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Abstract
We construct a model for noncommutative gravity in four dimensions, which

reduces to the Einstein–Hilbert action in the commutative limit. Our proposal

is based on a gauge formulation of gravity with constraints. While the action

is metric independent, the constraints ensure that it is not topological. We

find that the choice of the gauge group and of the constraints is crucial in

recovering a correct deformation of standard gravity. Using the Seiberg–

Witten map the whole theory is described in terms of the vierbeins and of

the Lorentz transformations of its commutative counterpart. We solve the

constraints explicitly and exhibit the first-order noncommutative corrections to

the Einstein–Hilbert action.

PACS numbers: 04.60.−m, 11.10.Mx

Up to now a consistent formulation of four-dimensional noncommutative gravity that reduces

to the standard Einstein–Hilbert theory in the commutative limit has proved quite difficult

to approach [1–6]. Among others there are problems such as finding an invariant measure,

solving the inconsistencies of a complex metric, singling out the correct degrees of freedom.

In two and three dimensions these difficulties can be avoided since a theory of gravity can

be formulated as a gauge theory and we know how to deform gauge transformations in a

noncommutative geometry [7–10].

In this letter, we pursue the idea of searching for a description of four-dimensional

noncommutativegravity as a gauge-invariant theory with constraints. For the standard Einstein

action with a cosmological term [11, 12] this can be easily done using the SO(1, 4) de Sitter

group as a start, and then reducing the symmetry to the SO(1, 3) Lorentz group via the

torsion-free constraint. The constraints play an important role: they allow us to write an

action which, although independent of the metric, is not topological [13]. Moreover, their

solution eliminates the unphysical, dependent degrees of freedom leaving the metric as the

only dynamical field.
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When we consider a noncommutative deformation of the theory introducing the Moyal

⋆-product [14], we have to face the fact that the only consistent gauge groups are the unitary

groups. Thus we look for the simplest unitary groups which contain SO(1, 4) and SO(1, 3)

with the aim of deforming their algebra with the ⋆-product. The appropriate groups turn out

to be U⋆(2, 2) and U⋆(1, 1) × U⋆(1, 1), respectively [2]. In fact, we find that starting from

a gauge theory invariant under U⋆(2, 2) we can impose constraints that reduce the symmetry

to a subclass contained in U⋆(1, 1) × U⋆(1, 1). We name this subalgebra SO⋆(1, 3) since it

represents the simplest noncommutative deformation of the Lorentz algebra SO(1, 3). We

use the constraints to express the dependent gauge fields in terms of the independent ones

and construct an action invariant under SO⋆(1, 3). It reduces to the standard action in the

commutative limit. Then we show that via the Seiberg–Witten map [16], gauge transformations

λ in SO(1, 3) turn precisely into SO⋆(1, 3) transformations λ̂. We define our noncommutative

theory based on this set λ̂ of gauge transformations. Thus we are allowed to express the

θ -dependence of the fields in the action in terms of the fields in the commutative theory using

the Seiberg–Witten map. In this fashion the whole theory is described in terms of the vierbeins

and the Lorentz transformations. Finally, we solve the constraints explicitly to first order in θ

and exhibit the first-order noncommutative correction to the Einstein–Hilbert action.

We start by studying how the introduction of the ⋆-product leads to a deformation of the

Lorentz group SO(1, 3) that we call SO⋆(1, 3).

In a noncommutative theory, under an infinitesimal gauge transformation λ̃ the gauge

connection Ãµ transforms as follows:

δ̂λ̃Ãµ = ∂µλ̃ + [λ̃, Ãµ]⋆ = ∂µλ̃ + λ̃ ⋆ Ãµ − Ãµ ⋆ λ̃. (1)

Since
[

δ̂λ̃1
, δ̂λ̃2

]

Ãµ = δ̂[λ̃1,λ̃2]⋆Ãµ, (2)

in order to have a representation of the Lie algebra of the group [λ1, λ2]⋆ must be in the algebra.

Under the ⋆-operation the Lorentz algebra does not close. To prove this we consider

the basis of a Clifford algebra {γa, γb} = 2ηab, with γa being 4 × 4 matrices and ηab the

flat Minkowski metric. Then we define γab ≡ 1
2
(γaγb − γbγa) as the six generators of the

Lorentz group, γ5 ≡ iγ0γ1γ2γ3, and construct the Moyal commutator of two local Lorentz

transformations λ1 = λab
1 γab, λ2 = λab

2 γab:

[λ1, λ2]⋆ = λab
1 ⋆ λcd

2 γabγcd − λcd
2 ⋆ λab

1 γcdγab

= λab
1 ⋆s λcd

2 [γab, γcd ] + λab
1 ⋆a λcd

2 {γab, γcd}, (3)

where [2]

f ⋆s g ≡
1

2
(f ⋆ g + g ⋆ f ) = fg +

1

2!

(

i

2

)2

θαβθγ δ∂α∂γ f ∂β∂δg + even powers in θ

f ⋆a g ≡
1

2
(f ⋆ g − g ⋆ f ) (4)

=

(

i

2

)

θαβ∂αf ∂βg +
1

3!

(

i

2

)3

θαβθγ δθρσ∂α∂γ ∂ρf ∂β∂δ∂σ g + odd powers in θ.

Since
[γab, γcd ] = 2(ηadγbc + ηcbγad − ηacγbd − ηbdγac)

{γab, γcd} = −2i(ηacηbd i11 + ǫabcdγ5),
(5)

then

[λ1, λ2]⋆ = (λab + λab(2) + · · · + λab(2n) + · · ·)γab + (λ1(1) + λ1(3) + · · · + λ1(2n+1) + · · ·)i11

+ (λ5(1) + λ5(3) + · · · + λ5(2n+1) + · · ·)γ5, (6)

where λ(n) is of order θn.
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The gauge transformations in (6) are not Lorentz transformations but they have a

special and rather simple θ -expansion: the terms which are even powers in θ are Lorentz

transformations, while those odd in θ have non-vanishing components on i11 and γ5. The

set in (6) forms a subclass of the U⋆(1, 1) × U⋆(1, 1) algebra which is closed under the

⋆-product: indeed it is easy to prove that if λ̃1 and λ̃2 have a θ -expansion as the one in (6), then

their Moyal commutator [λ̃1, λ̃2]⋆ has again the same kind of θ -expansion, i.e., even powers

are proportional to γab, odd powers are proportional to i11 and γ5. We call this subalgebra

SO⋆(1, 3): it should describe the invariance of our noncommutative theory of gravity.

In order to achieve this goal, we start with a U⋆(2, 2) gauge theory and break the symmetry

to SO⋆(1, 3) imposing suitable constraints. The procedure is most easily elucidated for the

commutative theory [2]: in this case one considers a U(2, 2) gauge theory and breaks the

symmetry down to SO(1, 3), obtaining a gauge formulation for standard gravity. U(2, 2) is

the Lie group of complex 4 × 4 matrices U such that U †η̃U = η̃ with η̃ = diag(+ + − −). A

basis of the Lie algebra is given by 16 linear independent matrices λ satisfying the relation:

λ† = −η̃λ†η̃. (7)

In the Dirac–Pauli representation with γ0 = η̃, we choose the following basis τ I :
(

i11, γ5, iγ +
a , iγ −

a , γab

)

, (8)

where in addition to the generators of U(1, 1) × U(1, 1) one has γ ±
a ≡ γa(1 ± γ5).

The connection Aµ of the corresponding gauge theory is Lie algebra valued:

Aµ = aµi11 + bµγ5 + ea+
µ iγ +

a + ea−
µ iγ −

a + 1
4
ωab

µ γab. (9)

The field strength is

Fµν ≡ ∂µAν + AµAν − µ → ν = F I
µντI , (10)

with components

F 1
µν = ∂µaν − µ ↔ ν

F 5
µν = ∂µbν + 1

2

(

ea+
µ e−

νa − ea−
µ e+

νa

)

− µ ↔ ν

F a+
µν = ∂µea+

ν − 2bµea+
ν + ωab

µ e+
νb − µ ↔ ν

(11)
F a−

µν = ∂µea−
ν + 2bµea−

ν + ωab
µ e−

νb − µ ↔ ν

F ab
µν = ∂µωab

ν + ωa
µcω

cb
ν − 4

(

ea+
µ eb−

ν + ea−
µ eb+

ν

)

− µ ↔ ν.

One can show that imposing the constraints

aµ = bµ = 0, ea−
µ = βea+

µ , F a+
µν = 0, (12)

the gauge group U(2, 2) is broken into SO(1, 3) with an additional U(1) global symmetry.

Now we consider the following SO(1, 3)-invariant action:

S =

∫

d4x ǫµνρσ Tr(γ5FµνFρσ ). (13)

Using the constraints (12) and the definition

Rab
µν = ∂µωab

ν + ωa
µcω

cb
ν − µ ↔ ν, (14)

the action (13) becomes

S = −
i

2

∫

d4x ǫµνρσ ǫabcd

(

Rab
µν − 8βea+

µ eb+
ν

)(

Rcd
ρσ − 8βec+

ρ ed+
σ

)

. (15)

The case β = 0 gives the topological Gauss–Bonnet term, while β �= 0 also gives the classical

Einstein action with a cosmological term.
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It is worth noting that the choice of the constant β in (12) determines the value of the

cosmological constant of the model. Once the constraints are imposed we are left with

Pa ≡ iγ +
a + βiγ −

a and Mab ≡ γab, a basis for the de Sitter or anti-de Sitter group depending

on the sign of β. For β = 0 one would obtain the Poincaré group, but in this case the action

(13) becomes topological and it cannot be used to describe four-dimensional gravity.

Now we turn to the noncommutative case. We consider a U⋆(2, 2) noncommutative gauge

theory (i.e. a U(2, 2) gauge theory in a noncommutative space) and we impose constraints

to reduce the symmetry to SO⋆(1, 3). We want this to be the gauge symmetry of

our noncommutative gravity, since, as emphasized above, SO⋆(1, 3) is the natural

noncommutative deformation of the ordinary SO(1, 3) Lorentz algebra.

In the U⋆(2, 2) gauge theory, we write the connection Ãµ as

Ãµ = Ãµi11 + b̃µγ5 + ẽa+
µ iγ +

a + ẽa−
µ iγ −

a + 1
4
ω̃ab

µ γab, (16)

where all the fields are functions of the spacetime coordinates and of the noncommutative

parameter θ . The corresponding field strength is given by

F̃µν = ∂µÃν + Ãµ ⋆ Ãν − µ → ν = F̃ I
µντI , (17)

with components

F̃ 1
µν = ∂µãν + iãµ ⋆a ãν − ib̃µ ⋆a b̃ν +

i

2

(

ẽa+
µ ⋆a ẽ−

aν + ẽa−
µ ⋆a ẽ+

aν

)

−
i

8
ω̃ab

µ ⋆a ω̃νab − µ ↔ ν

F̃ 5
µν = ∂µb̃ν + 2iãµ ⋆a b̃ν +

1

2

(

ẽa+
µ ⋆s ẽ−

νa − ẽa−
µ ⋆s ẽ+

νa

)

−
i

8
ǫabcd ω̃

ab
µ ⋆a ω̃cd

ν − µ ↔ ν

F̃ a+
µν = ∂µẽa+

ν − 2b̃µ ⋆s ẽa+
ν + ω̃ab

µ ⋆s ẽ+
νb + 2iãµ ⋆a ẽa+

ν +
i

2
ǫa

bcd ẽ
b+
µ ⋆a ω̃cd

ν − µ ↔ ν

(18)
F̃ a−

µν = ∂µẽa−
ν + 2b̃µ ⋆s ẽa−

ν + ω̃ab
µ ⋆s ẽ−

νb + 2iãµ ⋆a ẽa−
ν −

i

2
ǫa

bcd ẽ
b−
µ ⋆a ω̃cd

ν − µ ↔ ν

F̃ ab
µν = ∂µω̃ab

ν + ω̃a
µc ⋆s ω̃cb

ν − 4
(

ẽa+
µ ⋆s ẽb−

ν + ẽa−
µ ⋆s ẽb+

ν

)

+ iǫab
cd

(

ẽc+
µ ⋆a ẽd−

ν − ẽc−
µ ⋆a ẽd+

ν

)

+ 2iãµ ⋆a ω̃ab
ν + iǫab

cd b̃µ ⋆a ω̃cd
ν − µ ↔ ν.

Now we want to impose constraints so that the invariance is broken to SO⋆(1, 3).

Moreover, in order to recover standard gravity in the commutative limit, the fields must

satisfy

lim
θ→0

ãµ = 0, lim
θ→0

b̃µ = 0, lim
θ→0

ẽa−
µ = β lim

θ→0
ẽa+
µ . (19)

To this end it is convenient to write the gauge fields in a θ -expanded form:

ãµ = a(1)
µ + a(2)

µ + · · ·

b̃µ = b(1)
µ + b(2)

µ + · · ·

ẽa+
µ = ea+

µ + ea+(1)
µ + ea+(2)

µ + · · · (20)

ẽa−
µ = βea+

µ + ea−(1)
µ + ea−(2)

µ + · · ·

ω̃ab
µ = ωab

µ + ωab(1)
µ + ωab(2)

µ + · · · ,

where we have taken into account the conditions in (19).

In order to reduce the gauge symmetry, we impose the following constraints:

F̃ a+ = F a+ + F a+(1) + · · · + F a+(n) + · · · = 0, (21)

and, at each order in θ , reflecting the different role played in the Moyal product by the even

and the odd powers,

ea−(n)
µ = (−)nβea+(n)

µ . (22)
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The constraints in (21) and (22) are just sufficient to break U⋆(2, 2) into SO⋆(1, 3). Indeed,

F̃ a+ = 0 requires δ̂λ̃F̃
a+
µν = 0, i.e.

δ̂F̃ a+
µν = −2F̃ 5

µν ⋆s λ̃
a+

+ 4F̃ ab
µν ⋆s λ̃

+

b + 2iF̃ 1
µν ⋆a λ̃

a+
+ 2iǫa

bcd F̃
bc
µν ⋆a λ̃

d+
= 0, (23)

which leads to the condition λ̃
a+

= 0. With this restriction we now consider the constraints in

(22) and impose them on the corresponding variations δλ̃ẽ
a+
µ and δλ̃ẽ

a−
µ . Since under a gauge

transformation the connection transforms as in (1) we have

δẽa+
µ = −2λ̃

5
⋆s ẽa+

µ − 4λ̃
ab

⋆s ẽ+
µb + 2iλ̃

1
⋆a ẽa+

µ + 2iǫa
bcd λ̃

bc
⋆a ẽd+

µ

δẽa−
µ = ∂µλ̃

a−
+ 2λ̃

5
⋆s ẽa−

µ − 4λ̃
ab

⋆s ẽ−
µb + 2iλ̃

1
⋆a ẽa−

µ − 2iǫa
bcd λ̃

bc
⋆a ẽd−

µ (24)

+ 2b̃µ ⋆s λ̃
a−

+ ω̃ab
µ ⋆s λ̃

−

b + 2iãµ ⋆a λ̃
a−

− 2iǫa
bcd ω̃

bc
µ ⋆a λ̃

d−

µ .

In order to satisfy (22) first we have to impose λ̃
a−

= 0 so that the variations in (24) become

δẽa±
µ = ∓2λ̃

5
⋆s ẽa±

µ − 4λ̃
ab

⋆s ẽ±
µb + 2iλ̃

1
⋆a ẽa±

µ ± 2iǫa
bcd λ̃

bc
⋆a ẽd±

µ . (25)

Writing the above relations as θ -expansions

δẽa±
µ = δea±

µ + δea±(1)
µ + δea±(2)

µ + · · · , (26)

we obtain

δea±(n)
µ = ∓

∑

p+2k+q=n

2λ5(p) ⋆2k ea±(q)
µ − 4

∑

p+2k+q=n

λab(p) ⋆2k e
±(q)

µb

+ 2i
∑

p+2k+1+q=n

λ1(p) ⋆2k+1 ea±(q)
µ ± 2i

∑

p+2k+1+q=n

ǫa
bcdλ

bc(p) ⋆2k+1 ed±(q)
µ , (27)

where p, k, q = 0, 1, 2, . . . and we use the notation f ⋆ g =
∑∞

k=o f ⋆k g. At this point

it is simple to show that the constraints ea−(n)
µ = (−)nβea+(n)

µ are satisfied if we impose the

additional conditions

λ1(2n) = λ5(2n) = 0, λab(2n+1) = 0. (28)

Therefore, the restricted gauge parameter λ̃ belongs to SO⋆(1, 3) and this completes our proof.

The action [15] which is invariant under an SO⋆(1, 3) transformation λ̃ = λ̃
1
i11 + λ̃

5
γ5 +

λ̃
ab

γab is

SNC =

∫

d4x ǫµνρσ Tr(γ5F̃µν ⋆ F̃ ρσ ). (29)

Indeed, one immediately obtains

δ̂λ̃SNC =

∫

d4x ǫµνρσ Tr([γ5, λ̃] ⋆ F̃µν ⋆ F̃ ρσ ) = 0. (30)

More explicitly (29) can be rewritten as

SNC =
i

2

∫

d4x ǫµνρσ
(

16F̃ 1
µνF̃

5
ρσ − ǫabcd F̃

ab
µνF̃

cd
ρσ

)

, (31)

with field strengths as given in (18).

Now we want to use the constraints (21) and (22) in (31) and express the dependent fields

in terms of the independent, dynamical ones. First, we use

F̃ a+
µν = ∂µẽa+

ν − 2b̃µ ⋆s ẽa+
ν + ω̃ab

µ ⋆s ẽ+
νb + 2iãµ ⋆a ẽa+

ν +
i

2
ǫa
bcd ẽ

b+
µ ⋆a ω̃cd

ν − µ ↔ ν = 0, (32)

and determine ω̃ab
µ order by order in θ , thus obtaining ωab(n)

µ = ωab(n)
µ

(

ea+
µ , . . . , ea+(n)

µ ,

a(1)
µ , . . . , a(n−1)

µ , b(1)
µ , . . . , b(n)

µ

)

.
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At this level we have obtained a theory in terms of the fields ẽa+
µ , ãµ and b̃µ invariant

under transformations λ̃ ∈ SO⋆(1, 3). It represents a noncommutative deformation of Einstein

gravity which contains the vierbeins plus an infinite number of additional fields which enter

at all orders in the θ -expansion of ẽa+
µ , ãµ and b̃µ. Now we attempt to reduce the number of

independent fields employing the Seiberg–Witten map [16].

In general the map allows us to express the gauge connection of a noncommutative theory

Âµ as a θ -expansion of standard gauge variables Aµ. In the present case we want to identify

the fields ẽa+
µ , ãµ and b̃µ with the corresponding ones obtained via the Seiberg–Wittten maps

êa+
µ

(

ea+
µ

)

, âµ

(

ea+
µ

)

and b̂µ

(

ea+
µ

)

. As we will show the procedure is consistent with the choice

of the constraints (21) and (22). The only dynamical fields of the theory turn out to be the

vierbeins ea+
µ in terms of which we can define the spacetime metric

gµν = ea+
µ e+

νa . (33)

In order to implement this procedure consistently it is crucial to prove that the gauge group

SO⋆(1, 3) of the noncommutative theory is related to the SO(1, 3) commutative theory

precisely via the Seiberg–Witten map. Then we can determine the functions ẽa+
µ

(

ea+
µ

)

, ãµ

(

ea+
µ

)

and b̃µ

(

ea+
µ

)

solving the equations [16]

δ̂λ̂ẽ
a+
µ

(

ea+
µ

)

= ẽa+
µ

(

ea+
µ + δλe

a+
µ

)

− ẽa+
µ

(

ea+
µ

)

δ̂λ̂ãµ

(

ea+
µ

)

= ãµ

(

ea+
µ + δλe

a+
µ

)

− ãµ

(

ea+
µ

)

(34)

δ̂λ̂b̃µ

(

ea+
µ

)

= b̃µ

(

ea+
µ + δλe

a+
µ

)

− b̃µ

(

ea+
µ

)

,

where λ belongs to the Lorentz algebra, i.e. λ = λabγab (the SO(1, 3) gauge group of the

commutative limit), while λ̂ belongs to the SO⋆(1, 3) gauge group of the corresponding (via

the Seiberg–Witten map) noncommutative theory.

Thus let us show that if we start from an SO(1, 3) gauge theory and use the Seiberg–Witten

map to construct the corresponding noncommutative one, the gauge group is precisely mapped

into SO⋆(1, 3). We describe the commutative theory through its connection Aµ = 1
4
ωab

µ γab

and gauge parameters λ = λabγab and the corresponding noncommutative one through Â(A)

and λ̂(λ,A) defined as [16]

δλ̂Âµ = Âµ(A + δλA) − Âµ(A), (35)

where

δλAµ = ∂µλ + λAµ − Aµλ, δλ̂Âµ = ∂µλ̂ + λ̂ ⋆ Âµ − Âµ ⋆ λ̂. (36)

The solution of (35) is equivalent to

δÂµ(θ) = −
i

4
δθαβ{Âα, (∂β Âµ + F̂ βµ)}⋆, δλ̂(θ) =

i

4
δθαβ{∂αλ,Aβ}⋆. (37)

Our goal is to prove that the gauge parameter λ̂ belongs to SO⋆(1, 3). We look for a solution

of (37) in a θ -expanded form:

Âµ = Aµ + A(1)
µ + A(2)

µ + · · · , λ̂ = λ + λ(1) + λ(2) + · · · , (38)

and we want to prove that

A(n)
µ (A) = A(n)I

µ (A)tI (n), λ(n)(A) = λ(n)I (A)tI (n), (39)

where tI (n) = γab if n is even, while tI (n) ∈ (i11, γ5) if n is odd. We prove (39) by induction

first for A(n)
µ . We begin with the n = 1 case. As emphasized above in the commutative theory,

we have Aµ = 1
4
ωab

µ γab, λ = λabγab and Fµν = 1
4
F ab

µνγab. Thus inserting δA(1)
µ = Aµαβδθαβ

in the first equation (37) we obtain the result for n = 1:

Aµαβ = − 1
2
Aab

α

(

∂βAcd
µ + F cd

βµ

)

(ηacηbd i11 + ǫabcdγ5). (40)
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Now assuming the result is true for general n, we prove it for n + 1. We define

A(n)
µ =

1

n
Aµα1β1,...,αnβn

θα1β1 ...θαnβn , (41)

so that

δA(n)
µ (θ) = Aµα1β1,...,αnβn

θα1β1 ...δθαnβn . (42)

Inserting the above expressions in the first equation (37), we find

δA(n+1)
µ (θ) = −

i

4
δθαβ

∑

p+2k+q=n

A(p)I
α ⋆2k

(

∂βA(q)J
µ + F

(q)J

βµ

)

{tI (p), tJ (q)}

−
i

4
δθαβ

∑

p+2k+1+q=n

A(p)I
α ⋆2k+1

(

∂βA(q)J
µ + F

(q)J

βµ

)

[tI (p), tJ (q)]. (43)

Using the standard commutation relations among the generators we end up with A(2n)
µ =

A(2n)ab
µ γab and A(2n+1)

µ = A(2n+1)1
µ i11 + A(2n+1)5

µ γ5. This result on the θ -structure of Âµ(θ), and

the second of the Seiberg and Witten equations (37) lead to the conclusion that the parameter

λ̂(θ) belongs to SO⋆(1, 3).

As anticipated above now we can safely determine the independent fields of our

noncommutative theory through the Seiberg–Witten map. We apply this procedure and

explicitly compute the first-order noncommutative correction to the standard gravity action.

The action is expanded in powers of θ :

SNC =
i

2

∫

d4x ǫµνρσ
(

16F̃ 1
µνF̃

5
ρσ − ǫabcd F̃

ab
µνF̃

cd
ρσ

)

= S + S(1) + S(2) + · · · , (44)

and the first noncommutative correction S(1) is evaluated in terms of the dynamical fields ea+
µ

as follows: from (19) and (18) we find that F 1
µν = F 5

µν = 0. Thus S(1) is simply given by

S(1) = −i

∫

d4x ǫµνρσ ǫabcdF
ab(1)
µν F cd

ρσ . (45)

Inserting the constraints

aµ = bµ = 0, ea−
µ = βea+

µ , ea−(1)
µ = −βea+(1)

µ , (46)

in the expression (18) for F̃ ab
µν , we obtain

F ab
µν = ∂µωab

ν + ωa
µcω

cb
ν − 8βea+

µ eb+
ν − µ ↔ ν

(47)
F ab(1)

µν = ∂µωab(1)
ν + ωa(1)

µc ωcb
ν + ωa

µcω
cb(1)
ν − µ ↔ ν.

Now solving the constraints F a+
µν = 0 in ωab

µ and F a+(1)
µν = 0 in ωab(1)

µ , we determine the spin

connections in terms of the vierbein ea+
µ .

At zeroth order in θ we have

F a+
µν = ∂µea+

ν − ∂νe
a+
µ + ωab

µ e+
νb − ωab

ν e+
µb = 0. (48)

It is solved by

ωab
µ = − 1

2
ǫρa+ǫνb+

(

∂µek+
ν e+

ρk − ∂νe
k+
ρ e+

µk + ∂ρe
k+
µ e+

νk

)

, (49)

where ǫ
µ+
a is the inverse vierbein

ea+
ν ǫν+

b = δa
b , ea+

µ ǫν+
a = δν

µ. (50)
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In the same way, at first order we have

F a+(1)
µν = ∂µea+(1)

ν − 2b(1)
µ ea+

ν + ωab(1)
µ e+

νb + ωab
µ e

+(1)
νb − 1

4
θαβǫa

bcd∂αeb+
µ ∂βωcd

ν − µ ↔ ν = 0.

(51)

With the definition

Aa(1)
µν ≡ ∂µea+(1)

ν − 2b(1)
µ ea+

ν + ωab
µ e

+(1)
νb − 1

4
θαβǫa

bcd∂αe
b+
µ ∂βωcd

ν , (52)

we rewrite (51) as

ωab(1)
µ e+

νb − ωab(1)
ν e+

µb = −Aa(1)
µν + Aa(1)

νµ . (53)

Therefore, we obtain

ωab(1)
µ = − 1

2
ǫρa+ǫνb+

(

Ak(1)
µν e+

ρk − Ak(1)
νρ e+

µk + Ak(1)
ρµ e+

νk

)

. (54)

At this stage we have ωab
µ

(

ea+
µ

)

from (49) and ωab(1)
µ

(

ea+
µ , ea+(1)

µ , b(1)
µ

)

from (54).

We still have to evaluate b(1)
µ and ea+(1)

µ in terms of ea+
µ . We do this via the Seiberg–Witten

map: in addition to the relations in (36) and (37) we have correspondingly

δλe
+
µ = λe+

µ − e+
µλ, δλ̂ê

+
µ = λ̂ ⋆ ê+

µ − ê+
µ ⋆ λ̂, (55)

and [17]

δê+
µ(θ) = − 1

2
δθαβ

({

Âα, ∂β ê+
µ

}

⋆
+ 1

2

{[

ê+
µ, Âα

]

⋆
, Âβ

}

⋆

)

. (56)

From (37) we have to first order

A(1)
µ = −

i

4
θαβ{Aα, (∂βAµ + Fβµ)}. (57)

Substituting in the above equation Aµ = 1
4
ωab

µ γab, λ = λabγab, Fµν = 1
4
F ab

µνγab, with ωab
µ as

given in (49) we obtain

A(1)
µ = −

i

16
θαβωab

α

(

∂βωcd
µ + F cd

βµ

)

{γab, γcd}

= −
i

16
θαβωab

α

(

∂βωcd
µ + F cd

βµ

)

(−2iηacηbd i11 − 2iǫabcdγ5)

= a(1)
µ i11 + b(1)

µ γ5. (58)

In this way

a(1)
µ = − 1

8
θαβωab

α (∂βωµab + Fβµab), b(1)
µ = − 1

8
θαβǫabcdω

ab
α

(

∂βωcd
µ + F cd

βµ

)

(59)

are determined as functions of ea+
µ .

In the same way, from (56) we obtain

e+(1)
µ (e,A) = −

i

2
θαβ

(

{

Aα, ∂βe+
µ

}

+
1

2

{[

e+
µ, Aα

]

, Aβ

}

)

= −
i

2
θαβ

(

1

4
ωbc

α ∂βea+
µ

{

iγ +
a , γbc

}

+
1

2

{

ea+
µ

1

4
ωbc

α

[

iγ +
a , γbc

]

,
1

4
ω

ef

β γef

})

. (60)

Using
[

iγ +
a , γbc

]

= 2ηabiγ +
c − 2ηaciγ

+
b ,

{

iγ +
a , γbc

}

= 2iǫabcd

(

iγ +
d

)

, (61)

finally we obtain

ea+(1)
µ = 1

4
θαβǫa

bcd

(

∂βeb+
µ ωcd

α − 1
4
ωb

αke
k+
µ ωcd

β

)

. (62)

Using the expressions given in (62) and in (59) we can reconstruct the first-order correction

of the spin connection (54) which finally allows us to obtain F ab(1)
µν in (47). In this way one

can re-express the first-order correction (45) in terms of the vierbeins ea+
µ .

The complete result requires straightforward but quite lengthy algebra. It would be

interesting to proceed further and write the action explicitly in terms of the metric. Then

one could evaluate the corrected propagator and investigate how θ -dependent terms affect the

renormalization properties of the theory.
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