Noncommutative Configuration Space. Classical and Quantum Mechanical Aspects

F. J. Vanhecke, C. Sigaud, and A. R. da Silva
Instituto de Física, Instituto de Matemática, UFRJ, Rio de Janeiro, Brazil

Received on 17 October, 2005

Abstract

In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its quantisation. In coordinates $\left\{q^{i}, p_{k}\right\}$ the canonical symplectic two-form is $\omega_{0}=d q^{i} \wedge d p_{i}$. It is well known in symplectic mechanics $[5,6,9]$ that the interaction of a charged particle with a magnetic field can be described in a Hamiltonian formalism without a choice of a potential. This is done by means of a modified symplectic twoform $\omega=\omega_{0}-e \mathbf{F}$, where e is the charge and the (time-independent) magnetic field \mathbf{F} is closed: $\mathbf{d F}=0$. With this symplectic structure, the canonical momentum variables acquire non-vanishing Poisson brackets: $\left\{p_{k}, p_{l}\right\}=$ $e F_{k l}(q)$. Similarly a closed two-form in p-space \mathbf{G} may be introduced. Such a dual magnetic field \mathbf{G} interacts with the particle's dual charge r. A new modified symplectic two-form $\omega=\omega_{0}-e \mathbf{F}+r \mathbf{G}$ is then defined. Now, both p - and q-variables will cease to Poisson commute and upon quantisation they become noncommuting operators. In the particular case of a linear phase space $\mathbf{R}^{2 N}$, it makes sense to consider constant \mathbf{F} and \mathbf{G} fields. It is then possible to define, by a linear transformation, global Darboux coordinates: $\left\{\xi^{i}, \pi_{k}\right\}=\delta^{i}{ }_{k}$. These can then be quantised in the usual way $\left[\widehat{\xi}^{i}, \widehat{\pi}_{k}\right]=i \hbar \delta^{i}{ }_{k}$. The case of a quadratic potential is examined with some detail when N equals 2 and 3 .

Keywords: Noncommutativity; Symplectic mechanics; Quantization

I. INTRODUCTION

The idea to consider non vanishing commutation relations between position operators $[\mathbf{x}, \mathbf{y}]=i \ell^{2}$, analogous to the canonical commutation relations between position and conjugate momentum $\left[\mathbf{x}, \mathbf{p}_{x}\right]=i \hbar$, is ascribed to Heisenberg, who saw there a possibility to introduce a fundamental lenght ℓ which might control the short distance singularities of quantum field theory. However, noncommutativity of coordinates appeared first nonrelativistically in the work of Peierls [2] on the diamagnetism of conduction electrons. In the limit of a strong magnetic field in the z-direction, the gap between Landau levels becomes large and, to leading order, one obtains $[\mathbf{x}, \mathbf{y}]=i \hbar c / e B$. In relativistic quantum mechanics, noncommutativity was first examined in 1947 by Snyder [3] and, in the last five years, inspired by string and brane-theory, many papers on field theory in noncommutative spaces appeared in the physics literature. The apparent unitarity problem related to time-space noncommutativity in field theory was studied and solved in [10]. Also (nonrelativistic) quantum mechanics on noncommutative twodimensional spaces has been examined more thorougly in the recent years: [11-16]. The above mentionned unitarity problem in quantum physics is also examined in Balachandran et al. [17].

In this work we discuss noncommutativity of configuration space Q in classical mechanics on the cotangent bundle $T^{*}(Q)$ and its canonical quantisation in the most simple case. In section II we review the classical theory of a non relativistic particle interacting with a time-independent magnetic field $\mathbf{F}=1 / 2 F_{i j}(q) d q^{i} \wedge d q^{j} ; \mathbf{d F}=0$. This is done in every textbook introducing a potential in a Lagrangian formalism. The Legendre transformation defines then the Hamiltonian and the
canonical symplectic two-form $d q^{i} \wedge d p_{i}$ implements the corresponding Hamiltonian vector field. We also recall the less well known procedure of avoiding the introduction of a potential using a modified symplectic structure: $\omega=d q^{i} \wedge d p_{i}-e \mathbf{F}$. The coupling with the charge e is hidden in the symplectic structure and does not show up in the Hamiltonian: $H_{0}(q, p)=$ $\delta^{k l} p_{k} p_{l} / 2 m+\mathcal{V}(q)$. In section III, a closed two-form in p space, the dual field: $\mathbf{G}=1 / 2 G^{k l}(p) d p_{k} \wedge d p_{l}$, is added to the symplectic structure $\omega=d q^{i} \wedge d p_{i}-e \mathbf{F}+r \mathbf{G}$, where r is a dual charge.

Such an approach with a modified symplectic structure has been previously considered by Duval and Horvathy [11, 14] emphasizing the $N=2$-dimensional case in connection with the quantum Hall effect. We should also mention Plyushchay's interpretation [18] of such a dual charge r when $N=2$ as the anyon spin. Considering here an arbitrary number of dimensions N, no such interpretation of r is assumed. The crucial point is that, now, both p - and q-variables cease to Poisson commute and upon quantisation they should become noncommuting operators. In the particular case of a linear phase space $\mathbf{R}^{2 N}$, it makes sense to consider constant \mathbf{F} and \mathbf{G} fields. It is then possible to define global Darboux coordinates with Poisson brackets $\left\{\xi^{i}, \pi_{k}\right\}=\delta^{i}{ }_{k}$. These can then be quantised uniquely [1] in the usual way: $\left[\widehat{\xi}^{i}, \widehat{\pi}_{k}\right]=i \hbar \delta^{i}{ }_{k}$. However, in general, the dynamics become non-linear and there is no guarantee that the Hamiltonian vector field is complete. It is then not trivial to quantise the Hamiltonian, which becomes nonlocal. However, for a linear or quadratic Hamiltonian, this is possible and it is seen that the noncommutativity generates a magnetic moment type interaction. The cases $N=2$ and $N=3$ are discussed in detail in section IV. In section V we examine the problem of symmetries in the modified symplectic manifold. Finally, in section VI general comments are made and further developments are suggested. In appendix A we recall
basic notions in symplectic geometry and in appendix B we give a brief account of the Gotay-Nester-Hinds algorithm [7] for constrained Hamiltonian systems.

II. NON RELATIVISTIC PARTICLE INTERACTING WITH A TIME-INDEPENDENT MAGNETIC FIELD

A particle of mass m and charge e, with potential energy \mathcal{V}, moving in a Euclidean configuration space Q, with cartesian coordinates q^{i}, interacts with a (time-independent) magnetic field given by a closed two-form $\mathbf{F}(q)=\frac{1}{2} F_{i j}(q) \mathbf{d} q^{i} \wedge \mathbf{d} q^{j}$. The dynamics is given by the Laplace equation:

$$
\begin{equation*}
m \frac{\mathbf{d}^{2} q^{i}}{\mathbf{d} t^{2}}=\delta^{i j}\left(e F_{j k}(q) \frac{\mathbf{d} q^{k}}{\mathbf{d} t}-\frac{\partial \mathcal{V}(q)}{\partial q^{j}}\right) \tag{II.1}
\end{equation*}
$$

Assuming Q to be Euclidean avoids topological subtleties, so that there exists a global potential one-form $\mathbf{A}(q)=A_{i}(q) \mathbf{d} q^{i}$ such that $\mathbf{F}=\mathbf{d A}$. A global Lagrangian formalism can then be established with a Lagrangian function on the tangent bundle $\{\tau: T(Q) \rightarrow Q\}:$

$$
\mathcal{L}(q, \dot{q})=\frac{1}{2} m \delta_{i j} \dot{q}^{i} \dot{q}^{j}+e \dot{q}^{i} A_{i}(q)-\mathcal{V}(q)
$$

The Euler-Lagrange equation is obtained as:

$$
\begin{align*}
0 & =\frac{\partial \mathcal{L}}{\partial q^{i}}-\frac{\mathbf{d}}{\mathbf{d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}^{i}}=-\frac{\partial \mathcal{V}}{\partial q^{i}}+e \dot{q}^{k} \frac{\partial A_{k}(q)}{\partial q^{i}}-\frac{\mathbf{d}}{\mathbf{d} t}\left(m \delta_{i j} \dot{q}^{j}+e A_{i}(q)\right) \\
& =-\frac{\partial \mathcal{V}}{\partial q^{i}}+e \dot{q}^{k}\left(\frac{\partial A_{k}(q)}{\partial q^{i}}-\frac{\partial A_{i}(q)}{\partial q^{k}}\right)-m \frac{\mathbf{d}}{\mathbf{d} t} \delta_{i j} \dot{q}^{j} \\
& =-\frac{\partial \mathcal{V}}{\partial q^{i}}+e \mathbf{F}_{i k}(q) \dot{q}^{k}-m \delta_{i j} \ddot{q}^{j} \tag{II.2}
\end{align*}
$$

and coincides with the Laplace equation (II.1).
The Legendre transform

$$
\left(q^{i}, \dot{q}^{j}\right) \rightarrow\left(q^{i}, p_{k}=\frac{\partial \mathcal{L}}{\partial \dot{q}^{k}}=m \delta_{k l} \dot{q}^{l}+e A_{k}(q)\right)
$$

defines the Hamiltonian on the cotangent bundle $\left\{T^{*}(Q) \xrightarrow{\kappa}\right.$ $Q\}$:

$$
\begin{gathered}
\mathcal{H}_{\mathbf{A}}(q, p)=-\mathcal{L}(q, \dot{q})+p_{i} \dot{q}^{i}= \\
\frac{1}{2 m} \delta^{k l}\left(p_{k}-e A_{k}(q)\right)\left(p_{l}-e A_{l}(q)\right)+\mathcal{V}(q) .
\end{gathered}
$$

With the canonical symplectic two-form

$$
\begin{equation*}
\omega_{0}=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i} \tag{II.3}
\end{equation*}
$$

the Hamiltonian vector field of $\mathcal{H}_{\mathbf{A}}$ is:
$\mathbf{X}_{\mathscr{H}}=\frac{\delta^{i j}}{m}\left(p_{j}-e A_{j}\right) \frac{\partial}{\partial \mathbf{q}^{i}}+\left(\frac{e}{m} \delta^{k l} \frac{\partial A_{k}}{\partial q^{i}}\left(p_{l}-e A_{l}\right)-\frac{\partial \mathcal{V}}{\partial q^{i}}\right) \frac{\partial}{\partial \mathbf{p}_{i}}$.
Its integral curves are solutions of:

$$
\begin{equation*}
\frac{\mathbf{d} q^{i}}{\mathbf{d} t}=\frac{\delta^{i j}}{m}\left(p_{j}-e A_{j}\right), \frac{\mathbf{d} p_{i}}{\mathbf{d} t}=\frac{e}{m} \delta^{k l} \frac{\partial A_{k}}{\partial q^{i}}\left(p_{l}-e A_{l}\right)-\frac{\partial \mathcal{V}}{\partial q^{i}}, \tag{II.4}
\end{equation*}
$$

which is again equivalent to (II.1).

If the second de Rham cohomology were not trivial, $H_{d R}^{2}(Q) \neq 0$, there is no global potential \mathbf{A} and a local Lagrangian formalism is needed. This can be done enlarging the configuration space Q to the total space \mathcal{P} of a principal $U(1)$ bundle over Q with a connection, given locally by $\mathbf{A}[19]$. This can be avoided using a global Hamiltonian formalism[20] in the cotangent bundle $T^{*}(Q)$ using a modified symplectic twoform:

$$
\begin{equation*}
\omega=\omega_{0}-e \mathbf{F}=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i}-\frac{1}{2} e F_{i j}(q) \mathbf{d} q^{i} \wedge \mathbf{d} q^{j} \tag{II.5}
\end{equation*}
$$

and a "charge-free" Hamiltonian:

$$
\mathcal{H}_{0}(p, q)=\frac{1}{2 m} \delta^{k l} p_{k} p_{l}+\mathcal{V}(q)
$$

The Hamiltonian vector fields corresponding to an observable $f(q, p)$ are now defined relative to ω as $l_{\mathbf{X}_{f}^{\mathbf{F}}} \omega=\mathbf{d} f$ and given by:

$$
\mathbf{X}_{f}^{\mathbf{F}}=\frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial \mathbf{q}^{i}}-\left(\frac{\partial f}{\partial q^{l}}+\frac{\partial f}{\partial p_{k}} e F_{k l}(q)\right) \frac{\partial}{\partial \mathbf{p}_{l}}
$$

With the Hamiltonian \mathcal{H}_{0}, the dynamics are again given by the Laplace equation (II.1) in the form:

$$
\begin{equation*}
\frac{\mathbf{d} q^{i}}{\mathbf{d} t}=\frac{\delta^{i j}}{m} p_{j} ; \frac{\mathbf{d} p_{l}}{\mathbf{d} t}=-\delta^{k i}\left(\frac{\partial \mathcal{V}}{\partial q^{i}}+\frac{e}{m} p_{i} F_{k l}(q)\right) \tag{II.6}
\end{equation*}
$$

The Poisson brackets, relative to the symplectic structure II.5, are:

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}}+\frac{\partial f}{\partial p_{k}} e F_{k l}(q) \frac{\partial g}{\partial p_{l}} . \tag{II.7}
\end{equation*}
$$

In particular, the coordinates themselves have Poisson brackets:

$$
\begin{align*}
& \left\{q^{i}, q^{j}\right\}=0,\left\{q^{i}, p_{l}\right\}=\delta_{l}^{i} \\
& \left\{p_{k}, q^{j}\right\}=-\delta_{k}^{j},\left\{p_{k}, p_{l}\right\}=e F_{k l}(q) \tag{II.8}
\end{align*}
$$

Obviously, the meaning of the $\{q, p\}$ variables in (II.3) and (II.5) are different. However both formalisms $\left(\omega_{0}, \mathcal{H}_{\mathbf{A}}\right)$ and $\left(\omega, \mathcal{H}_{0}\right)$ lead to the same equations of motion and thus, they must be equivalent. Indeed, in each open set U homeomorphic to \mathbf{R}^{6}, the vanishing $\mathbf{d F}=0$ implies the existence of \mathbf{A} such that $\mathbf{F}=\mathbf{d A}$ in U and, locally:

$$
\omega=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i}-\frac{1}{2} e F_{i j} \mathbf{d} q^{i} \wedge \mathbf{d} q^{j}=-\mathbf{d}\left[\left(p_{i}+e A_{i}\right) \mathbf{d} q^{i}\right]
$$

Thus there exist local Darboux coordinates:

$$
\begin{equation*}
\xi^{i}=q^{i}, \pi_{k}=p_{k}+e A_{k}(q) \tag{II.9}
\end{equation*}
$$

such that $\omega=\mathbf{d} \xi^{i} \wedge \mathbf{d} \pi_{i}$, which is the form (II.3).
The dynamics defined by the Hamiltonian $\mathcal{H}_{0}(q, p)=$ $p^{2} / 2 m+\mathcal{V}(q)$, with symplectic two-form ω, is equivalent to the dynamics defined by the Hamiltonian $\mathcal{H}_{\mathbf{A}}(\xi, \pi)=(\pi-$ $e A(\xi))^{2} / 2 m+\mathcal{V}(\xi)$ and canonical symplectic structure $\omega=$ $\mathbf{d} \xi^{i} \wedge \mathbf{d} \pi_{i}$. Equivalence is trivial since both symplectic twoforms are equal, but expressed in different coordinates $\{q, p\}$ and $\{\xi, \pi\}$, related by (II.9). It seems worthwhile to note that a gauge transformation $\mathbf{A} \rightarrow \mathbf{A}^{\prime}=\mathbf{A}+\mathbf{g r a d} \phi$ corresponds to a change of Darboux coordinates

$$
\left\{\xi^{i}, \pi_{k}\right\} \Rightarrow\left\{\xi^{i \prime}=\xi^{i}, \pi_{k}^{\prime}=\pi_{k}+e \partial_{k} \phi\right\}
$$

i.e. a symplectic transformation.

III. NONCOMMUTATIVE COORDINATES

Let us consider an affine configuration space $Q=\mathbf{A}^{N}$ so that points of phase space, identified with $\mathcal{M} \doteq \mathbf{R}^{2 N}=$ $\mathbf{R}_{q}^{N} \times \mathbf{R}_{p}^{N}$, may be given by linear coordinates (q, p). Together with the (usual) magnetic field \mathbf{F}, we may introduce a (dual) magnetic field $\mathbf{G}=1 / 2 G^{k l}(p) \mathbf{d} p_{k} \wedge \mathbf{d} p_{l}$, a closed two-form, $\mathbf{d G}=0$, in \mathbf{R}_{p}^{n} space. Let e be the usual electric charge and r, a dual charge, which couples the particle with \mathbf{F} and \mathbf{G}. Consider the closed two-form:

$$
\begin{align*}
\omega & =\omega_{0}-e \mathbf{F}+r \mathbf{G} \\
& =\mathbf{d} q^{i} \wedge \mathbf{d} p_{i}-\frac{1}{2} e F_{i j}(q) \mathbf{d} q^{i} \wedge \mathbf{d} q^{j}+\frac{1}{2} r G^{k l}(p) \mathbf{d} p_{k} \wedge \mathbf{d} p_{l} . \tag{III.1}
\end{align*}
$$

In matrix notation this two-form (III.1) is represented as:

$$
\begin{align*}
(\Omega) & =\left(\begin{array}{cc}
-e \mathbf{F} & \mathbf{1} \\
-\mathbf{1} & +r \mathbf{G}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1} & +r \mathbf{G}
\end{array}\right)\left(\begin{array}{cc}
-\Psi & 0 \\
0 & \mathbf{1}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & 0 \\
-e \mathbf{F} & \mathbf{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e \mathbf{F} & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right)\left(\begin{array}{cc}
-\mathbf{1} & 0 \\
0 & \Phi
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & -r \mathbf{G} \\
0 & \mathbf{1}
\end{array}\right) \tag{III.2}
\end{align*}
$$

where[21] $\Phi=(\mathbf{1}-e \mathbf{F} r \mathbf{G}) ; \Psi=(\mathbf{1}-r \mathbf{G} e \mathbf{F})$.
The fundamental Hamiltonian equation $l_{\mathbf{x}} \omega=\mathbf{d} f$, in (A.1), reads:
$\left(X^{i}-r G^{i j} X_{j}\right) \mathbf{d} p_{i}-\left(X_{k}-e F_{k l} X^{l}\right) \mathbf{d} q^{k}=\frac{\partial f}{\partial q^{k}} \mathbf{d} q^{k}+\frac{\partial f}{\partial p_{i}} \mathbf{d} p_{i}$.
This can be rewritten as

$$
\begin{equation*}
\left(\frac{\partial f}{\partial p_{i}}-r G^{i j} \frac{\partial f}{\partial q^{j}}\right)=\Psi^{i}{ }_{j} X^{j} ;\left(\frac{\partial f}{\partial q^{k}}-e F_{k l} \frac{\partial f}{\partial p^{l}}\right)=-\Phi_{k}{ }^{l} X_{l} \tag{III.4}
\end{equation*}
$$

Obviously, from (III.2) or (III.4), the closed two-form ω will be non degenerate, and hence symplectic, if $\operatorname{det}(\Omega)=$ $\operatorname{det}(\Psi)=\operatorname{det}(\Phi) \neq 0$, so that (Ω) has an inverse:

$$
\left.\begin{array}{rl}
(\Omega)^{-1} & =\left(\begin{array}{cc}
\mathbf{1} & 0 \\
+e \mathbf{F} & \mathbf{1}
\end{array}\right)\left(\begin{array}{cc}
-\Psi^{-1} & 0 \\
0 & \mathbf{1}
\end{array}\right)\left(\begin{array}{cc}
-r \mathbf{G} & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
+\Psi^{-1} r \mathbf{G} & -\Psi^{-1} \\
+e \mathbf{F} \Psi^{-1} & r \mathbf{G}+\mathbf{1}
\end{array}-e \mathbf{F} \Psi^{-1}\right.
\end{array}\right) ; ~\left(\begin{array}{cc}
\mathbf{1} & +r \mathbf{G} \\
0 & \mathbf{1}
\end{array}\right)\left(\begin{array}{cc}
-\mathbf{1} & 0 \\
0 & \Phi^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & \mathbf{1} \tag{III.6}\\
\mathbf{1} & -e \mathbf{F}
\end{array}\right), ~\left(\begin{array}{cc}
+r \mathbf{G} \Phi^{-1} & -r \mathbf{G} \Phi^{-1} e \mathbf{F}-\mathbf{1} \\
\Phi^{-1} & -\Phi^{-1} e \mathbf{F}
\end{array}\right) .
$$

Explicitely:

$$
\omega^{b}: \mathbf{d} f \rightarrow\left\{\begin{array}{l}
\left(X_{f}\right)^{i}=\left(\Psi^{-1}\right)^{i}\left(\partial f / \partial p_{j}-r G^{j k} \partial f / \partial q^{k}\right) \tag{III.7}\\
\left(X_{f}\right)_{k}=-\left(\Phi^{-1}\right)_{k}^{l}\left(\partial f / \partial q^{l}-e F_{l j} \partial f / \partial p_{j}\right)
\end{array}\right.
$$

The corresponding Poisson brackets are given by:

$$
\begin{equation*}
\{f, g\}=\omega\left(\mathbf{X}_{f}, \mathbf{X}_{g}\right)=\left(\partial_{q} f \partial_{p} f\right)(\Lambda)\binom{\partial_{q} g}{\partial_{p} g} \tag{III.8}
\end{equation*}
$$

with the matrix

$$
(\Lambda)=-(\Omega)^{-1}=\left(\begin{array}{cc}
-\left(\Psi^{-1} r \mathbf{G}=r \mathbf{G} \Phi^{-1}\right) & +\Psi^{-1} \tag{III.9}\\
-\Phi^{-1} & +\left(\Phi^{-1} e \mathbf{F}=e \mathbf{F} \Psi^{-1}\right)
\end{array}\right) .
$$

Explicitely:

$$
\begin{align*}
\{f, g\}= & -\frac{\partial f}{\partial q}\left(\Psi^{-1} r G\right) \frac{\partial g}{\partial q}-\frac{\partial f}{\partial p}\left(\Phi^{-1}\right) \frac{\partial g}{\partial q} \\
& +\frac{\partial f}{\partial q}\left(\Psi^{-1}\right) \frac{\partial g}{\partial p}+\frac{\partial f}{\partial p}\left(\Phi^{-1} e F\right) \frac{\partial g}{\partial p} . \tag{III.10}
\end{align*}
$$

In particular, for the coordinates $\left(q^{i}, p_{k}\right)$, we have:

$$
\begin{align*}
\left\{q^{i}, q^{j}\right\} & =-\left(\Psi^{-1}\right)^{i}{ }_{k} r G^{k j}=-r G^{i k}\left(\Phi^{-1}\right)_{k}{ }^{j}, \\
\left\{q^{i}, p_{l}\right\} & =\left(\Psi^{-1}\right)^{i}{ }_{l}, \\
\left\{p_{k}, q^{j}\right\} & =-\left(\Phi^{-1}\right)_{k}{ }^{j}, \\
\left\{p_{k}, p_{l}\right\} & =\left(\Phi^{-1}\right)_{k}{ }^{j} e F_{j l}=e F_{k j}\left(\Psi^{-1}\right)^{j}{ }_{l} . \tag{III.11}
\end{align*}
$$

With $\mathcal{H}(q, p)=\left(\delta^{k l} p_{k} p_{l} / 2 m\right)+\mathcal{V}(q)$, the equations of motion read:

$$
\begin{align*}
\frac{d q^{i}}{d t} & =\left\{q^{i}, \mathcal{H}\right\}=\left(\Psi^{-1}\right)_{j}^{i}\left(-r G^{j k} \frac{\partial \mathcal{H}}{\partial q^{k}}+\frac{\partial \mathcal{H}}{\partial p_{j}}\right) \\
& =\left(\Psi^{-1}\right)^{i}{ }_{j}\left(-r G^{j k} \frac{\partial \mathcal{V}}{\partial q^{k}}+\frac{p^{j}}{m}\right) \\
\frac{d p_{k}}{d t} & =\left\{p_{k}, \mathcal{H}\right\}=\left(\Phi^{-1}\right)_{k}^{l}\left(-\frac{\partial \mathcal{H}}{\partial q^{l}}+e F_{l j} \frac{\partial \mathcal{H}}{\partial p_{j}}\right) \\
& =\left(\Phi^{-1}\right)_{k}^{l}\left(-\frac{\partial \mathcal{V}}{\partial q^{l}}+e F_{l j} \frac{p^{j}}{m}\right) . \tag{III.12}
\end{align*}
$$

The celebrated Darboux theorem guarantees the existence of local coordinates $\left(\xi^{i}, \pi_{k}\right)$, such that $\omega=\mathbf{d} \xi^{i} \wedge \mathbf{d} \pi_{i}$. When one of the charges (e, r) vanishes, such Darboux coordinates are easily obtained using the potential one-forms $\mathbf{A}=A_{i}(q) \mathbf{d} q^{i}$ and $\widetilde{\mathbf{A}}=\widetilde{A}^{k}(p) \mathbf{d} p_{k}$, such that $\mathbf{F}=\mathbf{d} \mathbf{A}$ and $\mathbf{G}=\mathbf{d} \widetilde{\mathbf{A}}$.
Indeed, if $r=0$, as in section II, Darboux coordinates are provided by $\xi^{i}=q^{i} ; \pi_{k}=p_{k}+e A_{k}(q)$. A modified symplectic potential and two-form are defined by:

$$
\begin{equation*}
\theta=\left(p_{k}+e A_{k}\right) \mathbf{d} q^{k} ; \omega=-\mathbf{d} \theta \tag{III.13}
\end{equation*}
$$

The Hamiltonian and corresponding equations of motion are:

$$
\begin{gather*}
\mathcal{H}(\xi, \pi)=\frac{1}{2} \delta^{k l}\left(\pi_{k}-e A_{k}(\xi)\right)\left(\pi_{l}-e A_{l}(\xi)\right)+\mathcal{V}(\xi),(\text { III.14) } \tag{III.14}\\
\frac{\mathbf{d} \xi^{i}}{\mathbf{d} t}=\delta^{i j}\left(\pi_{j}-e A_{j}(\xi)\right), \frac{\mathbf{d} \pi_{i}}{\mathbf{d} t}=e \delta^{k l}\left(\pi_{k}-e A_{k}\right) \frac{\partial A_{l}}{\partial \xi^{i}}-\frac{\partial \mathcal{V}}{\partial \xi^{i}},
\end{gather*}
$$

which yields the second order equation in ξ, as in (II.1):

$$
\begin{equation*}
\frac{\mathbf{d}^{2} \xi^{i}}{\mathbf{d} t^{2}}=\delta^{i j}\left(-\frac{\partial \mathcal{V}(\xi)}{\partial \xi^{j}}+e F_{j l}(\xi) \frac{\mathbf{d} \xi^{l}}{\mathbf{d} t}\right) \tag{III.16}
\end{equation*}
$$

When $e=0$, Darboux variables are

$$
\begin{equation*}
\xi^{i}=q^{i}+r \widetilde{A}^{i}(p) ; \pi_{k}=p_{k} \tag{III.17}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\theta=p_{k} \mathbf{d}\left(q^{k}+r \widetilde{A}^{k}\right) ; \omega=-\mathbf{d} \theta . \tag{III.18}
\end{equation*}
$$

The Hamiltonian and equations of motion are now given by:

$$
\begin{gather*}
\mathcal{H}(\xi, \pi)=\frac{1}{2} \delta^{k l} \pi_{k} \pi_{l}+\mathcal{V}(\xi-r \widetilde{A}(\pi)) \tag{III.19}\\
\frac{\mathbf{d} \xi^{i}}{\mathbf{d} t}=\delta^{i j} \pi_{j}-r \partial_{k} \mathcal{V}(q) \frac{\partial \widetilde{A}^{k}}{\partial \pi_{i}}, \frac{\mathbf{d} \pi_{i}}{\mathbf{d} t}=-\frac{\partial \mathcal{V}}{\partial q^{i}}(q) . \tag{III.20}
\end{gather*}
$$

The second order equation, obeyed by $\pi(!)$, is given by

$$
\begin{equation*}
\frac{\mathbf{d}^{2} \pi_{i}}{\mathbf{d} t^{2}}=\partial_{i j}^{2} \mathcal{V}(q)\left(-\delta^{j k} \pi_{k}+r G^{j k}(\pi) \frac{\mathbf{d} \pi_{l}}{\mathbf{d} t}\right) \tag{III.21}
\end{equation*}
$$

Here the q-variable is assumed to be solved in terms of $\dot{\pi}$ from equation $\dot{\pi}_{k}=-\partial \mathcal{V}(q) / \partial q^{k}$ and this is possible if $\operatorname{det}\left(\partial_{i j}^{2} \mathcal{V}(q)\right) \neq 0!$
In the case of nonzero charges (e, r) and non-constant \mathbf{F} and \mathbf{G} fields, there is no generic formula to define global Darboux coordinates $\left(\xi^{i}, \pi_{k}\right)$. However, if the fields \mathbf{F} and \mathbf{G} are constant, the Poisson matrix (III.2) is brought in canonical Darboux form by a linear symplectic orthogonalization procedure, à la Hilbert-Schmidt. In the next section this is done explicitely for $N=2$ and $N=3$. Obviously such a linear transformation: $\left(q^{i}, p_{k}\right) \Rightarrow\left(\xi^{i}, \pi_{k}\right)$ is defined up to a linear symplectic map of $\mathbf{S p}(2 n)$. These variables $\left(\xi^{i}, \pi_{k}\right) \in \mathbf{R}^{2 n}$ can be canonically quantised as operators obeying the commutation relations

$$
\begin{equation*}
\left[\widehat{\xi^{i}}, \widehat{\xi}^{j}\right]=0 ;\left[\widehat{\xi}^{i}, \widehat{\pi_{l}}\right]=i \hbar \delta_{l}^{i} ;\left[\widehat{\pi}_{k}, \widehat{\pi}_{l}\right]=0 \tag{III.22}
\end{equation*}
$$

As von Neumann taught us in [1], they are realised on the Hilbert space of square integrable functions of the variable ξ as

$$
\begin{equation*}
\left(\widehat{\xi^{i}} \Psi\right)(\xi)=\xi^{i} \Psi(\xi) ;\left(\widehat{\pi_{k}} \Psi\right)(\xi)=\frac{\hbar}{i} \frac{\partial \Psi(\xi)}{\partial \xi^{k}} . \tag{III.23}
\end{equation*}
$$

The original variables $\left(q^{i}, p_{k}\right)$ being linear functions of the $\left(\xi^{i}, \pi_{k}\right)$ are then also quantised.
When $\operatorname{det}(\Psi)=\operatorname{det}(\Phi)=0$, the closed two-form ω is singular. When its rank is constant, ω defines a presymplectic structure on phase space which we call the primary constraint manifold denoted by \mathscr{M}_{1}. The consistency of the resulting constrained Hamiltonian system will be examined in the $N=2$ and $N=3$ cases.

IV. EXAMPLES: $N=2$ AND 3

In the two examples below, we consider a classical Hamiltonian of the form

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 m} \delta^{k l} p_{k} p_{l}+\mathcal{V}(q) \tag{IV.1}
\end{equation*}
$$

A complete resolution will be given for a harmonic oscillator potential:

$$
\begin{equation*}
\mathcal{V}(q) \doteq \frac{\kappa}{2} \delta_{i j} q^{i} q^{j} \tag{IV.2}
\end{equation*}
$$

Also of interest is the case of a constant "electric field": $\mathcal{V}(q)=-\mathbf{E}_{k} q^{k}$, which is exactly solvable and left to the reader.

A. Dynamics in the noncommutative plane

The magnetic fields in two dimensions, are written as:

$$
\begin{equation*}
e F_{i j}=B \varepsilon_{i j} ; r G^{k l}=C \varepsilon^{k l} \tag{IV.3}
\end{equation*}
$$

where B and C are pseudoscalars. The closed two-form (III.1) becomes

$$
\begin{equation*}
\omega=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i}-B \mathbf{d} q^{1} \wedge \mathbf{d} q^{2}+C \mathbf{d} p_{1} \wedge \mathbf{d} p_{2} \tag{IV.4}
\end{equation*}
$$

The equation $l_{X} \omega=\mathbf{d} f$ reads

$$
\begin{equation*}
X^{i}-C \varepsilon^{i j} X_{j}=\frac{\partial f}{\partial p_{i}} ; X_{k}-B \varepsilon_{k l} X^{l}=-\frac{\partial f}{\partial q^{k}} \tag{IV.5}
\end{equation*}
$$

Denoting $\chi \doteq(1+C B)$, the matrices Φ and Ψ are written as $\Phi_{i}{ }^{j}=\chi \delta_{i}{ }^{j}$ and $\Psi^{k}{ }_{l}=\chi \delta^{k}{ }_{l}$. The matrix (III.2) is then invertible if χ does not vanish.

1. The non degenerate case

Here, we will assume χ to be strictly positive. The above equation (IV.5) can then be inverted with Hamiltonian vector fields given by:
$X^{i}=\chi^{-1}\left(\frac{\partial f}{\partial p_{i}}-C \varepsilon^{i j} \frac{\partial f}{\partial q^{j}}\right), X_{k}=-\chi^{-1}\left(\frac{\partial f}{\partial q^{k}}-B \varepsilon_{k l} \frac{\partial f}{\partial p^{l}}\right)$.
The Poisson brackets (III.11) become:

$$
\begin{align*}
&\left\{q^{i}, q^{j}\right\}=-C \chi^{-1} \varepsilon^{i j} ;\left\{q^{i}, p_{l}\right\}=\chi^{-1} \delta^{i}{ }_{l} \\
&\left\{p_{k}, q^{j}\right\}=-\chi^{-1} \delta_{k}^{j} ;\left\{p_{k}, p_{l}\right\}=B \chi^{-1} \varepsilon_{k l} \tag{IV.7}
\end{align*}
$$

Substitution of the Ansatz

$$
\begin{equation*}
\xi^{i}=\alpha q^{i}+\beta \frac{C}{2} p_{k} \varepsilon^{k i} ; \pi_{k}=\gamma \frac{B}{2} q^{j} \varepsilon_{j k}+\delta p_{k} \tag{IV.8}
\end{equation*}
$$

in the canonical Poison brackets, leads to the equations

$$
\begin{align*}
& \alpha^{2}-\alpha \beta-\frac{C B}{4} \beta^{2}=0, \delta^{2}-\delta \gamma-\frac{C B}{4} \gamma^{2}=0 \\
& \alpha \delta+\frac{C B}{2}(\alpha \gamma+\delta \beta)-\frac{C B}{4} \beta \gamma=\chi \tag{IV.9}
\end{align*}
$$

We choose the solution:

$$
\begin{equation*}
\alpha=\delta=\sqrt{u} ; \beta=\gamma=\frac{1}{\sqrt{u}} ; u=\frac{1}{2}(1+\sqrt{\chi}) \tag{IV.10}
\end{equation*}
$$

such that (IV.8) reduces to (II.9) when $C=0$ or to (III.17) in case $B=0$. The 2-form (III.1) has the canonical Darboux form $\omega=d \xi^{i} \wedge d \pi_{i}$ in the variables

$$
\begin{equation*}
\xi^{i}=\sqrt{u}\left(q^{i}-\frac{C}{2 u} \varepsilon^{i k} p_{k}\right) ; \pi_{k}=\sqrt{u}\left(p_{k}-\frac{B}{2 u} \varepsilon_{k i} q^{i}\right) \tag{IV.11}
\end{equation*}
$$

These have an inverse if, and only if $\chi \neq 0$:
$\sqrt{\chi} q^{i}=\sqrt{u}\left(\xi^{i}+\frac{C}{2 u} \varepsilon^{i k} \pi_{k}\right) ; \sqrt{\chi} p_{k}=\sqrt{u}\left(\pi_{k}+\frac{B}{2 u} \varepsilon_{k i} \xi^{i}\right)$.
With the complex variables

$$
\begin{equation*}
q=q^{1}+\mathbf{i} q^{2}, p=p_{1}+\mathbf{i} p_{2} ; \xi=\xi^{1}+\mathbf{i} \xi^{2}, \pi=\pi_{1}+\mathbf{i} \pi_{2} \tag{IV.13}
\end{equation*}
$$

the above changes of variables are written as:

$$
\begin{equation*}
\xi=\sqrt{u}\left(q+\mathbf{i} \frac{C}{2 u} p\right) ; \pi=\sqrt{u}\left(p+\mathbf{i} \frac{B}{2 u} q\right) . \tag{IV.14}
\end{equation*}
$$

The inverse transformations are:

$$
\begin{equation*}
q=\sqrt{u / \chi}\left(\xi-\mathbf{i} \frac{C}{2 u} \pi\right) ; p=\sqrt{u / \chi}\left(\pi-\mathbf{i} \frac{B}{2 u} \xi\right) . \tag{IV.15}
\end{equation*}
$$

The Hamiltonian (IV.2) becomes

$$
\begin{align*}
\mathcal{H} & =\frac{1}{2 m^{\prime}} \delta^{k l} \pi_{k} \pi_{l}+\frac{\kappa^{\prime}}{2} \delta_{i j} \xi^{i} \xi^{j}-\omega_{L}^{\prime} \Lambda \\
& =\frac{1}{2 m^{\prime}} \frac{\pi^{\dagger} \pi+\pi \pi^{\dagger}}{2}+\frac{\kappa^{\prime}}{2} \frac{\xi^{\dagger} \xi+\xi \xi^{\dagger}}{2}-\omega_{L}^{\prime} \Lambda \tag{IV.16}
\end{align*}
$$

where Λ is angular momentum

$$
\begin{align*}
\Lambda & =\frac{1}{2}\left(\varepsilon_{i j} \xi^{i} \delta^{j k} \pi_{k}-\varepsilon^{k l} \pi_{k} \delta_{l j} \xi^{j}\right) \\
& =\frac{1}{2}\left(\left(\xi^{1} \pi_{2}-\xi^{2} \pi_{1}\right)-\left(\pi_{1} \xi^{2}+\pi_{2} \xi^{1}\right)\right) \\
& =\frac{1}{4 \mathbf{i}}\left(\left(\xi^{\dagger} \pi-\xi \pi^{\dagger}\right)-\left(\pi \xi^{\dagger}+\pi^{\dagger} \xi\right)\right) \tag{IV.17}
\end{align*}
$$

The "renormalised" mass and elasticity constant are given by:

$$
\begin{equation*}
\frac{1}{m^{\prime}}=\frac{1}{m} \frac{u}{\chi}\left(1+\frac{c^{2}}{4 u^{2}}\right) ; \kappa^{\prime}=\kappa \frac{u}{\chi}\left(1+\frac{b^{2}}{4 u^{2}}\right) \tag{IV.18}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\frac{B}{\sqrt{m \kappa}} ; c=C \sqrt{m \kappa} \tag{IV.19}
\end{equation*}
$$

The corresponding frequency $\omega_{0}^{\prime}=\sqrt{\kappa^{\prime} / m^{\prime}}$ is given in terms of the "bare" frequency $\omega_{0}=\sqrt{\kappa / m}$ by:

$$
\begin{equation*}
\omega_{0}^{\prime}=\frac{\omega_{0}}{2 \chi}\left((b-c)^{2}+4 \chi\right)^{1 / 2} \tag{IV.20}
\end{equation*}
$$

and ω_{L}^{\prime}, the induced Larmor frequency, by:

$$
\begin{equation*}
\omega_{L}^{\prime}=\frac{\omega_{0}}{2 \chi}(b-c) . \tag{IV.21}
\end{equation*}
$$

The solution of Hamiltonian's equations with (IV.16) is standard. With[22]

$$
m^{\prime} \omega_{0}^{\prime}=\sqrt{m^{\prime} \kappa^{\prime}}=\sqrt{m \kappa}\left(\left(1+\frac{b^{2}}{4 u^{2}}\right)\left(1+\frac{c^{2}}{4 u^{2}}\right)^{-1}\right)_{(\mathrm{IV} .22}^{1 / 2}
$$

reduced variables are introduced by:

$$
\begin{equation*}
Q \doteq\left(m^{\prime} \omega_{0}^{\prime}\right)^{1 / 2} \xi ; P \doteq\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1 / 2} \pi . \tag{IV.23}
\end{equation*}
$$

The original (q, p) are expressed as:

$$
\begin{align*}
& q=\sqrt{u / \chi}\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1 / 2}\left(Q-\mathbf{i} \frac{c^{\prime}}{2 u} P\right) \\
& p=\sqrt{u / \chi}\left(m^{\prime} \omega_{0}^{\prime}\right)^{+1 / 2}\left(P-\mathbf{i} \frac{b^{\prime}}{2 u} Q\right), \tag{IV.24}
\end{align*}
$$

where

$$
\begin{equation*}
c^{\prime}=C\left(m^{\prime} \omega_{0}^{\prime}\right)=C \sqrt{m^{\prime} \kappa^{\prime}}, b^{\prime}=B /\left(m^{\prime} \omega_{0}^{\prime}\right)=B / \sqrt{m^{\prime} \kappa^{\prime}} . \tag{IV.25}
\end{equation*}
$$

The symplectic structure and the Poisson brackets are:

$$
\begin{align*}
\omega & =\frac{1}{2}\left(\mathbf{d} Q^{\dagger} \wedge \mathbf{d} P+\mathbf{d} Q \wedge \mathbf{d} P^{\dagger}\right) \\
\{f, g\} & =2\left(\frac{\partial f}{\partial Q} \frac{\partial g}{\partial P^{\dagger}}+\frac{\partial f}{\partial Q^{\dagger}} \frac{\partial g}{\partial P}-\frac{\partial f}{\partial P} \frac{\partial g}{\partial Q^{\dagger}}-\frac{\partial f}{\partial P^{\dagger}} \frac{\partial g}{\partial Q}\right) . \tag{IV.26}
\end{align*}
$$

The fundamental nonzero Poisson bracket is

$$
\begin{equation*}
\left\{Q, P^{\dagger}\right\}=2 \tag{IV.27}
\end{equation*}
$$

In these variables, the Hamiltonian (IV.16) reads:

$$
\begin{equation*}
\mathcal{H}=\frac{\omega_{0}^{\prime}}{4}\left(\left(P^{\dagger} P+P P^{\dagger}\right)+\left(Q^{\dagger} Q+Q Q^{\dagger}\right)\right)-\omega_{L}^{\prime} \Lambda \tag{IV.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\frac{1}{4 \mathbf{i}}\left(\left(Q^{\dagger} P-Q P^{\dagger}\right)-\left(P Q^{\dagger}+P^{\dagger} Q\right)\right) \tag{IV.29}
\end{equation*}
$$

The corresponding equations of motion are:

$$
\begin{aligned}
\frac{d Q}{d t}=\{Q, \mathcal{H}\} & =2 \frac{\partial \mathcal{H}}{\partial P^{\dagger}}=\omega_{0}^{\prime} P-\mathbf{i} \omega_{L}^{\prime} Q \\
\frac{d P}{d t}=\{Q, \mathcal{H}\} & =-2 \frac{\partial \mathcal{H}}{\partial Q^{\dagger}}=-\omega_{0}^{\prime} Q-\mathbf{i} \omega_{L}^{\prime} P(\text { IV. } 30)
\end{aligned}
$$

With the shift variables

$$
\begin{equation*}
A_{(+)}=\frac{1}{2}(Q+\mathbf{i} P) ; A_{(-)}=\frac{1}{2}\left(Q^{\dagger}+\mathbf{i} P^{\dagger}\right), \tag{IV.31}
\end{equation*}
$$

the symplectic structure and the Poisson brackets are given by:

$$
\begin{equation*}
\omega=-\mathbf{i}\left(\mathbf{d} A_{(+)}^{\dagger} \wedge \mathbf{d} A_{(+)}+\mathbf{d} A_{(-)}^{\dagger} \wedge \mathbf{d} A_{(-)}\right), \tag{IV.32}
\end{equation*}
$$

$$
\begin{align*}
\{f, g\}=-\mathbf{i}(& \frac{\partial f}{\partial A_{(+)}} \frac{\partial g}{\partial A_{(+)}^{\dagger}}+\frac{\partial f}{\partial A_{(-)}} \frac{\partial g}{\partial A_{(-)}^{\dagger}} \\
& \left.-\frac{\partial f}{\partial A_{(+)}^{\dagger}} \frac{\partial g}{\partial A_{(+)}}-\frac{\partial f}{\partial A_{(-)}^{\dagger}} \frac{\partial g}{\partial A_{(-)}}\right) \tag{IV.33}
\end{align*}
$$

with fundamental nonzero brackets:

$$
\begin{equation*}
\left\{A_{(\pm)}, A_{(\pm)}^{\dagger}\right\}=-\mathbf{i} . \tag{IV.34}
\end{equation*}
$$

The Hamiltonian, with the (positive !) frequencies

$$
\begin{equation*}
\omega_{(\pm)}=\left(\omega_{0}^{\prime} \pm \omega_{L}^{\prime}\right) \tag{IV.35}
\end{equation*}
$$

reads now:

$$
\begin{equation*}
\mathcal{H}=\frac{\omega_{(+)}}{2}\left(A_{(+)}^{\dagger} A_{(+)}+A_{(+)} A_{(+)}^{\dagger}\right)+\frac{\omega_{(-)}}{2}\left(A_{(-)}^{\dagger} A_{(-)}+A_{(-)} A_{(-)}^{\dagger}\right) . \tag{IV.36}
\end{equation*}
$$

The corresponding equations of motion and their solutions are given by:

$$
\begin{equation*}
\frac{d A_{(\pm)}}{d t}=\left\{A_{(\pm)}, \mathcal{H}\right\}=-\mathbf{i} \frac{\partial \mathcal{H}}{\partial A_{(\pm)}^{\dagger}}=-\mathbf{i} \omega_{(\pm)} A_{(\pm)} ; \tag{IV.37}
\end{equation*}
$$

$$
\begin{equation*}
A_{(\pm)}(t)=\exp \left\{-\mathbf{i} \omega_{(\pm)} t\right\} A_{(\pm)}(0) . \tag{IV.38}
\end{equation*}
$$

The relations between variables are given by:

$$
\begin{align*}
A_{(+)} & =\frac{1}{2}(Q+\mathbf{i} P) \\
& =\frac{\sqrt{u}}{2}\left(\left(m^{\prime} \omega_{0}^{\prime}\right)^{+1 / 2}\left(1-\frac{b^{\prime}}{2 u}\right) q+\mathbf{i}\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1 / 2}\left(1+\frac{c^{\prime}}{2 u}\right) p\right) \\
A_{(-)}^{\dagger} & =\frac{1}{2}(Q-\mathbf{i} P) \\
& =\frac{\sqrt{u}}{2}\left(\left(m^{\prime} \omega_{0}^{\prime}\right)^{+1 / 2}\left(1+\frac{b^{\prime}}{2 u}\right) q-\mathbf{i}\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1 / 2}\left(1-\frac{c^{\prime}}{2 u}\right) p\right) . \tag{IV.39}
\end{align*}
$$

The inverse transformations are:

$$
\begin{align*}
q & =\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1 / 2} \sqrt{u / \chi}\left(Q-\mathbf{i} \frac{c^{\prime}}{2 u} P\right) \\
& =\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1 / 2} \sqrt{u / \chi}\left(\left(1-\frac{c^{\prime}}{2 u}\right) A_{(+)}+\left(1+\frac{c^{\prime}}{2 u}\right) A_{(-)}^{\dagger}\right) \\
p & =\left(m^{\prime} \omega_{0}^{\prime}\right)^{+1 / 2} \sqrt{u / \chi}\left(P-\mathbf{i} \frac{b^{\prime}}{2 u} Q\right) \\
& =\mathbf{i}\left(m^{\prime} \omega_{0}^{\prime}\right)^{+1 / 2} \sqrt{u / \chi}\left(\left(1-\frac{b^{\prime}}{2 u}\right) A_{(-)}^{\dagger}-\left(1+\frac{b^{\prime}}{2 u}\right) A_{(+)}\right) . \tag{IV.40}
\end{align*}
$$

Quantisation is trivial though the substitution of the fundamental Poison brackets (IV.27),(IV.34) by operator commutators

$$
\begin{equation*}
\left[\mathbf{Q}, \mathbf{P}^{\dagger}\right]=2 \mathbf{i} \hbar ;\left[\mathbf{A}_{(\pm)}, \mathbf{A}_{(\pm)}^{\dagger}\right]=\hbar \tag{IV.41}
\end{equation*}
$$

Having kept the initial ordering, the quantum Hamiltonian has eigenvalues:

$$
\begin{equation*}
E\left(n_{(+)}, n_{(-)}\right)=\hbar \omega_{(+)}\left(n_{(+)}+1 / 2\right)+\hbar \omega_{(-)}\left(n_{(-)}+1 / 2\right) \tag{IV.42}
\end{equation*}
$$

where $n_{(\pm)}$are nonnegative integers. The corresponding eigenvectors are denoted by $\mid n_{(+)}, n_{(-)}>$.

2. The degenerate or constraint case

The condition $\chi \doteq(1+B C)=0$ determines ω as a presymplectic structure on \mathcal{M} and shall be called the primary constraint. Again, the notation is simplified using complex variables[23]. The presymplectic two-form reads

$$
\begin{align*}
\omega= & \frac{1}{2}\left(d q^{\dagger} \wedge d p+d q \wedge d p^{\dagger}\right) \\
& -\frac{B}{4 \mathbf{i}}\left(d q^{\dagger} \wedge d q-d q \wedge d q^{\dagger}\right)+\frac{C}{4 \mathbf{i}}\left(d p^{\dagger} \wedge d p-d p \wedge d p^{\dagger}\right) \tag{IV.43}
\end{align*}
$$

The Hamiltonian (IV.2) becomes

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 m} \frac{p^{\dagger} p+p p^{\dagger}}{2}+\frac{\kappa}{2} \frac{q^{\dagger} q+q q^{\dagger}}{2}, \tag{IV.44}
\end{equation*}
$$

Writing a vector field as

$$
\begin{gather*}
\mathbf{X}=X^{i} \partial / \partial q^{i}+X_{k} \partial / \partial p_{k}=U \partial / \partial q+U^{\dagger} \partial / \partial q^{\dagger}+V \partial / \partial p+V^{\dagger} \partial / \partial p^{\dagger} \\
l_{X} \omega=\frac{1}{2}\left((U+\mathbf{i} C V) d q^{\dagger}+\left(U^{\dagger}-\mathbf{i} C V^{\dagger}\right) d q\right. \\
\left.-(V+\mathbf{i} B U) d p^{\dagger}-\left(V^{\dagger}-\mathbf{i} B U^{\dagger}\right) d p\right) \tag{IV.45}
\end{gather*}
$$

The homogeneous equation, $\imath_{\mathbf{Z}} \omega=0$ has nontrivial solutions. Indeed, with $U_{0}=Z^{1}+\mathbf{i} Z^{2}$ and $V_{0}=Z_{1}+\mathbf{i} Z_{2}$, equation
(IV.45) yields the system:

$$
\begin{equation*}
U_{0}+\mathbf{i} C V_{0}=0 ; \text { or } \quad V_{0}+\mathbf{i} B U_{0}=0, \tag{IV.46}
\end{equation*}
$$

of which the determinant is $\chi=1+B C=0$.
The inhomogeneous equation $l_{\mathbf{X}} \omega=\mathbf{d} \mathcal{H}$, i.e. the Hamiltonian dynamics, reads

$$
\begin{equation*}
U+\mathbf{i} C V=2 \frac{\partial \mathcal{H}}{\partial p^{\dagger}}=\frac{p}{m} ; V+\mathbf{i} B U=-2 \frac{\partial \mathcal{H}}{\partial q^{\dagger}}=\kappa q . \tag{IV.47}
\end{equation*}
$$

It will have a solution if

$$
\begin{equation*}
\langle\mathbf{d} \mathcal{H} \mid \mathbf{Z}\rangle=0 . \tag{IV.48}
\end{equation*}
$$

This condition, termed secondary constraint, is explicitely given by:

$$
\begin{equation*}
\frac{\partial \mathcal{H}}{\partial p}-\mathbf{i} C \frac{\partial \mathcal{H}}{\partial q}=0 ; \text { or } \quad \frac{\partial \mathcal{H}}{\partial q}-\mathbf{i} B \frac{\partial \mathcal{H}}{\partial p}=0 . \tag{IV.49}
\end{equation*}
$$

For the Hamiltonian (IV.44) this condition (IV.49) is linear:

$$
\begin{equation*}
\frac{1}{m} p+\mathbf{i} C \kappa q=0 ; \text { or } \quad \kappa q+\mathbf{i} B \frac{1}{m} p=0 . \tag{IV.50}
\end{equation*}
$$

The vector fields U and V are completely defined on \mathcal{M}_{2}, with ensuing equations of motion:
and defines the secondary constraint manifold \mathcal{M}_{2}.
On \mathcal{M}_{2}, a particular solution of $\iota_{\mathbf{X}} \omega=\mathbf{d} \mathcal{H}$ is given by:

$$
\begin{equation*}
U_{P}=\frac{p}{m} ; V_{P}=0 . \tag{IV.51}
\end{equation*}
$$

The general solution is given by:

$$
\begin{equation*}
U=\frac{p}{m}+U_{0} ; V=V_{0} . \tag{IV.52}
\end{equation*}
$$

where $\left(U_{0}, V_{0}\right)$ is restricted to obey (IV.46). This vector field, restricted to \mathcal{M}_{2}, should conserve the constraints i.e. must be tangent to \mathcal{M}_{2} :

$$
\begin{equation*}
0=\left\langle\left.\frac{1}{m} \mathbf{d} p+\mathbf{i} C \kappa \mathbf{d} q \right\rvert\, X\right\rangle, \tag{IV.53}
\end{equation*}
$$

$$
\begin{align*}
\frac{d q}{d t} & =U=-\mathbf{i} \frac{\sqrt{m \kappa} C}{1+m \kappa C^{2}} \omega_{0} q=\frac{1}{1+m \kappa C^{2}} \frac{p}{m} \\
\frac{d p}{d t} & =V=-\mathbf{i} \frac{\sqrt{m \kappa} C}{1+m \kappa C^{2}} \omega_{0} p=-\frac{m \kappa C^{2}}{1+m \kappa C^{2}} \kappa q \tag{IV.54}
\end{align*}
$$

In terms of the frequency:

$$
\begin{equation*}
\omega_{r}=-\frac{\sqrt{m \kappa} C}{1+m \kappa C^{2}} \omega_{0}=\frac{B / \sqrt{m \kappa}}{1+B^{2} / m \kappa} \omega_{0}, \tag{IV.55}
\end{equation*}
$$

the solution is given by

$$
\begin{equation*}
q(t)=\exp \left\{\mathbf{i} \omega_{r} t\right\} q_{0} ; p(t)=\exp \left\{\mathbf{i} \omega_{r} t\right\} p_{0} \tag{IV.56}
\end{equation*}
$$

Obviously, if q_{0} and p_{0} obey the secondary constraints (IV.50), $q(t)$ and $p(t)$ obey them at all times.

The same result can be obtained by symplectic reduction, restricting the pre-symplectic two-form (IV.43) to \mathscr{M}_{2} :

$$
\begin{gather*}
\omega_{\mid M_{2}}=-\mathbf{i} \frac{\left(1+m \kappa C^{2}\right)^{2}}{2 C} d q^{\dagger} \wedge d q \tag{IV.57}\\
\{f, g\}_{M_{2}}=\frac{2 \mathbf{i} C}{\left(1+m \kappa C^{2}\right)^{2}}\left(\frac{\partial f}{\partial q^{\dagger}} \frac{\partial g}{\partial q}-\frac{\partial f}{\partial q} \frac{\partial g}{\partial q^{\dagger}}\right) . \tag{IV.58}
\end{gather*}
$$

The fundamental Poisson bracket is

$$
\begin{equation*}
\left\{q, q^{\dagger}\right\}_{\mathscr{M}_{2}}=\frac{-2 \mathbf{i} C}{\left(1+m \kappa C^{2}\right)^{2}} \tag{IV.59}
\end{equation*}
$$

The dynamics are given by:

$$
\begin{equation*}
\frac{d q}{d t}=-\frac{2 \mathbf{i} C}{(1+m \kappa C)^{2}} \frac{\partial \mathcal{H}_{r}}{\partial q^{\dagger}} . \tag{IV.60}
\end{equation*}
$$

3. The $\chi \rightarrow 0$ limit of (IV A 1).

We need the expansion of

$$
\begin{equation*}
\left(m^{\prime} \omega_{0}^{\prime}\right)=\left(m \omega_{0}\right) \times\left(\left(1+\frac{b^{2}}{4 u^{2}}\right)\left(1+\frac{c^{2}}{4 u^{2}}\right)^{-1}\right)^{1 / 2} \tag{IV.67}
\end{equation*}
$$

in powers of $\varepsilon=\sqrt{\chi}$, where $1+b c=\varepsilon^{2}$ and $2 u=1+\varepsilon$.

$$
\begin{align*}
\left(m^{\prime} \omega_{0}^{\prime}\right) & =\frac{m \omega_{0}}{|c|}\left(1+\frac{c^{2}-1}{c^{2}+1} \varepsilon+\cdots\right) \\
& =\frac{1}{|C|}\left(1+\frac{c^{2}-1}{c^{2}+1} \varepsilon+\cdots\right) \\
\left(m^{\prime} \omega_{0}^{\prime}\right)^{-1} & =\frac{\left(m \omega_{0}\right)^{-1}}{|b|}\left(1+\frac{b^{2}-1}{b^{2}+1} \varepsilon+\cdots\right) \\
& =\frac{1}{|B|}\left(1+\frac{b^{2}-1}{b^{2}+1} \varepsilon+\cdots\right) . \tag{IV.68}
\end{align*}
$$

Also, from (IV.25), we obtain

$$
\begin{aligned}
\frac{c^{\prime}}{2 u} & =\frac{\left(m^{\prime} \omega_{0}^{\prime}\right) C}{2 u}=\frac{C}{|C|}\left(1-\frac{2}{c^{2}+1} \varepsilon+\cdots,\right) \\
\frac{b^{\prime}}{2 u} & =\frac{B}{\left(m^{\prime} \omega_{0}^{\prime}\right) 2 u}=\frac{B}{|B|}\left(1-\frac{2}{b^{2}+1} \varepsilon+\cdots,\right)(\text { IV. } 69)
\end{aligned}
$$

For definitenees, we assume in the following $B>0$ and so $C<0$ in the limit $\varepsilon \rightarrow 0$. We obtain

$$
\begin{gather*}
1-\frac{b^{\prime}}{2 u}=\frac{2}{1+b^{2}} \varepsilon+\cdots \\
1+\frac{b^{\prime}}{2 u}=2-\frac{2}{1+b^{2}} \varepsilon+\cdots \\
1+\frac{c^{\prime}}{2 u}=\frac{2}{1+c^{2}} \varepsilon+\cdots \\
1-\frac{c^{\prime}}{2 u}=2-\frac{2}{1+b^{2}} \varepsilon+\cdots \tag{IV.70}
\end{gather*}
$$

Also:

$$
\begin{equation*}
\omega_{0}^{\prime}=\frac{\omega_{0}}{2 \varepsilon^{2}}(b-c)\left(1+\frac{2 \varepsilon^{2}}{(b-c)^{2}}\right), \omega_{L}^{\prime}=\frac{\omega_{0}}{2 \varepsilon^{2}}(b-c), \tag{IV.71}
\end{equation*}
$$

$$
\begin{align*}
& \omega_{(+)}=\omega_{0}^{\prime}+\omega_{L}^{\prime}=-\omega_{0} \frac{1+\left(m \omega_{0}\right)^{2} C^{2}}{\left(m \omega_{0}\right) C} \frac{1}{\varepsilon^{2}}, \\
& \omega_{(-)}=\omega_{0}^{\prime}-\omega_{L}^{\prime}=-\omega_{0} \frac{\left(m \omega_{0}\right) C}{1+\left(m \omega_{0}\right)^{2} C^{2}} . \tag{IV.72}
\end{align*}
$$

One of the frequencies $\omega_{(+)}$diverges, while the other $\omega_{(-)}$ tends to ω_{r} defined in (IV.55). The relations in (IV.39) yield the initial conditions:

$$
\begin{align*}
& A_{(+)}(0) \approx \sqrt{\frac{|B|}{2}}\left(1+b^{2}\right)^{-1}\left(q_{0}+\mathbf{i} \frac{B}{\left(m \omega_{0}\right)^{2}} p_{0}\right)\left(\varepsilon+O\left(\varepsilon^{2}\right)\right) \\
& A_{(-)}^{\dagger}(0) \approx \sqrt{\frac{|B|}{2}}\left(q_{0}-\mathbf{i} \frac{1}{|B|} p_{0}\right)\left(1+O\left(\varepsilon^{2}\right)\right) . \tag{IV.73}
\end{align*}
$$

The solutions (IV.40), in the $\varepsilon \rightarrow 0$ limit are then written as

$$
\begin{align*}
q(t) \approx & \sqrt{\frac{2}{|B|}}\left(\frac{1}{\varepsilon} A_{(+)}(0) \exp \left\{-\mathbf{i} \omega_{(+)} t\right\}+\frac{1}{1+c^{2}} A_{(-)}^{\dagger}(0) \exp \left\{\mathbf{i} \omega_{r} t\right\}\right) \\
\approx & \left(1+b^{2}\right)^{-1}\left(q_{0}+\mathbf{i} \frac{|B|}{\left(m \omega_{0}\right)^{2}} p_{0}\right) \exp \left\{-\mathbf{i} \omega_{(+)} t\right\} \\
& +\left(1+c^{2}\right)^{-1}\left(q_{0}-\mathbf{i}|B|^{-1} p_{)}\right) \exp \left\{+\mathbf{i} \omega_{r} t\right\} \tag{IV.74}
\end{align*}
$$

The first term is a fast oscillating function with diverging frequency and so averages to zero. Furthermore, if the initial conditions are on \mathcal{M}_{2}, i.e. if $\left(q_{0}+\mathbf{i}|B| p_{0} /\left(m \omega_{0}\right)^{2}\right)=0$, this first term behaves as $O(\varepsilon) \exp \left\{\mathbf{i} v t / \varepsilon^{2}\right\}$ converging to zero. The second term is then reduced to the expression (IV.56) of
$q(t)$. Similar considerations hold for $p(t)$ in such a way that the solution stays on M_{2}.

B. Noncommutative $\mathbf{R}^{\mathbf{3}}$

In $\mathbf{R}^{\mathbf{3}}$, the magnetic fields \mathbf{F} and \mathbf{G} are written in terms of pseudovectors $\overline{\mathbf{B}}=\left\{B^{k}\right\}$ and $\underline{\mathbf{C}}=\left\{C_{k}\right\}$ as:

$$
\begin{equation*}
e F_{i j}=\varepsilon_{i j k} B^{k} ; r G^{i j}=\varepsilon^{i j k} C_{k} . \tag{IV.75}
\end{equation*}
$$

The closed two-form (III.1) is written as:

$$
\begin{equation*}
\omega=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i}-\frac{1}{2} \varepsilon_{i j k} B^{k} \mathbf{d} q^{i} \wedge \mathbf{d} q^{j}+\frac{1}{2} \varepsilon^{k l m} C_{m} \mathbf{d} p_{k} \wedge \mathbf{d} p_{l} \tag{IV.76}
\end{equation*}
$$

The fundamental equation $l_{X} \omega=\mathbf{d} f$ reads

$$
\begin{equation*}
X^{i}-C_{k} \varepsilon^{i j k} X_{j}=\frac{\partial f}{\partial p_{i}} ; X_{k}-B^{i} \varepsilon_{k l i} X^{l}=-\frac{\partial f}{\partial q^{k}} . \tag{IV.77}
\end{equation*}
$$

Defining $\vartheta=\underline{\mathbf{C}} \cdot \overline{\mathbf{B}}=C_{k} B^{k}$ and $\chi=1+\vartheta$, this is also written as

$$
\begin{align*}
& \chi X^{i}=\left(\delta_{j}^{i}+B^{i} C_{j}\right) \frac{\partial f}{\partial p_{j}}-C_{k} \varepsilon^{i j k} \frac{\partial f}{\partial q^{j}} \\
& \chi X_{k}=-\left(\left(\delta_{k}^{l}+C_{k} B^{l}\right) \frac{\partial f}{\partial q^{l}}-B^{i} \varepsilon_{k l i} \frac{\partial f}{\partial p_{l}}\right) . \tag{IV.78}
\end{align*}
$$

The 3×3 matrices Φ and Ψ read:

$$
\Phi_{i}{ }^{j}=\chi \delta_{i}{ }^{j}-C_{i} B^{j} ; \Psi^{k}{ }_{l}=\chi \delta^{k}{ }_{l}-B^{k} C_{l},
$$

with $\operatorname{det} \Phi=\operatorname{det} \Psi=\chi^{2}$. Assuming again $\chi \neq 0[24]$, these matrices have inverses:

$$
\left(\Phi^{-1}\right)_{i}^{j}=\frac{1}{\chi}\left(\delta_{i}^{j}+C_{i} B^{j}\right),\left(\Psi^{-1}\right)_{\ell}^{k}=\frac{1}{\chi}\left(\delta^{k}{ }_{\ell}+B^{k} C_{\ell}\right) .
$$

The Hamiltonian vector fields are obtained from (IV.78):

$$
\begin{align*}
& X^{i}=\chi^{-1}\left(\left(\delta^{i}{ }_{j}+B^{i} C_{j}\right) \frac{\partial f}{\partial p_{j}}-C_{k} \varepsilon^{i j k} \frac{\partial f}{\partial q^{j}}\right), \\
& X_{k}=-\chi^{-1}\left(\left(\delta_{k}{ }^{l}+C_{k} B^{l}\right) \frac{\partial f}{\partial q^{l}}-B^{i} \varepsilon_{k l i} \frac{\partial f}{\partial p_{l}}\right) \tag{IV.79}
\end{align*}
$$

The Poissson brackets are given by:

$$
\begin{align*}
\left\{q^{i}, q^{j}\right\}=-\chi^{-1} \varepsilon^{i j k} C_{k} & , \quad\left\{q^{i}, p_{l}\right\}=\chi^{-1}\left(\delta_{l}^{i}+B^{i} C_{l}\right) \\
\left\{p_{k}, q^{j}\right\}=-\chi^{-1}\left(\delta_{k}{ }^{j}+C_{k} B^{j}\right) & , \quad\left\{p_{k}, p_{l}\right\}=\chi^{-1} \varepsilon_{k l m} B^{m} \tag{IV.80}
\end{align*}
$$

The Ansatz (IV.8) has to be generalised to

$$
\begin{align*}
\xi^{i} & =\alpha q^{i}+\alpha^{\prime} B^{i}\left(C_{k} q^{k}\right)-\beta \frac{1}{2} \varepsilon^{i j k} p_{j} C_{k} \\
\pi_{k} & =\alpha p_{k}+\alpha^{\prime}\left(p_{i} B^{i}\right) C_{k}+\beta \frac{1}{2} \varepsilon_{k l m} B^{l} q^{m} \tag{IV.81}
\end{align*}
$$

For α, β similar equations as in (IV.9) are obtained:

$$
\begin{equation*}
\alpha^{2}-\alpha \beta-\frac{\vartheta}{4} \beta^{2}=0, \alpha^{2}+\vartheta(\alpha \beta)-\frac{\vartheta}{4} \beta^{2}=\chi \tag{IV.82}
\end{equation*}
$$

with a the same solution (χ assumed to be strictly positive):

$$
\begin{equation*}
\alpha=\sqrt{u} ; \beta=\frac{1}{\sqrt{u}} ; u=\frac{1}{2}(1+\sqrt{\chi}) . \tag{IV.83}
\end{equation*}
$$

Furthermore, there is an additional equation for α^{\prime} :

$$
\begin{equation*}
\chi\left(\vartheta \alpha^{\prime 2}+2 \alpha \alpha^{\prime}\right)+\left(\alpha^{2}-\alpha \beta+\frac{1}{4} \beta^{2}\right)=0 . \tag{IV.84}
\end{equation*}
$$

Substituting (IV.83), one obtains

$$
\vartheta \alpha^{\prime 2}+2 \sqrt{u} \alpha^{\prime}+\frac{1}{4 u}=0
$$

with solution, remaining finite when $\vartheta \rightarrow 0$,:

$$
\begin{equation*}
\alpha^{\prime}=\sqrt{u} \gamma=\frac{(1-\sqrt{u})}{\vartheta} . \tag{IV.85}
\end{equation*}
$$

The formulae (IV.81) are finally written as:

$$
\begin{align*}
& \xi^{i}=\sqrt{u}\left(q^{i}+\gamma B^{i}\left(C_{k} q^{k}\right)-\frac{1}{2 u} \varepsilon^{i j k} p_{j} C_{k}\right) ; \\
& \pi_{k}=\sqrt{u}\left(p_{k}+\gamma\left(p_{i} B^{i}\right) C_{k}+\frac{1}{2 u} \varepsilon_{k l m} B^{l} q^{m}\right) \tag{IV.86}
\end{align*}
$$

In old fashioned vector notation, this appears as:

$$
\begin{align*}
& \bar{\xi}=\sqrt{u}\left(\overline{\mathbf{q}}+\gamma \overline{\mathbf{B}}(\underline{\mathbf{C}} \cdot \overline{\mathbf{q}})-\frac{1}{2 u} \underline{\mathbf{p}} \times \underline{\mathbf{C}}\right) ; \\
& \underline{\pi}=\sqrt{u}\left(\underline{\mathbf{p}}+\gamma(\underline{\mathbf{p}} \cdot \overline{\mathbf{B}}) \underline{\mathbf{C}}+\frac{1}{2 u} \overline{\mathbf{B}} \times \overline{\mathbf{q}}\right) . \tag{IV.87}
\end{align*}
$$

The inverse formulae of (IV.86) are obtained as:

$$
\begin{aligned}
q^{i} & =\frac{\sqrt{u}}{\sqrt{\chi}}\left(\xi^{i}+\gamma^{\prime} B^{i}\left(C_{k} \xi^{k}\right)+\frac{1}{2 u} \varepsilon^{i j k} \pi_{j} C_{k}\right) \\
p_{k} & =\frac{\sqrt{u}}{\sqrt{\chi}}\left(\pi_{k}+\gamma^{\prime} C_{k}\left(\pi_{l} B^{l}\right)-\frac{1}{2 u} \varepsilon_{k l m} B^{l} \xi^{m}\right)(\text { IV. } 88)
\end{aligned}
$$

Or, in vector notation:

$$
\begin{align*}
& \overline{\mathbf{q}}=\frac{\sqrt{u}}{\sqrt{\chi}}\left(\bar{\xi}+\gamma^{\prime} \overline{\mathbf{B}}(\underline{\mathbf{C}} \cdot \bar{\xi})+\frac{1}{2 u} \underline{\pi} \times \underline{\mathbf{C}}\right) \\
& \underline{\mathbf{p}}=\frac{\sqrt{u}}{\sqrt{\chi}}\left(\underline{\pi}+\gamma^{\prime} \underline{\mathbf{C}}(\underline{\pi} \cdot \overline{\mathbf{B}})-\frac{1}{2 u} \overline{\mathbf{B}} \times \bar{\xi}\right) \tag{IV.89}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma^{\prime}=\frac{\sqrt{\chi}-\sqrt{u}}{\vartheta \sqrt{u}} . \tag{IV.90}
\end{equation*}
$$

Again, for sake of simplicity, we consider a configuration space which is Euclidean $Q=\mathbf{E}^{3}$ with metric $\langle\overline{\mathbf{v}} ; \overline{\mathbf{w}}\rangle=$ $\delta_{i j} v^{i} w^{j}=(\underline{\mathbf{v}} \cdot \overline{\mathbf{w}})$ such that $v_{i}=\delta_{i j} v^{i}$. Substitution of (IV.88) in a Hamiltonian of the form (IV.2), leads to a Hamiltonian quadratic in (ξ, π) and to a system of linear evolution equations. In the case when $\overline{\mathbf{B}}$ and $\underline{\mathbf{C}}$ point in the same direction:

$$
\begin{equation*}
\overline{\mathbf{B}}=B \overline{\mathbf{e}}_{Z} ; \underline{\mathbf{C}}=C \underline{\mathbf{e}}_{Z} \tag{IV.91}
\end{equation*}
$$

a particularly simple Hamiltonian is obtained. Parallel coordinates are defined by ξ^{3}, π_{3} and transverse coordinate vectors
by $\bar{\xi}_{\perp}=\bar{\xi}-\xi^{3} \overline{\mathbf{e}}_{Z}$ and $\underline{\pi}_{\perp}=\underline{\pi}-\pi_{3} \underline{\mathbf{e}}_{Z}$. Indeed, eq. (IV.88) becomes

$$
\begin{array}{cl}
q^{1}=\frac{\sqrt{u}}{\sqrt{\chi}}\left(\xi^{1}+\frac{1}{2 u} \pi_{2} C\right), p_{1}=\frac{\sqrt{u}}{\sqrt{\chi}}\left(\pi_{1}+\frac{1}{2 u} \xi^{2} B\right), \\
q^{2}=\frac{\sqrt{u}}{\sqrt{\chi}}\left(\xi^{2}-\frac{1}{2 u} \pi_{1} C\right), p_{2}=\frac{\sqrt{u}}{\sqrt{\chi}}\left(\pi_{2}-\frac{1}{2 u} B \xi^{1}\right), \\
q^{3}=\xi^{3}, p_{3}=\pi_{3} . \tag{IV.92}
\end{array}
$$

The Hamiltonian is:

$$
\begin{equation*}
\mathcal{H}(\xi, \pi)=\left(\frac{1}{2 m_{\perp}}\left(\underline{\pi}_{\perp}\right)^{2}+\frac{k_{\perp}}{2}\left(\bar{\xi}_{\perp}\right)^{2}\right)+\left(\frac{1}{2 m}\left(\pi_{3}\right)^{2}+\frac{k}{2}\left(\xi^{3}\right)^{2}\right)+\mathcal{H}_{\text {int }}(\xi, \pi) . \tag{IV.93}
\end{equation*}
$$

The transverse degrees of freedom are seen to have a renormalised[25] mass and elasticity constant which are given by the same expressions as in (IV.18):

$$
\begin{equation*}
\frac{1}{m_{\perp}}==\frac{1}{m} \frac{u}{\chi}\left(1+\frac{c^{2}}{4 u^{2}}\right) ; \kappa_{\perp}=\kappa \frac{u}{\chi}\left(1+\frac{b^{2}}{4 u^{2}}\right) \tag{IV.94}
\end{equation*}
$$

where

$$
b=\frac{B}{\sqrt{m \kappa}} ; c=C \sqrt{m \kappa} .
$$

The fields $\overline{\mathbf{B}}$ and $\underline{\mathbf{C}}$ induce a sort of magnetic moment interaction along the Z-axis with the same Larmor frequency as before:

$$
\begin{equation*}
\widetilde{\mathcal{H}}_{i n d}(\xi, \pi)=-\omega_{L}^{\prime} \Lambda_{3} \tag{IV.95}
\end{equation*}
$$

where $\Lambda_{3}=\xi^{1} \pi_{2}-\xi^{2} \pi_{1}$. Acrtually, the condition (IV.91) reduces the $(N=3)$ case to a sum $(N=2) \oplus(N=1)$. The three relevant frequencies of our oscilator are:

$$
\begin{equation*}
\omega_{3}=\sqrt{k / m} ; \omega_{\perp}=\sqrt{k_{\perp} / m_{\perp}} ; \omega_{L}^{\prime}=\frac{1}{\chi} \omega_{0}(b-c) \tag{IV.96}
\end{equation*}
$$

The spectrum of the quantum Hamiltonian is easily obtained as

$$
\begin{align*}
& E\left(n_{(+)}, n_{(-)}, n_{3}\right)=\hbar \omega_{(+)}\left(n_{(+)}+1 / 2\right)+ \\
& \hbar \omega_{(-)}\left(n_{(-)}+1 / 2\right)+\hbar \omega_{3}\left(n_{3}+1 / 2\right), \tag{IV.97}
\end{align*}
$$

where $n_{(\pm)}, n_{3}$ are nonnegative integers. Corresponding eigenvectors are denoted by $\mid n_{(+)}, n_{(-)}, n_{3}>$.

V. SYMMETRIES

For Euclidean configuration space $Q \equiv \mathbf{E}^{N}$, with metric $\delta_{i j}$, an infinitesimal rotation is written as:

$$
\begin{equation*}
\varphi: q^{i} \rightarrow q^{\prime i}=q^{i}+\frac{1}{2} \delta \varepsilon^{\alpha \beta}\left(M_{\alpha \beta}\right)_{j}^{i} q^{j} \tag{V.98}
\end{equation*}
$$

where $\left(M_{\alpha \beta}\right)^{i}{ }_{j}=\delta^{i}{ }_{\alpha} \delta_{\beta j}-\delta^{i}{ }_{\beta} \delta_{\alpha j}$ are the generators of the rotation group obeying the Lie algebra relations:

$$
\begin{equation*}
\left[M_{\alpha \beta}, M_{\mu v}\right]=-\delta_{\alpha \mu} M_{\beta v}+\delta_{\alpha v} M_{\beta \mu}-\delta_{\beta v} M_{\alpha \mu}+\delta_{\beta \mu} M_{\alpha v} \tag{V.99}
\end{equation*}
$$

This induces the push forward in $T^{*}(Q)$:

$$
\begin{align*}
& \widetilde{\varphi}: T^{*}(Q) \rightarrow T^{*}(Q):\left(q^{i}, p_{k}\right) \rightarrow\left(q^{\prime i}, p^{\prime}{ }_{k}\right) \\
& q^{\prime i}=q^{i}+\frac{1}{2} \delta \varepsilon^{\alpha \beta}\left(M_{\alpha \beta}\right)_{j}^{i} q^{j} \\
& {p^{\prime}}_{k}^{\prime}=p_{k}-\frac{1}{2} \delta \varepsilon^{\alpha \beta} p_{l}\left(M_{\alpha \beta}\right)_{k}^{l} . \tag{V.100}
\end{align*}
$$

In a basis[26] $\left\{\mathbf{e}_{\alpha \beta}\right\}$ of $\mathcal{L}(S O(N))$, let $\mathbf{u}=(1 / 2) \mathbf{e}_{\alpha \beta} u^{\alpha \beta}$ denote a generic element. With $\mathcal{R}(\mathbf{u})=\exp \left\{\frac{1}{2} u^{\alpha \beta} M_{\alpha \beta}\right\}$, finite rotations are written as

$$
\begin{equation*}
q^{i} \rightarrow q^{\prime i}=\mathcal{R}(\mathbf{u})_{j}^{i} q^{j} ; p_{k} \rightarrow p^{\prime}{ }_{k}=p_{l} \mathcal{R}^{-1}(\mathbf{u})_{k}^{l} \tag{V.101}
\end{equation*}
$$

The vector field $\mathbf{X}_{\mathbf{u}}$ (see appendix \mathbf{A}) is given by its components:

$$
\begin{equation*}
\left(X_{\mathbf{u}}\right)^{i}=\frac{1}{2} u^{\alpha \beta}\left(M_{\alpha \beta}\right)_{j}^{i} q^{j} ;\left(X_{\mathbf{u}}\right)_{k}=-\frac{1}{2} u^{\alpha \beta} p_{l}\left(M_{\alpha \beta}\right)_{k}^{l} \tag{V.102}
\end{equation*}
$$

It conserves the canonical symplectic potential and two-form:

$$
\mathcal{L}_{X_{\mathbf{u}}} \theta_{0}=0 ; \mathcal{L}_{X_{\mathbf{u}}} \omega_{0}=0
$$

The action is in fact Hamiltonian for the canonical symplectic structure. With the notation of appendix \mathbf{A}, we have

$$
\begin{align*}
& \mathbf{X}_{\mathbf{u}}=\omega_{0}^{\sharp}(\mathbf{d} \Xi(\mathbf{u})), \\
& \Xi(\mathbf{u})=\frac{1}{2} u^{\alpha \beta} g_{\alpha \beta}^{0}(q, p), \\
& g^{0}: T^{*}(Q) \rightarrow \mathcal{L}^{*}(S O(N)):(q, p) \rightarrow \frac{1}{2} g_{\alpha \beta}^{0}(q, p) \mathbf{e}^{\alpha \beta}, \\
& g_{\alpha \beta}^{0}(q, p)=p_{k}\left(M_{\alpha \beta}\right)^{k}{ }_{j} q^{j} . \tag{V.103}
\end{align*}
$$

In terms of the momenta $g_{\alpha \beta}^{0}$, the rotation (V.98) reads

$$
\begin{equation*}
\delta q^{i}=\frac{1}{2} \delta \varepsilon^{\alpha \beta}\left\{q^{i}, g_{\alpha \beta}^{0}\right\}_{0} ; \delta p_{k}=\frac{1}{2} \delta \varepsilon^{\alpha \beta}\left\{p_{k}, g_{\alpha \beta}^{0}\right\}_{0} \tag{V.104}
\end{equation*}
$$

The Lie algebra relations (V.99) become Poisson brackets:

$$
\begin{equation*}
\left\{g_{\alpha \beta}^{0}, g_{\mu v}^{0}\right\}_{0}=-\delta_{\alpha \mu} g_{\beta v}^{0}+\delta_{\alpha v} g_{\beta \mu}^{0}-\delta_{\beta v} g_{\alpha \mu}^{0}+\delta_{\beta \mu} g_{\alpha v}^{0} . \tag{V.105}
\end{equation*}
$$

Naturally, for the modified symplectic structure (III.1), the action (V.100) will be symplectic if, and only if, the magnetic fields obey:

$$
\begin{align*}
F_{k l}(q) & =F_{i j}(\mathcal{R}(\mathbf{u}) q)(\mathcal{R}(\mathbf{u}))^{i}{ }_{k}(\mathcal{R}(\mathbf{u}))^{j}{ }_{l}, \tag{V.106}\\
G^{k l}(p) & =\left(\mathcal{R}^{-1}(\mathbf{u})\right)^{k}{ }_{i}\left(\mathcal{R}^{-1}(\mathbf{u})\right)^{l}{ }_{j} G^{i j}\left(p \mathcal{R}^{-1}(\mathbf{u} \backslash \text { V. } 10\right.
\end{align*}
$$

For constant magnetic fields, this holds if $\mathcal{R}(\mathbf{u})$ belongs to the intersection of the isotropy groups of \mathbf{F} and \mathbf{G}, which, in three dimensions, is not empty if both magnetic fields are along the same axis. A rotation along this " z -axis" is then symplectic. However, in general it will not be Hamiltonian and there will be no momentum \mathcal{I}_{Z} such that $\delta q=\left\{q, I_{Z}\right\}$. Again the discussion simplifies when one of the charges r or e vanishes. If the potentials \mathbf{A} or $\widetilde{\mathbf{A}}$ are invariant under $\mathcal{R}(\mathbf{u})$, then the action is Hamiltonian[27] with momentum defined by the symplectic potentials (III.13) or (III.18) as

$$
\begin{equation*}
\langle\mathcal{I}(q, p) \mid \mathbf{u}\rangle=\left\langle\theta_{(e, 0)} \mid X_{\mathbf{u}}\right\rangle \text { or } \quad\left\langle\theta_{(0, r)} \mid X_{\mathbf{u}}\right\rangle . \tag{V.108}
\end{equation*}
$$

Obviously there is always an $S O(N)$ group action on the (ξ, π) coordinates which is Hamiltonian with respect to (III.1) and momentum given by:

$$
\begin{equation*}
J_{\alpha \beta}(\xi, \pi)=\pi_{k}\left(M_{\alpha \beta}\right)^{k}{ }_{j} \xi^{j} . \tag{V.109}
\end{equation*}
$$

However, the hamiltonian (IV.2), looking apparently $S O(N)$ symmetric, is explicitely seen not to be so when expressed in the (ξ, π) variables.

VI. FINAL COMMENTS

The symplectic structure in cotangent space, $T^{*}(Q) \xrightarrow{\text { K }} Q$, was modified through the introduction of a closed two-form \mathbf{F} on $T^{*} Q$, which has the geometic meaning of the pull-back of the magnetic field F, a closed two-form on $Q: \mathbf{F}=\kappa^{*}(F)$. A first caveat warns us that the other closed two-form \mathbf{G} does not have such an intrinsic interpretation. Indeed, it is obvious that
a mere change of coordinates in Q will spoil the form (III.1) of ω. This means that our approach must be restricted to configuration spaces with additional properties, which have to be conserved by coordinate changes. The most simple example is a flat linear[28] space $Q=\mathbf{E}^{N}$, when (III.1) is assumed to hold in linear coordinates. Obviously, a linear change in coordinates will then conserve this particular form. Although the restriction to constant fields \mathbf{F} and \mathbf{G} is a severe limitation[29], it allowed us to find explicit Darboux coordinates (IV.8) when $N=2$ and (IV.81) when $N=3$.

Finally, when $\operatorname{det}\{\mathbf{1}-r \mathbf{G} e \mathbf{F}\}=0$, the closed two-form ω is degenerate with constant rank and defines a pre-symplectic structure on $T^{*}(Q)$. Its null-foliation decomposes $T^{*}(Q)$ in disjoint leaves and on the space of leaves, ω projects to a unique symplectic two-form. In two dimensions, the representations of the corresponding quantum algebra in Hilbert space and its reduction in the degeneracy case were studied in [11-14, 18].

APPENDIX A: ESSENTIAL SYMPLECTIC MECHANICS

Let $\{\mathcal{M}, \omega\}$ be a symplectic manifold with symplectic structure defined by a two-form ω which is closed, $\mathbf{d} \omega=$ 0 , and nondegenerate such that the induced mapping ω^{b} : $T(\mathscr{M}) \rightarrow T^{*}(\mathscr{M}): \mathbf{X} \rightarrow l_{\mathbf{X}} \omega$ has an inverse $\omega^{\sharp}: T^{*}(\mathcal{M}) \rightarrow$ $T(\mathscr{M}): \alpha \rightarrow \omega^{\sharp}(\alpha)$. The paradigm of a (non-compact) symplectic manifold is a cotangent bundle $T^{*}(Q)$ of a differential configuration space Q. In a coordinate system $\left\{q^{i}\right\}$ of Q, a cotangent vector may be written as $\alpha_{q}=p_{i} \mathbf{d} q^{i}$. This defines coordinates $z \Rightarrow\left\{q^{i}, p_{k}\right\}$ of points $z \in \mathcal{M} \equiv T^{*}(Q)$ and an associated holonomic basis $\left\{\mathbf{d} p_{k}, \mathbf{d} q^{i}\right\}$ of $T_{z}^{*}(\mathcal{M})$. The canonical one-form is defined as $\theta_{0} \doteq p_{i} \mathbf{d} q^{i}$. Obviously, the exact two-form $\omega_{0} \doteq-\mathbf{d} \theta_{0}=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i}$ is symplectic.
To each observable, which is a differentiable function f on $\{\mathcal{M}, \omega\}$, the symplectic structure associates a Hamiltonian vector field:

$$
\begin{equation*}
\mathbf{X}_{f} \doteq \omega^{\sharp}(\mathbf{d} f) \quad \text { or } \quad l_{\mathbf{x}_{f}} \omega=\mathbf{d} f \tag{A.1}
\end{equation*}
$$

Such a vector field generates a one-parameter (local) transformation group: $\mathcal{I}_{f}(t): \mathcal{M} \rightarrow \mathcal{M}: z_{0} \rightarrow z(t)$, solution of $\mathbf{d} z(t) / \mathbf{d} t=\mathbf{X}_{f}(z(t)), z(0)=z_{0}$.
In particular, the Hamiltonian \mathcal{H} generates the dynamics of the associated mechanical system. With the usual interpretation of time, $\mathbf{X}_{\mathcal{H}}$ is assumed to be complete such that its flux is defined for all $t \in[-\infty,+\infty]$. Transformations, induced by an Hamiltonian vector field \mathbf{X}_{f}, conserve the symplectic structure[30]:

$$
\begin{equation*}
\mathcal{I}_{f}(t)^{*} \omega=\omega \text { or, locally: } \mathcal{L}_{\mathbf{X}_{f}} \omega=0 \tag{A.2}
\end{equation*}
$$

More generally, the transformations conserving the symplectic structure form the group $\operatorname{Sympl}(\mathcal{M})$ of symplectomorphisms or canonical transformations. Vector fields obeying $\mathcal{L}_{\mathbf{X}} \omega=0$, generate canonical transformations and are called locally Hamiltonian, since [31] d $l_{\mathbf{X}} \omega=0$ implies that, locally in some $U \subset \mathcal{M}$, there exists a function f such that $\mathbf{d} f_{\mid U}=\left(l_{\mathbf{X}} \omega\right)_{\mid U}$.

The Darboux theorem guarantees the existence of local charts $U \subset \mathcal{M}$ with coordinates $\left\{q^{i}, p_{k}\right\}$ such that, in each U, ω is written as:

$$
\begin{equation*}
\omega_{\mid U}=\mathbf{d} q^{i} \wedge \mathbf{d} p_{i} \tag{A.3}
\end{equation*}
$$

In the natural basis $\left\{\partial / \partial \mathbf{q}^{\mathbf{i}}, \partial / \partial \mathbf{p}_{\mathbf{k}}\right\}$ of $T_{z}(\mathcal{M})$, the Hamiltonian vector fields corresponding to f reads

$$
\mathbf{X}_{f}=\frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial \mathbf{q}^{i}}-\frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial \mathbf{p}_{i}}
$$

The Poisson bracket of two observables is defined by: $\{f, g\} \doteq \omega\left(\mathbf{X}_{f}, \mathbf{X}_{g}\right)$, with the following properties:

$$
\begin{aligned}
& \left\{f_{1}, f_{2}\right\}=-\left\{f_{2}, f_{1}\right\} \\
& \left\{f_{1}, g_{1} \cdot g_{2}\right\}=\left\{f, g_{1}\right\} \cdot g_{2}+g_{1} \cdot\left\{f, g_{2}\right\} \\
& \left\{f,\left\{g_{1}, g_{2}\right\}\right\}=\left\{\left\{f, g_{1}\right\}, g_{2}\right\}+\left\{g_{1},\left\{f, g_{2}\right\}\right\}
\end{aligned}
$$

These properties, relating the pointwise product $g_{1} \cdot g_{2}$ with the bracket $\{f, g\}$, are said to endow the set of differentiable functions on \mathcal{M} with the structure of a Poisson algebra $\mathcal{P}(\mathcal{M})$. In a coordinate system $\left(z^{A}\right)$, where $\omega=\frac{1}{2} \omega_{A B} \mathbf{d} z^{A} \wedge$ $\mathbf{d} z^{B}$, it is given by:

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial z^{A}} \Lambda^{A B} \frac{\partial g}{\partial z^{B}} \tag{A.4}
\end{equation*}
$$

where Λ is minus ω^{-1}. In Darboux coordinates it reads:

$$
\begin{equation*}
\{f, g\}_{0}=\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}} \tag{A.5}
\end{equation*}
$$

The Poisson brackets of the Darboux coordinates themselves are:
$\left\{q^{i}, q^{j}\right\}_{0}=0,\left\{q^{i}, p_{l}\right\}_{0}=\delta^{i}{ }_{l},\left\{p_{k}, q^{j}\right\}_{0}=-\delta_{k}{ }^{j},\left\{p_{k}, p_{l}\right\}_{0}=0$.
The dynamical evolution of an observable is given by:

$$
\begin{equation*}
\frac{\mathbf{d} f}{\mathbf{d} t}=\overrightarrow{\mathbf{X}}_{\mathscr{H}}(f)={ }_{\mathbf{\mathbf { X } _ { \mathcal { H } }}} \mathbf{d} f={ }_{\mathbf{\mathbf { X } _ { \mathcal { H } }}} l \mathbf{x}_{f} \omega=\omega\left(\mathbf{X}_{f}, \mathbf{X}_{\mathscr{H}}\right)=\{f, \mathcal{H}\} \tag{A.7}
\end{equation*}
$$

A Lie group G acts as a symmety group on a symplectic manifold \mathscr{M}, if there is a group homomorphism $\mathcal{T}: G \rightarrow$ $\operatorname{Sympl}(\mathcal{M}): g \rightarrow \mathcal{T}(g)$. An infinitesimal action defined by a Lie algebra element $\mathbf{u} \in \mathcal{G}$ is given by the locally Hamiltonian vector field

$$
\begin{equation*}
\mathbf{X}_{\mathbf{u}}(z)=\frac{d}{d t}(\mathcal{T}(\exp (t \mathbf{u})) z)_{\mid t=0} \tag{A.8}
\end{equation*}
$$

When each $\mathbf{X}_{\mathbf{u}}$ is Hamiltonian, the group action is said to be almost Hamiltonian and $\{\mathscr{M}, \omega\}$ is called a symplectic G space. In such a case, a linear map $\Xi: \mathcal{G} \rightarrow \mathcal{P}(\mathscr{M}): \mathbf{u} \rightarrow$ $\Xi(\mathbf{u})$ can always be constructed such that $\mathbf{X}_{\mathbf{u}}=\omega^{\sharp}(\mathbf{d} \Xi(\mathbf{u}))$. When there is a Ξ which is also a Lie algebra homomorphism: $\Xi([\mathbf{u}, \mathbf{v}])=\{\Xi(\mathbf{u}), \Xi(\mathbf{v})\}$, the group is said to have a Hamiltonian action and $\{\mathcal{M}, \omega, \Xi\}$ is called a Hamiltonian
G-space. Since Ξ is linear in \mathcal{G}, it defines a momentum mapping \mathcal{I} from \mathscr{M} to the dual \mathcal{G}^{*} of the Lie algebra defined by: $\langle\mathcal{I}(z) \mid \mathbf{u}\rangle=\Xi(\mathbf{u}, z)$. When \mathcal{M} is a Hamiltonian G-space, the momentum mapping is equivariant under the action of G on \mathscr{M} and its co-adjoint action on \mathcal{G}^{*}.
In general there may be topological obstructions to such a Lie algebra homomorphism. However, when G acts on Q : $\varphi: G \rightarrow \operatorname{Diff}(Q): g \rightarrow \varphi(g): q \rightarrow q^{\prime}=\varphi(g) q$, the action is extended to a symplectic action in $\left\{\mathscr{M}=T^{*}(Q), \omega_{0}\right\}$: $\widetilde{\varphi}: G \rightarrow \operatorname{Sympl}(\mathscr{M}): g \rightarrow \widetilde{\varphi}(g):(q, p) \rightarrow\left(q^{\prime}, p_{\sim}^{\prime}\right)$, where p^{\prime} is defined by $p=(\varphi(g))_{\mid q}^{*} p^{\prime}$. It follows that $\widetilde{\varphi}(g)^{*} \theta_{0}=$ $\theta_{0} ; \widetilde{\varphi}(g)^{*} \omega_{0}=\omega_{0}$. The infinitesimal action is given by $\mathbf{X}_{\mathbf{u}}(z)=(\mathbf{d} \widetilde{\varphi}(\exp (t \mathbf{u})) z / d t)_{\mid t=0}$ and $\mathcal{L}_{\mathbf{X}_{\mathbf{u}}} \theta_{0}=0 ; \mathcal{L}_{\mathbf{X}_{\mathbf{u}}} \omega_{0}=0$. From $\omega_{0}^{b}\left(\mathbf{X}_{\mathbf{u}}\right)=\mathbf{d}\left\langle\theta_{0} \mid \mathbf{X}_{\mathbf{u}}\right\rangle$, it follows that the action is almost Hamiltonian with $\Xi(\mathbf{u})=\left\langle\theta_{0} \mid \mathbf{X}_{\mathbf{u}}\right\rangle$. Moreover, since $\left\langle\theta_{0} \mid \mathbf{X}_{[\mathbf{u}, \mathbf{v}]}\right\rangle=\omega_{0}\left(\mathbf{X}_{\mathbf{u}}, \mathbf{X}_{\mathbf{v}}\right)=\{\Xi(\mathbf{u}), \Xi(\mathbf{v})\}$, the action is Hamiltonian and $\left\{T^{*}(Q), \omega_{0}, \Xi\right\}$ is a Hamiltonian G-space.

APPENDIX B: PRESYMPLECTIC MECHANICS

A manifold \mathcal{M}_{1}, endowed with a closed but degenerate[32] 2 -form ω, with constant rank, is said to be presymplectic. The mapping ω^{b} has a nonvanishing kernel, given by those nonzero vector fields \mathbf{X}_{0} obeying $\omega^{b}\left(\mathbf{X}_{0}\right) \doteq{ }_{\mathbf{X}_{0}} \omega=0$. The fundamental dynamical equation

$$
\begin{equation*}
\omega^{b}(\mathbf{X})=\mathbf{d} \mathcal{H} \tag{B.1}
\end{equation*}
$$

has then a solution if

$$
\begin{equation*}
\left\langle\mathbf{d} \mathcal{H} \mid \mathbf{X}_{0}\right\rangle=0 \quad ; \forall \mathbf{X}_{0} \in \mathcal{K e r}\left(\omega^{b}\right) \tag{B.2}
\end{equation*}
$$

If this is nowhere satisfied on \mathscr{M}_{1}, the hamiltonian \mathcal{H} does not define any dynamics on \mathcal{M}_{1}. When (B.2) is identically satisfied, a particular solution \mathbf{X}_{P} of (B.1) is defined in the entire manifold \mathcal{M}_{1} and so is the general solution obtained summing the general solution of the homogeneous equation ${ }^{l} \mathbf{x}_{0} \omega=0$, i.e $\mathbf{X}_{G}=\mathbf{X}_{P}+\mathbf{X}_{0}$, which will contain arbitrary functions. When (B.2) is satisfied for some points $z \in \mathcal{M}_{1}$, we shall asssume they form a submanifold, called the secondary constrained submanifold with injection $t_{2}: \mathcal{M}_{2} \hookrightarrow \mathcal{M}_{1}$. The particular solution \mathbf{X}_{P} of (B.1) is now defined in \mathcal{M}_{2} and so is the general solution \mathbf{X}_{G}. Requiring that \mathbf{X}_{G} conserves the constraints amounts to ask that \mathbf{X}_{G} is tangent to \mathcal{M}_{2} :

$$
\begin{equation*}
\mathbf{X}_{G}=l_{2 \star}\left(\mathbf{X}_{2}\right) ; \mathbf{X}_{2} \in \Gamma\left(\mathcal{M}_{2}, T \mathcal{M}_{2}\right) \tag{B.3}
\end{equation*}
$$

Again, when there are no points where this tangency condition is satisfied, (B.1) is meaningless. Another possibility is that some of the arbitrary functions in \mathbf{X}_{0} become determined and the tangency condition is obeyed on the entire \mathscr{M}_{2}. The general solution then still contains some arbitrary functions. Finally it may happen that the conditions (B.3) are only satisfied on some \mathcal{M}_{3} with $l_{3}: \mathcal{M}_{3} \hookrightarrow \mathcal{M}_{2}$. The story then goes on until one of the first two alternatives are reached.
[1] J. von Neumann, Math. Annalen 104, 570 (1931).
[2] R. Peierls, Z. Phys. 80,763 (1933).
[3] H. S. Snyder, Phys. Rev. 71, 38 (1947).
[4] A. Messiah, Mécanique Quantique I, Dunod,1962.
[5] J-M. Souriau, Structure des systèmes dynamiques, Dunod, 1970.
[6] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, 1978
[7] M. J. Gotay, J. M. Nester, and G. Hinds, J. Math. Phys. 19, 2388 (1978).
[8] A.P. Balachandran, G. Marmo, B-S. Skagerstam, and A. Stern, Gauge Symmetries and Fibre Bundles, Lect. Notes in Physics 188 (1983).
[9] V. Guillemin and S. Sternberg, Symplectic Tecniques in Physics, Cambridge University Press, 1984.
[10] S. Doplicher, K. Fredenhagen, and J. Roberts, Comm. Math. Phys. 172, 187 (1995).
[11] C. Duval and P. A. Horváthy, Phys. Lett. B 479,284 (2000).
[12] V. P. Nair and A. Polychronakos, Phys. Lett. B 505, 267 (2001).
[13] B. Morariu, and A. Polychronakos, Nucl. Phys. B 610, 531(2001) and Nucl. Phys. B 634, 326 (2002).
[14] P. A. Horváthy, Ann. Phys. 299, 128 (2002).
[15] A. E. F. Djemaï and H. Smail, arXiv:hep-th/0309006(2003).
[16] A. Bérard and H. Mohrbach, arXiv:hep-th/0310167(2003) and arXiv:hep-th/0404165(2004)
[17] A. P. Balachandran, T. R. Govindarajan, C. Molina, and P. Teotonio-Sobrinho, arXiv:hep-th/0406125, (2004).
[18] P. A. Horváthy and M. S. Plyushchay, Phys. Lett. B 595, 547 (2004).
[19] See e.g. [8]
[20] Well known in symplectic mechanics, see e.g.[5, 6, 9].
[21] Observe that $\Phi_{k}{ }^{\ell}=\delta_{k}{ }^{\ell}-e \mathbf{F}_{k j} r \mathbf{G}^{j \ell}$ and $\Psi^{i}{ }_{j}=\delta^{i}{ }_{j}-r \mathbf{G}^{i \ell} e \mathbf{F}_{\ell j}$ are mutually transposed and that the matrices $\Psi^{k}{ }_{j} r \mathbf{G}^{j \ell}=$ $r \mathbf{G}^{k j} \Phi_{j}^{\ell}$ and $\Phi_{k}^{j} e \mathbf{F}_{j \ell}=e \mathbf{F}_{k j} \Psi^{j}{ }_{\ell}$ are antisymmetric.
[22] In the limit $\chi \rightarrow 0$, we have $m^{\prime} \omega_{0}^{\prime}=\sqrt{m^{\prime} \kappa^{\prime}} \rightarrow|B|$.
[23] Recall that with complex variables $q=q^{1}+\mathbf{i} q^{2}$, the diferentials $d q=d q^{1}+\mathbf{i} d q^{2}$ and $d q^{\dagger}=d q^{1}-\mathbf{i} d q^{2}$ have local dual vector fields $\left\{\partial / \partial q=\left(\partial / \partial q^{1}-\mathbf{i} \partial / \partial q^{2}\right) / 2 ; \partial / \partial q^{\dagger}=\left(\partial / \partial q^{1}+\right.\right.$ $\left.\mathbf{i} \partial / \partial q^{2}\right) / 2$ and similarly for the $p=p_{1}+\mathbf{i} p_{2}$ variables.
[24] The $(N=3)$ case wil only be examined in the nondegenerate case $\chi>0$.
[25] Due to $\kappa^{2}+\kappa^{\prime 2}(r C)^{2}(e B)^{2}+2 \kappa \kappa^{\prime} r C e B=1$, the mass and elastic constant of the z degrees of freedom, as expected, are not renormalised.
[26] with dual basis $\left\{\mathbf{e}^{\alpha \beta}\right\}$ in $\mathcal{L}^{*}(S O(N))$.
[27] Exercise 4.2A in [6], defining a (generalized) Poincaré momentum.
[28] Quantum mechanics on a noncommutative shere S^{2} and on general noncommutative Riemann surfaces was examined in ($[12,13]$.
[29] In the case $e=0$, Darboux coordinates are given by (III.17) and in [16] such model was considered with the possibility of having a monopole in p-space!
[30] $\mathcal{T}_{f}(t)^{*}$ denotes the pull-back of $\mathcal{T}_{f}(t)$ and \mathcal{L} is the Lie derivative along \mathbf{X}_{f}.
[31] We use $\mathcal{L}_{\mathbf{X}}=\mathbf{d} l_{\mathbf{X}}+t_{\mathbf{X}} \mathbf{d}$ on differential forms.
[32] \mathcal{M}_{1} is the primary constrained manifold, arising e.g. from a degenerate Lagrangian.

