, K. C., W. L. Crepet, D. Stevenson, and E. M. Fris. 1994. A reevaluation of seed plant phylogeny. Ann. Mo. Bot. Gard. 81:484-533.
OTA, T., and M. Nei. 1994. Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J. Mol. Evol. 38:642-643.

Palmer, J. D. 1985. Comparative organization of chloroplast genomes. Ann. Rev Genet. 19:325-354.
Palmer, J. D., and W. F. Thompson. 1981. Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. USA 78:5533-5537.
Palmer, J. D., R. K. Jansen, H. J. Micheals, M. W. Chase, and J. R. Manhart. 1988. Chloroplast DNA variation and plant phylogeny. Ann. Mo. Bot. Gard. 75:1180-1206.
Pichi-Sermolli, R. E. G. 1958. The higher taxa of Pteridophyta and their classification. Syst. Today (Uppsala Universiters Aarsskrift) 6:70-90.
Rakhimova, G. M., A. V. Trortsky, I. N. Klikunova, and ${ }_{6}^{(0)}$ S. Antonov. 1989. Phylogenetic analysis of partial nucleo ${ }^{2}$ tide sequences of 18 S rRNA of 14 plant species. Mol. Bios. (Moscow) 23:830-842.
Raubeson, L. A., and R. K. Janson. 1992. Chloroplast DN evidence on the acient evolutionary split in vascular land plants. Science 255:1697-1699.
Sartou, N., and M. Nei 1987. The neighbor-joining method:受 new method for the reconstruction of phylogenetic trees. Mol. Biol. Evol. 4:406-425.
Sambroor, J., E. F. Fritsch, and T. Maniatis. 1989. Moleculig cloning: a laboratory manual. Cold Spring Harbor Laborator Press, Cold Spring Harbor, N.Y.
Tabor, S., and C. C. Richardson. 1987. DNA sequence anad ysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84:4767-4771.
Trortsky, A. V., and V. K. Bobrova. 1986. 23S-derived smag ribosomal RNAs: their structure and evolution with regard plant phylogenies. Pp. 137-170 in K. S. Dutta, ed. DN systematics. Vol. II. CRC Press, Boca Raton.
Troitsky, A. V., Y. F Melekhovets, G. M. Rakhimova, 点 K. Bobrova, K. M. Valiejo-Roman, and A. S. Antonow 1991. Angiosperm origin and early seed plant evolution de= duced from rRNA sequence comparisons. J. Mol. Evol. 32? 253-261.
Van de Peer, Y., and R. De Wachter. 1993. Treecon: software package for the construction and drawing of ever lutionary trees. Comput. Appl. Biosci. 9:177-182.
Wolfe, K. H., M. Gouy, Y. W. Yang, P. Sharp, and W.-H. Lo 1989. Date of the monocot-dicot divergence estimated frow chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86:6201-6205.
Wolfe, K. H., W.-H. Li, and P. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chlo roplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 88 9054-9058.
Wolfe, K. H., C. W. Morden, and J. D. Palmer. 1992. Funce tion and evolution of a minimal plastid genome from a non photosynthetic parasitic plant. Proc. Natl. Acad. Sci. USA 89 10648-10652.
Zimmer, E. A., R. K. Hamby, M. L. Arnold, D. A. Lebianc, and E. L. Theriot. 1989. Ribosomal RNA phylogenies and flowering plant evolution. Pp. 205-226 in B. Fernholm, K. Bremer, and H. Jörnvall, eds. The hierarchy of life. Elsevier, Amsterdam.

TaKashi Gojobori, reviewing editor
Accepted October 23, 1995

[^0]: Key words：noncoding DNA，angiosperms，gymnosperms，Gne－ tales，ferns，molecular phylogeny，chloroplast inverted repeat，molec－ ular evolution．

 Address for correspondence and reprints：William Martin，Institut für Genetik，Technische Universität Braunschweig，Spielmannstrasse 7，D－38023 Braunschweig，Federal Republic of Germany．E－mail： w．martin＠tu－bs．de．

 Mol．Biol．Evol．13（2）：383－396． 1996
 © 1996 by the Society for Molecular Biology and Evolution．ISSN：0737－4038

[^1]: ${ }^{\text {a }}$ cpITS sequences that were not determined in this paper are indicated with an asterisk.
 ${ }^{\mathrm{b}}$ Family names are abbreviated with an apostrophe for "-aceae."

