Noncognitive Abilities and Financial Distress: Evidence from a Representative Household Panel

Gianpaolo Parise EDHEC Business School

Kim Peijnenburg EDHEC Business School, CEPR, and Netspar

This paper provides evidence of how noncognitive abilities affect financial distress. In a representative panel of households, we find that people in the bottom quintile of noncognitive abilities are 10 times more likely to experience financial distress than those in the top quintile. We provide evidence that this relation largely arises from worse financial choices and lack of financial insight by low-ability individuals and reflects differential exposure to income shocks only to a lesser degree. We mitigate endogeneity concerns using an IV approach and an extensive set of controls. Implications for policy and finance research are discussed. (*JEL* D10, D14, G41)

Received September 24, 2017; editorial decision September 26, 2018 by Editor Stijn Van Nieuwerburgh. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.

Economists have accumulated abundant evidence indicating that noncognitive abilities—besides cognitive skills—matter for a large set of economic behaviors.¹ Recent research finds that noncognitive abilities have implications for labor income (Heckman et al. 2006), health-related habits (Heckman et al.

We thank the LISS panel for providing us with the data. For comments, we thank two anonymous referees, Sumit Agarwal, Pietro Biroli, Lex Borghans, Laurent Calvet, Nicola Gennaioli, Francisco Gomes, David Hirschleifer, Arvid Hoffmann, Markku Kaustia, Matti Keloharju, Ralph Koijen, Olivia Mitchell, Stijn Van Nieuwerburgh (the editor), Julien Sauvagnat, Paolo Sodini, Paul Smeets, Christophe Spaenjers, and Annette Vissing-Jørgensen and seminar and conference participants at the Behavioral Finance Conference in Amsterdam, the Miami Behavioral Finance Conference, the European Economic Association meeting in Lisbon, Aalto University, Bocconi University, the Erasmus School of Economics, Lund University, Maastricht University, Nova Business School, and Tilburg University. We gratefully acknowledge support from the HEC Foundation and Labex Ecodex. This paper was written, in part, while K. P. was a faculty member at HEC Paris. Supplementary data can be found on *The Review of Financial Studies* Web site. Send correspondence to Kim Peijnenburg, EDHEC Business School, 393 Promenade des Anglais, Nice, France, 06200; telephone: +33 686 208 971. E-mail: kim.peijnenburg@edhec.edu.

¹ The term *noncognitive abilities* is rather standard in the literature; however, some clarification regarding our terminology is in order. As highlighted by Borghans et al. (2008), the term *noncognitive* is often juxtaposed with *cognitive*. However, it should not be interpreted as referring to traits devoid of cognition. Alternatives names for noncognitive abilities are *noncognitive skills*, *soft abilities, personality traits*, and *character skills*. See Almlund et al. (2011) for a review of the literature.

[©] The Author(s) 2019. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 doi:10.1093/rfs/hhz010
 Advance Access publication February 2, 2019

2017), educational attainment (Cunha et al. 2010), and corporate policies (Gow et al. 2016). Yet, in financial economics, relatively little empirical evidence speaks to the role that noncognitive abilities play in influencing household exposure to financial distress.

A better understanding of the determinants of financial fragility is critically important. According to a survey conducted by the Federal Reserve Board, almost half of U.S. households are at risk of financial distress: An unexpected expense of \$400 would prompt many to borrow money, sell something, or simply not pay at all (Federal Reserve Board 2016). Traditional economic theories, however, have a hard time explaining the observed heterogeneity in financial choices and outcomes. In this paper, we attempt to identify a causal effect of noncognitive abilities on financial distress and quantify the importance of the different channels through which this relation works.

The measurement of noncognitive abilities is itself a challenge (Heckman and Rubinstein 2001). Heckman et al. (2013) state that the most influential taxonomy for measuring noncognitive abilities is a framework developed in psychology that is commonly referred to as the Big Five personality traits. Following that framework, we obtain measures of *emotional stability* and *conscientiousness*—the two of the five traits that relate to economic outcomes—using the 20 standard survey questions developed in the seminal paper by Goldberg (1992).² Emotional stability refers to a person's ability to remain calm when faced with pressure or stress and to not easily become anxious. Conscientiousness describes the tendency to be organized, practical, dependable, and self-disciplined.

We obtain the information needed to construct these measures and a rich set of variables of interest and controls from the Longitudinal Internet Studies for the Social Sciences (LISS). This panel comprises a representative sample of more than 7,000 individuals in the Netherlands who were regularly surveyed from 2008 to 2017.

The richness of the data allows us to quantify the effect of noncognitive abilities on financial distress and identify the importance of different channels underlying this relation. We provide evidence that people in the lowest quintiles of both emotional stability and conscientiousness have a 10 times higher probability of experiencing distress compared to people in the highest quintiles. Using a Fairlie-Blinder-Oaxaca decomposition, we find that financial choices explain more than one-third of the aforementioned differential in the distress probability between low- and high-ability individuals, and financial insight explains another one-third. By contrast, the income channel explains a relatively

² In our analysis, we mostly focus on emotional stability and conscientiousness, because the literature shows that these two traits matter most frequently for economic choices and outcomes. Furthermore, intuitively, these two traits can be interpreted as "abilities," because they consistently have a *beneficial* influence on financial choices, labor income, financial insight, health outcomes, and criminal behavior (our own estimates; see also, for instance, Almlund et al. 2011). By contrast, the other three traits have detrimental effects in some domains and beneficial effects in others. Section 1 will further discuss the choice of the main explanatory variables.

smaller part (23%) of the higher likelihood of low-skill individuals to experience distress.

We further disentangle these economic channels by estimating the relative importance of specific choices and behaviors. Among the financial choices, we find that having unsecured debt and lacking a financial wealth buffer are the most important factors explaining the differential exposure to distress between low- and high-ability people. Regarding the financial insight channel, impulsive buying behaviors explain one-third of the entire differential in distress exposure. Finally, focusing on the income channel, being on disability and health status are overall the most relevant determinants of the distress differential. We find that the income level *per se* is of secondary importance.

To alleviate potential endogeneity concerns, we perform three additional sets of tests. First, to address the presence of confounding factors, we include a battery of controls including preferences and behavioral traits. Furthermore, we establish that noncognitive abilities still have a sizable influence on financial distress when controlling for income variables. Second, to mitigate potential reverse causality issues, we exploit the panel dimension of our data. This allows us, for instance, to show that noncognitive abilities predict financial distress 5 years later. Third, we instrument emotional stability in adulthood using childhood trauma. The rationale behind this test is that traumatic experiences during childhood affect emotional stability, but are arguably exogenous to financial outcomes in adulthood. Overall, the empirical evidence supports a causal interpretation of our findings.

The role of noncognitive abilities has sparked mounting interest in the economic and psychology literature alike. Closely related to our paper, Xu et al. (2015) find a contemporaneous correlation between noncognitive abilities and measures of financial distress in a cross-section of young adults. However, the authors acknowledge that their conclusions are potentially affected by reverse causality, as financial distress may influence respondents' emotional stability. Furthermore, in a contemporaneous paper, Kuhnen and Melzer (2018) examine the influence of the self-efficacy of young adults on their financial delinquency behavior.³ Donnellan et al. (2009) find a significant relation between noncognitive abilities and economic hardship among young adults and Rustichini et al. (2016) map survey questions onto the Big Five traits and show a relation with the credit scores of trucker trainees.⁴

³ We run an analysis similar to that conducted by Kuhnen and Melzer (2018) by using a closely related measure of self-efficacy, locus of control, and we find similar results. Interestingly, when we include our measures of emotional stability and conscientiousness, locus of control becomes insignificant. This is possibly because locus of control is subsumed by conscientiousness.

⁴ In addition, several papers posit that economic choices and outcomes are correlated with noncognitive abilities. A number of papers in psychology and economics show a link between indebtedness and self-control (Gathergood 2012b), psychological health (Gathergood 2012a), and noncognitive abilities (Brown and Taylor 2014). The latter two papers use the British Household Panel Survey (BHPS). This survey comprises several waves and samples a representative set of individuals. However, the BHPS lacks information on important control variables (such as financial literacy, numeracy, and preferences); noncognitive abilities are asked only in one wave; and the data do

Our paper differs from previous literature in its research objective, scope, and overall data quality and representativeness. Specifically, we are the first to quantify the importance of the different economic channels through which noncognitive abilities affect financial distress. Second, our data allow us to account for the effect of important covariates that are often overlooked by related papers, such as cognitive abilities, preferences, and income. We thus provide a precise estimation of both the aggregate effect of noncognitive abilities on distress and the net effect after accounting for income and preferences. Third, we are the first to use an instrumental variable (IV) approach to establish a causal effect of noncognitive abilities on financial distress. Finally, our representative sample of adults allows us to mitigate selection bias concerns that limit the scope of several related papers.

Our paper makes a number of contributions to the literature. A growing number of papers focus specifically on the importance of *cognitive* abilities in explaining stock market participation and financial mistakes.⁵ In this paper, by contrast, we emphasize the importance of *noncognitive* abilities. We find that these abilities are particularly relevant for households and possibly explain more of the variation in financial distress than cognitive abilities do.

Furthermore, our paper relates to the empirical literature exploring the determinants of financial outcomes and decisions.⁶ Recent research shows that important sources of financial distress are health shocks (Gross and Notowidigdo 2011), employment shocks (Elul et al. 2010), and unsecured debt (e.g., Carrell and Zinman 2014; Skiba and Tobacman 2015). In addition, a recent series of papers posit that genes play a role in explaining the heterogeneity in financial behaviors (e.g., Cesarini et al. 2010; Cronqvist and Siegel 2014, 2015; Cronqvist et al. 2016). By documenting the relation between financial choices and noncognitive abilities, which are to some degree genetically determined,

not allow one to rule out reverse causality concerns (see the discussion in Brown and Taylor 2014). Relatedly, a number of papers link personality features to economic outcomes, such as receiving financial assistance (Gillen and Kim 2014), and savings and wealth accumulation (e.g., Cobb-Clark et al. 2016; Duckworth and Weir 2010; Letkiewicz and Fox 2014; Mosca and McCrory 2016; Nyhus and Webley 2001). Furthermore, Otero-López and Pol (2013) and Thompson and Prendergast (2015) document a relation between personality traits and compulsive buying. In labor economics, several papers, such as those by Carneiro et al. (2007) and Gensowski (2018), show that noncognitive abilities relate to labor income. Almlund et al. (2011) and Borghans et al. (2008) provide a more extensive review of the literature.

⁵ Grinblatt et al. (2011) relate cognitive abilities to stock market participation, diversification, and Sharpe ratios, and Grinblatt et al. (2015) show that high-IQ investors avoid funds with high management fees. Furthermore, Agarwal and Mazumder (2013) analyze the effect of cognitive abilities on the propensity to make financial mistakes regarding the optimal usage of credit cards and home equity loan applications. Both Grinblatt et al. (2011) and Agarwal and Mazumder (2013) obtain their measures for cognitive ability from military test scores. Furthermore, a vast literature emphasizes the importance of financial literacy for households' financial choices (e.g., Behrman et al. 2012; Lusardi and Mitchell 2008, 2011, 2014; van Rooij et al. 2011).

⁶ Previous papers have argued that financial choices are influenced by trust (Guiso et al. 2008), optimism (Puri and Robinson 2007), ambiguity attitudes (Dimmock et al. 2016), political preferences (Kaustia and Torstila 2011), health status (Rosen and Wu 2004), and obesity (Guthrie and Sokolowsky 2017).

we provide a potential connection between genetic heritage and financial wellbeing, as also argued in Xu et al. (2017).⁷

To understand the role of noncognitive abilities is important from a policy perspective. We give four examples. First, while it is difficult to alter noncognitive abilities after childhood, these abilities could be nurtured at an early stage of life with targeted school programs (e.g., Chetty et al. 2011; Heckman et al. 2010). Second, assessing noncognitive abilities could help identifying which individuals are more exposed to the risk of financial distress (e.g., using online surveys).⁸ Third, targeted policy interventions aimed at stimulating greater financial knowledge could prove more effective than subsidies, as we find that noncognitive abilities influence distress relatively more through poor financial awareness/choices than through income shocks. Finally, our analysis may provide insight for bankruptcy law design. Specifically, if financial distress is mostly caused by adverse shocks (e.g., bad luck), a policy favoring forbearance measures will potentially be welfare improving, as the likelihood of recurrence is low. However, we find that noncognitive abilities, which are mostly persistent in adulthood, are an economically significant source of financial distress. If the financial distress of a person stems from low noncognitive abilities, debt forgiveness policies will potentially be less effective, as the likelihood of recurrence may be high. More research on the sources and persistence of financial distress is however necessary before providing definitive policy recommendations.

1. Measuring Noncognitive Abilities

The economics literature provides evidence on the influence of cognitive and noncognitive abilities on labor income, employment, health behaviors, and educational attainment. In finance, while a few papers explore the role of cognitive abilities, noncognitive abilities have largely been ignored. In this section, we survey the related literature in economics, as this provides guidance on which measures should be used in our analysis. Furthermore, we provide details on our measurement of noncognitive abilities.

1.1 Measures of noncognitive abilities in the literature

Researchers broadly agree on using personality traits to measure noncognitive abilities. However, the previous literature uses a variety of different traits.

⁷ Using a data set of young adults and a short version of our personality survey, Xu et al. (2017) show that half of the variation in financial distress is genetically influenced and argues that personality is associated with financial distress through genetic endowment.

⁸ An assessment of noncognitive abilities is becoming increasingly popular among providers of financial services. For instance, Barclays uses an online module, which is called "Financial Personality Assessment," to determine the investment profile of clients. This module asks four questions aimed at measuring emotional stability. In particular, respondents rank how much they agree with the following statements: I fear for the worst; I am not easily bothered by things; I get stressed easily; and Uncertainty makes me uneasy, anxious or stressed (see https://wealth.barclays.com/en_gb/home/others/understanding-your-financial -personality.html).

This lack of uniformity largely stems from limited data availability. Our goal in this section is twofold. First, we make the case that our two measures of noncognitive abilities, emotional stability and conscientiousness, are the appropriate measures to use. Second, we highlight the close relation between these measures and alternatives used in the literature.

The framework that we use was originally developed in psychology and is increasingly used in economics. In a paper assessing the long-term consequences of improving noncognitive abilities on labor market outcomes, Heckman et al. (2013, p. 2067) write that "the most influential taxonomy of personality skills is the Big Five personality inventory. … The Big Five was developed long after the Perry experiment⁹ was conducted. We only have access to psychological measures of personality skills collected before the Big Five was codified." Unlike Heckman et al. (2013), we are able to extract the Big Five personality traits from our data.

In our analysis, we consider two of the Big Five personality traits as measures of noncognitive abilities, and the remaining three as controls. The reason for focusing on conscientiousness and emotional stability is twofold. First, the literature shows that these are the traits that matter most frequently for economic choices and outcomes. In their review of the literature on noncognitive abilities and economic outcomes, Almlund et al. (2011, p. 125) state that "a growing body of evidence suggests that personality measures-especially those related to conscientiousness, and, to a lesser extent, neuroticism—predict a wide range of outcomes."¹⁰ Second, conscientiousness and emotional stability can both be interpreted as "abilities" rather than just personality features. Higher scores in conscientiousness and emotional stability are unequivocally better for most economic outcomes. By contrast, higher scores in, for instance, extraversion might not be advantageous in all domains. Intuitively, extraverted people are likely better at networking on the job but possibly less restrained in their consumption behavior. This intuition is supported by the data since several papers show that conscientiousness and emotional stability consistently have a *beneficial* influence in a number of domains, such as financial outcomes and choices, labor income, financial insight, educational achievements, health outcomes, and criminal behavior (see, for instance, Almlund et al. 2011; Borghans et al. 2008; Xu et al. 2015). By contrast, depending on the domain, the other three traits can have beneficial or detrimental effects (or no effect at all). People that score high on agreeableness tend to exhibit *better* financial

⁹ The Perry Preschool Study was an experimental intervention carried out from 1962 to 1967, providing highquality preschool education to low-IQ African-American children aged 3 to 4 living in poverty and assessed to be at high risk of school failure. Borghans et al. (2008, p. 973) state that "the power of traits other than cognitive ability for success in life is vividly demonstrated by the Perry Preschool study." Conti et al. (2016) and Heckman et al. (2010a, 2010b, 2013) show that altering the noncognitive abilities of these preschoolers improved their life outcomes, including education, employment, earnings, and health, and reduced the likelihood of criminal behaviors.

¹⁰ Neuroticism is the negative pole of emotional stability.

insight (e.g., Donnelly et al. 2012; Otero-López and Pol 2013), but make *worse* financial choices (e.g., Brown and Taylor 2014; Duckworth and Weir 2010), have *lower* income, and are more often unemployed or disabled (e.g., Becker et al. 2012; Gensowski 2018). This is confirmed using our own data set, see Tables A14, A15, and A16 in Online Appendix F. Therefore, the interpretation of the other three traits as abilities appears problematic.

Instead of using the Big Five personality traits, several papers in economics employ available survey questions and relate them to emotional stability and conscientiousness. For instance, Heckman et al. (2013) obtain 43 different personality measures for children in the Perry Preschool Study, which, using factor analysis, are summarized into three abilities: cognition, externalizing behavior, and academic motivation. Externalizing behavior is mostly related to our measure of emotional stability, while academic motivation is related to conscientiousness. Furthermore, Rustichini et al. (2016) use a data set of trucker trainees to show the predictive power of noncognitive abilities for credit score, job persistence, and healthy behaviors. The authors do not have direct measures of the Big Five personality traits but explicitly map the available survey questions onto these traits.¹¹ Overall, researchers generally agree on measuring noncognitive abilities on the basis of emotional stability and conscientiousness or, alternatively, related measures when these two personality traits are not available.

1.2 Construction of the measures of noncognitive abilities

The intuition behind what our measures capture is best illustrated using trait adjectives describing individuals who score high (low) on each trait. See Table A3 of Online Appendix A. Emotional stability refers to a person's ability to remain calm when faced with pressure or stress and to not be inclined to anxiety or to act impulsively. Conscientiousness describes the tendency to be organized, practical, persistent, self-disciplined, and achievement oriented (e.g., McAdams 2013).

In our sample, emotional stability and conscientiousness are measured using the 20 standard questions developed in the seminal paper by Goldberg (1992) and reported in Table A1 of the appendix. Importantly, these questions are asked without reference to any context, which limits the risk of mechanical correlations. For example, a respondent would be more likely to answer that

¹¹ As a further example, the National Longitudinal Survey of Youth of 1979 (NLSY79) is another widely used data set to study the influence of noncognitive abilities on economic outcomes. The NLSY79 asks mothers to answer a questionnaire about their children between the ages of 3 and 6 (Cunha et al. 2010). Among other traits, they use a child's tendency to be anxious and depressed as a proxy for noncognitive ability. This measure is tightly linked to our emotional stability affects wages and the probability of unemployment by using data from interviews conducted by psychologists with individuals enlisted in the military. Furthermore, Lindqvist and Vestman (2017), using similar data, focus on investment behaviors. Additionally, Kuhnen et al. (2013) show in a lab experiment of 60 individuals that the part of emotional stability asped by genes relates to hypothetical financial choices.

she gets stressed easily *about her financial situation* if her financial situation is bad, thereby inducing a mechanical correlation in the data. Respondents receive the following instruction: "Please use the rating scale below to describe how accurately each statement describes you: (1) very inaccurate, (2) moderately inaccurate, (3) neither inaccurate nor accurate, (4) moderately accurate, (5) very accurate." The respondents are not informed what the questions are intended to measure and the order of the questions is random. We summarize the 10 questions related to conscientiousness into one measure by using factor analysis. We do the same for emotional stability.

Some evidence suggests that these traits describe to a certain degree permanent characteristics reflecting early life experiences and genetic endowments. Some studies find that the heritable part of noncognitive abilities is greater than 50% and that the influence of the external environment after childhood is limited (e.g., Bouchard and Loehlin 2001; Bouchard and Matt 2003). The exact fraction of noncognitive abilities that is determined by genetics is however still an ongoing topic of research. Important for our study is the stability of noncognitive abilities during adulthood, as it mitigates reverse causality concerns. In a review of over 150 longitudinal studies, Roberts and DelVecchio (2000) show that noncognitive abilities tend to become increasingly stable with age. Abilities measured for the same set of individuals from 6 to 30 years later display correlations between 60% and 80% with the original measurement (Costa and McCrae 1994).

Using our data, we confirm that individuals' noncognitive abilities are remarkably stable over time. For conscientiousness, serial correlations range between 0.66 and 0.88 (depending on the combination of years) and those for emotional stability range between 0.66 and 0.81. These correlations appear sizeable, especially taking into account the likely presence of noise in the measurement. To provide additional evidence on the persistence of noncognitive abilities, we show that, on average, the rank of the respondents sorted by noncognitive abilities in 2008 is preserved over time (see Figure A1 in Online Appendix B).

As noncognitive abilities are largely stable during adulthood, we take averages over time for each individual in our sample. The use of averages increases the number of available observations because, for example, the same respondent might answer the noncognitive abilities questions in 2009 and 2011, but not in 2010. More importantly, the use of averages attenuates minor fluctuations over the years, because of reporting errors, and isolates the core fundamental differences across individuals. Online Appendix B reports results obtained without averaging noncognitive abilities. The exact value of these variables has no specific interpretation other than providing a ranking among individuals. We therefore standardize our two measures to make the interpretation of the regression coefficients more intuitive.

2. Data

2.1 Description of the LISS data set

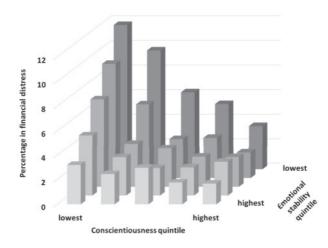
The data source for this study is the LISS panel (Longitudinal Internet Study for the Social Sciences), a representative household survey conducted by CentERdata at Tilburg University, in the Netherlands. Several papers in economics are based on the same data (e.g., Cherchye et al. 2012; Dimmock et al. 2015; Noussair et al. 2014). The panel has been operational since October 2007, and we use data from 2008 to 2017. Our sample comprises 13,145 individuals randomly drawn from the population register by Statistics Netherlands. Because of attrition and the subsequent addition of new individuals, at each point in time our cross-section includes around 7,000 individuals.

The survey is computer based, and subjects can participate from home. To limit selection bias, individuals who cannot otherwise participate are provided with a computer and an Internet connection. To encourage participation and retention, subjects are paid for each survey they complete. This data set is particularly suited for our research, since one of the annual survey modules asks standard questions aimed at measuring noncognitive abilities following the Big Five personality framework. The data set also contains several measures of financial distress along with an extensive set of demographic controls and variables related to preferences and cognitive abilities. Furthermore, we have fielded our own custom-designed survey module to obtain additional outcome and control variables. Online Appendix A provides further details on the LISS panel.

2.2 Outcome variables

Table A2 of the appendix describes the variables, and Table A3 presents the summary statistics. Several of the variables of interest are measured annually. However, the response rates vary over time. Furthermore, some of the surveys are not asked every year, which decreases the number of available observations.

Importantly, most of the variables we consider in our analysis are obtained by combining different surveys (modules) of the LISS panel. For some of the variables of interest, we have only 1 or 2 years of data, as the corresponding survey has not been fielded regularly. This is, for instance, the case for *Unsecured debt*, *Bad credit score*, *Overview financial situation*, and *Automatic payments*. Table A1 of Online Appendix A reports the years in which each variable is available.


2.3 Control variables and instrument

Noncognitive abilities are rather stable and to a certain degree determined before birth or at an early stage of life (see the discussion in Section 1.2). This suggests that these traits are likely exogenous to most external factors. Nonetheless, in our baseline analyses, we include a battery of controls to provide a cleaner estimation of the effect on financial distress when other covariates are accounted for. Table A2 in the appendix defines all the control variables, and Table A3 reports the summary statistics.

It is important to acknowledge that noncognitive and cognitive abilities are likely correlated. For instance, the numeracy score obtained in the survey can be influenced by anxiety (Borghans et al. 2008). We mitigate this concern by including proxies for cognitive ability and educational attainment (dummy variables *High school* and *College*). Furthermore, we use nine numeracy questions to obtain a numeracy score and we measure financial literacy as the number of correct responses to three standard financial literacy questions (see Online Appendix C for details).

Preferences and noncognitive abilities are also potentially correlated. In our analysis, we control for risk aversion inferred using quantitative questions, following Noussair et al. (2014). In addition, we add a qualitative self-reported measure of risk aversion and a quantitative measure for ambiguity aversion. Furthermore, we control for several behavioral traits: trust, optimism, and the other three Big Five personality traits: agreeableness, extraversion, and openness.

Demographics are updated each year (see Table A1 in Online Appendix A), hence we do not have to impute the related variables. However, several questions eliciting behavioral traits and preferences are not frequently asked as they are not part of a core survey module. In particular, numeracy, financial literacy, risk aversion, and ambiguity aversion are based on custom-designed surveys by groups of researchers and are therefore only available for a couple of years. We use two methods to impute missing observations: first, we use backward/forward imputation and, second, we use group median imputation. Using backward/forward imputation, we fill in the existing gaps by carrying backward and forward in time the available values for an individual (under the assumption that these variables are rather stable over time). Column N_2 in Table A3 of the appendix shows the resultant number of observations. In a second step, if a person never reports a value for a particular variable, we use group median imputation. The missing numbers are replaced by medians from individuals in the same demographic group. Groups are based on gender, education, and income categories. This is a standard way of dealing with missing observations in household surveys (a similar approach is used in, for example, the Survey of Consumer Finances (SCF) sponsored by the Federal Reserve Board) and allows us to expand the analysis to the entire data set. Column N_3 in Table A3 of the appendix shows the resultant number of observations. We furthermore add missing data dummy variables in all specifications. Importantly, we never impute outcome variables and noncognitive abilities. Our main results are similar when using different methods to deal with missing observations (see Table A2 in Online Appendix A). Online Appendix A provides further details on the imputation method and the LISS panel in general.

Figure 1

Financial distress by quintile of emotional stability and conscientiousness Percentage of households in financial distress by quintile of emotional stability and conscientiousness. Financial distress is measured as being delinquent on mortgage payments, rent payments, utility bills, or other bills.

3. Empirical Results

In this section, we explore the relation between noncognitive abilities and financial distress, and the channels behind this relation. For all models, we report robust standard errors clustered at the household level. Furthermore, when indicated, we include time fixed effects to control for fluctuations in the outcome variables at an aggregate level.

3.1 Household financial distress

A simple graphical representation shows that people in the bottom quintile of both emotional stability and conscientiousness have an almost tenfold higher probability of being in financial distress compared to those in the top quintile (see Figure 1). Table 1 presents the estimates from a multivariate framework (marginal effects are reported); the number of observation is kept constant across specifications to facilitate the comparison of coefficients. Consistent with Figure 1, we find that noncognitive abilities are negatively related to the probability of being in financial distress when no other covariates are included (see Column 1). These results are consistent with those of Donnellan et al. (2009) and Xu et al. (2015).

The results in Column 2 report the effect of cognitive abilities and education (high school dummy, college dummy, financial literacy, and numeracy) on distress, while excluding our two measures of noncognitive abilities. As expected, the signs of the coefficients are all negative. Column 3 documents the relation between financial distress and preferences and behavioral traits.¹²

Table 1 Noncognitive abilities and financial distress

	(1)	(2)	(3)	(4)	(5)	(6)
Noncognitive abilities						
Emotional stability	-0.0134***			-0.0065***	-0.0041***	
	(0.0019)			(0.0015)	(0.0014)	
Conscientiousness	-0.0111***			-0.0074***		
Lagged emotional stability	(0.0019)			(0.0014)	(0.0014)	-0.0039***
Eugged emotional statemety						(0.0012)
Lagged conscientiousness						-0.0061***
						(0.0012)
Cognitive abilities						
Financial literacy		-0.0110^{***}		-0.0057^{***}	-0.0053^{***}	-0.0054^{***}
		(0.0025)		(0.0018)	(0.0018)	(0.0018)
Numeracy		-0.0038***		-0.0029***		-0.0025***
III also also al		(0.0010)		(0.0007)	(0.0007)	(0.0007)
High school		0.0046 (0.0074)		0.0034 (0.0051)	0.0035 (0.0050)	0.0035 (0.0050)
College		0.0074)		0.0049	0.0062	0.0062
Conoge		(0.0071)		(0.0051)	(0.0049)	(0.0049)
Preferences and behavioral traits		(01001-)		(010001)	(0.000.7)	(01001.7)
Risk aversion			-0.0001	-0.0041	-0.0041	-0.0043
			(0.0042)	(0.0030)	(0.0029)	(0.0030)
Risk aversion self-assessed			-0.0019^{**}	-0.0015^{**}	-0.0016^{***}	-0.0016^{***}
			(0.0009)	(0.0006)	(0.0006)	(0.0006)
Trust			-0.0066***		-0.0020***	-0.0020***
			(0.0007)	(0.0006)	(0.0005)	(0.0005)
Optimism			0.0131**	0.0059	0.0079*	0.0075*
Ambiguity aversion			(0.0065) -0.0019	(0.0041) -0.0047	(0.0043) -0.0051	(0.0043) -0.0051
Amorgany aversion			(0.001)	(0.0033)	(0.0032)	(0.0032)
Income variables			(0.0011)	(0.00000)	(0.0002)	(010002)
Income					-0.0029***	-0.0030***
Income					(0.0011)	(0.0011)
% negative income shock					0.0339	0.0317
C C					(0.0207)	(0.0208)
Unemployed					0.0214**	0.0214**
					(0.0085)	(0.0085)
On disability					0.0084	0.0085
					(0.0058)	(0.0058)
Health status					-0.0062^{***} (0.0016)	-0.0066*** (0.0016)
Time fixed effects	No	No	No	Yes	(0.0016) Yes	(0.0016) Yes
Observations	17.676	17,676	17,676	17,676	17,676	17,676
Pseudo <i>R</i> -squared	.0419	.0204	.0266	.161	.174	.174

(Continued)

A number of different covariates could, however, explain the relation between noncognitive abilities and financial distress. For instance, noncognitive abilities might be related to risk aversion and other preference parameters. In our baseline specification reported in Column 4, we control for cognitive

¹² A direct comparison of the pseudo *R*-squared estimates is problematic. However, we rerun our analysis using a linear probability model (without using group median imputation) to obtain the adjusted *R*-squared values. These estimates indicate that the explanatory power of noncognitive abilities in our sample is 3 times that of cognitive abilities and education and twice that of preferences and behavioral traits.

(Continued)						
	(1)	(2)	(3)	(4)	(5)	(6)
Other variables						
Agreeableness				0.0011	0.0007	0.0004
				(0.0014)	(0.0014)	(0.0014)
Extraversion				-0.0029*	-0.0026^{*}	-0.0026^{*}
				(0.0016)	(0.0015)	(0.0015)
Openness				0.0072***	0.0065***	0.0063***
				(0.0016)	(0.0015)	(0.0015)
Male				0.0090^{***}	0.0098***	0.0096***
				(0.0028)	(0.0029)	(0.0029)
Children				0.0079**	0.0084**	0.0082**
				(0.0036)	(0.0035)	(0.0035)
Age				0.0022***	0.0017***	0.0017***
e				(0.0006)	(0.0006)	(0.0006)
Age squared				-0.0000***	-0.0000***	-0.0000***
0 1				(0.0000)	(0.0000)	(0.0000)
Partner				-0.0102^{***}	-0.0105***	-0.0107***
				(0.0033)	(0.0034)	(0.0034)
Home				((,	(,
ownership				-0.0271^{***}	-0.0234^{***}	-0.0239^{***}
· · · · · ·				(0.0048)	(0.0046)	(0.0046)
Rural				-0.0020^{*}	-0.0020^{*}	-0.0020^{*}
				(0.0011)	(0.0011)	(0.0011)
Time fixed				(010011)	(010011)	(010011)
effects	No	No	No	Yes	Yes	Yes
Observations	17,676	17,676	17,676	17,676	17,676	17,676
Pseudo	1,,070	1,,070	17,070	1,,070	1,,070	17,070
R-squared	.0419	.0204	.0266	.161	.174	.174
n-squareu	.0+19	.0204	.0200	.101	.1/4	.1/4

Table 1 (Continued)

This table shows marginal effect estimates from probit regressions. The dependent variable is equal to 1 if the respondent is in financial distress, measured as being delinquent on mortgage payments, rent payments, utility bills, or other bills. Column 1 includes our two measures of noncognitive abilities. Column 2 includes education, financial literacy, and numeracy. Column 3 includes risk aversion (from lottery choices and self-reported), ambiguity aversion, trust, and optimism. Column 4 includes our two measures of noncognitive abilities, education, financial literacy, numeracy, risk aversion (from lottery choices and self-reported), ambiguity aversion, trust, and optimism. Column 4 includes our two measures of noncognitive abilities, education, financial literacy, numeracy, risk aversion (from lottery choices and self-reported), ambiguity aversion, trust, optimism, other personality traits (agreeableness, extraversion, and openness), other demographics (male, children living at home, age, age squared, home ownership, partner, and residence in a rural area), time fixed effects, and missing data dummies. In addition to the independent variables in Column 4. Column 5 includes income variables: income, percentage drop in income (if any), unemployed, on disability, and health status. Column 6 includes the same variables as Column 5, except that noncognitive abilities are lagged and not averaged. The income variables are not imputed (neither by backward/forward imputation nor by group median imputation). All models include a constant term. In all specifications, the sample is identical, to facilitate a comparison between the coefficients. Standard errors are clustered by household and appear in parentheses. *p < .1; **p < .05; ***p < .01.

abilities, preferences, demographics, and the other three personality traits.¹³ This specification identifies an effect that is still statistically significant and economically large. Our estimates indicate that a 1-standard-deviation

¹³ One concern with our result is that lower emotional stability could be associated with higher risk aversion and that our two related proxies do not fully account for this possibility. However, this seems ex ante unlikely. The correlation between our measures of risk aversion and emotional stability is rather low in our sample. More importantly, the estimated direction of the effect of emotional stability on a household's distress seems inconsistent with this measure capturing risk aversion. Specifically, lower emotional stability is associated with a higher probability of financial distress, whereas, if lower emotional stability were capturing higher risk aversion, the associated probability of being in financial distress should be lower. It would seem reasonable to expect a negative relation between risk aversion and financial distress, for instance, because risk-averse individuals should be more reluctant to engage in behaviors that increase their risk of distress. Therefore, it appears implausible that low emotional stability works as a proxy for high risk aversion.

increase in emotional stability results in a 0.65-percentage-point decrease in the probability of being in financial distress (18.1% relative to the baseline rate of 3.6% in this sample), while a 1-standard-deviation increase in conscientiousness is associated with a 0.74-percentage-point decrease in the probability of being in financial distress (20.1% relative to the same baseline).

We also estimate the effect of noncognitive abilities on distress net of the effect through income variables. In labor economics, a large number of papers show that noncognitive abilities influence labor income (e.g., Heckman et al. 2006; Lindqvist and Vestman 2011). In turn, income likely influences the probability of facing financial distress. When we do not control for income variables in specifications (1)-(4), we confound the direct effect of noncognitive abilities on financial distress with the indirect effect via income. Column 5 controls for income by including proxies for the level of net income, the annual percentage drop in income (if any), and unemployment, disability, and health status (none of these variables are imputed). The estimated coefficients indicate that a 1-standard-deviation increase in emotional stability is associated with a 0.41-percentage-point decrease in the probability of financial distress (11.4% relative to the baseline rate of 3.6%) and a 1-standard-deviation increase in conscientiousness is associated with a 0.68-percentage-point decrease (18.9% relative to the baseline rate of 3.6%). Comparing Columns 4 and 5, we see that the coefficients of emotional stability and conscientiousness are 37% and 8% lower, respectively, when controlling for income. This suggests that part of the relation between noncognitive abilities and financial distress goes through an income channel. However, even when accounting for income variables, noncognitive abilities have a significant and economically large effect on financial distress. In Section 3.2, we estimate the relative importance of income and other channels in explaining this relation.¹⁴

Column 6 reports the estimated coefficients when using *lagged* noncognitive abilities. Furthermore, Table A4 of Online Appendix B regresses financial distress on noncognitive abilities, control variables, and income variables at different lags. While the number of available observations decreases, the results remain qualitatively similar even when we include noncognitive abilities with a lag of 5 years and controls for income variables for every year in the t - 1 to t - 4 range. Overall, this alleviates the potential concerns that distress influences noncognitive abilities rather than the other way around. Furthermore, this indicates that the income channel is not the most relevant channel in explaining the effect of noncognitive abilities on distress. Table A5 of Online Appendix B also shows that our results are robust to using alternative transformations of our

¹⁴ Column 5 in Table 1 also highlights that income largely affects financial distress overall. In particular, a 1-standarddeviation increase in the log of net income decreases the probability of being in distress by 0.25 percentage points (6.9% relative to the baseline of 3.6%). Furthermore, being unemployed raises the probability of distress by 2.1 percentage points (58.3% relative to the same baseline).

noncognitive ability measures (rank transformations, above-median dummies, and dummies for the 10th and 90th percentiles).

Finally, we show that noncognitive abilities are also associated with proxies of more severe financial distress (see Table A4 in the appendix). We find that noncognitive abilities significantly affect the probability of being in arrears on rent or mortgage and utility bills for 3 months or more, the probability of having had a debt collector at the door, not being able to pay \in 500 of unexpected expenses without borrowing, and having a bad credit score.¹⁵ The coefficients are smaller than those reported in Column 4 of Table 1. This is partly due to the fact that *severe* distress is less prevalent with respect to our main distress measure. However, even accounting for that, we find that the effect of noncognitive abilities on proxies of severe financial distress is economically smaller than that on our main measure of distress. Overall, we conclude that noncognitive abilities strongly relate to financial distress.

3.2 Channels: Financial choices, income (shocks), and financial insight

In this section, we explore the channels governing the relation between noncognitive abilities and financial distress. We conjecture that noncognitive abilities may give rise to distress via three main channels: (1) financial choices, (2) income and income shocks, and (3) (lack of) financial insight. In the following, we first document the relation with noncognitive abilities; then, we estimate the relative importance of each channel in determining the higher exposure to distress of low- versus high-skilled individuals.¹⁶

Regarding the first channel, we focus on the following financial choices: financial wealth buffer, saving, unsecured borrowing, and mortgage-to-income ratio. Even though specific decisions in these domains are not unambiguously good or bad, previous research finds that, for instance, unsecured debt dramatically increases the probability of financial distress (e.g., Carrell and Zinman 2014; Skiba and Tobacman 2015). This suggests that poor financial choices likely influence the propensity of distress, thus providing a potential channel for our previous findings. Panel A of Table 2 presents the results from ordinary least squares (OLS) and probit regressions. We find that people with lower noncognitive abilities tend to have a lower financial wealth buffer, a lower propensity to save out of their income,¹⁷ are more likely to have an unsecured

¹⁵ We have data on debt restructuring and asset repossession in 2017, but too few respondents experienced this type of financial distress in 2017 to conduct a meaningful multivariate analysis.

¹⁶ A number of results in the first step of the estimation (Table 2) replicate previous findings in the literature (see, for instance, Donnelly et al. 2012; Duckworth et al. 2012; Heckman et al. 2006, 2017; Kausel et al. 2016). Our novel contribution lies in estimating the relative importance of the different channels in explaining financial distress (see Table 3).

¹⁷ We use a dummy variable instead of a continuous measure of savings. Börsch-Supan and Lusardi (2003, p. 11) argue that "wealth, consumption, and income data are severely affected by measurement error and taking first differences (as when using wealth) makes the measurement error problem even more dramatic." Instead, our dummy measure of saving is easily interpretable, directly communicated by the individual, and similar to the

	Financial wealth buffer	Saving	Unsecured debt	Mortgage-to-income ratio
	(1)	(2)	(3)	(4)
Emotional stability	0.0469	0.0380***	-0.0203***	-0.2499**
-	(0.0379)	(0.0047)	(0.0059)	(0.1111)
Conscientiousness	0.2237***	0.0405***	-0.0366***	-0.1387
	(0.0367)	(0.0047)	(0.0058)	(0.0991)
Controls and constant	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes
Observations	24,306	47,918	10,695	12,014
R-squared	.2183	.0563	.111	.2442

Table 2
Noncognitive abilities and financial choices, income (shocks), and financial insight

	Income	% negative income shock	Unemployed	On disability	Health status
	(1)	(2)	(3)	(4)	(5)
Emotional stability	0.0692***	-0.0015***	-0.0046***	-0.0113***	0.0225***
	(0.0210)	(0.0003)	(0.0009)	(0.0011)	(0.0011)
Conscientiousness	0.0681***	-0.0006^{*}	-0.0034^{***}	-0.0033^{***}	0.0051***
	(0.0197)	(0.0003)	(0.0009)	(0.0010)	(0.0008)
Controls and constant	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes
Observations	73,117	54,803	76,945	77,001	49,248
R-squared	.2476	.0084	.0826	.183	.1007

(Continued.)

loan, and have a higher mortgage-to-income ratio.¹⁸ To increase readability, Table 2 only reports the main coefficients of interest. Online Appendix F shows the full tables with all coefficients.

Panel B of Table 2 reports the relation between noncognitive abilities and income (shocks). We find that people with lower abilities tend to earn lower incomes and face larger negative income shocks (Columns 1 and 2). Furthermore, we establish a negative relation between noncognitive abilities and the propensity to be unemployed or on disability, and a positive relation with health status (which is related to earning capacity). Table A8 of Online Appendix B also shows that noncognitive abilities relate to the number of years a person is unemployed or on disability. We find that, conditional on being unemployed, noncognitive abilities are negatively related to the number of consecutive years of unemployment. This indicates that, after losing their jobs, people with lower noncognitive abilities tend to remain unemployed for

measurements used by Puri and Robinson (2007) and in the Survey of Household Economics and Decisionmaking conducted by the Federal Reserve Board. In any case, our results are robust to using a continuous savings rate measure (results available on request).

¹⁸ Online Appendix E shows that noncognitive abilities significantly relate to the propensity to ask for advice.

Table 2	
(Continued).	

C. Financial insight

	Overview financial situation	Impulsive buying	Stick to plan	Automatic payments
	(1)	(2)	(3)	(4)
Emotional stability	0.0384***	-0.0024***	0.0392***	0.0161**
	(0.0059)	(0.0003)	(0.0059)	(0.0068)
Conscientiousness	0.1308***	-0.0041^{***}	0.0848***	0.0107
	(0.0059)	(0.0005)	(0.0058)	(0.0067)
Controls and constant	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	No	No
Observations	10,711	10,705	5,456	5,456
R-squared	.0731	.0941	.0501	.0149

Panel A shows the results of OLS regressions (Columns 1 and 4) and probit regressions (Columns 2 and 3). In Column 1, the dependent variable is the log of financial wealth. In Column 2, the dependent variable is equal to 1 if the respondent consumes less than her income. In Column 3, the dependent variable is equal to 1 if the respondent has one or more of the following: a loan from a family member, debit card debt, credit card debt, a personal loan, a student loan, or some other unsecured loan. In Column 4, the dependent variable is the mortgage-to-income ratio (this analysis is run on home owners only). Panel B shows the results of OLS regressions (Columns 1 and 2), probit regressions (Columns 3 and 4), and an ordered probit regression (Column 5). In Column 1, the dependent variable is the log of net income. In Column 2, the dependent variable is the percentage decrease in income (if any). In Column 3, the dependent variable equals 1 if the respondent is unemployed. In Column 4, the dependent variable equals 1 if the respondent is on disability. In Column 5, the dependent variable is an ordinal variable, ranging from 1 to 5, that measures an individual's self-reported health condition. Panel C shows the results of ordered probit regressions (Columns 1 to 3) and a probit regression (Column 4). In Column 1, the dependent variable measures to what degree the respondent has an overview of her current financial situation. In Column 2, the dependent variable measures to what degree the respondent is inclined to buy impulsively. In Column 3, the dependent variable measures to what degree the respondent finds it easy to stick to a spending plan. In Column 4, the dependent variable is equal to 1 if the respondent uses automatic payments for bills. All models include a constant term and controls for risk aversion (lottery and self-reported), ambiguity aversion, numeracy, trust, optimism, financial literacy, agreeableness, openness, extraversion, male, children living at home, age, age squared, home ownership, education, partner, residence in a rural area, missing data dummies, and year dummies when indicated. The controls are suppressed for brevity. The table reports marginal effects. Standard errors are clustered by household and appear in parentheses. p < .1; p < .05; p < .05; p < .01.

longer periods. We find similar results for the number of consecutive years on disability.

The third channel focuses on the degree of financial insight, referring to a person's tendency to plan for future financial needs as well as her awareness of her own current financial situation. Ameriks et al. (2003) argue that the propensity to plan is a crucial determinant of financial well-being. Panel C of Table 2 reports a positive relation between noncognitive abilities and a person's overview of her current financial situation and the use of external commitment devices, such as automatic bill payments. Furthermore, noncognitive abilities increase the propensity to stick to a financial plan, and reduce the impulse to buy without previous planning.¹⁹ Related to our results, Vissing-Jørgensen (2012) finds that the default rates on consumer credit are higher when the purchased products are luxury goods, suggesting that the decision to buy luxuries is

¹⁹ The latter result is consistent with previous research in psychology (see, e.g., Thompson and Prendergast 2015). We are thankful to Annette Vissing-Jørgensen for her suggestion to look into impulsive buying.

made impulsively and without careful assessment of its financial feasibility. Furthermore, the author reports that, when including person fixed effects, the influence of product type on delinquency diminishes significantly. In light of our findings, Vissing-Jørgensen (2012) evidence seems to suggest that person fixed effects capture the effect of noncognitive abilities.²⁰

Overall, the results above indicate that noncognitive abilities influence financial choices, income (shocks), and financial insight. Yet these findings offer no clear indication of the relative importance of each channel in determining the difference in exposure to financial distress between low- and high-ability individuals. In the following, we assess the contribution of each channel. Table 3 presents results from a decomposition developed in Blinder (1973), Oaxaca (1973), Fairlie (1999), and Fairlie (2005). Grinblatt et al. (2011) use the same technique to assess the influence of IQ on stock market participation via different channels.

To perform the decomposition, we generate two groups based on their noncognitive abilities. The first group (low-ability group) comprises individuals that are in the lowest quintile of both emotional stability and conscientiousness. The second group (high-ability group) consists of individuals that are in the highest quintile of both emotional stability and conscientiousness. In panel A of Table 3, we report the probabilities of facing distress for individuals in the two groups. The low-ability group has a 10.81% probability of facing distress, compared to a probability of only 1.13% for the high-ability group. The first step of the methodology consists of regressing Distress on all the channel variables of both groups combined, while omitting noncognitive abilities. These coefficient estimates allow us to calculate the independent contribution of each channel variable in explaining the difference in distress between the two groups. For instance, the independent contribution of the difference in financial wealth to the difference in distress is approximately equal to $Distress^{la} - Distress^{ha} \approx$ $\frac{1}{N}\sum_{i=1}^{N} \left[F(\hat{\alpha} + Financial wealth_{i}^{la}\hat{\beta}_{1} + Other channel vars_{i}^{la}\hat{\beta}_{2}) - F(\hat{\alpha} + f(\hat{\alpha} + Financial wealth_{i}^{la}\hat{\beta}_{1}) - F(\hat{\alpha} + Financial wealth_{i}^{la}\hat{\beta}_{1}) - F(\hat{\alpha} + f(\hat{\alpha} + Financial wealth_{i}^{la}\hat{\beta}_{1}) - F(\hat{\alpha} + Financial weath_{i}^{la}\hat{\beta}_{1}) - F(\hat{\alpha} + Financi$

Financial wealt $h_i^{ha} \hat{\beta}_1 + Other channel var s_i^{la} \hat{\beta}_2)$]. The size of the smallest group is denoted by N (the size of the two groups differ as an effect of sorting on two variables), F is the cumulative distribution function of the standard normal distribution, *i* indexes a matched pair consisting of one high-ability and one low-ability individual, Financial wealt h_i^{la} (Financial wealt h_i^{ha})

²⁰ The Big Five framework presents personality traits at the most comprehensive level. Notably, each trait can be further decomposed into lower-level facets that capture different aspects of the overarching trait. Following the Costa and McCrae (1992) inventory, we decompose emotional stability in its lower-level facets *Nonanxious*, *Nondepressed*, and *Nonangry* and conscientiousness into *Dutiful*, *Self-disciplined*, and *Orderly*. Online Appendix D discusses results for the relation between the facets, financial distress, and the channel variables. Most facets are economically significant in these analyses, and no discernible pattern emerges in terms of certain facets being clearly more important than others (see Table A12). That all facets of conscientiousness and emotional stability have a similar association with proxies of financial distress, financial choices, income, and financial insight, supports our choice of conducting the main analysis on the highest level traits rather than on the lower-level facets.

Table 3 Relative importance of financial choices, income (shocks), and financial insight in explaining the relation between noncognitive abilities and financial distress

			A. Probability of	distress by ab	ility group			
	Coefficient							
Low noncognitive abilities group High noncognitive abilities group Difference low - high ability group	0.1081 0.0113 0.0969							
			B. Fairlie-Blinder	Oaxaca deco	mpositions			
Model:	Baseli	ne	Income ch	annel	Income & fit	1. choice channels	Income & fir	n. insight channels
	Coefficient (1)	% (2)	Coefficient (3)	% (4)	Coefficient (5)	% (6)	Coefficient (7)	% (8)
Contribution from differences in: Financial choices Financial wealth buffer Saving Unsecured debt Mortgage-to-income ratio Income (shocks) Income % negative income shock Unemployed On disability Health status Financial insight Overview financial situation Impulsive buying Automatic payments Stick to plan Total contribution of channels	0.0315*** 0.0114*** 0.0054*** 0.0117*** 0.0027 0.0223*** -0.0009 0.0000 0.0015* 0.0104** 0.0113* 0.0325*** 0.0078 0.0329*** 0.0028 -0.0109 0.0863***	32.5 11.8 5.6 12.1 2.8 23.0 -0.9 0.0 1.6 10.7 11.7 33.6 8.0 34.0 2.9 -11.3 89.1	0.0326*** 0.0007 -0.0001 0.0031*** 0.0193*** 0.0096	33.7 0.7 -0.1 3.2 19.9 9.9 33.7	0.0423*** 0.0148*** 0.0085*** 0.0146*** 0.0039 0.0254*** -0.0002 0.0000 0.0022** 0.0144*** 0.0094	43.7 15.3 8.8 15.1 4.0 26.2 -0.2 0.0 2.2 14.9 9.7 69.9	0.0245*** -0.0003 -0.0001 0.0018* 0.0126*** 0.0145** 0.0436*** 0.0022* -0.0061 0.0789***	25.3 -0.3 -0.1 1.8 13.0 11.0 56.2 15.0 45.0 2.3 -6.2 81.5

This table reports Fairlie-Blinder-Oaxaca decompositions. This analysis measures how much of the difference in the propensity to be in financial distress between a group of individuals with high noncognitive abilities and a group of individuals with low noncognitive abilities is explained by differences in (1) financial choices, (2) income (shocks), and (3) financial insight. The low-ability group consists of individuals in the lowest quintile of both emotional stability and conscientiousness. The high-ability group consists of individuals in the highest quintile of both emotional stability and conscientiousness. The high-ability group consists of individuals in the highest quintile of both emotional stability and conscientiousness. The financial choice variables are *Financial wealth buffer, Saving, Unsecured debt*, and *Mortgage-to-income ratio*. The income (shock) variables are *Income*, % *Negative income shock, Unemployed, On disability*, and *Health status*. The financial insight variables are *Overview financial situation, Impulsive buying, Automatic payments*, and *Stick to plan*. Some of these variables are only available in 1 year (*Stick to plan* and *Automatic payments*) or 2 years (*Overview financial situation, Impulsive buying*, and *Unsecured debt*). Therefore, we fill in missing observations by carrying the available values backward or forward and thereby ensuring that we have sufficient observations to conduct this analysis. Coefficients in italics indicate the aggregate effect per channel. The sample size in this analysis is 2,736. *p < .1; **p < .05; ***p < .01.

is the financial wealth of the low- (high-)ability individual in pair *i*, and *Other channel vars*_{*i*}^{*la*} are the values of the other channel variables of the low-ability individual in pair *i*.

Intuitively, the contribution of each channel variable to the difference in distress rates is thus equal to the change in the average predicted probability obtained from replacing its distribution in the high-ability group with that of the low-ability group, while holding the distributions of the other variables constant. In the equation, each high- and low-ability observation is matched according to its rank in terms of predicted distress, for example, the individual in the high-ability group with the *lowest* predicted probability of distress is matched with the individual in the low-ability group with the *lowest* predicted probability groups are not of equal size, hence we draw a random sample from the largest group equal to the size of the smallest group. We repeat this procedure 1,000 times as the specific random sample can influence the decomposition estimates. Furthermore, we randomize the sequencing of the changes in the channel variables, because the results may be sensitive to the specific order due to the nonlinearity of the decomposition equation (see Fairlie (2005) for details on the methodology).

Focusing on Columns 1 and 2 in panel B of Table 3, we find that more than 89.1% (8.63%/9.69%) of the difference in distress exposure between the two groups can be explained by differences in financial choices, income (shocks), and financial insight. Specifically, differences in financial choices by lowversus high-ability individuals explain 32.5% (3.15%/9.69%) of the difference in the likelihood of experiencing financial distress. Equally important, financial insight accounts for 33.6% of the difference, while differential income and income shocks between the two groups are relatively less important (explain 23.0%). The remaining 11.0% of the effect of noncognitive abilities on financial distress is not explained by any of these channels. Note that the majority of income variables are not carried backward and forward as they are updated every time a person answers a new survey. By contrast, we need to use backward/forward imputation significantly to expand the coverage of our financial insight variables. Notably, this increases the noise in the measurement of these variables, which, if anything, should lead us to understate the relative importance of this channel vis-à-vis the income channel.²¹

²¹ When carrying the financial insight variables backward and forward, we are implicitly assuming that the related values stay rather constant over time. To assess whether this is the case, we perform two tests. First, we find in unreported results that the Spearman's rank correlation between *Impulsive buying* in 2010 and 2017 is high (44%). We find a similarly high correlation (46%) for the *Overview financial situation* variable in 2010 and 2017. Second, we test whether financial distress, income levels, or financial choices predict a change in the financial insight variables, thereby raising endogeneity concerns. To that end, we regress the change in *Impulsive buying* and *Overview of financial situation* between 2017 and 2010 on lagged financial distress, lagged income variables, and lagged financial choice variables. None of the coefficients are significant. Overall, this suggests that financial insight variables are highly persistent over time and that the imputation is unlikely to bias our coefficients of interest.

We also explore the relative importance of the different subcomponents of each channel. *Impulsive buying* accounts by itself for one-third of the difference in financial distress between the two groups, making it the most important component overall. Also economically important are *Unsecured debt* and *Financial wealth buffer*, which explain 12.1% and 11.8% of the difference in exposure to financial distress, respectively. Notably, *Being on disability* and *Health status* also explain a large part of the relation between noncognitive abilities and financial distress (10.7% and 11.7%, respectively).

We further explore why income variables are relatively less important with respect to the other two channels. This appears to be driven by two (related) considerations. First, we find income variables to be correlated with financial insight and financial choices. Running the decomposition including only income variables leads to (erroneously) infer that the income channel explains 33.7% of the differential probability of distress between low- and high-skilled individuals (see Column 4). However, including variables from the other channels reduces the economic importance of the income channel by one-third (the estimate falls to 23%). This suggests that income variables capture to a large extent the effect of financial choices and financial insight when these other channels are not accounted for. Second, impulsive buying and poor financial choices are economically more important than income variables (see panel B of Table 3). Hence, how individuals manage and spend their income matters most. To give an example, an income-rich individual that tends to buy impulsively can be more at risk of distress than an income-poor individual that carefully plans her buying behavior. All in all, this suggests that being low income per se does not trigger the distress of low-skilled individuals.

Additionally, we find that the two noncognitive traits each affect the likelihood of facing distress via different channels. We replicate the Fairlie-Blinder-Oaxaca decomposition sorting individuals separately on emotional stability and conscientiousness. In this way, we aim at estimating which channels explain the effect of emotional stability on distress and which channels explain the effect of conscientiousness on distress. Table A9 of Online Appendix B presents the results. The financial choice, income, and financial insight channels explain 29.9%, 32.0%, and 23.0%, respectively, of the difference in the propensity to face distress between people with low emotional stability and people with high emotional stability. For conscientiousness, the percentage explained by the financial choice, income, and financial insight channels are 31.7%, 9.9%, and 32.4%, respectively. Hence, the income channel is the most important for explaining distress stemming from differences in emotional stability. By contrast, the income variables have little importance in explaining the differential probability of experiencing distress due to differences in *conscientiousness*. This appears to be driven by the finding that the economic magnitude of the effect of conscientiousness on income variables is quite limited in the first place compared with that of emotional stability (see panel B of Table 2).

A concern might be that the importance of the income variables is understated as in some cases the values of % Negative income shock and Health status are imputed. Furthermore, a worry might be that financial distress influences noncognitive abilities and not vice versa.²² To alleviate these concerns, we perform a number of robustness tests. Table A10 of Online Appendix B replicates the decomposition using noncognitive abilities lagged by 1 year and using only nonmissing observations for the income variables. Furthermore, in Table A11 we lag noncognitive abilities by 2 years, we lag all channel variables by 1 year, and we only use nonmissing observations for the channel variables. In this case, we cannot use all channel variables as the specific structure of our panel does not allow it. For instance, we only have the financial insight variables Stick to plan and Automatic payments in 2017 making it impossible to lag these variables, as we do not have financial distress in 2018. Hence, we use the two most important variables for each channel. In both alternative specifications, the financial insight and financial choices channels explain relatively more of the difference in the propensity to face distress between people with low and high noncognitive abilities compared to the income channel.

The results in this section also have implications for studies on the determinants of financial distress that overlook noncognitive abilities. A number of previous papers posit that impulsive buying, excess borrowing, or limited financial knowledge determine financial distress (e.g., Brown et al. 2016; Vissing-Jørgensen 2012). Our results indicate that by omitting noncognitive abilities from models that study financial distress, the importance of these channels is likely overstated or should be interpreted differently, as these behaviors are all highly correlated with noncognitive traits. Our results also suggest that the effects of income shocks on personal distress may be overstated if financial choices and insight are not accounted for.

3.3 Incorporating noncognitive abilities in a theoretical framework

The evidence in the previous sections points to an important role for noncognitive abilities in explaining the heterogeneity in financial choices and outcomes. However, it remains unclear how classical economic models should account for their role. A way to incorporate noncognitive abilities into theoretical models could be that of assuming a relation with traditional preference parameters. This approach finds however little support in the data, as recent empirical evidence suggests that noncognitive abilities and preferences have a complementary role in explaining important outcomes and behaviors (Becker et al. 2012). Furthermore, the correlation between classical preference parameters and noncognitive abilities estimated empirically is low (according to both Becker et al. 2012 and our own estimates).

²² Tables A6 and A7 of Online Appendix B use the panel structure of our data to mitigate reverse causality concerns regarding the results in Tables 2 and A4.

The literature modeling the economic mechanism through which noncognitive abilities affect choices is in its infancy. We are, however, able to provide some guidance by building upon Borghans et al. (2008), Chiteji (2010), and Heckman et al. (2006). In particular, a possible way to incorporate noncognitive abilities into conventional economic models is as factors that influence the cost of effort and the productivity of effort.

The idea of cost of effort is closely related to the work of Sims. In particular, Sims posits that while people have access to a wealth of information, they have limited capacity in terms of processing ability. This, in turn, induces inertia in observed economic behavior (see, e.g., Reis 2006; Sims 1998, 2003, 2006). In financial economics, limits to the acquisition of information have been shown to be important in explaining seemingly "suboptimal" behaviors, such as overexposure to one's own company risk, underdiversification, and home bias (Van Nieuwerburgh and Veldkamp 2006, 2009, 2010).

In the context of this paper, individuals might face *effort costs* as they find it boring or frustrating to spend time on financial tasks and keeping track of their financial situation (see Reis 2006). In addition, the amount of capacity (effort) allocated to a financial task depends on the return from allocating capacity, that is, *productivity of effort*. Individuals with low noncognitive abilities may allocate less capacity to financial tasks because their return for each unit of allocated capacity is lower.

This economic framework fits well in our setting. Consider a particular individual with certain noncognitive abilities who must decide how to handle her finances. The financial decisions she must make are time-consuming and arise from a combination of different tasks, such as keeping track of expenditures, gathering financial information, and meeting with financial advisers. Each of these tasks requires the allocation of some capacity in terms of time and effort. The success or failure in accomplishing all these tasks jointly is going to determine an individual's financial situation. We posit that noncognitive abilities are important in determining how costly and rewarding it is to allocate time to these financial tasks. For instance, less emotionally stable people may find it more frustrating or boring to spend time making sound financial choices, thereby facing higher cost of effort, while less conscientious people are potentially worse at solving financial problems by gathering and efficiently processing information, thereby facing lower productivity of effort.

We attempt to find evidence consistent with these mechanisms using proxies for the cost of effort and the quantity of effort put toward financial tasks. Specifically, we use as a proxy for the cost of effort a measure of how boring and/or frustrating a person finds spending time on her financial administration (this is in line with Reis 2006, as the author suggests that the cost of planning reduces utility since people may find the process "annoying or frustrating").²³

²³ Alternative approaches to measure attention costs are devised in Caplin et al. (2017, 2018).

Table 4
Noncognitive abilities in a theoretical framework: Cost of effort and productivity of effort

	Cost of effort	Quantity of effort
	(1)	(2)
Noncognitive ability: Emotional stability	-0.0088^{***}	-0.0129***
с	(0.0015)	(0.0050)
Noncognitive ability: Conscientiousness	-0.0230***	0.0142***
· ·	(0.0018)	(0.0051)
Controls and constant	Yes	Yes
Time fixed effects	No	Yes
Observations	5,456	16,511
Pseudo R-squared	.0404	.0506

This table reports estimates from an ordered probit regression (Column 1) and a probit regression (Column 2). In Column 1, the dependent variable is an ordinal variable, ranging from 1 to 6, that measures the degree to which the respondent finds it boring and/or frustrating to spend time on her financial administration. In Column 2, the dependent variable is equal to 1 if the respondent spends more than 1 hour per month on her financial administration. All models include a constant term and controls for risk aversion (lottery and self-reported), ambiguity aversion, numeracy, trust, optimism, financial literacy, agreeableness, openness, extraversion, male, children living at home, age, age squared, home ownership, education, partner, residence in a rural area, missing data dummies, and year dummies. The controls are suppressed for brevity. Standard errors are clustered by household and appear in parentheses. *p < .1; **p < .05; ***p < .01.

The results reported in Column 1 of Table 4 indicate that, consistent with the framework outlined in this section, higher noncognitive abilities are associated with lower cost of effort. Notably, a 1-standard-deviation increase in conscientiousness is associated with a reduction in the cost of effort which is almost 3 times that of an analogous increase in emotional stability.

We also measure the *quantity* of effort exerted toward financial tasks by employing a dummy variable equal to 1 if a person spends more than 1 hour per month on her financial administration (unreported results with half an hour or one and a half hours are similar). The results in Column 2 indicate that more emotionally stable individuals spend less time on their financial administration, while conscientious individuals spend more time. In light of our previous results, this suggests that the time spent on financial matters by emotionally stable individuals is more productive, as they make better decisions in less time. When focusing on the possible inferences drawn from the results for conscientiousness, our interpretation is more tentative. We find that more conscientious people spend more time on their financial administration. However, we cannot disentangle whether it is this higher effort or a greater productivity (or both) that leads to better financial choices. Overall, our evidence points to the fact that noncognitive abilities could potentially be incorporated in an economic framework as factors influencing the cost of effort and the productivity of effort.

4. Instrumental Variable Approach

Gutman and Schoon (2013), Heckman et al. (2017), and Kautz et al. (2014) emphasize the importance of building evidence for a *causal* relation between noncognitive abilities and economic behaviors. In this section, we perform

additional tests to support a causal interpretation of previous results. A potential threat to our identification strategy arises because measurement error and unobserved factors could affect the estimates. To mitigate this concern, we instrument emotional stability in adulthood using childhood trauma. Online Appendix B uses the panel structure of the data to further alleviate reverse causality concerns.

Exposure to a traumatic event during childhood likely satisfies the requirements for a valid instrument. Several papers in psychology document that children who experience a trauma are more likely to suffer from emotional instability, depression, and anxiety in adulthood (e.g., Browne and Finkelhor 1986; Fletcher and Schurer 2017). At the same time, a traumatic event during childhood is not likely to *directly* affect delinquent payment obligations in adulthood, once we control for probable confounding effects, such as education and income.

It is, however, important to note that potentially other factors that we do not consider in our main analysis may correlate with both financial distress in adulthood and childhood trauma, thus violating the exclusion restriction. A first factor is the family background. Children from poor families may be more exposed to both traumatic experiences in childhood and financial distress in adulthood. A second factor is the relationship with the parents in adulthood. For example, parents who have neglected or abused their children in the past are arguably less willing or able to provide financial support to them in the future. A third factor is the external environment in which the person grew up: a child who is raised in a bad neighborhood is potentially more likely to experience a trauma *and* become insolvent at a later age.

We mitigate concerns about confounding effects by including a battery of additional controls. First, we add to our main specification several controls for the family background during childhood. These controls include proxies for the financial situation of the household during childhood, the exposure to financial distress in the household during childhood, the education level of the mother, and the education level of the father. Second, we control for whether a person receives financial help during adulthood using as proxies whether the parents are currently alive, the current relation with parents, whether a person is currently receiving help from the mother, and whether a person is currently receiving help from the father. Third, to address concerns about confounding effects due to the external environment, we also include two control variables for the characteristics of the neighborhood in which the person was raised: neighborhood safety during childhood and neighborhood prosperity during childhood.

We perform a number of tests to make sure that our instrument strongly correlates with emotional stability (while the exclusion restriction is not directly testable). The first-stage regression indicates that the effect of trauma on emotional stability is negative and significant at the 1% level (see Table 5, Column 2). Exposure to a traumatic event during childhood is associated with

Table 5
Childhood trauma as an instrument for emotional stability

	IV probit	OLS (first stage)	IV probit	OLS (first stage) Emotional stability (4)	
	Financial distress (1)	Emotional stability (2)	Financial distress (3)		
Noncognitive ability: Emotional stability	-0.0353**		-0.0358**		
5	(0.0147)		(0.0159)		
Childhood trauma	. ,	-0.4014^{***}	. ,	-0.3812^{***}	
		(0.0423)		(0.0431)	
Controls and constant	Yes	Yes	Yes	Yes	
Controls for family background during childhood	No	No	Yes	Yes	
Controls for help by parents in adulthood	No	No	Yes	Yes	
Controls for neighborhood during childhood	No	No	Yes	Yes	
Time fixed effects	Yes	Yes	Yes	Yes	
Observations	33,520	33,520	33,520	33,520	
Cragg-Donald Wald F-statistic	618.8		577.0	-	

This table shows the results from IV probit regressions (Columns 1 and 3) and OLS regressions (Columns 2 and 4). In Columns 1 and 3, the dependent variable is equal to 1 if the respondent is in financial distress, as measured by being delinquent on mortgage payments, rent payments, utility bills, or other bills. In Columns 2 and 4, the dependent variable is our measure of noncognitive ability: emotional stability. Childhood trauma is equal to 1 if the respondent was physically, psychologically, or sexually abused before the age of 18. All models include a constant term and controls for risk aversion (lottery and self-reported), ambiguity aversion, numeracy, trust, optimism, financial literacy, agreeableness, openness, extraversion, male, children living at home, age, age squared, home ownership, education, partner, residence in a rural area, missing data dummies, and year dummies. The models in Columns 3 and 4 include three sets of additional controls. First, controls for the family background during childhood: financial situation of the household during childhood, financial distress of the household during childhood, education level of the mother, and education level of the father. Second, controls for receiving help by parents in adulthood: parents currently alive, current relation with parents, currently receiving help from the mother, and currently receiving help from the father. Third, controls for the neighborhood during childhood: safety of neighborhood during childhood and prosperity of neighborhood during childhood. The F-statistics are estimated using a linear version of the model. The table reports marginal effects. Standard errors are clustered by household and appear in parentheses. *p < .1; **p < .05; ***p < .01.

a decrease of emotional stability in adulthood of more than one-third of 1 standard deviation. In addition, the Cragg-Donald-Wald *F*-statistic is 618.8, which exceeds the rule of thumb for strong instruments (F > 10) proposed by Staiger and Stock (1997), as well as the 10% critical threshold value of Stock and Yogo (2005). Taken together, these results suggest that weak identification is unlikely to be a relevant concern in our setting.

The results from our IV probit analysis are presented in Table 5. The IV coefficient is negative and statistically significant both for our baseline specification (Column 1) and when additionally controlling for proxies for the family background during childhood, receiving help from parents in adulthood, and the neighborhood safety and prosperity during childhood (Column 3). Comparing Columns 1 and 3, we find that the main coefficient of interest barely changes, thereby mitigating potential concerns about violations of the exclusion restriction. Under the assumption of a valid instrument, the coefficient measures the causal impact of emotional stability on financial distress. The coefficient is roughly 6 times larger in magnitude than that obtained using our baseline

specification (3.58% vs. 0.65%). The bias toward zero of our baseline estimate could be related to measurement error. For instance, individuals with low noncognitive abilities may be less likely to recall being delinquent on payment obligations, more likely to understate the severity of their financial situation, or more reluctant to disclose it (see, e.g., Bound et al. 2001), thereby inducing a downward bias in our main coefficient of interest. Furthermore, the IV estimate measures a "local" effect that might be larger than the average treatment effect (see, e.g., Jiang 2017). For instance, if people with lower noncognitive abilities are more likely to experience trauma, then the IV coefficient is inflated, as we find in untabulated results that the relation between noncognitive abilities and financial distress is stronger in this subsample. Overall, while the results in this section support our main conclusions, the IV coefficient potentially overstates the magnitude of the effect of noncognitive abilities on distress.

5. Conclusions

This paper provides evidence for how noncognitive abilities affect financial distress using a panel of more than 7,000 Dutch individuals surveyed over 10 years. A number of empirical facts emerge from the data. First, individuals with lower noncognitive abilities face a significantly higher likelihood of being in financial distress (defined in several ways). Second, almost 90% of this relation can be explained by the influence that noncognitive abilities have on financial choices, income (shocks), and financial insight. In particular, people with lower noncognitive abilities make worse financial choices and have worse financial insight, each accounting for about one-third of their higher probability of facing financial distress. The income channel is relatively less important, as it explains less than a quarter of the difference in the propensity to face distress between low- and high-ability individuals. To provide further support for a causal interpretation of our findings, we instrument emotional stability in adulthood with childhood trauma and, furthermore, establish that past noncognitive abilities predict future distress.

Our results have tentative policy implications. Unlike many behavioral traits, noncognitive abilities can be nurtured at an early stage of life when the personality of an individual is malleable. Educating young individuals to develop noncognitive abilities at school could decrease significantly the incidence of financial distress among adults. Furthermore, to alleviate adult financial distress, policy institutions could assess noncognitive abilities in the population and target those individuals that are more at risk of financial mistakes with financial education programs. In particular, our results stress the importance of reducing impulsive buying behavior and educating low-ability individuals on the consequences of poor financial choices. Finally, our results suggest that forbearance policies might be less effective if distress is due to low noncognitive abilities (instead of random negative shocks), as the likelihood

of recurrence is high. More research on the role of noncognitive abilities and other factors influencing distress is however necessary to formulate precise policy recommendations.

Further work could build on the results of this paper. Noncognitive abilities are likely to be important determinants of asset allocation decisions and may explain common financial mistakes, such as underdiversification or trading too much or too little. Furthermore, this paper offers some guidance on how to incorporate noncognitive abilities into economic frameworks. Yet more work is needed to corroborate and build on this set of results. In short, we believe that more research on the role played by noncognitive abilities could broaden our understanding of several aspects of financial economics.

Appendix

Table A1

Survey questions to measure noncognitive abilities and facets

Instruction for respondent: Please use the rating scale below to describe how accurately each statement describes you:

(1) very inaccurate, (2) moderately inaccurate, (3) neither inaccurate nor accurate, moderately accurate, (5)	
very accurate	

Noncognitive ability	Survey question	Facet
(1)	(2)	(3)
Emotional stability	Get stressed out easily (-)	Anxiety
	Am relaxed most of the time	Anxiety
	Worry about things (-)	Anxiety
	Seldom feel blue	Depression
	Am easily disturbed (-)	Anxiety
	Get upset easily (-)	Anger
	Change my mood a lot (-)	Depression
	Have frequent mood swings (-)	Depression
	Get irritated easily (-)	Anger
	Often feel blue (-)	Depression
Conscientiousness	Am always prepared	Self-discipline
	Leave my belongings around (-)	Orderliness
	Pay attention to details	
	Make a mess of things (-)	
	Often forget to put things back	Orderliness
	in their proper place (-)	
	Like order	Orderliness
	Shirk my duties (-)	Dutifulness
	Follow a schedule	-
	Am exacting in my work	
	Get chores done right away	Self-discipline

The survey comprises 10 questions per noncognitive trait. A minus sign (-) after an item indicates that the question has a negative factor loading. The third column shows the facet associated with each question (if any).

Table A2 Variable definitions

Outcome variables	
Financial distress: consumer	Indicator equal to 1 if the respondent is delinquent on payment obligations for
delinquency	rent, mortgage, utilities, or other bills
Arrears rent/mortgage 3	Indicator equal to 1 if the respondent is in arrears for 3 months or more on rent
months or more	or mortgage payments in the last year
Arrears utilities 3 months or	Indicator equal to one if the respondent is in arrears for 3 months or more on
more	utility payments in the last year
Debt collector at the door	Indicator equal to 1 if the respondent has had a debt collector at the door in the
	last month
Not able to pay €500	Ordinal variable measuring to what degree the respondent would not be able to
	pay unexpected expenses equal to \in 500: 1 corresponds to very easy, 7 very
	hard
Bad credit score	Indicator equal to 1 if the respondent has a bad credit score with the Dutch
	Individual Credit Registry
Financial wealth buffer	Log of household financial wealth (bank account plus investments)
Saving	Indicator if the respondent's expenses are less than her income
Unsecured debt	Indicator if the respondent has any unsecured debt
Mortgage-to-income ratio	Ratio of mortgage debt to net annual income
Income	log of monthly income net of taxes
% Negative income shock	Minimum between 0 and the percentage change in income from the previous
	year
Unemployed	Indicator if the respondent is unemployed
On disability	Indicator if the respondent is on disability
Health status	Self-reported health status ranging from 1 (poor) to 5 (excellent)
Overview financial situation	Ordinal variable measuring to what degree the respondent has an overview of
	her financial situation: 1 corresponds to don't pay attention to it, 5 good
	overview
Impulsive buying	Ordinal variable measuring to what degree the respondent is inclined to buy
	impulsively: 1 corresponds to disagree entirely, 6 corresponds to agree entirely
Stick to plan	Ordinal variable measuring to what degree the respondent finds it easy to stick
	to a spending plan
Automatic payments	Indicator if the respondent uses automatic payments for bills
Cost of effort	Ordinal variable measuring to what degree the respondent finds it boring and
	frustrating to spend time on her financial administration
Quantity of effort	Indicator if the respondent spends more than 1 hour a month on her financial
	administration

(Continued).

Table A2 (Continued).

Control variables	
Age	Age in years
Male	Indicator for male
Married	Indicator if the respondent is married or living with a partner
Children	Number of children living at home
No high school	Indicator if the respondent has no high school education
High school	Indicator if the respondent has a high school education
College	Indicator if the respondent has a college education
Home ownership	Indicator if the respondent owns her own home
Rural	Area of residence ranging from 1 (not rural) to 5 (extremely rural)
Openness	Continuous measure of the respondent's tendency to be intellectually curious,
	open to emotion, sensitive to beauty
Extraversion	Continuous measure of the respondent's tendency to be social, assertive, enthusiastic
Agreeableness	Continuous measure of the respondent's tendency to cooperate, be considerate,
	kind
Trust	Ranges from 0 to 10, answer to the question: Generally speaking, would you say that most people can be trusted or that you have to be very careful in dealing with people?
Numeracy	Number of numeracy questions answered correctly (of 10 total; see Online Appendix C)
Financial literacy	Number of financial literacy questions answered correctly (of 3 total; see Online Appendix C)
Risk aversion	Indicator if the respondent is risk averse (see Online Appendix C)
Risk aversion, self-reported	Ranges from 0 to 10, 0 corresponding to fully prepared to take risks and 10 corresponding to highly risk averse
Ambiguity aversion	Indicator if the respondent is ambiguity averse (see Online Appendix C)
Optimism	Indicator if the respondent rates her chances of living beyond 80 years as 9 or 10 of 10, where 10 denotes absolutely certain (see Online Appendix C)
Instrument	
Childhood trauma	Indicator if the respondent was physically, psychologically, or sexually abused before the age of 18

Variables in the LISS panel.

Table A3 Summary statistics

-	Mean	SD	Min	Max	N_1	N_2	N_3
Noncognitive ability measures							
Emotional stability	0	1	-3.653	2.219	37,776	77,683 ^a	
Conscientiousness	0	1	-4.820	2.342	37,776	77,683 ^a	
Outcome variables							
Financial distress	0.042	0.200	0	1	47,755		
Arrears rent/mortgage 3 months	0.009	0.095	0	1	47,756		
Arrears utility 3 months	0.008	0.087	0	1	47,758		
Debt collector at door	0.009	0.096	0	1	48,001		
Not able to pay €500	2.949	2.012	1	7	28,365		
Bad credit score	0.054	0.227	0	1	5,124		
Financial wealth buffer	53,102	210,564	0	8,389,443	24,338		
Saving	0.367	0.482	0	1	47,995		
Unsecured debt	0.339	0.473	0	1	10,723		
Mortgage-to-income ratio	2.355	4.478	0	25	33,119		
Income	1,568	4,125	0	469,350	73,254		
% Negative income shock	0.016	0.045	0	1	54,873		
Unemployed	0.010	0.168	0	1	77,454		
On disability	0.029	0.103	0	1	77,153		
Health status	3.106	0.192	0	5	49,328		
Overview financial situation	4.354	0.700	1	5	49,328		
Impulsive buying	1.826	1.219	1	6	10,759		
Stick to plan	4.647	1.219	1	6			
Automatic payments	4.647	1.316	1	6	5,478		
Cost of effort	4.701 2.692	1.484	1	6	5,478		
Quantity of effort	0.267	0.442	0	1	5,478 16,524		
Control variables							
Age	48.781	17.268	18	104	77,683		
Male	0.464	0.499	0	104	77,679		
Partner	0.404	0.499	0	1	77,759		
Children	0.742	0.438	0	1	77,679		
No high school	0.439	0.490	0	1	77,587		
High school	0.032	0.274	0	1	77,587		
College	0.561	0.479	0	1	77,587		
Home ownership	0.301		0	1	77,547		
Rural	2.962	0.445 1.286	0	5	77,295		
Openness	0	1.280	-4.760	2.980		77,683	
Extraversion	0	1	-4.760 -3.596	2.980	37,776		
	0	1	-3.396 -4.924	2.117	37,776	77,683	
Agreeableness Trust	6.044	2.139	-4.924 0	10	37,776	77,683	77 602
					51,555	77,440	77,683
Numeracy	7.435	2.321	0	10	5,613	43,389	77,683
Financial literacy	2.169	0.860	0	3	6,653	45,546	77,683
Risk aversion	0.716	0.452	0	1	7,301	42,202	77,683
Risk aversion, self-assessed	5.955	2.404	0	10	10,210	50,497	77,683
Ambiguity aversion Optimism	0.630 0.091	0.483 0.288	0 0	1 1	1,885 42,241	15,769 70,301	77,683 77,683
•	0.071	0.200	ÿ	•	.2,2.1	.0,201	
Instrument Childhood trauma	0.123	0.329	0	1	9,908	44,964	
	0.125	0.529	0	1	2,200	++, 70+	

This table reports summary statistics for the noncognitive ability measures, outcome variables, control variables, and instrument used in this study. Table A2 of the appendix defines the variables. Several control variables have missing observations in our sample. The summary statistics below are based on nonimputed observations. N_1 reports the number of nonmissing observations; N_2 reports the number of observations when missing observations have been imputed by carrying backward and forward nonmissing values for the same individual; and N_3 reports the number of observations when missing observations have been imputed by carrying backward and forward nonmissing values for the same individual; and N_3 reports the number of observations when missing observations have been imputed by carrying backward and forward nonmissing values and have been replaced with the median group value if a variable is always missing for an individual (groups are based on gender, education, and income categories). Missing values of variables used as dependent variables are not imputed and measures of noncognitive abilities are not imputed. The data cover the years from 2008 to 2017.

 $a^{\hat{a}}$ While noncognitive abilities are never imputed, we take averages over time for each individual in our sample, which attenuates minor reporting errors and increases the sample size (details are in Section 1.B).

Table A4 Noncognitive abilities and severe financial distress

	Arrears rent/mortgage 3 months or more	Arrears utility 3 months or more	Debt collector at the door	Not able to pay €500	Bad credit score	
	(1)	(2)	(3)	(4)	(5)	
Emotional stability	-0.0011***	-0.0011***	-0.0004^{*}	-0.0129***	0.0014	
	(0.0003)	(0.0003)	(0.0002)	(0.0016)	(0.0029)	
Conscientiousness	-0.0017^{***}	-0.0012^{***}	-0.0013^{***}	-0.0139^{***}	-0.0113^{***}	
	(0.0004)	(0.0003)	(0.0003)	(0.0016)	(0.0031)	
Controls and constant	Yes	Yes	Yes	Yes	Yes	
Time fixed effects	Yes	Yes	Yes	Yes	No	
Observations	47,679	47,681	47,924	28,295	5,099	
Pseudo R-squared	.131	.178	.228	.0816	.0711	

This table shows the results of probit regressions (Columns 1, 2, 3, and 5) and an ordered probit regression (Column 4). In Column 1, the dependent variable is equal to 1 if the respondent has been in arrears for 3 months or more on utility payments. In Column 2, the dependent variable is equal to 1 if the respondent has been in arrears for 3 months or more on utility payments. In Column 3, the dependent variable is equal to 1 if the respondent has had a debt collector at the door in the last month. In Column 4, the dependent variable is an ordinal variable ranging from one to seven that measures the degree to which the respondent would be unable to pay an unexpected expense of 500 euros. In Column 5, the dependent variable is equal to 1 if the respondent has a bad credit score with the Dutch Individual Credit Registry (Bureau Krediet Registratie). All models include a constant term and controls for risk aversion (lottery and self-reported), ambiguity aversion, numeracy, trust, optimism, financial literacy, agreeableness, openness, extraversion, male, children living at home, age, age squared, home ownership, education, partner, residence in a rural area, missing data dummies, and year dummies. The controls are suppressed for brevity. Standard errors are clustered by household and appear in parentheses. *p < .1; **p < .05; ***p < .01.

References

Agarwal, S., and B. Mazumder. 2013. Cognitive abilities and household financial decision making. *American Economic Journal: Applied Economics* 5:193–207.

Almlund, M., A. L. Duckworth, J. J. Heckman, and T. Kautz. 2011. Personality psychology and economics. *Handbook of the economics of education*, 4 ed., ed. E. Hanushek, vol. 4, chap. 1, pp. 1–181, Amsterdam, The Netherlands: North Holland.

Ameriks, J., A. Caplin, and J. Leahy. 2003. Wealth accumulation and the propensity to plan. *Quarterly Journal of Economics* 118:1007–47.

Becker, A., T. Deckers, T. Dohmen, A. Falk, and F. Kosse. 2012. The relationship between economic preferences and psychological personality measures. *Annual Review of Economics* 4:453–78.

Behrman, J. R., O. S. Mitchell, C. K. Soo, and D. Bravo. 2012. How financial literacy affects household wealth accumulation. *American Economic Review* 102:300–304.

Blinder, A. S. 1973. Wage discrimination: Reduced form and structural estimates. *Journal of Human Resources* 8:436–55.

Borghans, L., A. L. Duckworth, J. J. Heckman, and B. Ter Weel. 2008. economics and psychology of personality traits. *Journal of Human Resources* 43:972–1059.

Bouchard, T. J., and J. C. Loehlin. 2001. Genes, evolution, and personality. Behavior Genetics 31:243-73.

Bouchard, T. J., and M. Matt. 2003. Genetic and environmental influences on human psychology differences. *Journal of Neurobiology* 54:4–45.

Bound, J., C. Brown, and N. Mathiowetz. 2001. Measurement error in survey data. *Handbook of Econometrics* 5:3705–843.

Brown, M., J. Grigsby, W. van der Klaauw, J. Wen, and B. Zafar. 2016. Financial education and the debt behavior of the young. *Review of Financial Studies* 29:2490–522.

Brown, S., and K. Taylor. 2014. Household finances and the "big five" personality traits. *Journal of Economic Psychology* 45:197–212.

Browne, A., and D. Finkelhor. 1986. Impact of child sexual abuse: A review of the research. *Psychological Bulletin* 99:66–77.

Carneiro, P., C. Crawford, and A. Goodman. 2007. The impact of early cognitive and non-cognitive skills on later outcomes. Working Paper, Centre for Economics of Education.

Carrell, S., and J. Zinman. 2014. In harm's way? Payday loan access and military personnel performance. *Review* of *Financial Studies* 27:2805–2840.

Cesarini, D., M. Johannesson, P. Lichtenstein, O. Sandewall, and B. Wallace. 2010. Genetic variation in financial decision-making. *Journal of Finance* 65:1725–54.

Cherchye, L., B. De Rock, and F. Vermeulen. 2012. Married with children: A collective labor supply model with detailed time use and intrahousehold expenditure information. *American Economic Review* 102:3377–405.

Chetty, R., J. N. Friedman, N. Hilger, E. Saez, D. Whitemore Schanzenbach, and D. Yagan. 2011. How does kindergarten classroom affect your earnings? Evidence from project star. *Quarterly Journal of Economics* 126:1593–660.

Chiteji, N. 2010. Time-preference, noncognitive skills and well being across the life course: Do noncognitive skills encourage healthy behavior? *American Economic Review* 100:200–204.

Cobb-Clark, D. A., S. C. Kassenboehmer, and M. G. Sinning. 2016. Locus of control and savings. *Journal of Banking & Finance* 73:113–30.

Conti, G., J. Heckman, and R. Pinto. 2016. The effects of two influential early childhood interventions on health and healthy behaviors. *Economic Journal* 126:28–56. Costa, P. T., and R. R. McCrae. 1992. Revised neo personality inventory (neo pi-r) and neo five-factor inventory (neo-ffi). Psychological Assessment Resources.

Costa, P. T., Jr., and R. R. McCrae. 1994. Set like plaster? Evidence for the stability of adult personality. In *Can personality change*?, eds. T. F. Heatherton and J. L. Weinberger, pp. 21–40. Washington, DC: American Psychological Association.

Cronqvist, H., A. Previtero, S. Siegel, and R. White. 2016. The fetal origins hypothesis in finance: Prenatal environment, the gender gap, and investor behavior. *Review of Financial Studies* 29:739–86.

Cronqvist, H., and S. Siegel. 2014. The genetics of investment biases. *Journal of Financial Economics* 113:215–234.

. 2015. The origins of savings behavior. Journal of Political Economy 123:123-69.

Cunha, F., J. Heckman, and S. Schennach. 2010. Estimating the technology of cognitive and noncognitive skill formation. *Econometrica* 78:883–931.

Dimmock, S., R. Kouwenberg, O. S. Mitchell, and K. Peijnenburg. 2016. Ambiguity aversion and household portfolio choice puzzles: Empirical evidence. *Journal of Financial Economics* 119:559–77.

Dimmock, S. G., R. Kouwenberg, and P. P. Wakker. 2015. Ambiguity attitudes in a large representative sample. *Management Science* 62:1363–80.

Donnellan, M. B., K. J. Conger, K. K. McAdams, and T. K. Neppl. 2009. Personal characteristics and resilience to economic hardship and its consequences: Conceptual issues and empirical illustrations. *Journal of Personality* 77:1645–76.

Donnelly, G., R. Iyer, and R. T. Howell. 2012. The big five personality traits, material values, and financial well-being of self-described money managers. *Journal of Economic Psychology* 33:1129–42.

Duckworth, A., and D. Weir. 2010. Personality, lifetime earnings, and retirement wealth. Michigan Retirement Research Center Research Paper.

Duckworth, A. L., D. Weir, E. Tsukayama, and D. Kwok. 2012. Who does well in life? Conscientious adults excel in both objective and subjective success. *Frontiers in Psychology* 3:356.

Elul, R., N. S. Souleles, S. Chomsisengphet, D. Glennon, and R. Hunt. 2010. What "triggers" mortgage default? *American Economic Review* 100:490–94.

Fairlie, R. W. 1999. The absence of the african-american owned business: An analysis of the dynamics of self-employment. *Journal of Labor Economics* 17:80–108.

-------. 2005. An extension of the Blinder-Oaxaca decomposition technique to logit and probit models. *Journal of Economic and Social Measurement* 30:305–16.

Federal Reserve Board 2016. Report on the economic well-being of U.S. households in 2015. Technical Report.

Fletcher, J. M., and S. Schurer. 2017. Origins of adulthood personality: The role of adverse childhood experiences. *BE Journal of Economic Analysis & Policy* 17.

Gathergood, J. 2012a. Debt and depression: Causal links and social norm effects. *Economic Journal* 122:1094–114.

——. 2012b. Self-control, financial literacy and consumer over-indebtedness. Journal of Economic Psychology 33:590–602.

Gensowski, M. 2018. Personality, IQ, and lifetime earnings. Labour Economics 51:170-83.

Gillen, M., and H. Kim. 2014. Older adults? Receipt of financial help: Does personality matter? *Journal of Family and Economic Issues* 35:178–89.

Goldberg, L. R. 1992. The development of markers for the Big-Five factor structure. *Psychological Assessment* 4:26–42.

Gow, I., S. Kaplan, D. Larcker, and A. Zakolyukina. 2016. CEO personalities and firm policies. Working Paper.

Grinblatt, M., S. Ikäheimo, M. Keloharju, and S. Knüpfer. 2015. IQ and mutual fund choice. *Management Science* 62:924–44.

Grinblatt, M., M. Keloharju, and J. Linnainmaa. 2011. IQ and stock market participation. Journal of Finance 66:2121-64.

Gross, T., and M. J. Notowidigdo. 2011. Health insurance and the consumer bankruptcy decision: Evidence from expansions of medicaid. *Journal of Public Economics* 95:767–78.

Guiso, L., P. Sapienza, and L. Zingales. 2008. Trusting the stock market. Journal of Finance 63:2557-600.

Guthrie, K., and J. Sokolowsky. 2017. Obesity and household financial distress. *Critical Finance Review* 6:133–78.

Gutman, L., and I. Schoon. 2013. The impact of non-cognitive skills on outcomes for young people. Working Paper.

Heckman, J., S. H. Moon, R. Pinto, P. Savelyev, and A. Yavitz. 2010. The rate of return to the highscope perry preschool program. *Journal of Public Economics* 94:114–28.

Heckman, J., R. Pinto, and P. Savelyev. 2013. Understanding the mechanisms through which an influential early childhood program boosted adult outcomes. *American Economic Review* 103:2052–86.

Heckman, J. and Y. Rubinstein. 2001. The importance of noncognitive skills: Lessons from the GED testing program. American Economic Review 91:145–49.

Heckman, J., J. Stixrud, and S. Urzua. 2006. The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. *Journal of Labor Economics* 24:411–82.

Heckman, J. J., J. E. Humphries, and G. Veramendi. 2017. Returns to education: The causal effects of education on earnings, health and smoking. Working Paper.

Jiang, W. 2017. Have instrumental variables brought us closer to the truth. *Review of Corporate Finance Studies* 6:127–40.

Kausel, E. E., E. Hansen, and P. Tapia. 2016. Responsible personal finance: The role of conscientiousness in bank and pension savings in chile. *International Review of Finance* 16:161–7.

Kaustia, M., and S. Torstila. 2011. Stock market aversion? Political preferences and stock market participation. Journal of Financial Economics 100:98–112.

Kautz, T., J. J. Heckman, R. Diris, B. Ter Weel, and L. Borghans. 2014. Fostering and measuring skills: Improving cognitive and non-cognitive skills to promote lifetime success. Working Paper.

Kuhnen, C., G. Samanez-Larkin, and B. Knutson. 2013. Serotonergic genotypes, neuroticism, and financial choices. PLoS ONE 8:e54632.

Kuhnen, C. M., and B. Melzer. 2018. Non-cognitive abilities and financial delinquency: The role of self-efficacy in avoiding financial distress. *Journal of Finance* 73:2837–69.

Letkiewicz, J. C., and J. J. Fox. 2014. Conscientiousness, financial literacy, and asset accumulation of young adults. *Journal of Consumer Affairs* 48:274–300.

Lindqvist, E., and R. Vestman. 2011. The labor market returns to cognitive and noncognitive ability: Evidence from the swedish enlistment. *American Economic Journal: Applied Economics* 3:101–28.

-------. 2017. The role of cognitive and non-cognitive skills for investment behavior. Working Paper, Stockholm University.

Lusardi, A., and O. Mitchell. 2014. The economic importance of financial literacy: Theory and evidence. *Journal of Economic Literature* 52:5–44.

_____. 2008. Planning and financial literacy: How do women fare? American Economic Review 98:413–17.

———. 2011. Financial literacy and retirement planning in the United States. Journal of Pension Economics and Finance 10:509–25. McAdams, D. P. 2013. The person: An introduction to the science of personality psychology. Hoboken, NJ: Wiley.

Mosca, I., and C. McCrory. 2016. Personality and wealth accumulation among older couples: Do dispositional characteristics pay dividends? *Journal of Economic Psychology* 56:1–19.

Noussair, C. N., S. T. Trautmann, and G. van de Kuilen. 2014. Higher Order Risk Attitudes, Demographics, and Financial Decisions. *Review of Economic Studies* 81:325–55.

Nyhus, E. K., and P. Webley. 2001. The role of personality in household saving and borrowing behaviour. *European Journal of Personality* 15:S85–S103.

Oaxaca, R. 1973. Male-female wage differentials in urban labor markets. *International Economic Review* 14:693–709.

Otero-López, J. M. and E. V. Pol. 2013. Compulsive buying and the five factor model of personality: A facet analysis. *Personality and Individual Differences* 55:585–90.

Puri, M., and D. Robinson. 2007. Optimism and economic choice. Journal of Financial Economics 86:71–99.

Reis, R. 2006. Inattentive consumers. Journal of Monetary Economics 53:1761-800.

Roberts, B. W. and W. F. DelVecchio. 2000. The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. *Psychological Bulletin* 126:3–25.

Rosen, H. and S. Wu. 2004. Portfolio choice and health status. Journal of Financial Economics 72:457-84.

Rustichini, A., C. G. DeYoung, J. Anderson, and S. Burks. 2016. Toward the integration of personality theory and decision theory in the explanation of economic and health behavior. *Journal of Behavioral and Experimental Economics* 64:122–37.

Sims, C. A. 1998. Stickiness. Carnegie-Rochester Conference Series on Public Policy 49:317–56.

------. 2003. Implications of rational inattention. Journal of Monetary Economics 50:665-90.

_____. 2006. Rational inattention: Beyond the linear-quadratic case. The American Economic Review 96:158–63.

Skiba, P. M., and J. Tobacman. 2015. Do payday loans cause bankruptcy? Working Paper.

Staiger, D., and J. H. Stock. 1997. Instrumental variables regression with weak instruments. *Econometrica* 65:557-86.

Stock, J. and M. Yogo. 2005. Testing for weak instruments in linear IV regression. New York: Cambridge University Press.

Thompson, E., and G. Prendergast. 2015. The influence of trait affect and the five-factor personality model on impulse buying. *Personality and Individual Differences* 76:216–21.

Van Nieuwerburgh, S., and L. Veldkamp. 2006. Inside information and the own company stock puzzle. *Journal of the European Economic Association* 4:623–33.

_____. 2009. Information immobility and the home bias puzzle. Journal of Finance 64:1187–215.

——. 2010. Information acquisition and under-diversification. Review of Economic Studies 77:779–805.

van Rooij, M., A. Lusardi, and R. Alessie. 2011. Financial literacy and stock market participation. *Journal of Financial Economics* 101:449–72.

Vissing-Jørgensen, A. 2012. Consumer credit: Learning your customer's default risk from what (s)he buys. Working Paper.

Xu, Y., A. Beller, B. Roberts, and J. Brown. 2015. Personality and young adult financial distress. *Journal of Economic Psychology* 51:90–100.

Xu, Y., D. A. Briley, J. R. Brown, and B. W. Roberts. 2017. Genetic and environmental influences on household financial distress. *Journal of Economic Behavior & Organization* 142:404–24.