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1Service de Physique Théorique, Université Libre de Bruxelles, CP225, Boulevard du Triomphe (Campus plaine),
B-1050 Brussels, Belgium

2Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
3Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia

(Received 28 June 2005; published 11 August 2005)
*Electronic
†Electronic

1550-7998=20
We define a theory of noncommutative general relativity for canonical noncommutative spaces. We find
a subclass of general coordinate transformations acting on canonical noncommutative spacetimes to be
volume-preserving transformations. Local Lorentz invariance is treated as a gauge theory with the spin
connection field taken in the so(3,1) enveloping algebra. The resulting theory appears to be a non-
commutative extension of the unimodular theory of gravitation. We compute the leading order non-
commutative correction to the action and derive the noncommutative correction to the equations of motion
of the weak gravitation field.
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I. INTRODUCTION

General Relativity [1] is a very successful theory when it
comes to describe macroscopic effects of gravitation.
However, it is widely believed that a unification of
Quantum Mechanics and General Relativity requires a
short distance modification of spacetime. It can be shown
that classical General Relativity considered together with
Quantum Mechanics implies the existence of a fundamen-
tal length [2]. A class of models that incorporate the notion
of a fundamental length in gauge theories are gauge theo-
ries formulated on noncommutative spaces.

It is a challenge to formulate General Relativity on
noncommutative spaces and there are thus different ap-
proaches in the literature. In [3] for example a deformation
of Einstein’s gravity was studied using a construction
based on gauging the noncommutative SO(4,1) de Sitter
group and the Seiberg-Witten map with subsequent con-
traction to ISO(3,1). Most recently another construction of
a noncommutative gravitational theory [4] was proposed
based on a twisted Poincaré algebra [5,6]. These ap-
proaches, although mathematically consistent, are not
minimal formulations of Einstein’s General Relativity on
noncommutative spaces. The main problem in formulating
a theory of gravity on noncommutative manifolds is that it
is difficult to implement symmetries such as general coor-
dinate covariance and local Lorentz invariance and to
define derivatives which are torsion free and satisfy the
metricity condition.

Similar obstacles appear in constructing models of par-
ticle physics on flat spacetime with canonical noncommu-
tativity defined by the algebra �x̂a; x̂b� � i�ab (�ab is
constant and antisymmetric). Indeed, it turns out to be
rather difficult to implement most symmetries particle
physicists are so familiar with. In particular, Lorentz in-
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variance is explicitly violated by the noncommutative al-
gebra. However, it has been shown in [7] that there is
another exact symmetry, the noncommutative Lorentz in-
variance, based on the usual Lorentz algebra so(3,1) which
is undeformed. Another example is the implementation of
noncommutative local gauge theories. A formulation of
noncommutative gauge theories within the enveloping al-
gebra approach has been proposed in [8]. The fields taken
in the enveloping algebra are expanded in term of a series
in �. Each of the terms of this series is however a function
of the classical variables [9,10]. The number of degrees of
freedom is thus finite and the same as in the corresponding
commutative gauge theory.

In this work, based partially on the above achievements
in implementing symmetries on flat noncommutative
spacetimes, we would like to propose a theory of General
Relativity on curved spacetimes with canonical noncom-
mutativity. We shall use the tetrad approach to General
Relativity. This formalism applied to noncommutative
General Relativity allows one to follow closely the usual
construction of noncommutative gauge theories. This re-
quires one to implement two gauge symmetries: local
Lorentz transformations which can be seen as a local gauge
theory based on the algebra so(3,1) for the spin connection
field and general coordinate transformations which are
inhomogeneous translations with the tetrad as a gauge
field.

The gauging of noncommutative so(3,1) algebra is only
possible if the corresponding gauge field, the spin connec-
tion, is assumed to be in the enveloping algebra. Hence, to
implement local Lorentz invariance we follow the ap-
proach developed in [8]. The invariance under the general
coordinate transformations, however, is explicitly violated
by the canonical noncommutative algebra. Nevertheless,
we find a restricted class of coordinate transformations
which preserves the canonical structure. It turns out that
these transformations correspond to volume-preserving
diffeomorphisms. Volume-preserving transformations
-1  2005 The American Physical Society
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have been previously discussed in [11,12] in different
physical frameworks. Thus, the basic new ideas for con-
structing a theory of noncommutative General Relativity
are to formulate local Lorentz invariance by gauging
so(3,1) within the enveloping algebra approach and to
introduce volume-preserving coordinate transformations
in place of general coordinate transformations, which is
indeed an exact symmetry of the canonical noncommuta-
tive spacetime.

II. NONCOMMUTATIVE GENERAL RELATIVITY

Let us start from a noncommutative spacetime and
assume that the coordinates fulfill canonical commutation
relations:

�x̂�; x̂	� � i��	: (1)

Obviously, the commutator (1) explicitly violates general
coordinate covariance since ��	 is constant in all reference
frames. However, we can identify a subclass of general
coordinate transformations,

x̂ �0 � x̂� � �̂��x̂�; (2)

which are compatible with the algebra given by (1). The
hat on the function �̂�x̂� indicates that it is in the enveloping
algebra. Under the change of coordinates (2), the commu-
tator (1) transforms as

�x̂�0; x̂	0� � x̂�0x̂	0 � x̂	0x̂�0

� i��	 � �x̂�; �̂	� � ��̂�; x̂	� �O��̂2�: (3)

Requiring that � remains constant yields the following
partial differential equations:

���@̂��̂
	�x̂� � �	�@̂��̂

��x̂�: (4)

A nontrivial solution to this condition can be easily found:

�̂ ��x̂� � ��	@̂	f̂�x̂�; (5)

where f̂�x̂� is an arbitrary field. This noncommutative
general coordinate transformation corresponds to the fol-
lowing classical transformation: �̂��x� � ��	@	f̂�x�. The
Jacobian of this restricted coordinate transformation is
equal to 1, meaning that the volume element is invariant:
d4x0 � d4x. The version of General Relativity based on
volume-preserving diffeomorphism is known as the uni-
modular theory of gravitation [13]. Thus we come to the
conclusion that symmetries of canonical noncommutative
spacetime naturally lead to the noncommutative version of
unimodular gravity.
045010
Now we need to implement two gauge symmetries
mentioned above. A noncommutative gauge transforma-
tion �̂�x̂� valued in the iso(3,1) Lie algebra can be decom-
posed using the generators of the inhomogeneous
translations p� � �i@�, which are anti-Hermitian, and
the generators of the local Lorentz algebra so(3,1) �ab,
which are Hermitian. One finds

�̂�x̂� � �̂�x̂� � �̂�x̂� � �̂��x̂�p� �
1

2
�̂ab�x̂��ab; (6)

where �̂� is subject to the constraint (5). Note that p� acts
on the coordinates and functions, including �̂ab, and
a; b; . . . run over the tangent space indices. As in [7], the
algebra of generators is undeformed. It is easy to verify that
the commutator of two noncommutative gauge transforma-
tions ��̂1�x̂�; �̂2�x̂�� is in general not a noncommutative
gauge transformation if the transformations are Lie algebra
valued. As in the Yang-Mills case, the solution is to assume
that the noncommutative gauge transformations are in the
enveloping algebra. Let us introduce a noncommutative
vector potential which corresponds to the noncommutative
gauge transformation (6)

Â a�x̂� � �D̂a� � iÊ�a �x̂�p� �
i
2
!̂�x̂�abc�bc; (7)

where Ê�a �x̂� are the components of the noncommutative
tetrad Êa�x̂� , i.e. the gauge fields corresponding to general
coordinate transformations, and !̂�x̂�abc are the spin con-
nections fields associated with local Lorentz invariance.
Note that Âa�x̂� plays a dual role. It can be viewed as a
covariant derivative as well. It is also worth noticing that
Êa � Ê�a @̂� � @̂a, which implies that the noncommutative
tetrad is mapped trivially on the commutative one: Êa � ea
to all orders in �.

Let us now assume that the gauge transformations and
the spin connection field are in the enveloping algebra:

�̂ � ��x� ���1��x;!a� �O��2�; (8)

and

!̂ a � !a�x� �!�1�
a �x;!a� �O��2�; (9)

respectively, with ��x� � ���x�p� � 1
2�

ab�x��ab and
!a�x� �

1
2!a

bc�bc. We require that the commutator of

two noncommutative gauge transformations with �̂1 and
�̂2 be a gauge transformation �̂ d�1	�2

:

��̂�̂1
�̂�̂2

� �̂�̂2
�̂�̂1

� ? �̂�x� � �i�̂�̂1
�̂2�!a� � i�̂�̂2

�̂1�!a� � ��̂1�!a� ;?�̂2�!a�� ? �̂�x� � �̂ d�1	�2

? �̂�x�: (10)

One finds as usual

��1;�2� � i��1	�2
(11)
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in the zeroth order in � and

i��1
��1�

2 � i��2
��1�

1 � i�abf@a�1; @b�2g � ��1;�
�1�
2 � � ��2;�

�1�
1 � � ��1�

�1	�2
(12)
in the leading order in �. A solution to this consistency
equation is

��1�
1 �

1

4
�abf@a�1; !bg (13)

and analogously for ��1�
2 and ��1�

�1	�2
and where we have

used �ab � ��	ea�eb	 and @a � e�a @�. Note that the con-
sistency condition is derived in the leading order in � and
��x�. However, since ��x� is itself proportional to �, the
relevant part of the volume-preserving diffeomorphism
transformation is trivial. In other words, the terms propor-
tional to ��x� can be dropped in Eq. (13) and it actually
determines ��1� which is the first nontrivial term in the
Seiberg-Witten map for the so(3,1) gauge transformation.

The consistency condition for the spin connection is
given by

��!
�1�
a � @a��1� �

1

2
�bc�@b�@c!a � @b!a@c��

� i��; !�1�
a � � i���1�; !a�: (14)

A solution is

!�1�
a � �

1

4
�bcf!b; @c!a � Fcag: (15)

One thus has Ê�a � e�a to all orders in � and !̂a � !a �

!�1�
a �O��2�.
The Seiberg-Witten map for the field strength is given by

F̂ab � Fab � F�1�
ab �O��2�, where

F�1�
ab �

1

2
�cdfFac; Fbdg �

1

4
�cdf!c; �@d �Dd�Fabg; (16)

where Da � Aa � ie�a p� � i
2!a

bc�bc is the commutative
covariant derivative.

The commutative field strength Fab contains the
Riemann tensor Rab

cd as well as a torsion Tab
c:

Fab � i�Da;Db� �
1

2
Rab

cd�cd � Tab
cDc (17)

with Rab �
1
2Rab

cd�cd and Tab
c � �Dae	b �Dbe	a�ec	. The

commutative covariant derivative Da is torsion free
(Tab

c � 0) and compatible with a metric: ea�Dae
b
	 � 0.

We now have all the required tools to consider actions
that are invariant under general coordinate transformations.

III. ACTION FOR NONCOMMUTATIVE GENERAL
RELATIVITY

The Seiberg-Witten map for the Riemann tensor Rab
which is the field strength tensor corresponding to a local
noncommutative Lorentz transformation can be read from
Eqs. (16) and (17) where the classical torsion is being set to
045010
zero:

R̂ ab � Rab � R�1�
ab �O��2�; (18)

with

R�1�
ab �

1

2
�cdfRac; Rbdg �

1

4
�cdf!c; �@d �Dd�Rabg: (19)

The noncommutative Riemann tensor is then given by

R̂ ab�x̂� �
1

2
R̂ab

cd�x̂��cd; (20)

from which we can determine the corresponding noncom-
mutative Ricci tensor, R̂ab

bd, and a Ricci scalar R̂ � R̂ab
ab

in terms of the classical fields using the above Seiberg-
Witten map.

The noncommutative action is then given by

S �
Z
d4x

1

2 2 R̂�x̂�

�
Z
d4x

1

2 2 �R�x� � R�1��x�� �O��2�: (21)

In the second line we have made use of the Weyl quantiza-
tion procedure which allows to replace the noncommuta-
tive variables by commuting ones by expanding the
noncommutative fields using the Seiberg-Witten maps.
The only correction to leading order in � comes from the
Seiberg-Witten map for the so(3,1) gauge field. It is easy to
verify that this action is Hermitian and invariant under
unimodular coordinate transformations and local Lorentz
transformations. This noncommutative general relativity
theory is, by construction, torsion free. In the leading order
in the expansion in � we can use the classical relations:

!ab
� �x� �

1

2
ec��x��	ab

c�x� �	b
c
a�x� �	c

ab�x�� (22)

with

	ab
c�x� � ea��x�e

b
	�x��@

�e	c�x� � @	e�c �x��: (23)

Equation (21) represents an action for the noncommutative
version of the unimodular theory of gravitation. The uni-
modular theory is known [13] to be classically equivalent
to Einstein’s General Relativity with a cosmological con-
stant. Indeed, we can rewrite the action (21) in the form of
an Einstein-Hilbert action by introducing a Lagrange mul-
tiplier � which appears to be an arbitrary integration
constant:

S �
Z
d4x

�
1

2 2 det�ea��x���R�x� � R�1��x��

���det�ea��x�� � 1� �O��2�
�
: (24)
-3
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In deriving (24) we have used
det ?�ea��x�� �
def 1

4!
!�	"#!abcdea��x� ? eb	�x� ? ec"�x� ? ed#�x� � det�ea��x�� �O��2�; (25)
where ? is the star product.
Let us now consider the weak field approximation of the

noncommutative action (24). Although the theory defined
by the action (24) does not admit flat spacetime as a
background solution, we can still locally (for regions
with volume V � 1=�) expand the tetrad around flat
spacetime:

e�a �x� � %�
a �

1

2
h�a �x�: (26)

Here h�a �x� is a weak gravitational field subject to the
traceless condition [ det�ea��x�� � 1 follows from (24)].
The noncommutative correction to Einstein’s action in
the weak field limit reads

1

8
�ln ~Rkl

ab ~Rmn
cddkmabcd �

1

16
�ln ~Rln

ab ~Rkm
cddkmabcd (27)

where dkmabcd are the structure constants defined by
dkmabcd�km � 2f�ab;�cdg. Notice that

~R km
ab � �

1

2
@k

�
@ahbm �

1

2
@bham

�
� @m�@

ahbk � @bhak�

(28)

is the leading order of the weak field approximation of
Rab

cd. This modification of the linearized noncommutative
action implies a noncommutative correction of the equa-
tions of motion for the weak gravitational field:

Rab �
1

2
%a

bR �
1

8
�an�@r@k ~Rmn

cd � @r@n ~Rkm
cd�dkmrbcd

�
1

8
�ln@r@l ~Rmn

cdd am
rbcd (29)

where Rab is the usual Ricci tensor and R is the corre-
sponding Ricci scalar in the linearized approximation (we
have omitted the contribution coming from the cosmologi-
cal constant). This modification might have some interest-
ing physical implications that will be studied elsewhere.

Finally we briefly discuss the relation between the tetrad
formalism considered here and a second-order formalism
which involves the metric tensor. The noncommutative
metric tensor defined naively as ĝ�	�x̂� � Ea��x̂�Eb	�x̂�%ab
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is neither real nor symmetric. This raises a more generic
question of the geometrical interpretation of the noncom-
mutative deformation of Einstein’s General Relativity con-
sidered above. The simple prescription to define the metric
in our case is to solve the deformed equations of motion for
the classical tetrads at each given order of � expansion and
then to determine the metric in the standard way.
IV. CONCLUSIONS

We have constructed a theory of noncommutative
General Relativity on a canonical noncommutative space-
time. General coordinate transformations are shown to be
restricted to the volume-preserving transformations. Thus
the General Relativity on canonical noncommutative
spacetimes is the noncommutative version of the unimodu-
lar theory of gravitation. The local Lorentz invariance is
described as a noncommutative gauge theory by taking the
spin connection field in the enveloping algebra.

The action for noncommutative General Relativity was
constructed and the expansion in first order of the non-
commutative parameter � has been calculated. We derived
the noncommutative correction to the equations of motion
of the weak gravitational field. An interesting question is
whether the effects of spacetime noncommutativity com-
ing from the noncommutative modifications of gravity are
stronger than the ones coming from the modifications of
the interactions of the standard model [14].

It will also be interesting to consider classical solutions
of the noncommutative action defined in this work. The
minimal length introduced in our version of General
Relativity could have interesting consequences for the
horizon and the singularity of black holes. It will also be
worth studying cosmological implications and the quanti-
zation of the noncommutative action.
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