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NONCOMMUTATIVE BURKHOLDER/ROSENTHAL INEQUALITIES

BY MARIUS JUNGE AND QUANHUA XU

University of Illinois and Université de Franche–Comté

We investigate martingale inequalities in noncommutative Lp-spaces
associated with a von Neumann algebra equipped with a faithful normal
state. We prove the noncommutative analogue of the classical Burkholder
inequality on the conditioned (or little) square function and extend the
noncommutative Burkholder–Gundy inequalities from Comm. Math. Phys.
189 (1997) 667–698 to this nontracial setting. We include several related
results.

0. Introduction. Inspired by mathematical physics, noncommutative (or
quantum) probability is, today, an independent field of mathematical research.
We refer to the recent books [27, 30], the successive conference proceedings [2]
for the interplay between mathematical physics, noncommutative probability and
classical (i.e., commutative) probability, to the books [17, 18, 10] about the almost
sure convergence of noncommutative martingales, and to [28] for the connection
with harmonic analysis. A further example of the fruitful interaction of probability
and operator algebras is the fast developing theory of free probability introduced
by Voiculescu in the beginning of the 1980s; see [44] and [45]. Finally, we should
point out that noncommutative probability is intimately related to the recent theory
of operator spaces, developed mainly during the last decade (cf. [11, 32]).

In this paper our main attention is on classical martingale inequalities and
their noncommutative counterparts. In the classical probability theory, Burkholder
and his coauthors developed powerful tools of martingale transforms, maximal
functions and stopping times which are well established in the modern theory
of stochastic processes (cf. [4] and the references given therein). We should
emphasize that it is often highly nontrivial and requires additional functional
analytic or combinatorial insight to transfer classical martingale inequalities to
the noncommutative setting. Indeed, most of the stopping time arguments are
no longer available. It is well known that martingale inequalities are closely
related to problems in harmonic analysis (cf. [5, 37]). Indeed, the noncommutative
version of Stein’s inequality is a key building block in the approach towards
the noncommutative Burkholder–Gundy inequalities in [34]. Carlen and Krée [7]
obtained, independently and almost at the same time, results related to those
in [34] on the Itô–Clifford integral. Very shortly after [34], Biane and Speicher [3]
developed the stochastic analysis on Wigner space (= free probability space).
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Pisier [33] extended some results in [34] to a more general setting. Very
recently, the noncommutative analogue of the classical Doob inequality has been
established in [19].

We continue this line of research by establishing the noncommutative analogue
of the Rosenthal/Burkholder inequality. Interested in new examples for Lp

spaces in the theory of Banach spaces, Rosenthal [36] established an inequality
for the p-norm of independent mean-zero random variables. Aware of this
inequality, Burkholder (cf. [4] and [6]) generalized this inequality to the context
of martingales as follows. Let 2 ≤ p < ∞ and (Fk) be a filtration on a probability
space (�,µ). Given x ∈ Lp , the conditional expectations (Ek) and the martingale
differences are given by

Ek(x) = E(x|Fk) and dk = dk(x) = Ek(x) − Ek−1(x).

Then the Lp-norm of x satisfies

‖x‖p ∼cp

(∑
k

‖dk‖p
p

)1/p

+
∥∥∥∥∥
(∑

k

Ek−1(d
2
k )

)1/2∥∥∥∥∥
p

.

The second term on the right-hand side above is called the conditioned square
function. Rosenthal’s inequality for independent mean-zero random variables is a
special case where dk = fk and Ek−1(d

2
k ) = ‖fk‖2

2 is just a scalar. In Section 5,
we prove the noncommutative analogue of Burkholder’s inequality by replacing
conditional expectations onto the subalgebras generated by filtrations by the
conditional expectations onto an increasing sequence of von Neumann subalgebras
of a given von Neumann algebra (using the appropriate noncommutative analogue
of the conditioned square function). In Section 6, we extend these results to the
case 1 < p ≤ 2. In this range, the appropriate formulation is motivated by the
K-functional in interpolation theory. This might be new even in the commutative
case. In a subsequent paper [21], we will show that the noncommutative version
of Rosenthal’s original inequality has far reaching applications in particular to the
Lp-norms of random matrices. Namely, for a matrix (fij )

n
i,j=1 of independent

mean-zero random variables and 2 ≤ p < ∞,

(
E‖(fij )

n
i,j=1‖p

p

)1/p ∼cp

(
n∑

i,j=1

‖fij‖p
p

)1/p

+
(

n∑
i=1

(
n∑

j=1

‖fij‖2
2

)p/2)1/p

+
(

n∑
j=1

(
n∑

i=1

‖fij‖2
2

)p/2)1/p

.

Ever since the discovery of type IIIλ-factors realized as infinite tensor products
of 2 × 2-matrices, martingale theory is important in operator algebras and in
particular for noncommutative Lp-spaces. As in many other applications it is
therefore natural to assume that a W ∗-noncommutative probability space (M, ϕ)
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is given by a von Neumann algebra M and a normal faithful state ϕ (or even
a weight, but we will concentrate on states in this paper). Given an increasing
sequence of von Neumann subalgebras (Mn) of M, the existence of normal
conditional expectations from M onto Mn is guaranteed if the Mn’s are invariant
under the modular group of the given state ϕ. We will consider noncommutative
martingale inequalities in this setting, and in particular, prove the corresponding
Burkholder inequality. The pattern of our proof of this latter inequality is similar
to that set up in [34]. However, the results in [34] were only obtained for the
tracial case. In Section 3, we indicate the necessary modifications needed to extend
the Burkholder–Gundy inequality to the nontracial case, thereby extending these
results. Let us mention that this approach still only provides exponential estimates
for the constants. Due to very recent results by Randrianantoanina [35] the order
of constants is now better understood in the tracial case, see also the forthcoming
publication [22]. Using a very deep crossed product argument of Haagerup [15]
(unfortunately unpublished), one can deduce the nontracial case from the tracial
one. This alternative approach seems to be the right one in terms of constants.
In this paper (accomplished before Randrianantoanina’s results) we pursue a
different strategy and show that the abstract Haagerup Lp-space provides the
right framework for understanding algebraic properties of (invariant) conditional
expectations and their extensions to Lp-spaces; see Section 2 for details.

In Section 4, we give a description of the dual of the Hardy space Hp and the
connection to BMO spaces, revealing the relations between the various martingale
inequalities. This part is closely related to results in [19] and in fact the underlying
duality concept for conditioned square functions is central in both papers, in
particular for the dual form of Burkholder’s inequality for 1 < p ≤ 2; see Section 6.

Section 7 contains a norm inequality on conditional expectations on Lp for
p < 1. This inequality is closely linked to the above mentioned dual form of the
noncommutative Doob inequalities in [19].

The last section contains a brief discussion of the nonfaithful case, motivated
by natural examples of invariant finite dimensional subalgebras in B(�2). In these
cases the conditional expectations can no longer be assumed to be faithful and the
dual Burkholder inequality turns out to be wrong in general. However, for p ≥ 2,
the results can be deduced from the faithful case.

In the subsequent paper [21], we will present the noncommutative Rosenthal
inequalities (which are consequences of the noncommutative Burkholder inequal-
ity), and various applications, especially those to the linear structure of symmetric
subspaces of noncommutative Lp-spaces.

1. Preliminaries. We use standard notation in operator algebras. We refer to
[23, 31, 38–40] for modular theory, to [14, 42] for the Haagerup noncommutative
Lp-spaces. Let us recall some basic facts about these spaces and fix the relevant
notation used throughout this paper. Let M be a σ -finite von Neumann algebra
and ϕ a distinguished normal faithful state on M. Let σt = σ

ϕ
t , t ∈ R, denote the



NONCOMMUTATIVE BURKHOLDER INEQUALITY 951

one parameter modular automorphism group of R on M associated with ϕ. We
consider the crossed product R = M�σ R. We recall briefly the definition of R.

If M acts on a Hilbert space H , R is a von Neumann algebra acting on L2(R,H),

generated by the operators π(x), x ∈ M, and the operators λ(s), s ∈ R, defined by
the following conditions: for every ξ ∈ L2(R,H) and t ∈ R,

π(x)(ξ)(t) = σ−t (x)ξ(t) and λ(s)(ξ)(t) = ξ(t − s).

Note that π is a normal faithful representation of M on L2(R,H). Thus we may
identify M with π(M). Then the one parameter modular automorphism group
{σt}t∈R is given by

σt(x) = λ(t)xλ(t)∗, x ∈ M, t ∈ R.

There is a dual action {σ̂t}t∈R of R on R. This is a one parameter automorphism
group of R on R, implemented by the unitary representation {W(t)}t∈R of R on
L2(R,H):

σ̂t (x) = W(t)xW(t)∗, t ∈ R, x ∈ R,

where

W(t)(ξ)(s) = e−itsξ(s), ξ ∈ L2(R,H), t, s ∈ R.

Note that the dual action σ̂t is also uniquely determined by the following conditions

σ̂t (x) = x and σ̂t (λ(s)) = e−istλ(s), x ∈ M, s, t ∈ R.

Thus M is invariant under {σ̂t}t∈R. In fact, M is exactly the space of the fixed
points of {σ̂t}t∈R, namely,

M = {x ∈ R : σ̂t (x) = x, ∀ t ∈ R}.
Recall that the crossed product R is semifinite (cf.[31]), and moreover there is a
canonical normal semifinite faithful (abbreviated as nsf) trace satisfying

τ ◦ σ̂t = e−t τ, t ∈ R.

Any normal positive functional ω on M induces a dual nsf weight ω̃ on R
which admits a Radon–Nikodym derivative with respect to τ. In particular, the
dual weight ϕ̃ of our distinguished state has a Radon–Nikodym derivative D with
respect to τ. In this paper, D will be exclusively reserved to denote this derivative.
Then

ϕ̃(x) = τ (Dx), x ∈ R+.

Recall that D is an invertible positive selfadjoint operator on L2(R,H), affiliated
with R, and that the regular representation λ(t) above is given by

λ(t) = Dit , t ∈ R.
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Now we are ready to define the Haagerup noncommutative Lp-spaces. Let
L0(R, τ ) denote the topological ∗-algebra of all operators on L2(R,H) measur-
able with respect to (R, τ ). Then the Haagerup Lp-space 0 < p ≤ ∞ is defined
as

Lp(M, ϕ) = {
x ∈ L0(R, τ ) : σ̂t (x) = e−t/px, ∀ t ∈ R

}
.

It is clear that Lp(M, ϕ) is a vector subspace of L0(R, τ ), invariant under
the ∗-operation. The algebraic structure of Lp(M, ϕ) is inherited from that of
L0(R, τ ). Let x ∈ Lp(M, ϕ), and let x = u|x| be its polar decomposition, where
|x| = (x∗x)1/2 is the modulus of x. Then u ∈ M and |x| ∈ Lp(M, ϕ). Recall that

L∞(M, ϕ) = M and L1(M, ϕ) = M∗.

The latter equality is understood as follows. As mentioned previously, for any
ω ∈ M+∗ , the dual weight ω̃ has a Radon–Nikodym derivative with respect to τ ,
denoted by hω:

ω̃(x) = τ (hωx), x ∈ R+.

Then

hω ∈ L0(R, τ ) and σ̂t (hω) = e−t hω, t ∈ R.

Thus hω ∈ L1(M, ϕ)+. This correspondence between M+∗ and L1(M, ϕ)+
extends to a bijection between M∗ and L1(M, ϕ). Then for any ω ∈ M∗, if
ω = u|ω| is its polar decomposition, the corresponding hω ∈ L1(M, ϕ) admits
the polar decomposition

hω = u|hω| = uh|ω|.

Thus we may define a norm on L1(M, ϕ) by

‖hω‖1 = |ω|(1) = ‖ω‖∗, ω ∈ M∗.

In this way, L1(M, ϕ) = M∗ isometrically. Now let 0 < p < ∞. Since x ∈
Lp(M, ϕ) iff |x|p ∈ L1(M, ϕ), we define

‖x‖p = ‖|x|p‖1/p
1 , x ∈ Lp(M, ϕ).

Then ‖ · ‖p is a norm (resp. a p-norm) on Lp(M, ϕ) for 1 ≤ p < ∞ (resp.
0 < p < 1). Equipped with ‖ · ‖p , Lp(M, ϕ) becomes a Banach space or a quasi-
Banach space, according to whether 1 ≤ p < ∞ or 0 < p < 1. Clearly,

‖x‖p = ‖x∗‖p = ‖|x|‖p, x ∈ Lp(M, ϕ).

It is well known that Lp(M, ϕ) is independent of ϕ up to isometry (see [42]).
Thus, following Haagerup, we will use the notation Lp(M) for the abstract
Haagerup Lp-space Lp(M, ϕ). As usual, for 1 ≤ p < ∞ the dual space of Lp(M)

is Lp′
(M), 1/p + 1/p′ = 1. To describe this duality, we use the distinguished
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linear functional on L1(M), called trace and denoted by tr, which is given by

tr(x) = ωx(1), x ∈ L1(M),

where ωx ∈ M∗ is the unique normal functional associated with x by the above
identification between M∗ and L1(M). Then tr is a continuous functional on
L1(M) satisfying

| tr(x)| ≤ tr(|x|) = ‖x‖1, x ∈ L1(M).

The usual Hölder inequality also holds for these noncommutative Lp-spaces. Let
0 < p,q, r ≤ ∞ such that 1/r = 1/p + 1/q . Then

x ∈ Lp(M) and y ∈ Lq(M) ⇒ xy ∈ Lr(M) and ‖xy‖r ≤ ‖x‖p‖y‖q .

In particular, for any 1 ≤ p ≤ ∞ we have

| tr(xy)| ≤ ‖xy‖1 ≤ ‖x‖p‖y‖p′ , x ∈ Lp(M), y ∈ Lp′
(M).

Thus, (x, y) �→ tr(xy) defines a duality between Lp(M) and Lp′
(M), with respect

to which (
Lp(M)

)∗ = Lp′
(M) isometrically, 1 ≤ p < ∞.

The functional tr on L1(M) plays the rôle of a trace. Indeed, it satisfies the
following tracial property

tr(xy) = tr(yx), x ∈ Lp(M), y ∈ Lp′
(M).

Moreover, our distinguished state ϕ can be recovered from tr (recalling that D is
the Radon–Nikodym derivative of ϕ̃ with respect to τ ), namely,

ϕ(x) = tr(Dx), x ∈ M.(1.1)

All properties described above will be repeatedly used throughout this paper
without any reference.

In this paper, all notation introduced previously will be kept fixed, unless
explicitly indicated otherwise. For our development, we will need some more
preliminaries on the Haagerup Lp-spaces. Let Ma be the family of analytic vectors
in M. Recall that x ∈ Ma iff the function t �→ σt (x) extends to an analytic function
from C to M. Then Ma is a w∗-dense ∗-subalgebra of M (cf. [31]).

LEMMA 1.1. Let 0 < p < ∞, 0 ≤ θ ≤ 1. Then:

(i) D(1−θ)/pMaD
θ/p = MaD

1/p;
(ii) MaD

1/p is dense in Lp(M).
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PROOF. (i) Let x ∈ Ma . Then

xD1/p = D(1−θ)/p
[
D−(1−θ)/pxD(1−θ)/p

]
Dθ/p

= D(1−θ)/p[σi(1−θ)/p(x)]Dθ/p ∈ D(1−θ)/pMaD
θ/p

whence MaD
1/p ⊂ D(1−θ)/pMaD

θ/p. The reverse inclusion can be proved in a
similar way.

(ii) Since D ∈ L1(M), by the Hölder inequality, MaD
1/p ⊂ Lp(M). To show

the density of MaD
1/p in Lp(M), we first consider the case 1 ≤ p < ∞. Let

y ∈ (Lp(M))∗ = Lp′
(M) such that

tr(xD1/py) = 0, x ∈ Ma.

Note that D1/py ∈ L1(M). Thus, by the w∗-density of Ma in M, we deduce
D1/py = 0. Since D1/p is injective, we obtain y = 0, and so MaD

1/p is dense
in Lp(M).

Now, suppose 1/2 ≤ p < 1. Let x ∈ Lp(M), and write its polar decomposition:
x = u|x|. Then we can write x = yz, where y = u|x|1/2 and z = |x|1/2. Since
y, z ∈ L2p(M) and 2p ≥ 1, by (i) and the preceding part already proved, there are
yn, zn ∈ Ma such that

lim
n→∞‖D1/2pyn − y‖2p = 0, lim

n→∞‖znD
1/2p − z‖2p = 0.

Then D1/2pynznD
1/2p ∈ D1/2pMaD

1/2p, and by the Hölder inequality,

lim
n→∞‖D1/2pynznD

1/2p − x‖p = 0.

Therefore, by (i), we deduce the desired density in the case 1/2 ≤ p < 1. Iterating
this procedure, we obtain the density of MaD

1/p in Lp(M) for all 0 < p < ∞.
�

We will need some spaces formed of sequences in Lp(M), as introduced in [34]
(see also [26]) in the case where the state ϕ is tracial. Let a = (an)n≥0 ⊂ Lp(M)

be a finite sequence (i.e., only finitely many terms of a are not zero). It is clear that
(
∑

n≥0 |an|2)1/2 ∈ Lp(M). Put

‖a‖Lp(M;�2
c )

=
∥∥∥∥∥
(∑

n≥0

|an|2
)1/2∥∥∥∥∥

p

.

As in the case where ϕ is tracial, we easily see that ‖ · ‖Lp(M;�2
c )

defines a norm
(if p ≥ 1) on the family of all finite sequences in Lp(M). To justify this, let B(�2)

denote the space of all bounded operators on �2 and Tr be the usual trace on B(�2).

Consider the von Neumann tensor product M ⊗ B(�2), equipped with the tensor
product weight ϕ ⊗ Tr. Note that ϕ ⊗ Tr is no longer a state, but an nsf weight.
All the previous discussion about the Haagerup Lp-spaces associated with a state
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is still valid in the case of nsf weights. However, if one wishes, for what follows
one may keep oneself in the case of states, simply by considering B(�2

n) instead of
B(�2) with an arbitrary positive integer n. Let ψ = ϕ⊗Tr. Then the corresponding
one parameter automorphism group is

σ
ψ
t = σt ⊗ idB(�2), t ∈ R.

Thus, it follows that

[M ⊗ B(�2)]�σψ R = (M�σ R) ⊗ B(�2) = R ⊗ B(�2).

The canonical nsf trace ν on [M ⊗ B(�2)] �σψ R is the tensor product τ ⊗ Tr
(recalling that τ is the canonical trace on R). Let Lp(M ⊗ B(�2)) denote
the Haagerup Lp-space associated with ϕ ⊗ Tr. Observe that the distinguished
tracial functional on L1(M ⊗ B(�2)) is equal to tr ⊗Tr. Consequently, (x, y) �→
tr⊗Tr(xy) defines a duality between Lp(M ⊗ B(�2)) and Lp′

(M ⊗ B(�2)) for
1 ≤ p < ∞.

Elements in Lp(M ⊗ B(�2)) can be considered as matrices with entries in
Lp(M), and Lp(M) can be identified as an isometric subspace of Lp(M ⊗B(�2))

via the following map

x �→
x 0 0 · · ·

0 0 0 · · ·
...

...
...

 , x ∈ Lp(M).

In the same way, any finite sequence a = (an)n≥0 ⊂ Lp(M) can be regarded as a
column matrix in Lp(M ⊗ B(�2)):

a �→ T (a) =
a0 0 · · ·

a1 0 · · ·
...

...

 .

Then

‖a‖Lp(M;�2
c )

= ‖|T a|‖Lp(M⊗B(�2)) = ‖T a‖Lp(M⊗B(�2)).

Therefore, ‖ · ‖Lp(M;�2
c )

defines a norm for p ≥ 1 and a quasi-norm for 0 < p < 1
on the family of all finite sequences in Lp(M). The corresponding completion,
for 0 < p < ∞, is denoted by Lp(M; �2

c). Then, Lp(M; �2
c) is identified, via

the above map T, with a closed subspace of Lp(M ⊗ B(�2)), called the column
subspace of Lp(M ⊗ B(�2)). For p = ∞, we denote by L∞(M; �2

c) the Banach
space of (possible infinite) sequences in L∞(M) such that

∑
n a∗

nan converges
in the w∗-topology. Thus L∞(M; �2

c) is isometric to the column subspace of
L∞(M ⊗ B(�2)) consisting of column matrices.

Similarly, given a finite sequence a = (an) ⊂ Lp(M), we set

‖a‖Lp(M;�2
r )

=
∥∥∥∥∥
(∑

n≥0

|a∗
n|2
)1/2∥∥∥∥∥

p

.
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This is again a norm or a quasi-norm according to whether p ≥ 1 or p < 1.
The corresponding completion (relative to the w∗-topology in the case p = ∞)

is denoted by Lp(M; �2
r ). Then, Lp(M; �2

r ) is naturally identified with the row
subspace of Lp(M ⊗ B(�2)).

The above tensor product argument shows the following Hölder-type inequality,
which will be frequently used in this paper. Let 0 < p,q, s ≤ ∞ such that
1/s = 1/p + 1/q . Then for any finite sequences a = (an)n≥0 ∈ Lp(M; �2

c) and
b = (bn)n≥0 ∈ Lp(M; �2

c),∥∥∥∥∥∑
n≥0

a∗
nbn

∥∥∥∥∥
s

≤ ‖a‖Lp(M;�2
c )

‖b‖Lq(M;�2
c )

.(1.2)

The same inequality holds with Lp(M; �2
r ) instead of Lp(M; �2

c). In particular, if
1 ≤ p < ∞ and q = p′, the conjugate index of p, we get∣∣∣∣∣∑

n≥0

tr(a∗
nbn)

∣∣∣∣∣≤ ‖a‖Lp(M;�2
c )

‖b‖
Lp′

(M;�2
c )

,
(1.3)

a ∈ Lp(M; �2
c), b ∈ Lp′

(M; �2
c).

This last inequality yields a natural anti-linear duality between Lp(M; �2
c) and

Lp′
(M; �2

c). As a consequence of Lemma 1.2 below, the dual space of Lp(M; �2
c)

is indeed Lp′
(M; �2

c) with respect to this anti-linear duality.
The following lemma might be known to specialists. We include a proof for the

sake of completeness. Note that it is obvious in the tracial case (i.e., when ϕ is
tracial).

LEMMA 1.2. Let 1 ≤ p ≤ ∞. For any finite matrix x = (xij )i,j≥0 ∈ Lp(M ⊗
B(�2)) we define

P (x) =
x00 0 · · ·

x10 0 · · ·
...

...

 ,

that is, P (x) is the matrix whose first column is that of x and all others are 0.
Then P extends to a contractive projection from Lp(M ⊗B(�2)) onto Lp(M; �2

c).

Consequently, Lp(M; �2
c) is one-complemented in Lp(M ⊗ B(�2)). Similarly,

Lp(M; �2
r ) is one-complemented in Lp(M ⊗ B(�2)).

PROOF. This is easy (and well known for p = ∞ and p = 1). More precisely,
we consider the projection e = (1 ⊗ e00) and note that

Lp
(
M ⊗ B(�2)

)
e = Lp(M; �2

c).

Clearly, the map T (x) = xe is a projection onto Lp(M; �2
c). �

We record the following immediate consequence of (1.3) and Lemma 1.2.
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COROLLARY 1.3. Let 1 ≤ p < ∞, and let p′ be the conjugate index of p.
Then (

Lp(M; �2
c)
)∗ = Lp′

(M; �2
c) and

(
Lp(M; �2

r )
)∗ = Lp′

(M; �2
r )

isometrically. The anti-linear duality is given by (a, b) �→∑
n≥0 tr(b∗

nan).

2. Conditional expectations. Let M, ϕ, σt be fixed as in the previous section.
Let N ⊂ M be a von Neumann subalgebra. By von Neumann subalgebras we
mean unital w∗-closed ∗-subalgebras. Assume N is invariant under {σt}t∈R, that
is,

σt (N ) ⊂ N , t ∈ R.(2.1)

It is well known (cf. [40]) that (2.1) is equivalent to the existence of a (unique)
normal conditional expectation E :M → N such that

ϕ ◦ E = ϕ.(2.2)

This conditional expectation E commutes with {σt}t∈R (cf. [9]):

E ◦ σt = σt ◦ E , t ∈ R.(2.3)

Now let ψ = ϕ|N be the restriction of ϕ to N . (2.1) implies that the modular
automorphism group associated with ψ is the restriction of σt to N , namely,

σ
ψ
t = σt

∣∣
N ∀ t ∈ R.

It follows that the crossed product S = N �σψ R is a von Neumann subalgebra
of R = M �σ R. Let ν be the canonical nsf trace on S. Then ν is equal to the
restriction of τ to S (recalling that τ is the canonical trace on R). Observe that the
conditional expectation E extends to a normal faithful conditional expectation Ẽ
from R onto S, satisfying τ ◦ Ẽ = τ, that is, ν ◦ Ẽ = τ. Let ϕ̃ and ψ̃ be the dual
weights of ϕ and ψ respectively. Then ψ̃ ◦ Ẽ = ϕ̃, and by [9],

(Dϕ̃ :Dτ)t = λ(t) = (Dψ̃ :Dν)t , t ∈ R.

Therefore, the Radon–Nikodym derivative of ψ̃ with respect to ν is equal to D,
the Radon–Nikodym derivative of ϕ̃ with respect to τ.

The discussion above shows, in particular, that L0(S, ν) is naturally identified
with a subspace of L0(R, τ ). Then, since σ

ψ
t = σt |N (t ∈ R), the space Lp(N ) =

Lp(N ,ψ) can be naturally isometrically identified with a subspace of Lp(M),
0 < p < ∞. In the sequel we will not distinguish between ϕ,σt , τ and their
respective restrictions.

It is well known that in the tracial case, the conditional expectation E extends
to a contractive projection from Lp(M) onto Lp(N ) for any 1 ≤ p < ∞, which
still is positive and has the modular property E(axb) = aE(x)b for all a, b ∈ N ,
x ∈ Lp(M). In view of the commutative theory these are very desirable properties
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and important tools in the investigation of martingales. In our first attempt
to formulate these properties using Kosaki’s (or Terp’s) interpolation spaces,
these properties seemed inexplicable or appeared in a rather awkward algebraic
formulation involving the modular automorphism group of ϕ. This is due to the
fact that the interpolated Lp-spaces do not have positive cones and that either the
left or the right module action (or even both actions) of M on the interpolated
Lp-spaces are difficult to describe. We refer to [1, 8, 16, 13] for some related
results in this direction. Moreover, for 0 < p < 1, Lp itself and the extension of
the conditional expectation E to a large dense subspace of Lp can not be recovered
by this interpolation approach. Since these tools turned out to be crucial, we are
forced to work in the context of Haagerup Lp-spaces. The rest of this section is
devoted to establishing the usual algebraic properties of conditional expectations
in this setting.

Recall that Ma denotes the family of all analytic vectors of M. For 0 ≤ θ ≤ 1
and 0 < p < ∞ we define Ep,θ : MaD

1/p → MaD
1/p by

Ep,θ(D
(1−θ)/pxDθ/p) = D(1−θ)/pE(x)Dθ/p, x ∈ Ma.

LEMMA 2.1. Let 0 < p < ∞ and 0 ≤ θ, η ≤ 1. Then Ep,θ = Ep,η.

PROOF. It suffices to consider the case η = 1. Let a ∈ MaD
1/p. Then (see the

proof of Lemma 1.1)

a = D(1−θ)/pxDθ/p = σi(1−θ)/p(x)D1/p for some x ∈ Ma.

Thus

Ep,1(a) = Ep,1
(
σi(1−θ)/p(x)D1/p

)
= E

(
σi(1−θ)/p(x)

)
D1/p

= σi(1−θ)/p(E(x))D1/p [by (2.3)]

= D(1−θ)/pE(x)Dθ/p = Ep,θ (a).

This completes the proof. �

Lemma 2.1 enables us to drop the subscript θ from Ep,θ . Thus we will denote
Ep,θ by Ep.

LEMMA 2.2. For any 1 ≤ p < ∞, Ep extends to a contractive projection from
Lp(M) onto Lp(N ).

PROOF. First consider the case p = 1. Let x ∈ Ma and y ∈ N . Then by
(1.1) and (2.2),

tr
(
yE1(xD)

)= tr
(
yE(x)D

)
= ϕ

(
yE(x)

)= ϕ
(
E(yx)

)
= ϕ(yx) = tr(yxD).
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Therefore, ∣∣ tr (yE1(xD)
)∣∣≤ ‖y‖∞‖xD‖1,

whence

‖E1(xD)‖1 ≤ ‖xD‖1, x ∈ Ma.

By Lemma 1.1, MaD is dense in L1(M). Thus, E1 extends to a contraction on
L1(M). It is then clear that E1 is a projection of range equal to L1(N ).

Next, assume 1 < p < ∞. Let x ∈ Ma and y ∈ Lp′
(N ) (1/p +1/p′ = 1). Then

D1/py ∈ L1(N ). Thus, by Lemma 1.1, there is yn ∈ N such that

lim
n→∞ynD = D1/py in L1(N ).

Therefore, it follows that

tr
(
Ep(xD1/p)y

)= tr
(
E(x)D1/py

)
= lim

n→∞ tr
(
E(x)ynD

)
= lim

n→∞ tr
(
E(xyn)D

)
= lim

n→∞ϕ
(
E(xyn)

)
= lim

n→∞ϕ(xyn) = tr(xD1/py).

This implies, as before in the case p = 1, that Ep extends to a contractive
projection from Lp(M) onto Lp(N ). �

REMARK. It is easy to see that E2 is the orthogonal projection from L2(M)

onto L2(N ), and that Ep′ is the adjoint of Ep.
In order to simplify the notation in the sequel, we will use the same letter E to

denote the family {Ep} (thus drop the subscript p from Ep). This should not cause
any ambiguity. During the proof of Lemma 2.1, we have proved the following
equality, which will be repeatedly used later:

tr(E(x)) = tr(x), x ∈ L1(M).(2.4)

We now show that the conditional expectations on Lp(M) posses all the usual
algebraic properties.

PROPOSITION 2.3. (i) Let 1 ≤ p ≤ ∞ and x ∈ Lp(M). Then

(E(x))∗ = E(x∗) and x ≥ 0 ⇒ E(x) ≥ 0.

(ii) Let 1 ≤ p, q , r ≤ ∞ such that 1
p

+ 1
q

+ 1
r

≤ 1. Then

E(axb) = aE(x)b, a ∈ Lp(N ), b ∈ Lq(N ), x ∈ Lr(M).

(iii) Let 0 < p ≤ ∞ and x ∈ MaD
1/p. Then E(x)∗E(x) ≤ E(x∗x). Conse-

quently, if p ≥ 2, E(x)∗E(x) ≤ E(x∗x) for all x ∈ Lp(M).
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PROOF. (i) Let x ∈ Ma. Then, by Lemma 2.1,(
E(xD1/p)

)∗ = (
E(x)D1/p

)∗ = D1/pE(x∗) = E(D1/px∗) = E
(
(xD1/p)∗

)
.

Therefore, by Lemma 1.1 and the continuity of E , we get the first part of (i). We
delay the second part to the end of the proof of (ii).

(ii) First consider the case p = q = ∞. If r = ∞, we go back to the classical
case in M. Assume r < ∞. Then by Lemma 1.1, it suffices to consider x = x′D1/r

with x′ ∈ Ma. Let a, b ∈ L∞(N ) = N . Then

E(ax) = E(ax′D1/r) = E(ax′) D1/r = aE(x′)D1/r = aE(x).

On the other hand, by the first part of (i) above,(
E(xb)

)∗ = E(b∗x∗) = b∗E(x∗) = b∗(E(x))∗ = (
E(x)b

)∗
,

whence E(xb) = E(x)b. Thus (ii) is proved in the case p = q = ∞.
Next assume p < ∞ and q < ∞ (the case where one of p,q is finite and another

infinite can be treated similarly). Again, by Lemma 1.1, it suffices to consider
a = a′D1/p, b = D1/qb′ with a′, b′ ∈ N . Then, by the case p = q = ∞ already
proved, we get

E(axb) = a′E(D1/pxD1/q)b′.

Thus, it remains to show

E(D1/pxD1/q) = D1/pE(x)D1/q, x ∈ Lr(M).

We do this by considering r < ∞ and r = ∞ separately. If r < ∞, again by
Lemma 1.1, we may assume x = x′D1/r with x′ ∈ Ma. Then, by Lemma 2.1,

E(D1/pxD1/q) = D1/pE(x′)D1/r+1/q = D1/pE(x)D1/q,

as desired. For r = ∞, we use duality. Let y ∈ Ls′
(N ), where s is determined by

1
s

= 1
p

+ 1
q

+ 1
r

and s′ the conjugate index of s. Note that s < ∞; so by what we
have already proved,

E(yD1/pxD1/q) = yE(D1/pxD1/q).

Thus, by (2.4),

tr
(
yE(D1/pxD1/q)

)= tr(yD1/pxD1/q)

= tr(D1/qyD1/px)

= tr
[
E(D1/qyD1/px)

]
.

Now D1/qyD1/p ∈ L1(N ). Hence

E(D1/qyD1/px) = D1/qyD1/pE(x).
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Therefore

tr
[
yE(D1/pxD1/q)

]= tr
(
yD1/pE(x)D1/q

)
, y ∈ Ls′

(N )

whence

E(D1/pxD1/q) = D1/pE(x)D1/q.

This completes the proof of (ii). Now we come back to the second part of (i). Let
x ∈ Lp(M), x ≥ 0. Then by (ii) and (2.4),

tr
(
yE(x)

)= tr
(
E(yx)

)= tr(yx) ≥ 0, y ∈ Lp′
(N ), y ≥ 0.

It follows that x ≥ 0.

(iii) This is well known for p = ∞. Now let x = aD1/p. Then

E(x)∗E(x) = D1/pE(a)∗E(a)D1/p ≤ D1/pE(a∗a)D1/p = E(x∗x).

The second assertion of (iii) then follows by density. �

In the rest of this section, we introduce noncommutative martingales that we
will deal with in the subsequent sections. Let M, ϕ, {σt} be fixed as before. Let
{Mn}n≥0 be an increasing filtration of von Neumann subalgebras of M such that⋃

n≥0 Mn is w∗-dense in M. We assume that every Mn is invariant under {σt }t∈R

[i.e., (2.1) holds with N = Mn for every n ≥ 0]. Then by the preceding discussion,
for each n ≥ 0, there is a normal faithful conditional expectation En from M
onto Mn such that ϕ ◦ En = ϕ. We have

EmEn = EnEm = Emin(m,n), m,n ≥ 0.(2.5)

By Proposition 2.3, each En induces a contractive projection from Lp(M) onto
Lp(Mn) for all 1 ≤ p ≤ ∞. Then all the notions of noncommutative martingales
from [34] can be transferred to the present setting without any modification. For
instance, a noncommutative Lp-martingale is a sequence x = (xn)n≥0 ⊂ Lp(M)

such that Em(xn) = xm for all 0 ≤ m ≤ n. This implies that the sequence x is
adapted, that is, xn ∈ Lp(Mn) for all n ≥ 0. Set ‖x‖p = supn ‖xn‖p. If ‖x‖p < ∞,
x is said to be bounded. The difference sequence of x is dx = (dxn)n≥0, where
dxn = xn − xn−1 for n ≥ 0 (with x−1 = 0, by convention).

REMARK. Let 1 ≤ p ≤ ∞ and x∞ ∈ Lp(M). Define xn = En(x∞), n ≥ 0.

Then x = (xn)n≥0 is a bounded Lp-martingale and limn→∞ xn = x∞ in Lp(M)

(with respect to the w∗-topology in the case p = ∞). Conversely, for 1 < p < ∞,

using the uniform convexity of Lp(M) we deduce that any bounded Lp-martingale
x converges to an element x∞ in Lp(M), and thus is of this form. As usual, we
often identify a martingale with its final value, whenever the latter exists.
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We close this section by two conventions used throughout this paper. First,
unless explicitly indicated otherwise, M, ϕ, {σt}, {Mn}n≥0 and {En}n≥0 will be
fixed as before, except in Section 8, where we will consider nonfaithful conditional
expectations; all noncommutative martingales will be with respect to {Mn}n≥0.
Second, letters like αp,βp . . . will denote absolute positive constants, which
depend only on p and may change from line to line.

3. Noncommutative Burkholder–Gundy inequalities. This section is de-
voted to extending the noncommutative Burkholder–Gundy inequalities proved
in [34] to the case of Haagerup Lp-spaces. We first recall the two square functions
introduced in [34]. Let x be an Lp-martingale. We define

Sc,n(x) =
(

n∑
k=0

|dxk|2
)1/2

and Sr,n(x) =
(

n∑
k=0

|dx∗
k |2
)1/2

.

If dx ∈ Lp(M; �2
c) [equivalently, if supn≥0 ‖Sc,n(x)‖p < ∞], we set

Sc(x) =
( ∞∑

k=0

|dxk|2
)1/2

.

Similarly, if dx ∈ Lp(M; �2
r ), set

Sr(x) =
( ∞∑

k=0

|dx∗
k |2
)1/2

.

Then Sc(x) and Sr(x) are elements in Lp(M). Let 1 ≤ p < ∞. Define H
p
c (M)

[resp. Hp
r (M)] to be the space of all Lp-martingales x with respect to the filtration

(Mn)n≥0 such that dx ∈ Lp(M; �2
c) [resp. dx ∈ Lp(M; �2

r )], and set

‖x‖H
p
c (M) = ‖dx‖Lp(M;�2

c )
and ‖x‖H

p
r (M) = ‖dx‖Lp(M;�2

r )
.

From the discussion in Section 1, ‖ · ‖H
p
c (M) and ‖ · ‖H

p
r (M) are two norms, for

which H
p
c (M) and H

p
r (M) become Banach spaces. Note that if x ∈ H

p
c (M),

‖x‖H
p
c (M) = sup

n≥0
‖Sc,n(x)‖p = ‖Sc(x)‖p,

and similarly for H
p
r (M). Then we define the Hardy spaces of noncommutative

martingales as

Hp(M) = Hp
c (M) + Hp

r (M) for 1 ≤ p < 2

equipped with the norm

‖x‖ = inf
{‖y‖H

p
c (M) + ‖z‖H

p
r (M) :x = y + z, y ∈ Hp

c (M), z ∈ Hp
r (M)

};
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and

Hp(M) = Hp
c (M) ∩ Hp

r (M) for 2 ≤ p < ∞
equipped with the norm

‖x‖ = max
{‖x‖H

p
c (M),‖x‖H

p
r (M)

}
.

Now we can transfer the main results in Section 2 of [34] to the present setting.

THEOREM 3.1. Let 1 < p < ∞. Let x = (xn)n≥0 be an Lp-martingale with
respect to {Mn}n≥0. Then x is bounded in Lp(M) iff x belongs to Hp(M);
moreover, if this is the case,

α−1
p ‖x‖Hp(M) ≤ ‖x‖p ≤ βp‖x‖Hp(M).(BGp)

Identifying bounded Lp-martingales with their limits, we may reformulate
Theorem 3.1 as follows.

COROLLARY 3.2. Let 1 < p < ∞. Then Hp(M) = Lp(M) with equivalent
norms.

The noncommutative Stein inequality in [34] also holds now.

THEOREM 3.3. Let 1 < p < ∞. Define the map Q on all finite sequences
a = (an)n≥0 in Lp(M) by Q(a) = (Enan)n≥0. Then

‖Q(a)‖Lp(M;l2c ) ≤ γp‖a‖Lp(M;l2c ), ‖Q(a)‖Lp(M;�2
r )

≤ γp‖a‖Lp(M;�2
r )

.(Sp)

Thus Q extends to a bounded projection on Lp(M; l2
c ) and Lp(M; �2

r ); conse-
quently, Hp(M) is complemented in Lp(M; l2

c ) + Lp(M, �2
r ) or Lp(M; l2

c ) ∩
Lp(M; �2

r ) according to 1 < p ≤ 2 or 2 ≤ p < ∞.

Our proof below for Theorems 3.1 and 3.3 follows the same pattern as in [34].
The only modifications which require a new justification are the interpolation
arguments used in [34]. Although interpolation arguments cannot directly be
applied for Haagerup Lp-spaces, a direct application of the three lines lemma as in
Lemma 1.2 is possible in all the modifications we need here. Of course, this idea
is not new (see, e.g., [42] for the proof of the Clarkson inequality), and it will be
used several times in the sequel.

SKETCH OF THE PROOF OF THEOREMS 3.1 AND 3.3. Below, we indicate
the places in the proof of Theorem 2.1 and Theorem 2.3 in [34] which require
modifications. The reader will easily be able to complete the omitted details.
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(i) Lemmas 1.1, 2.6 and 2.7 in [34] are still valid. In the state case, Lemma 2.6
in [34] is proved by the tensor product argument given in Section 1. Let us indicate
the modifications in the interpolation arguments of the proofs in Lemma 1.1 and
Lemma 2.7 of [34] exemplary for Lemma 2.7. This means we have to prove the
following inequality. Given 2 ≤ p ≤ ∞ and a finite Lp-martingale x = (xn)n≥0
then (∑

n≥0

‖dxn‖p
p

)1/p

≤ 21−2/p‖x‖p.(3.1)

This is trivial for p = ∞ as well as for p = 2 [since for any L2-martingale x,
(dxn)n≥0 is an orthogonal sequence in L2(M)]. Now assume 2 < p < ∞. Let
x be a finite Lp-martingale with ‖x‖p ≤ 1. Then there is an n such that xk = xn

for all k ≥ n. Choose a finite sequence b = (bk)0≤k≤n ⊂ Lp′
(M) (1/p +1/p′ = 1)

such that ∑
0≤k≤n

‖bk‖p′
p′ ≤ 1 and

(∑
k≥0

‖dxk‖p
p

)1/p

= ∑
0≤k≤n

tr(bkdxk).

By approximation and in view of Kosaki’s results [24], we may assume bk =
Bk(

2
p
)D1/p′

and the Bk are continuous functions with values in M defined on
the strip S = {z ∈ C : 0 ≤ Rez ≤ 1}, analytic in the interior, such that

sup
t

max

{ ∑
0≤k≤n

‖Bk(it)D‖1,

( ∑
0≤k≤n

‖Bk(1 + it)D1/2‖2
2

)1/2}
≤ 1.

Similarly, we can assume xn = D1/pX( 2
p
) and X is an analytic function on the

strip with values in Mn such that

sup
t

max
{‖X(it)‖∞,‖D1/2X(1 + it)‖2

}≤ 1.

Then we consider the analytic function

F(z) = ∑
0≤k≤n

tr
[
Bk(z)D(Ek − Ek−1)X(z)

]
.

Using the Hölder inequality and the case p = ∞, we deduce

|F(it)| ≤ ∑
0≤k≤n

‖Bk(it)D‖1‖(Ek − Ek−1)X(it)‖∞

≤ 2‖X(it)‖∞ ≤ 2

for all t ∈ R. Similarly, |F(1 + it)| ≤ 1 for all t ∈ R. Thus, by the three lines
lemma,

|F(2/p)| = ∑
0≤k≤n

tr(bkdxk) ≤ 21−2/p,

whence (3.1) by the choice of the (bk)’s.
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(ii) The inequality (Sp) can be interpolated. By this we mean that if 1 <

p0 < p1 < ∞, then the validity of (Sp0 ) and (Sp1 ) implies that of (Sp) for all
p0 < p < p1. Fix a finite sequence a = (an) ∈ Lp(M; l2

c ) of norm ≤ 1. Let x be
the finite column matrix represented by a (see Lemma 1.2). Choose a row matrix
y ∈ Lp′

(M ⊗ B(�2
n)) of norm 1 such that

‖a‖Lp(M;l2c ) = ‖x‖Lp(M⊗B(�2
n)) = tr⊗Tr(yx) =

n∑
k=1

tr(ykak).

We could still work with the state ϕn = ϕ ⊗ Tr
n

and therefore apply Kosaki’s results
with the density Dn = D ⊗ 1. Let θ be determined by 1/p = (1 − θ)/p0 + θ/p1.
Again by approximation (and complementation of the column subspace), we can
assume ak = Ak(θ)D1/p and

max
{∥∥(Ak(it)D

1/p0
)∥∥

Lp0(M,�2
c )

,
∥∥(Ak(1 + it)D1/p1

)∥∥
Lp1 (M,�2

c )

}
≤ 1

for all t ∈ R. Similarly, y = (y1, . . . , yn) can be assumed to satisfy yk =
D1/p′

Yk(θ) and

max
{∥∥(D1/p′

0Yk(it)
)∥∥

L
p′

0(M,�2
r )

,
∥∥(D1/p′

1Yk(1 + it)
)∥∥

L
p′

1 (M,�2
r )

}
≤ 1

for all t ∈ R. Then, we consider

F(z) =
n∑

k=1

tr
(
DYk(z)Ek

(
Ak(z)

))
.

For any t ∈ R, by the Hölder inequality, (Sp0) and Lemma 1.2, we deduce

|F(it)| ≤ ∥∥(D1/p′
0Yk(it)

)∥∥
L

p′
0 (M,�2

r )

∥∥(Ek

(
Ak(it)

)
D1/p0

)∥∥
Lp0 (M,�2

c )
≤ γp0 .

Similarly, |F(1 + it)| ≤ γp1 for all t ∈ R. Therefore, by the three lines lemma,

|F(θ)| ≤ γ 1−θ
p0

γ θ
p1

.

Since F(θ) = tr⊗Tr(yx) and by the choice of y, we deduce (Sp) with γp ≤
γ 1−θ
p0

γ θ
p1

.
(iii) The first inequality of (BGp) can be interpolated. This can be done by

combining the arguments in the last step and those in the proof of (3.1).
(iv) (BGp) implies (Sp). The proof given in [34] works as well in the present

setting. However, we prefer to give a slightly different proof of this fact with a
better estimate for the constant γp in (Sp) in terms of αp and βp in (BGp). Let
1 < p < ∞. Suppose (BGp) holds. We will show (Sp) holds as well. To this end,
fix a finite sequence a = (ak)0≤k≤n ⊂ Lp(M). We consider the tensor product
(M, ϕ) ⊗ (N , σ ), where N = B(l2

n+1) and σ = (n + 1)−1Tr is the normalized
trace on B(l2

n+1). Note that ψ = ϕ ⊗σ is a normal state on M⊗N (see Section 1).
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Let Ẽk = Ek ⊗ idN denote the conditional expectation of M ⊗ N with respect to
M̃k = Mk ⊗ N . Then we have (BGp) for all martingales relative to the filtration
(Mk ⊗ N )k≥0. Now set

Ak = (n + 1)1/pak ⊗ ek,0, 0 ≤ k ≤ n.

Let (rn)n≥0 be the sequence of Rademacher functions on [0,1]. Then for any
t ∈ [0,1],

‖Q(a)‖Lp(M;l2c ) =
∥∥∥∥∥

n∑
k=0

Ẽk

(
rk(t)Ak

)∥∥∥∥∥
p

=
∥∥∥∥∥

n∑
k=0

Ẽn

(
rk(t)Ak

)− n−1∑
k=0

n−1∑
j=k

(Ẽj+1 − Ẽj )
(
rk(t)Ak

)∥∥∥∥∥
p

≤ ‖a‖Lp(M;l2c ) +
∥∥∥∥∥

n−1∑
j=0

(Ẽj+1 − Ẽj )

( j∑
k=0

rk(t)Ak

)∥∥∥∥∥
p

.

Let

f =
n−1∑
k=0

rkAk.

Now we consider the filtration

M̃0 ⊗ F0, M̃1 ⊗ F0, M̃1 ⊗ F1, M̃2 ⊗ F1, M̃2 ⊗ F2, . . .

where Fj is the σ -field generated by {r0, . . . , rj }. Denoting by (dfj )j≥0 the
difference sequence of f with respect to this filtration, we have

n−1∑
j=0

(Ẽj+1 − Ẽj )

( j∑
k=0

rk(t)Ak

)
=

n−1∑
j=0

df2j+1.

Now note that (BGp) implies the unconditionality of all martingale differences
with constant majorized by αpβp. Therefore, it follows that∥∥∥∥∥

n−1∑
j=0

df2j+1

∥∥∥∥∥
p

≤ αpβp

∥∥∥∥∥
n−1∑
j=0

dfj

∥∥∥∥∥
p

= αpβp‖f ‖p = αpβp‖a‖Lp(M;�2
c )

.

Combining the preceding inequalities, we obtain (Sp) with γp ≤ (1 + αpβp). This
estimate is better than that in [34], which is γp ≤ (αpβp)3. �

REMARK. The arguments in [33] also work for martingale differences
considered here. Note that Pisier’s proof is written with respect to a tracial state,
but replacing τ by tr, the same combinatorial arguments carry through, because
we still have ‖x‖2n

2n = tr((x∗x)n) and the 2n-orthogonality tr(df (1) · · ·df (2n))
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is satisfied for injective functions. Hence, we deduce that the constant βp

in (BGp) is of order O(p) for even integers p. However, using the recent
results of Radrianantoanina [35] in combination with [15], it follows that γp ≤
C max{p,p′}. We refer to the forthcoming paper [22] for the fact that these
constants are optimal. The same approach also provides good (or optimal)
constants βp ≤ Cp, αp ≤ Cp for p ≥ 2.

We end this section by the noncommutative Khintchine inequalities.

THEOREM 3.4. There are absolute constants β and α with the following
property. Let (rn)n≥0 be the sequence of Rademacher functions on [0,1]. Let
1 ≤ p < ∞. Let a = (an)n≥0 be a finite sequence in Lp(M).

(i) If 2 ≤ p < ∞,

‖a‖Lp(M;�2
c )∩Lp(M;�2

r )
≤
(∫ 1

0

∥∥∥∥∥∑
n≥0

rn(t)an

∥∥∥∥∥
2

p

dt

)1/2

≤ β
√

p‖a‖Lp(M;�2
c )∩Lp(M;�2

r )
.

(ii) If 1 ≤ p < 2,

α‖a‖Lp(M;�2
c )+Lp(M;�2

r )
≤
(∫ 1

0

∥∥∥∥∥∑
n≥0

rn(t)an

∥∥∥∥∥
2

p

dt

)1/2

≤ ‖a‖Lp(M;�2
c )+Lp(M;�2

r )
.

In the tracial case, this theorem is contained in [25, 26, 32]. The nontracial
case can be reduced to the tracial one in virtue of [15] (as mentioned above) or
using a direct proof based on [26]. Note that Theorem 3.1 implies Theorem 3.4 for
1 < p < ∞ but with a worse constant. Also note that the first inequality in (i) and
the second in (ii) above are easy to check (cf. [26]). Finally, we should point out
that the theorem in the Appendix of [26] yields the first inequality in (ii) for p = 1.
We omit all details. The subsequent paper [21] contains more related inequalities.

4. A description of the dual of Hp , 1 ≤ p < 2. In the Appendix of [34],
the classical Fefferman duality between H 1 and BMO was extended to the
noncommutative martingale setting (with a trace). This result was further extended
to the nontracial case in [19]. In fact, the duality result proved in [19] describes
more generally the dual of Hp for every 1 ≤ p < 2. Using this duality, we can
show that the second inequality of (BGp) holds for p = 1 (as the tracial case
in [34]), and moreover, the constant βp there remains bounded for 1 < p < 2.
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We begin with a notation introduced in [19]. Let 1 ≤ p ≤ ∞, and let (an)n≥0 be
a finite sequence of positive elements in Lp(M). Set (with p′ the index conjugate
to p)∥∥∥∥ sup

n
an

∥∥∥∥
p

= sup

{∑
n≥0

tr(anbn) :bn ∈ Lp′
(M), bn ≥ 0,

∥∥∥∥∥∑
n≥0

bn

∥∥∥∥∥
p′

≤ 1

}
.

We should call the reader’s attention to the fact that supn an does not make any
sense in the noncommutative setting, and the above ‖ supn an‖p is just a (useful
and suggestive) notation.

Now let 2 < q ≤ ∞. We define L
q
cMO(M) (mean oscillation in Lq in the

column sense) as the space of all martingale difference sequences (dk) in Lq such
that the sequence x = (xn)n≥0 defined by xn =∑n

k=1 dk satisfies

‖x‖2
L

q
c MO(M)

= sup
m≥0

∥∥∥∥ sup
0≤n≤m

En

(|xm − xn−1|2)∥∥∥∥
q/2

< ∞.

Note that

En

(|xm − xn−1|2)= En

(
m∑

k=n

|dk|2
)
.(4.1)

One can check that ‖ · ‖L
q
c MO(M) is a norm, which makes L

q
cMO(M) a Banach

space. Similarly, we define L
q
r MO(M) as the space of all x such that x∗ ∈

L
q
cMO(M), equipped with the norm

‖x‖L
q
r MO(M) = ‖x∗‖L

q
c MO(M).

Finally, we set

LqMO(M) = Lq
cMO(M) ∩ Lq

r MO(M)

equipped with the intersection norm

‖x‖L
q
c MO(M) = max

{‖x‖L
q
c MO(M),‖x‖L

q
r MO(M)

}
.

If q = ∞, all these spaces L∞MO(M) = BMO(M), L∞
c MO(M) =

BMOc(M), L∞
r MO(M) = BMOr (M) coincide with those introduced in [34]

(at least in the tracial case).
Any y ∈ L

q
cMO(M) defines a linear functional ξy on the family of all

finite Lp-martingales as follows (p = q ′ being conjugate to q). Let x be a finite
Lp-martingale, say xn = xm for all n ≥ m. Then ξy(x) = tr(y∗

mxm). Clearly,
ξy(x) = tr(y∗

nxn) for all n ≥ m. Thus we can write

ξy(x) = lim
n→∞ tr(y∗

nxn).(4.2)

The following result shows that ξy extends to a continuous functional on H
p
c (M),

and conversely, any continuous functional on H
p
c (M) is given by some ξy . One
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part of this result is a special application of [19] Proposition 4.2 to martingale
difference sequences. It is the noncommutative analogue of a classical result in
commutative martingale theory (cf. [12]).

THEOREM 4.1. Let 1 ≤ p < 2 and q = p′ the index conjugate to p.

(i) Let y ∈ L
q
cMO(M). Then ξy defined by (4.2) for all finite Lp-martingales

x extends to a continuous linear functional on H
p
c (M).

(ii) Conversely, any ξ ∈ (H
p
c (M))∗ is given as above by some y ∈ L

q
cMO(M).

Moreover,

λ−1
p ‖y‖L

q
c MO(M) ≤ ‖ξy‖(H

p
c (M))∗ ≤ √

2‖y‖L
q
c MO(M),(4.3)

where λp > 0 is a constant depending only on p and λp = O(1) as p → 1.
Consequently, (H

p
c (M))∗ = L

q
cMO(M) with equivalent norms.

(iii) The same duality holds between H
p
r (M), Hp(M) and L

q
r MO(M),

LqMO(M), respectively,(
Hp

r (M)
)∗ = Lq

r MO(M) and
(
Hp(M)

)∗ = LqMO(M).

PROOF. (iii) follows from (i) and (ii) by standard arguments. (i) and the second
inequality of (4.3) were proved in [19]. Thus it remains to show (ii) and the first
inequality in (4.3). Suppose ξ ∈ (H

p
c (M))∗ with norm ≤ 1. Then by the Hahn-

Banach theorem, ξ extends to a continuous functional on Lp(M, �2
c) of the same

norm. Thus by Corollary 1.3, there exists a sequence (bn) ∈ Lq(M, �2
c) such that∥∥∥∥∥∑

n≥0

|bn|2
∥∥∥∥∥
q/2

≤ 1 and ξ(x) = ∑
n≥0

b∗
ndxn ∀x ∈ Hp

c (M).

Let y be the Lq -martingale given by dy0 = E0(b0) and dyn = En(bn) − En−1(bn)

for all n ≥ 1. Then for any finite Lp-martingale x, ξ(x) = ξy(x). Thus it remains
to show y ∈ L

q
cMO and to find a bound for ‖y‖L

q
c MO(M). This is done as follows.

If k − 1 ≥ n ≥ 0, by (2.5) and Proposition 2.3(ii)

En[Ekb
∗
kEk−1bk] = En[Ek−1(Ekb

∗
kEk−1bk)] = En[Ek−1b

∗
kEk−1bk];

similarly,

En[Ek−1b
∗
kEkbk] = En[Ek−1b

∗
kEk−1bk].

Here and in the sequel we will skip brackets in the use of En whenever this is
possible. It then follows that if k − 1 ≥ n ≥ 0,

En

[|dyk|2]= En[(Ekbk − Ek−1bk)
∗(Ekbk − Ek−1bk)]

= En[Ekb
∗
kEkbk − Ek−1b

∗
kEk−1bk]

≤ En[Ekb
∗
kEkbk] ≤ En|bk|2,

(4.4)
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where for the last inequality we used Proposition 2.3(iii). Now let s be the
conjugate index of q/2, and let (an) be a finite sequence of positive elements
in Ls(M) such that ∥∥∥∥∥∑

n≥0

an

∥∥∥∥∥
s

≤ 1.

Fix a positive integer m. By (4.1), (4.4), (2.4) and Proposition 2.3(ii),∑
0≤n≤m

tr
[
En|ym − yn−1|2an

]

= ∑
0≤n≤m

tr

[(
En

∑
n≤k≤m

|dyk|2
)
an

]

≤ ∑
0≤n≤m

tr
[
(En|dyn|2)an

]+ ∑
0≤n≤m

tr

[(
En

∑
n+1≤k≤m

|bk|2
)
an

]

= ∑
0≤n≤m

tr
[|dyn|2Enan

]+ ∑
0≤n≤m

tr

[ ∑
n+1≤k≤m

|bk|2Enan

]

= I + II.

We majorize I and II separately. In order to estimate I we use the elementary
inequality (a − b)∗(a − b) ≤ 2(a∗a + b∗b) and En(b

∗
n)En(bn) ≤ En(b

∗
nbn) and

deduce from Proposition 2.3 and (2.4)

I ≤ 2
∑

0≤n≤m

tr
[|Enbn|2Enan

]+ 2
∑

1≤n≤m

tr
[|En−1bn−1|2Enan

]
≤ 2

∑
0≤n≤m

tr
[|bn|2Enan

]+ 2
∑

1≤n≤m

tr
[|bn−1|2En−1an

]

≤ 2 tr

[( ∑
0≤n≤m

|bn|2
)( ∑

0≤n≤m

Enan

)]

+ 2 tr

[( ∑
1≤n≤m

|bn|2
)( ∑

0≤n≤m

En−1an

)]

≤ 2

∥∥∥∥∥ ∑
0≤n≤m

Enan

∥∥∥∥∥
s

+ 2

∥∥∥∥∥ ∑
1≤n≤m

En−1an

∥∥∥∥∥
s

.
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As for the second term II, we have

II = tr

[ ∑
1≤k≤m

|bk|2
∑

k−1≤n≤m

Enan

]

≤ tr

[( ∑
1≤k≤m

|bk|2
)( ∑

0≤n≤m

Enan

)]

≤
∥∥∥∥∥ ∑

0≤n≤m

Enan

∥∥∥∥∥
s

.

However, by the dual form of the noncommutative Doob inequality proved in [19],

max

{∥∥∥∥∥ ∑
0≤n≤m

Enan

∥∥∥∥∥
s

,

∥∥∥∥∥ ∑
0≤n≤m

En−1an

∥∥∥∥∥
s

}
≤ λs

∥∥∥∥∥ ∑
0≤n≤m

an

∥∥∥∥∥
s

,

where the constant λs remains bounded when s is away from ∞, that is, when p

is away from 2 [see the end of Section 7 for a simple proof of this inequality in the
(easier) range 1 ≤ s ≤ 2]. Combining the preceding inequalities, we obtain∑

0≤n≤m

tr
[
En|ym − yn−1|2an

]≤ 5λs

whence the desired result on y. Thus we have finished the proof of the theorem.
�

Combining Theorem 4.1 with Corollary 3.2, we see that LqMO(M) = Lq(M)

with equivalent norms for any 2 < q < ∞. In particular,

‖a‖LqMO(M) ≤ δq‖a‖q ∀a ∈ Lq(M).(4.5)

The constant δq obtained in this way goes to ∞ as q → ∞. However, if a = (xn)

is an L∞(M)-martingale and if 0 ≤ m ≤ n, then the triangle inequality from [19],
Proposition 18, implies

‖En|xm − xn−1|2‖1/2 ≤ ‖En|xm|2‖1/2 + ‖En|xn−1|2‖1/2 ≤ 2‖a‖∞.

Therefore,

‖a‖BMO(M) ≤ 2‖a‖∞, a ∈ L∞(M).(4.6)

Thus we are tempted to interpolate (4.5) for some fixed q and (4.6) in the hope
of getting a constant δq in (4.5) which remains bounded as q → ∞. Fortunately,
this is possible, as shown by the following result, which is the noncommutative
analogue of the classical Fefferman–Stein inequality on the sharp function.

PROPOSITION 4.2. Let 2 < q ≤ ∞. Then there is a constant δq > 0 with
q = O(1) as q → ∞ such that (4.5) holds.
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PROOF. It suffices to consider large q , say 4 ≤ q ≤ ∞. Using a highly
nontrivial interpolation argument as in [29] (see also [20] for the nontracial case),
we deduce from (4.5) for q = 4 and (4.6) that (4.5) holds with

δq ≤ 2δ
4/q
4 .

For more details, see [29] and [20]. �

COROLLARY 4.3. Let 1 ≤ p ≤ 2. Then Hp(M) ⊂ Lp(M) and there is an
absolute constant β > 0 such that

‖x‖p ≤ β‖x‖Hp(M), x ∈ Hp.

Consequently, the constant βp in (BGp) remains bounded for 1 < p ≤ 2.

PROOF. This follows immediately from Theorem 4.1 and Proposition 4.2 for
p close to 1. On the other hand, for p close to 2, this is nothing but (BGp). �

REMARK. In the case p = 1, Corollary 4.3 is the corollary in the Appendix
of [34] (for the tracial case). We profit of this opportunity to point out a gap in the
corollary in the appendix of [34]. It is stated there that

‖x‖1 ≤ √
2‖dx‖L1(M;�2

c )+L1(M;�2
r )

∀x ∈ H1(M).

However, the proof there does not give this. In fact, we do not know whether this
inequality holds (even with some constant instead of

√
2 ).

We close this section with a problem concerning the constant in the inequality
reverse to (4.5). As already observed above, for 2 < q < ∞ there is a constant
λ′

q > 0 such that

‖a‖q ≤ λ′
q‖a‖LqMO(M), a ∈ LqMO(M).(4.7)

In the commutative case the optimal order is O(q). By duality αq ′ ≤ Cq2 implies
λ′

q ≤ Cq2; see [22] for more details.

PROBLEM. What is the optimal order of λ′
q in (4.7) as q → ∞?

5. Noncommutative Burkholder inequalities: p ≥ 2. This section and the
next one are devoted to the noncommutative analogue of the classical Burkholder
inequalities on conditioned square functions. In this section, we focus on the
range 2 ≤ p < ∞ and finite martingales where this inequality is exactly the
noncommutative analogue of the classical Burkholder inequality (cf. [4, 6, 12]).
In the next section we will consider the case 1 < p < 2 (and general martingales).
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We begin by introducing the conditioned square functions. Let 2 ≤ p < ∞ and
x = (xn)n≥0 a finite Lp-martingale. Set

sc(x) =
(∑

n≥0

En−1|dxn|2
)1/2

and sr(x) =
(∑

n≥0

En−1|dx∗
n|2
)1/2

.

Here and till the end of Section 6 we set E−1 = E0. These are the conditioned
square functions. For notational convenience, we also set

sd(x) =
(∑

n≥0

|dxn|p
)1/p

.

The result of this section is the following noncommutative Burkholder inequal-
ity for 2 ≤ p < ∞.

THEOREM 5.1. Let 2 ≤ p < ∞. Then for any finite Lp-martingale x we have

δ−1
p sp(x) ≤ ‖x‖p ≤ ηpsp(x),(Bp)

where sp(x) = max{‖sd(x)‖p,‖sc(x)‖p,‖sr (x)‖p}.

For the proof we will need the following lemma.

LEMMA 5.2. Let 1 < q < ∞, and let a = (an)n≥0 ⊂ L4q(M) be a finite
sequence. Then∥∥∥∥∥∑

n≥0

En−1|an|4
∥∥∥∥∥
q

≤
∥∥∥∥∥∑

n≥0

En−1|an|2
∥∥∥∥∥

2(q−1)/(2q−1)

2q

(∑
n≥0

‖an‖4q
4q

)1/(2q−1)

.

(5.1)

PROOF. We will show that for θ = 1
2q−1 we have∥∥∥∥∥∑

n≥0

En−1[cnbnan]
∥∥∥∥∥
q

≤
(∑

n

‖bn‖2q
2q

)1/2q((∑
n

‖an‖4q
4q

)(∑
n

‖cn‖4q
4q

))θ/4q

×
(∥∥∥∥∥∑

n≥0

En−1|c∗
n|2
∥∥∥∥∥

2q

∥∥∥∥∥∑
n≥0

En−1|an|2
∥∥∥∥∥

2q

)(1−θ)/2

.

(5.2)

Clearly, this provides the assertion by setting cn = a∗
n and bn = ana

∗
n . For the
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proof of (5.2), we can assume by approximation that an = D1/4qAn, bn =
D1/4qBnD

1/4q and cn = CnD
1/4q such that An and Cn are analytic elements. By

homogeneity, we also suppose
∑

n ‖bn‖2q
2q ≤ 1. We define 1/r = 1 − 1/2q . Using

Kosaki’s results [24], we may assume that there is an analytic function B defined
on the strip S = {z ∈ C : 0 ≤ Rez ≤ 1} with values N such that Bn = Bn(θ) and

sup
t

max

{
sup
n

‖Bn(it)‖∞,

(∑
n

∥∥D1/2rBn(1 + it)D1/2r
∥∥r

r

)1/r}
≤ 1.

Let us consider y = D1/2q ′
YD1/2q ′

and assume again by Kosaki’s result that there
is an analytic function Y with values in M such that Y (θ) = Y and

sup
t

max
{∥∥D1/2rY (it)D1/2r

∥∥
r ,‖Y (1 + it)‖∞

}≤ 1.

Then, we may consider the analytic function

F(z) =∑
n

tr
(
En−1

[
σz/2ir (Cn)D

1/4qBn(z)D
1/4qσ−z/2ir (An)

]
D1/2rY (z)D1/2r

)
.

We deduce from the conditioned Hölder inequality in [19] that

|F(it)| ≤
∥∥∥∥∥∑

n≥0

En−1
[
σt/2r (Cn)D

1/4qBn(it)D
1/4qσ−t/2r(An)

]∥∥∥∥∥
2q

× ∥∥D1/2rY (it)D1/2r
∥∥
r

≤
∥∥∥∥∥∑

n≥0

En−1
[
σt/2r (Cn)D

1/4qBn(it)Bn(it)∗D1/4qσt/2r(C
∗
n)
]∥∥∥∥∥

2q

×
∥∥∥∥∥∑

n≥0

En−1
[
σ−t/2r (A

∗
n)D

1/4qD1/4qσ−t/2r (An)
]∥∥∥∥∥

2q

≤
∥∥∥∥∥σt/2r

∑
n≥0

En−1[cnc
∗
n]
∥∥∥∥∥

1/2

2q

∥∥∥∥∥σ−t/2r

∑
n≥0

En−1[a∗
nan]

∥∥∥∥∥
1/2

2q

.

Since σt is an isometry on L2q , we obtained the correct estimate for z = it . For
z = 1 + it , we first observe

F(1 + it) =∑
n

tr
(
En−1

[
σ−i/2r

(
σt/2r (Cn)

)
D1/4qBn(1 + it)

× D1/4qσi/2r

(
σ−t/2r(An)

)]
D1/2rY (1 + it)D1/2r

)
=∑

n

tr
(
En−1

[
σt/2r(Cn)D

1/4q+1/2rBn(1 + it)

× D1/2r+1/4q(σ−t/2r (An)
)]

Y (1 + it)
)
.
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Hence, by Hölder’s inequality we deduce

|F(1 + it)| ≤∑
n

∥∥En−1
[
σt/2r(Cn)D

1/4q+1/2rBn(1 + it)D1/2r+1/4qσ−t/2r (An)
]∥∥

1

× ‖Y (1 + it)‖∞

≤∑
n

∥∥σt/2r(Cn)D
1/4q+1/2rBn(1 + it)D1/2r+1/4qσ−t/2r(An)

∥∥
1

≤
(∑

n

∥∥σt/2r(Cn)D
1/4q

∥∥4q

4q

)1/4q(∑
n

∥∥D1/2rB(1 + it)D1/2r
∥∥r

r

)1/r

×
(∑

n

∥∥D1/4qσ−t/2r (An)
∥∥4q

4q

)1/4q

≤
(∑

n

‖cn‖4q
4q

)1/4q(∑
n

‖an‖4q
4q

)1/4q

.

Here we used again the isometric property of σt . With the three line lemma,∣∣∣∣∣∑
n≥0

tr(En−1[cnbnan]y)

∣∣∣∣∣
= |F(θ)|

≤
(

sup
t

|F(it)|
)1−θ(

sup
t

|F(1 + it)|
)θ

.

Therefore, we deduce (5.2) and thus the assertion. �

PROOF OF THEOREM 5.1. By Lemma 1.1, we only need to consider finite
martingales in MaD

1/p. First we prove the second inequality of (Bp). In fact, we
will show the following apparently stronger one: Let 1 ≤ p < ∞. Then for any
finite martingale x = (xn)n≥0 in MaD

1/p,

‖x‖p ≤ ηp max
{‖sd(x)‖p,‖sc(x)‖p,‖sr(x)‖p

}
.(B′

p)

Here sd(x), sc(x) and sr(x) are defined in the same way as in the beginning of this
section. Note that since dxn ∈ MaD

1/p, En−1(|dxn|2) and En−1(|dx∗
n|2) are well

defined. Note that in the case 1 ≤ p ≤ 2, dualizing (3.1) yields

‖x‖p ≤ 22/p−1‖sd(x)‖p(5.3)

for any finite Lp-martingale x. Therefore, we get (B′
p) for 1 ≤ p ≤ 2. To prove

(B′
p) for 2 < p < ∞ we will proceed to prove the implication “(B′

p) → (B′′
2p).”
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This will show (B′
p) for all 2 < p < ∞ by a standard iteration argument, starting

from the case 1 ≤ p ≤ 2 established in (5.3).
Assume now (B′

p) for some 1 ≤ p < ∞. Let x = (xn)n≥0 be a finite martingale
in MaD

1/2p. By homogeneity, we assume s2p(x) ≤ 1. By Theorem 3.1,

‖x‖2p ≤ β2p max
{‖Sc(x)‖2p,‖Sr(x)‖2p

}
.(5.4)

We first consider ‖Sc(x)‖2p . We have

‖Sc(x)‖2
2p = ∥∥[Sc(x)]2∥∥

p =
∥∥∥∥∥∑

n≥0

|dxn|2
∥∥∥∥∥
p

.

Now, write

|dxn|2 = En−1|dxn|2 + dyn, n ≥ 0,

where dyn = |dxn|2 − En−1|dxn|2, n ≥ 0. Then

‖Sc(x)‖2
2p ≤

∥∥∥∥∥∑
n≥0

En−1|dxn|2
∥∥∥∥∥
p

+ ‖y‖p

= ‖sc(x)‖2
2p + ‖y‖p ≤ 1 + ‖y‖p.

(5.5)

Note that y is an Lp-martingale. If 1 ≤ p ≤ 2, applying (5.3) to y yields

‖y‖p ≤ 22/p−1‖sd(y)‖p = 22/p−1 · 2‖sd(x)‖2
2p ≤ 22/p.

Therefore, in this case,

‖Sc(x)‖2
2p ≤ 1 + 22/p.(5.6)

Then suppose 2 < p < ∞. This time, we apply (B′
p) to y to infer

‖y‖p ≤ ηp max{‖sd(y)‖p,‖sc(y)‖p}.(5.7)

Again,

‖sd(y)‖p ≤ 2‖sd(x)‖2
2p ≤ 2.(5.8)

To majorize ‖sc(y)‖p, we observe that, by Proposition 2.3(ii),

En−1|dyn|2 = En−1|dxn|4 − (En−1|dxn|2)2 ≤ En−1|dxn|4.
Thus

‖sc(y)‖p ≤
∥∥∥∥∥
(∑

n≥0

En−1|dxn|4
)1/2∥∥∥∥∥

p

.

By Lemma 5.1 (applied to q = p/2), we have

‖sc(y)‖p ≤ ‖sd(x)‖2p/(p−1)
2p ‖sc(x)‖2(p−2)/(p−1)

2p ≤ 1.
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Combining this with (5.5) and (5.7)–(5.8), we get, in the case 2 < p < ∞,

‖Sc(x)‖2
2p ≤ 1 + 2ηp.(5.9)

Therefore, (5.6) and (5.9) together imply that, for any 1 ≤ p < ∞,

‖Sc(x)‖2
2p ≤ 1 + max(22/p,2ηp).

Passing to adjoints, we see that the same inequality holds for Sr(x) instead of
Sc(x). Hence, by (5.4) we finally obtain

‖x‖2p ≤ β2p

[
1 + max(22/p,2ηp)

]1/2
.

This yields (B′
2p) with η2p = β2p[1 + max(22/p,2ηp)]1/2. Thus the second

inequality of (Bp) is proved.
Next we pass to the first inequality of (Bp). In fact, this inequality immediately

follows from (BGp) and the dual form of the noncommutative Doob inequality
in [19]. However, we prefer to give a direct proof in the same spirit as the previous
one. Let x = (xn)n≥0 be a finite martingale in MaD

1/p such that ‖x‖p ≤ 1.

By (3.1),

‖sd(x)‖p ≤ 21−2/p‖x‖p ≤ 21−2/p.

Thus, it remains to majorize ‖sc(x)‖p and ‖sr (x)‖p . Clearly, it suffices to do this
for the former. We have

‖sc(x)‖2
p ≤ ∥∥[Sc(x)]2∥∥

p/2 + ‖y‖p/2 = ‖Sc(x)‖2
p + ‖y‖p/2,(5.10)

where y is the finite Lp/2-martingale defined by

dyn = |dxn|2 − En−1|dxn|2, n ≥ 0.

By Theorem 3.1,

‖Sc(x)‖p ≤ αp‖x‖p ≤ αp.(5.11)

If 2 ≤ p ≤ 4, by (5.3) and (3.1),

‖y‖p/2 ≤ 24/p−1‖sd(y)‖p/2 ≤ 24/p‖sd(x)‖2
p ≤ 4.

Thus, by (5.10) and (5.11), for 2 ≤ p ≤ 4, we obtain

‖Sc(x)‖2
p ≤ α2

p + 4.(5.12)

Now assume 4 < p < ∞. Then, applying the second inequality of (Bp) (already
proved above) to y, we get

‖y‖p/2 ≤ ηp/2 max
{‖sd(y)‖p/2,‖sc(y)‖p/2

}
.(5.13)

Clearly, by (3.1),

‖sd(y)‖p/2 ≤ 2‖sd(x)‖2
p ≤ 23−4/p.(5.14)
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Concerning ‖sc(y)‖p/2, we deduce from Lemma 5.1 (applied to q = p/4)
and (3.1),

‖sc(y)‖p/2 ≤
∥∥∥∥∥
(∑

n≥0

En−1|dxn|4
)1/2∥∥∥∥∥

p/2

≤ ‖sd(x)‖p/(p−2)
p ‖sc(x)‖(p−4)/(p−2)

p

≤ ‖sc(x)‖(p−4)/(p−2)
p .

Combining this with (5.10)–(5.11) and (5.13)–(5.14), we obtain, for 4 < p < ∞,

‖sc(x)‖2
p ≤ α2

p + ηp/2 max
(
23−4/p,‖sc(x)‖(p−4)/(p−2)

p

)
.

Noting that p−4
p−2 < 1, we then deduce

‖x‖h
p
c (M) ≤ δ′

p,

where δ′
p is a constant depending only on αp and ηp/2. This, together with (5.12),

yields that for all 2 ≤ p < ∞,

‖sc(x)‖p ≤ δp.

Therefore, we have proved the first inequality of (Bp), and thus Theorem 5.1. �

REMARK. Using the estimate βp ≤ Cp for p ≥ 2, we deduce from η2p ≤
β2p

√
1 + 2ηp that ηp ≤ C′p2 for some constant C′ = 3

4C2. We do not know
whether this order is optimal. For the lower estimate, we can use the dual version
of Doob’s inequality with the constant Cp2 (see [22]) and deduce for p ≥ 2 that

1

C′p2 ‖x‖p ≤ sp(x) ≤ C′p2‖x‖p

for some universal constant C′. The estimate can be improved for sums of
independent random variables of mean 0 (see [21] for details), then the Khintchine
inequality applies and hence∥∥∥∥∥∑

k

xk

∥∥∥∥∥
p

≤ 2E

∥∥∥∥∥∑
k

rkxk

∥∥∥∥∥
p

≤ C
√

p max{‖Sc(x)‖,‖Sr(x)‖}.

Using this improved estimate and denoting by ηRos
p the noncommutative Rosenthal

constant for the upper estimate, we obtain ηRos
2p ≤ C

√
2p [1 + 2ηRos

p ]1/2 and hence

1

C′p
sp(x) ≤

∥∥∥∥∥∑
k

xk

∥∥∥∥∥
p

≤ C′psp(x)

for some universal constant C′ > 0 and all p ≥ 2. In view of the optimal order
p/ log(p) in the commutative case, this estimate seems not too bad.
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6. Noncommutative Burkholder inequalities: 1 < p < 2. We continue our
study of the noncommutative Burkholder inequalities. The aim of this section is to
extend (Bp) in the last section to the case p < 2, and to all martingales (not only
the finite ones). To this end we need to introduce some notation.

Let 1 ≤ p < ∞. Let a = (an)n≥0 be a finite sequence in MaD
1/p. We define

(recalling E−1 = E0)

‖a‖L
p
cond(M;�2

c )
=
∥∥∥∥∥
(∑

n≥0

En−1(a
∗
nan)

)1/2∥∥∥∥∥
p

.

It is shown in [19] that ‖ · ‖L
p
cond(M;�2

c )
is a norm on the vector space of all finite

sequences in MaD
1/p. Then let L

p
cond(M; �2

c) be the corresponding completion.
Note that L

p
cond(M; �2

c) is the conditioned version of Lp(M; �2
c). Similarly, we

define the conditioned row space L
p
cond(M; �2

r ). As the column and row spaces,
L

p
cond(M; �2

c) and L
p
cond(M; �2

r ) can be realized as spaces of matrices with operator
entries. In fact, L

p
cond(M; �2

c) [resp. L
p
cond(M; �2

r )] can be viewed as a closed
subspace of the column (resp. row) subspace of Lp(M ⊗ B(�2(N2))). We refer
to [19] for more details on this.

Let x = (xn)n≥0 be a finite martingale in MaD
1/p. We recall

sc(x) =
(∑

n≥0

En−1(|dxn|2)
)1/2

and sr(x) =
(∑

n≥0

En−1(|dx∗
n|2)

)1/2

.

Then

‖sc(x)‖p = ‖dx‖L
p
cond(M;�2

c )
and ‖sr (x)‖p = ‖dx‖L

p
cond(M;�2

r )
.

Let h
p
c (M) [resp. hp

r (M)] denote the closure in L
p
cond(M; �2

c) [resp. Lp
cond(M; �2

r )]
of all finite martingales in MaD

1/p. (As usual, we have identified a martingale
with its difference sequence.) Then h

p
c (M) and h

p
r (M) are Banach spaces. We

also need �p(Lp(M)), the space of all sequences a = (an)n≥0 in Lp(M) such that

‖a‖�p(Lp(M)) =
(∑

n≥0

‖an‖p
p

)1/p

< ∞.

Recall

sd(x) =
(∑

n≥0

|dxn|p
)1/p

.

Thus

‖sd(x)‖p = ‖dx‖�p(Lp(M)).
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Let h
p
d (M) be the subspace of �p(Lp(M)) consisting of martingale differences.

In virtue of the realization of L
p
cond(M; �2

c) and L
p
cond(M; �2

r ) as subspaces of
Lp(M ⊗ B(�2(N2))), mentioned above, all the previous spaces h

p
c (M), h

p
r (M)

and h
p
d (M) are compatible in the sense that they are all embedable into a large

Hausdorff topological vector space. Now we define the conditioned version hp(M)

of the Hardy spaces Hp(M) introduced in Section 3. For 2 ≤ p < ∞, we define

hp(M) = h
p
d (M) ∩ hp

c (M) ∩ hp
r (M)

equipped with

‖x‖hp(M) = max
{‖x‖h

p
d (M),‖x‖h

p
c (M),‖x‖h

p
r (M)

}
.

Clearly, all finite martingales in MaD
1/p are in h

p
d (M) for k ∈ {d, c, r}, and thus

‖ · ‖hp(M) defines a norm on the vector space of all such martingales. We will see
in Lemma 6.3 below that hp(M) is exactly the corresponding completion.

On the other hand, for 1 ≤ p < 2, we define

hp(M) = h
p
d (M) + hp

c (M) + hp
r (M)

equipped with

‖x‖hp(M) = inf
{‖xd‖h

p
d (M) + ‖xc‖h

p
c (M) + ‖xr‖h

p
r (M)

}
,

where the infimum runs over all triples (xd, xc, xr) such that dxn = dxd
n + dxc

n +
dxr

n holds for all n ∈ N. Then hp(M) is a Banach space.

REMARK. For 2 ≤ p < ∞ all elements in hp(M) are Lp-martingales, since
hp(M) ⊂ h

p
d (M).

Now we are ready to state Theorem 5.1 in the general case.

THEOREM 6.1. Let 1 < p < ∞. Then an Lp-martingale x is bounded in
Lp(M) iff x belongs to hp(M); moreover, if this is the case, we have

δ−1
p ‖x‖hp(M) ≤ ‖x‖p ≤ ηp‖x‖hp(M).(Bp)

We can reformulate Theorem 6.1 simply as follows.

COROLLARY 6.2. For any 1 < p < ∞ we have Lp(M) = hp(M) with
equivalent norms.

In the case p ≥ 2, Theorem 6.1 is just Theorem 5.1, modulo a density result (i.e.,
Lemma 6.3 below). We will reduce the case p < 2 to the case p > 2 by duality.

LEMMA 6.3. Let 1 ≤ p < ∞. Then all finite martingales in MaD
1/p are

dense in hp(M).
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PROOF. This is evident if 1 ≤ p < 2, because all finite martingales in
Ma D1/p are dense in each of the three spaces h

p
d (M), h

p
c (M) and h

p
r (M). Now

assume 2 ≤ p < ∞. For any finite sequence a = (an)n≥0 in MaD
1/p define

Pn(a) = (a0, a1, . . . , an,0, . . .).

Then clearly,

‖Pn(a)‖L
p
cond(M;�2

c )
≤ ‖a‖L

p
cond(M;�2

c )
.

Thus, Pn extends to a contractive projection on L
p
cond(M; �2

c). Since finite
sequences in MaD

1/p are dense in L
p
cond(M; �2

c), we deduce that

lim
n→∞Pn(a) = a ∀a ∈ L

p
cond(M; �2

c).

A similar statement holds for L
p
cond(M; �2

r ) and �p(Lp(M)) as well. Therefore,
for any x ∈ hp(M),

lim
n→∞Pn(dx) = dx in �p

(
Lp(M)

)∩ L
p
cond(M; �2

c) ∩ L
p
cond(M; �2

r ).

Thus, we may assume that x is a finite martingale, say, xk = xn for all k ≥ n. Next
observe that if a = (a0, . . . , an,0, . . .) is a finite sequence in MaD

1/p,

‖a‖L
p
cond(M;�2

c )
=
∥∥∥∥∥

n∑
k=0

Ek−1|ak|2
∥∥∥∥∥

1/2

p/2

≤
(

n∑
k=0

‖ak‖2
p

)1/2

≤ (n + 1)1/2−1/p‖a‖�p(Lp(M)).

Similarly,

‖a‖L
p
cond(M;�2

r )
≤ (n + 1)1/2−1/p‖a‖�p(Lp(M)).

It follows that

Pn

[
�p
(
Lp(M)

)∩ L
p
cond(M; �2

c) ∩ L
p
cond(M; �2

r )
]= �

p
n+1(L

p
(
M)

)
.

Then we easily see that the given finite martingale x above can be approximated
by finite martingales in MaD

1/p, in �
p
n+1(L

p(M)), and hence in hp(M) as well.
�

LEMMA 6.4. Let 1 ≤ p < ∞. For any finite sequence a = (an)n≥0 in MaD
1/p

define

R(a) = (Enan)n≥0 and R′(a) = (En−1an)n≥0.

Then R and R′ extend to contractive projections on L
p
cond(M; �2

c) and
L

p
cond(M; �2

r ). Consequently, h
p
c (M) and h

p
r (M) are respectively one-

complemented in L
p
cond(M; �2

c) and L
p
cond(M; �2

r ).
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PROOF. Let a = (an)n≥0 be a finite sequence in MaD
1/p. Then by Proposi-

tion 2.3(iii),

|Enan|2 = (En(an))
∗En(an) ≤ En|an|2

whence

En−1|Enan|2 ≤ En−1|an|2.
Therefore,

‖R(a)‖L
p
cond(M;�2

c )
≤ ‖a‖L

p
cond(M;�2

c )
.

Thus, R extends to a contractive projection on L
p
cond(M; �2

c). The same argument
applies to R′. �

We will also need the conditioned version of the duality for the column spaces
contained in Corollary 1.3. This is the following lemma, which is taken from [19]
and plays an essential role therein.

LEMMA 6.5. Let 1 < p < ∞. Then for any b ∈ L
p′
cond(M; �2

c) the functional

ξb :Lp
cond(M; �2

c) → C,

a �→ ∑
n≥0

tr(b∗
nan)

is continuous and

‖ξb‖ ≤ ‖b‖
L

p′
cond(M;�2

c )
≤ γp′‖ξb‖,

where γp′ is the constant in (Sp′ ). Conversely, any ξ ∈ (L
p
cond(M; �2

c))
∗ is given by

some b ∈ L
p′
cond(M; �2

c) in this way. Consequently,(
L

p
cond(M; �2

c)
)∗ = L

p′
cond(M; �2

c) with equivalent norms.

A similar statement holds for the conditioned row spaces, too.

Now the proof of Theorem 6.1 is easy.

PROOF OF THEOREM 6.1. By Lemma 6.3, it suffices to prove (Bp) for finite
martingales in MaD

1/p. Thus for p ≥ 2 Theorem 6.1 reduces to Theorem 5.1. In
the sequel, we suppose 1 < p < 2. Let us show the first inequality of (Bp). Let
x = (xn)n≥0 be a finite martingale in MaD

1/p with ‖x‖p = 1 and xn = xN for all
n ≥ N. Then x defines a linear functional on Lp′

(M) of norm 1, denoted by ω.

By the second inequality of (Bp′ ), ω can be also considered as a linear functional
on hp′

(M), and then ω is of norm ≤ ηp′ . By our definition of hp′
(M) (noting
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that 2 < p′ < ∞), hp′
(M) is the intersection of the three spaces h

p′
d (M), h

p′
c (M)

and h
p′
r (M). Recall that h

p′
d (M) [resp. h

p′
c (M), h

p′
r (M)] is a closed subspace

of �p′
(Lp′

(M)) [resp. L
p′
cond(M; �2

c), L
p′
cond(M; �2

r )]. Hence, by the Hahn–Banach
theorem, ω extends to a continuous linear functional ω̃ of norm ≤ ηp′ on

�p′(
Lp′

(M)
)⊕

∞
L

p′
cond(M; �2

c)
⊕
∞

L
p′
cond(M; �2

r ).

In particular, ω̃ has three components ω̃ = (ωd,ωc,ωr) . It is evident that[
�p′(

Lp′
(M)

)]∗ = �p
(
Lp(M)

)
isometrically.

Here we use the anti-duality given by

〈a, b〉 = tr

[∑
n≥0

b∗
nan

]
, a = (an) ∈ �p(Lp(M)

)
, b = (bn) ∈ �p′(

Lp′
(M)

)
.

On the other hand, by Lemma 6.5, we have isomorphically (with the same duality
as the previous one)[

L
p′
cond(M; �2

c)
]∗ = L

p
cond(M; �2

c),
[
L

p′
cond(M; �2

r )
]∗ = L

p
cond(M; �2

r ).

Thus we deduce

ωd ∈ �p
(
Lp(M)

)
, ωc ∈ L

p
cond(M; �2

c), ωr ∈ L
p
cond(M; �2

r )

satisfying

‖ωd‖ + ‖ωc‖ + ‖ωr‖ ≤ ηp′γp,

where γp is the constant in (Sp) (see Lemma 6.5). Now let y = (yn)n≥0 be a finite
martingale in MaD

1/p′
. Then

tr(x∗
NyN) = tr

[∑
n≥0

(dxn)
∗dyn

]

= ω(dy) = 〈dy,ωd〉 + 〈dy,ωc〉 + 〈dy,ωr〉.
Using the projections R and R′ in Lemma 6.4, we have

〈dy,ωk〉 = 〈(R − R′)dy,ωk〉 = 〈dy, (R − R′)ωk〉, k ∈ {d, c, r}.
Set

dxk = (R − R′)ωk, k ∈ {d, c, r}.
Then

xk ∈ h
p
k (M) and ‖xk‖ ≤ 2‖ωk‖, k ∈ {d, c, r}.



984 M. JUNGE AND Q. XU

Thus

tr(x∗
NyN) = 〈dy, dxd + dxc + dxr〉

for all finite martingales y = (yn) in MaD
1/p′

. It then follows that x = xd +
xc +xr , and so x ∈ hp(M) and ‖x‖hp(M) ≤ 2ηp′γp . This shows the first inequality
of (Bp) (for 1 < p < 2).

The second inequality of (Bp) for 1 < p < 2 follows from (BGp) in Section 3
and Theorem 7.1 below. However, we can give a proof similar to the previous one.
Again, we use duality. Let x = (xn)n≥0 be a finite martingale in MaD

1/p, say,
xn = xN for all n ≥ N. Let

x = xd + xc + xr with xk ∈ h
p
k (M), k = d, c, r

be a decomposition of x. Let yN ∈ MND1/p′
with ‖yN‖p′ ≤ 1. Then yN defines a

finite martingale y = (dyn)n≥0 with yn = En(yN), n ≥ 0. We have

tr(y∗
NxN) = tr

∑
n≥0

(dyn)
∗dxn = 〈dx, dy〉

= 〈dxd, dy〉 + 〈dxc, dy〉 + 〈dxr, dy〉.
Therefore,

| tr(y∗
NxN)| ≤ (‖xd‖ + ‖xc‖ + ‖xr‖)‖y‖

hp′
(M)

≤ (‖xd‖ + ‖xc‖ + ‖xr‖)ηp′ ‖y‖p′ [by (Bp′)]
≤ ηp′(‖xd‖ + ‖xc‖ + ‖xr‖),

whence

‖x‖p ≤ ηp′‖x‖hp(M).

Hence we have proved the first inequality of (Bp) for 1 < p < 2, and so completed
the proof of Theorem 6.1. �

REMARK. Using Corollary 4.3 and Theorem 7.1, we observe that the constant
ηp in (Bp) remains bounded for 1 < p ≤ 2, and that the second inequality of (Bp)
holds for p = 1 as well. However, we do not know whether this can be extended
to p < 1.

7. A norm inequality on conditional expectations. One of the main results
in [19] is the following dual form of the noncommutative Doob inequality. Let
1 ≤ p < ∞. Then for every finite sequence (an) of positive elements in Lp(M),∥∥∥∥∥∑

n≥0

Enan

∥∥∥∥∥
p

≤ λp

∥∥∥∥∥∑
n≥0

an

∥∥∥∥∥
p

,(7.1)

where λp is a positive constant depending on p. In the case p < 1 we have the
following reverse inequality.
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THEOREM 7.1. Let 0 < p < 1. Then for all finite sequences of positive
elements in MaD

1/p, ∥∥∥∥∥∑
n≥0

an

∥∥∥∥∥
p

≤ 21/p

∥∥∥∥∥∑
n≥0

Enan

∥∥∥∥∥
p

.(7.2)

The proof will be based on the following lemmas. The first one is a variant
of [19], Lemma 4.1.

LEMMA 7.2. Let s, t be two real numbers such that s < t and 0 ≤ s ≤ 1 ≤
t ≤ 2. Let x, y be two positive operators such that xt−s , yt−s ∈ L1(M) and such
that the support of y is equal to 1. Then

tr
[
y−s/2(yt − xt )y−s/2]≤ 2 tr

[
y−(s+1−t)/2(y − x)y−(s+1−t)/2].(7.3)

PROOF. Let us first justify both operators in the brackets in (7.3) are in L1(M).
For this we recall that y ∈ L0(M�σ R) (see Section 1). In particular, y is a positive
closed densely defined operator on L2(R,H). In this case, the support of y is
equal to 1 iff y is invertible with y−1 being a closed densely defined operator on
L2(R,H), too. Moreover, y−1 is also affiliated with M�σ R. Now since xs ≤ ys ,
there is a contraction u ∈ M�σ R such that xs/2 = uys/2. Since xt−s and yt−s

are both in L1(M), u is in fact in M. By the invertibility of y, u = xs/2y−s/2.
Consequently,

y−s/2xty−s/2 = u∗xt−su ∈ L1(M).

This shows that the operator in the brackets on the left-hand side of (7.3) belongs
to L1(M). Similar arguments apply to the right-hand side of (7.3).

Using x2−t ≤ y2−t , we see that

v = x(2−t)/2y−(2−t)/2 ∈ L∞(M) and ‖v‖∞ ≤ 1.

Now set

a = x(t−s)/2u and b = vy(t−s)/2.

Then a, b ∈ L2(M). Using the traciality of tr, we have

tr(a∗b) = tr
[
a∗(vy(1−s)/2)y(t−1)/2]

= tr
[
y(t−1)/2a∗(vy(1−s)/2)

]
= tr

[
y−(s+1−t)/2xy−(s+1−t)/2].

Consequently, tr(a∗b) ≥ 0, so tr(a∗b) = tr(b∗a). On the other hand,

a∗a = y−s/2xty−s/2 and b∗b = y(t−s)/2v∗vy(t−s)/2 ≤ yt−s .
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Combining the preceding inequalities we deduce

2 tr
[
y−(s+1−t)/2xy−(s+1−t)/2]= tr(a∗b) + tr(b∗a)

≤ tr(a∗a) + tr(b∗b)

≤ tr(y−s/2xty−s/2) + tr(yt−s)

whence (7.3). �

LEMMA 7.3. Let 1 ≤ q < ∞. Let 0 ≤ a ≤ b such that the support of b is equal
to 1 and such that a1/q, b1/q ∈ L1(M). Then

tr
[
b−(q−1)/2q(b − a)b−(q−1)/2q]≤ 2q tr[b1/q − a1/q].(7.4)

PROOF. Let n be a positive integer such that n ≤ q ≤ n+1. Then an/q ≤ bn/q .
Let

s = q − 1

n
, t = q

n
, x = an/q, y = bn/q.

Then s, t, x, y satisfy the conditions in Lemma 7.2. Thus we get

tr
[
b−(q−1)/2q(b − a)b−(q−1)/2q]= tr

[
y−s/2(yt − xt )y−s/2]

≤ 2 tr
[
y−(s+1−t)/2(y − x)y−(s+1−t)/2]

= 2 tr
[
b−(n−1)/2q(bn/q − an/q)b−(n−1)/2q].

Applying again Lemma 7.2 (n − 1) times, we deduce

tr
[
b−(q−1)/2q(b − a)b−(q−1)/2q

]≤ 2n tr[b1/q − a1/q]
whence (7.4). �

LEMMA 7.4. Let 0 < p ≤ 1, and let a, b be two positive elements in Lp(M).
Suppose that the support of b is equal to 1 and that a ≤ Mb for some positive real
number M . Then

tr(ap) ≤ [tr(bp)]1−p
[
tr(b−(1−p)/2ab−(1−p)/2)

]p
.(7.5)

PROOF. By approximation (with a + εb), we may and will assume that also a

has full support. Then

apitxb−pit ∈ M and b−pit xaipt ∈ M

because they are τ -measurable and θs invariant. Let z = s + it be a complex
number such that 0 ≤ s ≤ 1. Note that

b−s/2asb−s/2 ≤ Msb−s/2bsb−s/2 ≤ Ms
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and therefore

az/2b−z/2 = ait/2as/2b−s/2b−it/2 ∈ M

and ‖azb−z/2‖ ≤ Ms/2. Similarly, we have b−z/2az/2 ∈ M. Let fn = 1[ 1
n
,n](b) and

en = 1[ 1
n
,n](a) be the spectral projection of a, b, respectively. Then

gn(z) = ena
z/2b−z/2fn

is norm differentiable (since en loga and fn logb are bounded) and therefore

g(z) = az/2b−z/2bp/2 = lim
n

gn(z)b
p/2

is a norm differentiable function in L2,∞(M �σt R). Moreover, g(z) ∈ L2(M).
Since the embedding of L2(M) into L2,∞(M �σt R) is isometric (see [42]), we
deduce that g has values in L2(M) is continuous on the strip and analytic in the
interior. The same applies for h(z) = bp/2b−z/2az/2. Therefore, we may define the
analytic function

f (z) = tr
(
g2(z)h2(z)

)= tr(bp/2b−z/2azb−z/2bp/2).

For t ∈ R, we have

|f (it)| = ∣∣ tr(bp/2b−it/2ait/2ait/2b−it/2bp/2)
∣∣

≤ ‖bp/2‖2‖b−it/2ait/2‖∞‖ait/2b−it/2‖∞‖bp/2‖2

= tr(bp).

For z = 1 + it we deduce from Hölder’s inequality and [42], Lemma 20, that

|f (it)| = ∣∣ tr (bp/2(b−1/2−it/2a1/2+it/2)(a1/2+it/2b−1/2−it/2)bp/2)∣∣
≤ ∣∣ tr (bp/2(b−1/2−it/2a1/2+it/2)(b−1/2−it/2a1/2+it/2)∗bp/2)∣∣1/2

× ∣∣ tr (bp/2(a1/2+it/2b−1/2−it/2)∗(a1/2+it/2b−1/2−it/2)bp/2)∣∣1/2

= ∣∣ tr (bp/2b−it/2b−1/2a1/2a1/2b−1/2b+it/2bp/2)∣∣1/2

× ∣∣ tr (bp/2bit/2b−1/2a1/2a1/2b−1/2b−it/2bp/2)∣∣1/2

= ∣∣ tr (bp/2b−1/2a1/2a1/2b−1/2bp/2)∣∣.
Hence, by the three lines lemma,

|f (p)| ≤ [tr(bp)]1−p
[
tr(b−(1−p)/2ab−(1−p)/2)

]p
.

This is exactly (7.5). �

Now we are ready to prove Theorem 7.1.
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PROOF OF THEOREM 7.1. Let (an) ⊂ MaD
1/p be a finite positive sequence.

Then by Lemma 1.1, an = D1/2pbnD
1/2p for some bn ∈ Ma with bn ≥ 0; so

Enan = D1/2pEn(bn)D
1/2p.

Let ε > 0. Set

An =
n∑

k=0

ak, Bn = εD1/p +
n∑

k=0

Ekak

and A = A∞,B = B∞. Note that (An) and (Bn) are increasing sequences of
positive operators, and the Bn’s are invertible. Consequently, B

(1−p)/2
n B−(1−p)/2

is a contraction in L∞(M) for every n ≥ 0. Thus it follows that

tr
(
B−(1−p)/2anB

−(1−p)/2)≤ tr
(
B−(1−p)/2

n anB
−(1−p)/2
n

)
.

On the other hand, since Bn ≥ εD1/p, for the same reason we see that the operator
un = D(1−p)/2B

−(1−p)/2
n belongs to L∞(Mn) for every n. Hence, by (2.4) and

Proposition 2.3 [with r determined by 1/r = 1/(2p) − (1 − p)/2],

tr
(
B−(1−p)/2

n anB
−(1−p)/2
n

)= tr
(
u∗

nD
1/rbnD

1/run

)
= tr

(
u∗

nD
1/rEn(bn)D

1/run

)
= tr

(
B−(1−p)/2

n En(an)B
−(1−p)/2
n

)
.

Therefore, by Lemma 7.3 (applied with q = 1/p),

tr
(
B−(1−p)/2AB−(1−p)/2) ≤ ∑

n≥0

tr
(
B−(1−p)/2

n En(an)B
−(1−p)/2
n

)
= ∑

n≥0

tr
(
B−(1−p)/2

n (Bn − Bn−1)B
−(1−p)/2
n

)
≤ 21/p

∑
n≥0

tr(Bp
n − B

p
n−1)

= 21/p tr(Bp).

By the form of the an’s, we see that A and B satisfy the assumptions of Lemma 7.4.
Thus, applying this lemma, we conclude that tr(Ap) ≤ 2 tr(Bp); so letting ε → 0,
we finally get (7.2). �

In the same spirit as the proof of Theorem 7.1, we can give a very simple
proof of (7.1) in the case 1 ≤ p ≤ 2. The main point is the following elementary
inequality [similar to (7.3)]: Let 1 ≤ p ≤ 2, x, y ∈ Lp(M) with 0 ≤ x ≤ y. Then

tr(yp − xp) ≤ 2 tr
(
yp−1(y − x)

)
.(7.6)
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In fact, letting a = xp/2 and b = x(2−p)/2yp−1, we have

2 tr(yp−1x) = tr(a∗b) + tr(b∗a)

≤ tr(a∗a) + tr(b∗b) ≤ tr(xp) + tr(yp).

This yields (7.6). Then we can easily show (7.1) for 1 ≤ p ≤ 2 as in the previous
proof of Theorem 7.1. Again let (an) be a finite positive sequence in Lp(M).
Define An,Bn as in that proof (with ε = 0 now). Then by (7.5),

tr(Bp) = ∑
n≥0

tr(Bp
n − B

p
n−1) ≤ 2

∑
n≥0

tr
(
Bp−1

n (Bn − Bn−1)
)

≤ 2
∑
n≥0

tr(Bp−1
n an)

≤ 2
∑
n≥0

tr(Bp−1an)

= 2 tr(Bp−1A) ≤ 2‖B‖p−1
p ‖A‖p

whence ‖B‖p ≤ 2‖A‖p . This is (7.1) with λp ≤ 2 for 1 ≤ p ≤ 2.

8. The nonfaithful case. So far, we have only considered faithful conditional
expectation. However, in B(�2) nonfaithful conditional expectations which are
invariant under the modular group of a given state are very natural. In general,
the analysis of the Lp-spaces of hyperfinite von Neumann algebras, requires the
investigation of nonfaithful states. The purpose of this section is to give a brief
discussion on the modifications needed to derive the nonfaithful from the faithful
case.

Let M, ϕ and σt be as before in Sections 1 and 2. Now let N ⊂ M be a
w∗-closed ∗-subalgebra (not necessarily unital). Our basic assumption on N is
still the invariance of N under the modular automorphism group {σt}t∈R, namely,
we again suppose (2.1) for N . Let e ∈ N be the unit of N (e is then a projection
of M). Then N is a von Neumann subalgebra of eMe. By (2.1), σt (e) = e, t ∈ R.

Hence, e belongs to the centralizer of ϕ. Let ϕe = ϕ|eMe. Then ϕe is a normal
faithful state on eMe and

σ
ϕe
t (x) = eσt(x)e, t ∈ R, x ∈ eMe.

Therefore, (2.1) implies that N is also invariant under {σϕe
t }t∈R, and so we are

again in the faithful situation considered in Section 2 with (eMe,ϕe) in place
of (M, ϕ). Hence, there is a normal faithful conditional expectation Ee from eMe

onto N such that ϕe ◦ Ee = ϕe. Define Pe(x) = exe, x ∈ M. Note that Pe is a
normal conditional expectation from M onto eMe. Finally, we define E = Ee ◦Pe.

Then, E is a normal conditional expectation from M onto N . This E is faithful iff
e = 1. Note that

ϕ ◦ E = ϕ ◦ Pe and E ◦ σt ◦ Pe = σt ◦ E , t ∈ R.
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Also, observe in the present setting, that the crossed product eMe �σϕe R can
be naturally identified with the subalgebra (e ⊗ 1)R(e ⊗ 1) of R (recalling that
R = M �σ R), and that the canonical trace on eMe �σϕe R is equal to the
restriction of τ to (e ⊗ 1)R(e ⊗ 1); moreover, the Radon–Nikodym derivative
of the dual weight of ϕe with respect to the canonical trace of eMe �σϕe R is
equal to eDe = eD (since D and e commute). Thus we can, and will do regard
eMe �σϕe R, N �σϕe R as subalgebras of R, and use τ to denote the canonical
trace on each of these three crossed products. Accordingly, Lp(eMe) and Lp(N )

(associated with ϕe) are considered as subspaces of Lp(M). Again, E induces a
contractive projection from Lp(M) onto Lp(N ). All the properties established for
the faithful case in Section 2 continue to hold in the present setting. In particular,
for any 0 ≤ θ ≤ 1 and 0 < p < ∞, we define

Ep,θ

(
D(1−θ)/pxDθ/p)= D(1−θ)/p

e E(x)Dθ/p
e , x ∈ Ma,

where De = eDe. Then as in Lemma 2.1, Ep,θ is a well-defined mapping on
MaD

1/p and independent of θ . As before in Section 2, we will denote it simply
by E . Note that (2.4) now becomes

tr(E(x)) = tr(ex), x ∈ L1(M).

Thus we still have tr(E(x)) = tr(x) for all x ∈ L1(M) whose left or right support is
dominated by e. Proposition 2.3 is still valid in the present setting with almost the
same proof. Alternatively, applying Lemma 2.1 and Proposition 2.3 to Ee above
(which is faithful), we reduce the nonfaithful version of Proposition 2.3 to the
special case E = Pe. In this latter case, everything is almost obvious.

We turn to our main concern on noncommutative martingales. Thus let {Mn}n≥0
be an increasing filtration of w∗-closed ∗-subalgebras of M such that

⋃
n≥0 Mn is

w∗-dense in M. We assume that every Mn is invariant under {σt}t∈R. Then by the
preceding discussions, for each n ≥ 0, there is a normal conditional expectation
En from M onto Mn such that

ϕ(En(x)) = ϕ(enxen), x ∈ M,

where en is the unit of Mn. As in the faithful case, we have

EmEn = EnEm = Emin(m,n), m,n ≥ 0.

By Proposition 2.3 (used in the nonfaithful case), each En induces a contractive
projection from Lp(M) onto Lp(Mn), 1 ≤ p ≤ ∞. Then all notions of noncom-
mutative martingales can be transferred to the present setting word by word.

Now we consider the problem of the validity of the results in the previous
sections for the nonfaithful conditional expectations. It is clear that Theorem 6.1
in the case p < 2 and Theorem 7.1 are no longer true. With these two exceptions,
all other results remain valid. One way to justify this is to examine the proofs of
these results given before. Then one can see that they still work in the nonfaithful
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case. However, there is a more interesting alternate way. It consists in reducing the
nonfaithful case to the faithful one. The rest of this section is devoted to explain
this reduction.

Let M,Mn, en,En be fixed as above. Then (en) is an increasing sequence of
projections converging to 1 in M. As already observed, each en is in the centralizer
of ϕ. Let D denote the (commutative) von Neumann subalgebra of M generated
by the en’s. Then D is invariant under σt . Thus there is a unique faithful normal
conditional expectation from M onto D , which we denote especially by T . It
will be useful to represent T as a sum of mutually orthogonal normal conditional
expectations of rank 1. To this end, let fn = en − en−1 (with e−1 = 0). Then (fn)

is a sequence of orthogonal projections in M whose sum is 1. Set Dn = Cfn, and
define Tn :M → Dn by Tn(x) = ϕ(xfn)

ϕ(fn)
fn. Note that Tn is nothing but the normal

conditional expectation from M onto Dn. Then clearly

T (x) = ∑
n≥0

Tn(x), x ∈ M.(8.1)

Now we introduce a new filtration (M̃n)n of von Neumann subalgebras by
defining M̃n as the von Neumann subalgebra generated by Mn and D . Since both
Mn and D are invariant under σt , so is M̃n. Therefore, there is a faithful normal
conditional expectation Ẽn from M onto M̃n preserving ϕ. It is easy to check that

Ẽn(x) = En(x) + ∑
k>n

Tk(x), x ∈ M.(8.2)

As before, all these mappings extend to contractions on Lp(M). Then (8.1) and
(8.2) hold with Lp(M) (1 ≤ p < ∞) instead of M, and moreover the series there
converge in Lp(M). Let d0 = E0, d̃0 = Ẽ0 and dn = En − En−1, d̃n = Ẽn − Ẽn−1
for n ≥ 1. Note, that dxn = dnx for all n. Then for any x ∈ Lp(M), (dnx)n
[resp. (d̃nx)n] is the martingale difference sequence with respect to (Mn) [resp.
(M̃n)]. We have the following easily checked relations between these martingale
differences

d̃0 = d0x +∑
k≥1

Tkx and d̃nx = dnx − Tnx, n ≥ 1.(8.3)

Also observe the following simple fact:

Tn(dnx) = dn(T x) = Tnx, n ≥ 0.(8.4)

Let us now explain the reduction. We will only explain this reduction for
Theorems 3.1 and 6.1 and leave the rest to the interested reader. First, consider
(BGp). We claim that for any x ∈ Lp(M) (1 ≤ p ≤ ∞),

‖T x‖p ≤ min
{
‖x‖p,

∥∥∥(∑ |dnx|2
)1/2∥∥∥

p
,
∥∥∥(∑ |dnx

∗|2
)1/2∥∥∥

p

}
.(8.5)
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Indeed, since T is contractive, ‖T x‖p ≤ ‖x‖p . To see why ‖T x‖p is majorized
by the second member in the brackets, we proceed as follows. Consider the tensor
product M⊗B(�2) as in Section 1. Since T ⊗ id is contractive on Lp(M⊗B(�2)),
we have

∥∥∥(∑ |dnx|2
)1/2∥∥∥

p
≥
∥∥∥∥∥∥∥T ⊗ id

d0x 0 · · ·
d1x 0 · · ·
...

...


∥∥∥∥∥∥∥
p

=
∥∥∥∥∥∥∥
T (d0x) 0 · · ·

T (d1x) 0 · · ·
...

...


∥∥∥∥∥∥∥
p

=
∥∥∥(∑ |T (dnx)|2

)1/2∥∥∥
p
.

By (8.1),

T x = ∑
n≥0

Tn(x) = ∑
n≥0

Tn(dnx).

On the other hand,

T (dnx) = Tn(dnx) +
n−1∑
k=0

Tk(dnx).

Since (Tk(dnx))k≥0 are of disjoint support, |T (dnx)| ≥ |Tn(dnx)|. Hence, we
deduce ∥∥∥(∑ |dnx|2

)1/2∥∥∥
p

≥ ‖T x‖.
Passing to adjoints, we get the last inequality in (8.3).

We have an inequality similar to (8.5) for (d̃nx), namely

‖T x‖p ≤ min
{∥∥∥(∑ |d̃nx|2

)1/2∥∥∥
p
,
∥∥∥(∑ |d̃nx

∗|2
)1/2∥∥∥

p

}
.(8.6)

This is obvious for ∥∥∥(∑ |d̃nx|2
)1/2∥∥∥

p
≥ ‖Ẽ0x‖p ≥ ‖T̃ x‖p.

Combining (8.3), (8.5) and (8.6), we get

1
3

∥∥∥(∑ |dnx|2
)1/2∥∥∥

p
≤
∥∥∥(∑ |d̃nx|2

)1/2∥∥∥
p

≤ 3
∥∥∥(∑ |dnx|2

)1/2∥∥∥
p
.

This clearly shows that the validity of (BGp) for x and (d̃nx) implies that for x

and (dnx). Therefore, we have reduced (BGp) in the nonfaithful case to that in the
faithful case.
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Next we explain how to do the same for (Bp) for 2 ≤ p < ∞. Fix x ∈ Lp(M).
By the definitions in (8.3), we obtain

1
3

(∑‖dnx‖p
p

)1/p ≤
(∑‖d̃nx‖p

p

)1/p ≤ 3
(∑‖dnx‖p

p

)1/p

.(8.7)

On the other hand, again by (8.3) and also (8.4),

Ẽ0|d̃0x|2 = E0|d0x|2 +∑
k≥1

|Tkx|2,(8.8)

Ẽn−1|d̃nx|2 = En−1|dnx|2 + Tn(|dnx|2) − |Tn(dnx)|2, n ≥ 1.(8.9)

Since |Tn(dnx)|2 ≤ Tn(|dnx|2), it follows that

En−1|dnx|2 ≤ Ẽn−1|d̃nx|2, n ≥ 0.

Therefore, the validity of the first inequality of (Bp) for x and (d̃nx) implies that
for x and (dnx). To show the same is true concerning the second inequality of (Bp),
it suffices to note that (8.9) yields∥∥∥∑ Ẽn−1|dny|2

∥∥∥
p/2

≤
∥∥∥∑En−1|dnx|2

∥∥∥
p/2

+
∥∥∥∑Tn|dnx|2

∥∥∥
p/2

=
∥∥∥∑En−1|dnx|2

∥∥∥
p/2

+
(∑‖Tn|dnx|2‖2/p

p/2

)2/p

≤
∥∥∥∑En−1|dnx|2

∥∥∥
p/2

+
(∑‖dnx‖p

p

)2/p
.

Thus we have obtained (Bp) for 2 ≤ p < ∞ in the nonfaithful case.

REMARK. The previous arguments show that the first inequality in (Bp) still
holds in the case 1 < p < 2. Concerning the second one, it is true for all x

satisfying T x = 0. Even in the commutative situation one can easily construct
counterexamples if this condition is not satisfied.
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