Noncommutative geometry and particle physics

Walter D. van Suijlekom (joint with Jord Boeijink/Thijs van den Broek)

September 10, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Spectral action
- The (noncommutative) geometry of Yang-Mills fields
- Supersymmetry in noncommutative geometry

Noncommutative manifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Basic device: a spectral triple $(\mathcal{A}, \mathcal{H}, D)$:
 - ullet algebra ${\mathcal A}$ of bounded operators on
 - a Hilbert space \mathcal{H} ,
 - a self-adjoint operator *D* with compact resolvent such that the commutator [*D*, *a*] is bounded for all *a* ∈ *A*.

Noncommutative manifolds

- Basic device: a spectral triple $(\mathcal{A}, \mathcal{H}, D)$:
 - $\bullet\,$ algebra ${\cal A}$ of bounded operators on
 - a Hilbert space \mathcal{H} ,
 - a self-adjoint operator *D* with compact resolvent such that the commutator [*D*, *a*] is bounded for all *a* ∈ *A*.
- Grading $\gamma: \mathcal{H} \to \mathcal{H}$ such that

$$\gamma^2 = \mathrm{id}, \qquad D\gamma + \gamma D = 0, \qquad \gamma a = a\gamma \quad (a \in A)$$

Noncommutative manifolds

- Basic device: a spectral triple $(\mathcal{A}, \mathcal{H}, D)$:
 - ullet algebra ${\mathcal A}$ of bounded operators on
 - a Hilbert space \mathcal{H} ,
 - a self-adjoint operator *D* with compact resolvent such that the commutator [*D*, *a*] is bounded for all *a* ∈ *A*.
- Grading $\gamma : \mathcal{H} \to \mathcal{H}$ such that

$$\gamma^2 = \mathrm{id}, \qquad D\gamma + \gamma D = 0, \qquad \gamma a = a\gamma \quad (a \in A)$$

• Real structure $J : \mathcal{H} \to \mathcal{H}$, anti-unitary operator such that

$$JD = \pm JD, \qquad J\gamma = \pm \gamma J.$$

defining an $\mathcal A\text{-bimodule structure}$ on $\mathcal H$ via

$$(a,b)\cdot\psi=aJb^*J^{-1}\psi\quad(\psi\in\mathcal{H})$$

and we require (first order):

 $[[D,a],JbJ^{-1}] = 0$

Example: Riemannian spin geometry

Let M be an compact m-dimensional Riemannian spin manifold.

- $\mathcal{A} = C^{\infty}(M)$
- $\mathcal{H} = L^2(S)$, square integrable spinors
- $D = \partial$, Dirac operator
- $\gamma = \gamma_{m+1}$ if *m* even (chirality)
- J = C (charge conjugation)
- Then *D* has compact resolvent because ∂ elliptic self-adjoint. Also [D, f] bounded for $f \in C^{\infty}(M)$.

Suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$.

Can we construct a spectral triple on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

 \bullet Let $\mathcal{B}\simeq \mathsf{End}_\mathcal{A}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

$$\mathcal{H}'=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{H}$$

Then $\mathcal B$ acts as bounded operators on $\mathcal H'$.

Suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$.

Can we construct a spectral triple on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

 \bullet Let $\mathcal{B}\simeq \mathsf{End}_\mathcal{A}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

$$\mathcal{H}'=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{H}$$

Then \mathcal{B} acts as bounded operators on \mathcal{H}' .

• Definition of operator $D'(\eta, \psi) := \nabla(\eta)\psi + \eta \otimes D\psi$ requires a (compatible) connection on \mathcal{E} :

$$abla : \mathcal{E} o \mathcal{E} \otimes_{\mathcal{A}} \Omega^1_D(\mathcal{A})$$

with respect to the derivation d := [D, .] and the Connes' differential one-forms are

$$\Omega^1_D(\mathcal{A}) = \left\{ \sum_j \mathsf{a}_j[D, \mathsf{b}_j] : \mathsf{a}_j, \mathsf{b}_j \in \mathcal{A}
ight\}$$

Suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$.

Can we construct a spectral triple on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

 \bullet Let $\mathcal{B}\simeq {\sf End}_{\mathcal{A}}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

$$\mathcal{H}'=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{H}$$

Then \mathcal{B} acts as bounded operators on \mathcal{H}' .

• Definition of operator $D'(\eta, \psi) := \nabla(\eta)\psi + \eta \otimes D\psi$ requires a (compatible) connection on \mathcal{E} :

$$abla : \mathcal{E} o \mathcal{E} \otimes_{\mathcal{A}} \Omega^1_D(\mathcal{A})$$

with respect to the derivation d := [D, .] and the Connes' differential one-forms are

$$\Omega^1_D(\mathcal{A}) = \left\{ \sum_j \mathsf{a}_j[D, \mathsf{b}_j] : \mathsf{a}_j, \mathsf{b}_j \in \mathcal{A}
ight\}$$

● Then (B, H', D') is a spectral triple [Connes, 1996].

with real structure

Again, suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$.

• If there is a real structure J on $(\mathcal{A}, \mathcal{H}, D)$, then instead

$$\mathcal{H}' := \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H} \otimes_{\mathcal{A}} \overline{\mathcal{E}}$$

in terms of the conjugate (left \mathcal{A} -) module $\overline{\mathcal{E}}$ and define

$$\mathcal{D}'(\eta\otimes\psi\otimes\overline{
ho})=
abla(\eta)\psi\otimes\overline{
ho}+\eta\otimes\mathcal{D}\psi\otimes\overline{
ho}+\eta\otimes\psi\overline{
abla}(\overline{
ho})$$

where

$$abla : \mathcal{E} o \mathcal{E} \otimes_{\mathcal{A}} \Omega^{1}_{D}(\mathcal{A})$$

 $\overline{
abla} : \overline{\mathcal{E}} o \Omega^{1}_{D}(\mathcal{A}) \otimes_{\mathcal{A}} \overline{\mathcal{E}},$

and

$$\mathsf{J}':\mathcal{H}'\to\mathcal{H}',\qquad\eta\otimes\psi\otimes\overline{\rho}\mapsto\rho\otimes\mathsf{J}\psi\otimes\overline{\eta}$$

complete the definition of a real spectral triple $(\mathcal{B}, \mathcal{H}', D', J')$.

• In the case $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- In the case $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.
- However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega_D^1(A)$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.

- In the case $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.
- However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega_D^1(A)$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.
- The (gauge) group U(A) of unitary elements in A acts on H in the adjoint, i.e. via the unitary U = uJuJ⁻¹ for u ∈ U(A).

- In the case $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.
- However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega_D^1(A)$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.
- The (gauge) group U(A) of unitary elements in A acts on H in the adjoint, i.e. via the unitary U = uJuJ⁻¹ for u ∈ U(A).
- This induces an action of U(A) on the connection one-form A, since D' → UD'U* implies

$$A \mapsto uAu^* + u[D, u^*]$$

- In the case $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have of course $\mathcal{H}' \simeq \mathcal{H}$ and $J' \equiv J$.
- However, the operator D is perturbed to $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega_D^1(A)$ the connection one-form (gauge potential) in $\nabla = d + A$. These are the so-called inner fluctuations.
- The (gauge) group U(A) of unitary elements in A acts on H in the adjoint, i.e. via the unitary U = uJuJ⁻¹ for u ∈ U(A).
- This induces an action of U(A) on the connection one-form A, since D' → UD'U* implies

$$A \mapsto uAu^* + u[D, u^*]$$

• The element A is the gauge field and it acts as $A \pm JAJ^{-1}$ on \mathcal{H} , that is, in the adjoint representation.

Spectral action principle

Given a (real) spectral triple $(\mathcal{A}, \mathcal{H}, D)$, we define an action functional on $A \in \Omega_D^1(\mathcal{A})$ and $\psi \in \mathcal{H}$ as

 $S_{\Lambda}[A,\psi] := \operatorname{Tr} (f(D_A/\Lambda)) - \operatorname{Tr} (f(D/\Lambda)) + \langle \psi, D_A \psi \rangle$

with f a function on \mathbb{R} (...) and $\Lambda \in \mathbb{R}$ a cut-off.

• Gauge invariance: $S_{\Lambda}[u^*Au + u^*[D, u], u\psi] = S_{\Lambda}[A, \psi].$

Spectral action principle

Given a (real) spectral triple $(\mathcal{A}, \mathcal{H}, D)$, we define an action functional on $A \in \Omega_D^1(\mathcal{A})$ and $\psi \in \mathcal{H}$ as

 $S_{\Lambda}[A,\psi] := \operatorname{Tr} \left(f(D_A/\Lambda)\right) - \operatorname{Tr} \left(f(D/\Lambda)\right) + \langle \psi, D_A \psi \rangle$

with f a function on \mathbb{R} (...) and $\Lambda \in \mathbb{R}$ a cut-off.

- Gauge invariance: $S_{\Lambda}[u^*Au + u^*[D, u], u\psi] = S_{\Lambda}[A, \psi].$
- The part Tr (f(D/Λ)) is purely 'gravitational' (this terminology is justified by applying it to the commutative spectral triple associated to M).

Heat kernel expansion

One obtains an explicit expression for

Tr $(f(D_A/\Lambda))$

in terms of the heat expansion for the operator $e^{-t(D_A/\Lambda)^2}$.

• Assume simple dimension spectrum for D and a heat expansion

$${
m Tr} \ e^{-tD_A^2}\sim \sum_lpha t^lpha a_lpha(D_A) \qquad (t
ightarrow 0)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Heat kernel expansion

One obtains an explicit expression for

Tr $(f(D_A/\Lambda))$

in terms of the heat expansion for the operator $e^{-t(D_A/\Lambda)^2}$.

• Assume simple dimension spectrum for D and a heat expansion

$${
m Tr} \ e^{-tD_A^2}\sim \sum_lpha t^lpha a_lpha(D_A) \qquad (t
ightarrow 0)$$

• Then write f as a Laplace transform of ϕ

$$\operatorname{Tr} \left(f(D_A/\Lambda) \right) = \int_{t>0} \phi(t) e^{-t(D_A/\Lambda)^2} dt = \sum_{\alpha} f_{-\alpha} \Lambda^{-\alpha} a_{\alpha}(D_A)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Yang–Mills theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a compact 4-dimensional Riemannian spin manifold M, consider

- $\mathcal{A} = \mathcal{C}^{\infty}(M) \otimes M_n(\mathbb{C})$ • $\mathcal{H} = L^2(S) \otimes M_n(\mathbb{C})$
- $D = \partial \otimes 1$
- $\gamma = \gamma_5 \otimes 1$, $J = C \otimes (.)^*$.

Example: Yang–Mills theory

Given a compact 4-dimensional Riemannian spin manifold M, consider

- $\mathcal{A} = C^{\infty}(M) \otimes M_n(\mathbb{C})$
- $\mathcal{H} = L^2(S) \otimes M_n(\mathbb{C})$
- $D = \partial \otimes 1$
- $\gamma = \gamma_5 \otimes 1, \qquad J = \mathcal{C} \otimes (.)^*.$

Proposition (Chamseddine-Connes)

- The self-adjoint operator A + JAJ⁻¹ with A = A^{*} ∈ Ω¹_D(A) describes an su(n)-valued one-form on M.
- The gauge group $\mathcal{U}(\mathcal{A}) \simeq C^{\infty}(M, U(n))$ acts on \mathcal{H} in the (usual) adjoint representation.
- The spectral action is given by

$$S_{\Lambda}[A,\psi] = rac{f(0)}{24\pi^2} \int_{\mathcal{M}} \operatorname{Tr} \, F_A \wedge *F_A + \langle \psi, (\partial + \operatorname{ad} A)\psi
angle + \mathcal{O}(\Lambda^{-1})$$

with F_A the curvature of the connection one-form corresponding to A.

We make two observations.

• The $\mathfrak{su}(n)$ -valued one-form defines a connection one-form on the trivial principal bundle $M \times SU(n)$.

Is there a spectral triple that describes Yang–Mills theory on topologically non-trivial principal bundles?

- ロ ト - 4 回 ト - 4 □ - 4

We make two observations.

• The $\mathfrak{su}(n)$ -valued one-form defines a connection one-form on the trivial principal bundle $M \times SU(n)$.

Is there a spectral triple that describes Yang–Mills theory on topologically non-trivial principal bundles?

② With the fermions in the adjoint representation of $\mathcal{U}(\mathcal{A})$, the above action is a candidate for defining a supersymmetric theory.

How does supersymmetry appear, and can we extend it to physically realistic models? (eg. MSSM)

Geometry of Yang-Mills fields

Let $P \rightarrow M$ be a *G*-principal bundle. A convenient way to define connections on *P* is through covariant derivatives on the associated bundle(s).

• A covariant derivative (or, connection) on $E = P \times_G V$ is a map

$$abla : \mathsf{\Gamma}^\infty(E) o \mathsf{\Gamma}^\infty(E) \otimes_{\mathcal{C}^\infty(M)} \Omega^1(M))$$

satisfying the Leibniz rule $\nabla(sf) = \nabla(s)f + s \otimes df$. This implies that $\nabla = \nabla_0 + A$ with $A \in \Gamma^{\infty}(adP) \otimes_{C^{\infty}(M)} \Omega^1(M)$ for any two ∇, ∇_0 .

Geometry of Yang-Mills fields

Let $P \rightarrow M$ be a *G*-principal bundle. A convenient way to define connections on *P* is through covariant derivatives on the associated bundle(s).

• A covariant derivative (or, connection) on $E = P \times_G V$ is a map

$$abla : \mathsf{\Gamma}^\infty(E) o \mathsf{\Gamma}^\infty(E) \otimes_{\mathcal{C}^\infty(M)} \Omega^1(M))$$

satisfying the Leibniz rule $\nabla(sf) = \nabla(s)f + s \otimes df$. This implies that $\nabla = \nabla_0 + A$ with $A \in \Gamma^{\infty}(adP) \otimes_{C^{\infty}(M)} \Omega^1(M)$ for any two ∇, ∇_0 .

• The curvature of ∇ is $F_{\nabla} := \nabla^2 \in \Gamma^{\infty}(\operatorname{ad} P) \otimes_{C^{\infty}(M)} \Omega^2(M)$.

Geometry of Yang-Mills fields

Let $P \rightarrow M$ be a *G*-principal bundle. A convenient way to define connections on *P* is through covariant derivatives on the associated bundle(s).

• A covariant derivative (or, connection) on $E = P \times_G V$ is a map

$$abla : \mathsf{\Gamma}^\infty(E) o \mathsf{\Gamma}^\infty(E) \otimes_{\mathcal{C}^\infty(M)} \Omega^1(M))$$

satisfying the Leibniz rule $\nabla(sf) = \nabla(s)f + s \otimes df$. This implies that $\nabla = \nabla_0 + A$ with $A \in \Gamma^{\infty}(adP) \otimes_{C^{\infty}(M)} \Omega^1(M)$ for any two ∇, ∇_0 .

- The curvature of ∇ is $F_{\nabla} := \nabla^2 \in \Gamma^{\infty}(\operatorname{ad} P) \otimes_{C^{\infty}(M)} \Omega^2(M)$.
- The gauge group $\operatorname{Aut}_1(P)\simeq \Gamma^\infty(\operatorname{Ad} P)$ acts on abla

$$abla \mapsto g
abla g^{-1}$$

and, consequently, $F_{\nabla} \mapsto gF_{\nabla}g^{-1}$.

• Given the above, we may define the Yang-Mills action functional (for simplicity, assume G = U(n) or SU(n))

$$S_{YM}[A] = \int_M \mathrm{Tr} \; F_{
abla} \wedge *F_{
abla}$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

• Given the above, we may define the Yang-Mills action functional (for simplicity, assume G = U(n) or SU(n))

$$S_{YM}[A] = \int_M \mathrm{Tr} \; F_{
abla} \wedge *F_{
abla}$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

• This describes the dynamics and self-interactions of a single gauge boson (eg. photon, W-boson, gluon, ...)

• Given the above, we may define the Yang-Mills action functional (for simplicity, assume G = U(n) or SU(n))

$$S_{YM}[A] = \int_M \mathrm{Tr} \; F_{
abla} \wedge *F_{
abla}$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

- This describes the dynamics and self-interactions of a single gauge boson (eg. photon, W-boson, gluon, ...)
- Physical matter (fermions) can be included (on a spin manifold) as sections of the tensor product of the spinor bundle *S* the associated bundles *E* to *P*:

$$S_M[A,\psi] = \langle \psi, \gamma \circ \nabla \psi \rangle$$

(eg. electrons, quarks, ...)

• Given the above, we may define the Yang-Mills action functional (for simplicity, assume G = U(n) or SU(n))

$$S_{YM}[A] = \int_M \mathrm{Tr} \; F_{
abla} \wedge *F_{
abla}$$

writing $\nabla = \nabla_0 + A$ for some fixed connection ∇_0

- This describes the dynamics and self-interactions of a single gauge boson (eg. photon, W-boson, gluon, ...)
- Physical matter (fermions) can be included (on a spin manifold) as sections of the tensor product of the spinor bundle *S* the associated bundles *E* to *P*:

$$S_M[A,\psi] = \langle \psi, \gamma \circ \nabla \psi \rangle$$

(eg. electrons, quarks, ...)

• Example: QCD has G = SU(3). Gluons are $\mathfrak{su}(3)$ -valued one-forms on M; quarks are sections of $E = P \times_{SU(3)} \mathbb{C}^3$. Their dynamics and interaction are described by $S_{YM} + S_M$.

Yang–Mills theory (non-trivial)

Let \mathcal{A} be a finitely generated, projective $C^{\infty}(M)$ -module *-algebra. Thus, the module structure is compatible with the *-algebra structure:

$$f(ab) = (fa)b = a(fb),$$
 $(fa)^* = \overline{f}a^*,$ et cetera.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that an algebra bundle $B \rightarrow M$ is a vector bundle with an algebra structure on the fibers; also, the local trivializations are algebra maps.

Yang–Mills theory (non-trivial)

Let \mathcal{A} be a finitely generated, projective $C^{\infty}(M)$ -module *-algebra. Thus, the module structure is compatible with the *-algebra structure:

$$f(ab) = (fa)b = a(fb),$$
 $(fa)^* = \overline{f}a^*,$ et cetera.

Recall that an algebra bundle $B \rightarrow M$ is a vector bundle with an algebra structure on the fibers; also, the local trivializations are algebra maps.

Proposition (Serre-Swan for algebra bundles)

There is a one-to-one correspondence between finite rank (involutive) algebra bundles on M and finitely generated projective $C^{\infty}(M)$ -module (*)-algebras.

The correspondence being $\mathcal{A} \simeq \Gamma^{\infty}(M, B)$ for an algebra bundle $B \to M$.

Yang–Mills theory (non-trivial)

Hilbert space and Dirac operator

We define a Hilbert space $\mathcal{H} := \mathcal{A} \otimes_{C^{\infty}(M)} L^{2}(M, S)$. Let ∇_{0} be a (compatible) connection on the finitely generated projective module \mathcal{A} :

$$abla_0: \mathcal{A} \to \mathcal{A} \otimes_{C^\infty(M)} \Omega^1_{\partial}(C^\infty(M))$$

A self-adjoint operator D on \mathcal{H} is defined as $D = \nabla_0 \otimes 1 + 1 \otimes \partial$.

Yang-Mills theory (non-trivial)

Hilbert space and Dirac operator

We define a Hilbert space $\mathcal{H} := \mathcal{A} \otimes_{C^{\infty}(M)} L^{2}(M, S)$. Let ∇_{0} be a (compatible) connection on the finitely generated projective module \mathcal{A} :

$$abla_0: \mathcal{A}
ightarrow \mathcal{A} \otimes_{\mathcal{C}^\infty(M)} \Omega^1_{\hat{
ho}}(\mathcal{C}^\infty(M))$$

A self-adjoint operator D on \mathcal{H} is defined as $D = \nabla_0 \otimes 1 + 1 \otimes \partial$.

Theorem

• The set of data $(\mathcal{A}_{C^{\infty}(M)}, \mathcal{H}, D)$ defines a spectral triple.

Also, there exists a grading $\gamma = 1 \otimes \gamma_5$ (assuming *M* even dimensional) and a real structure $J = (.)^* \otimes C$.

Next, we study the inner fluctuations of this spectral triple.

- From the transition functions $t_{\alpha\beta}$ of the algebra bundle *B* (for which $\mathcal{A} \simeq \Gamma^{\infty}(M, B)$) we build a SU(n)-principal bundle:
 - Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.

From the transition functions $t_{\alpha\beta}$ of the algebra bundle *B* (for which $\mathcal{A} \simeq \Gamma^{\infty}(M, B)$) we build a SU(n)-principal bundle:

• Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Then $t_{\alpha\beta}(x) \in \operatorname{Aut}(M_n(\mathbb{C})) = SU(n)$

From the transition functions $t_{\alpha\beta}$ of the algebra bundle *B* (for which $\mathcal{A} \simeq \Gamma^{\infty}(M, B)$) we build a SU(n)-principal bundle:

- Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.
- Then $t_{\alpha\beta}(x) \in \operatorname{Aut}(M_n(\mathbb{C})) = SU(n)$
- The resulting SU(n)-principal bundle P has as an associated bundle:

$$B = P \times_{SU(n)} M_n(\mathbb{C})$$

From the transition functions $t_{\alpha\beta}$ of the algebra bundle *B* (for which $\mathcal{A} \simeq \Gamma^{\infty}(M, B)$) we build a SU(n)-principal bundle:

- Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.
- Then $t_{\alpha\beta}(x) \in \operatorname{Aut}(M_n(\mathbb{C})) = SU(n)$
- The resulting SU(n)-principal bundle P has as an associated bundle:

$$B = P \times_{SU(n)} M_n(\mathbb{C})$$

From the transition functions $t_{\alpha\beta}$ of the algebra bundle *B* (for which $\mathcal{A} \simeq \Gamma^{\infty}(M, B)$) we build a SU(n)-principal bundle:

• Assume for simplicity that the fiber of B is isomorphic to $M_n(\mathbb{C})$.

• Then
$$t_{lphaeta}(x)\in \operatorname{Aut}(M_n(\mathbb{C}))=SU(n)$$

• The resulting SU(n)-principal bundle P has as an associated bundle:

$$B = P \times_{SU(n)} M_n(\mathbb{C})$$

- The inner fluctuations D → D' = D + A + JAJ⁻¹ give rise to connections ∇ on B, such that D' = γ ∘ ∇. They are parametrized by elements in Ω¹(adP).

Yang-Mills theory (non-trivial)

Spectral action

We collect this in a

Theorem

- $(\mathcal{A}_{C^{\infty}(M)}, \mathcal{A} \otimes_{C^{\infty}(M)} L^{2}(S), D = \bigvee_{0} \otimes 1 + 1 \otimes \partial, \gamma = 1 \otimes \gamma_{5}, J = (.)^{*} \otimes C)$ is an even real spectral triple.
- The self-adjoint operator A + JAJ⁻¹ with A = A^{*} ∈ Ω¹_D(A) describes a section of adP × Λ¹(M).
- The gauge group U(A) ≃ Γ[∞](AdP), and acts on H in the adjoint representation.
- The spectral action is given by

$$\mathcal{S}_{\mathsf{A}}[\mathsf{A},\psi] = rac{f(0)}{24\pi^2} \int_{\mathcal{M}} \mathrm{Tr} \,\, \mathsf{F}_{\mathsf{A}} \wedge * \mathsf{F}_{\mathsf{A}} + \langle \psi, (\partial + \mathrm{ad}\mathsf{A})\psi
angle + \mathcal{O}(\mathsf{A}^{-1})$$

with F_A the curvature of the connection ∇ corresponding to $D + A + JAJ^{-1}$.

Outlook (Part 1)

- The noncommutative torus for rational θ is of the above type.
- More generally, one can construct from a spectral triple (A₀, H₀, D₀) and a (fin.gen.proj.) A₀-module algebra A, equipped with a D₀-connection ∇ another spectral triple

 $(\mathcal{A}, \mathcal{A} \otimes_{\mathcal{A}_0} \mathcal{H}, \nabla \otimes 1 + 1 \otimes D_0)$

(similar to Morita equivalence) Relation to the work of Ćaćić (MPIM,Caltech)?

• Include topological terms through addition of Tr $(\gamma f(D_A/\Lambda))$.

Reference: J. Boeijink. *Noncommutative geometry of Yang–Mills fields*, Master's thesis, Radboud University Nijmegen. (http://www.math.ru.nl/~waltervs)

Again, consider the spectral triple $(C^{\infty}(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \partial \otimes 1)$ and the spectral action

$$S_{\Lambda}[A,\psi] = rac{f(0)}{24\pi^2} \int_{\mathcal{M}} \operatorname{Tr} F \wedge *F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1})$$

With the fermions ψ ∈ H in the adjoint representation of the gauge group U(A), it might be possible to exchange ψ ↔ A (in some way), while leaving the spectral action invariant.

Again, consider the spectral triple $(C^{\infty}(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \partial \otimes 1)$ and the spectral action

$$S_{\Lambda}[A,\psi] = rac{f(0)}{24\pi^2} \int_{\mathcal{M}} \operatorname{Tr} F \wedge *F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1})$$

With the fermions ψ ∈ H in the adjoint representation of the gauge group U(A), it might be possible to exchange ψ ↔ A (in some way), while leaving the spectral action invariant.

• First, we need to obtain the correct degrees of freedom:

Again, consider the spectral triple $(C^{\infty}(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \partial \otimes 1)$ and the spectral action

$$S_{\Lambda}[A,\psi] = rac{f(0)}{24\pi^2} \int_{\mathcal{M}} \operatorname{Tr} F \wedge *F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1})$$

- With the fermions ψ ∈ H in the adjoint representation of the gauge group U(A), it might be possible to exchange ψ ↔ A (in some way), while leaving the spectral action invariant.
- First, we need to obtain the correct degrees of freedom:
 - Instead of $\langle \psi, D_A \psi \rangle$ we consider

$$\langle \widetilde{\chi}, D_A \widetilde{\psi} \rangle$$

(日) (同) (三) (三) (三) (○) (○)

in terms of a anti-chiral $\tilde{\chi}$ and chiral $\tilde{\psi}$ (this is in accordance with the usual independent variables $\overline{\psi}$ and ψ in the Lorentzian case [vNW]).

Again, consider the spectral triple $(C^{\infty}(M) \otimes M_n(\mathbb{C}), L^2(S) \otimes M_n(\mathbb{C}), \partial \otimes 1)$ and the spectral action

$$S_{\Lambda}[A,\psi] = rac{f(0)}{24\pi^2} \int_{\mathcal{M}} \operatorname{Tr} F \wedge *F + \langle \psi, D_A \psi \rangle + \mathcal{O}(\Lambda^{-1})$$

- With the fermions ψ ∈ H in the adjoint representation of the gauge group U(A), it might be possible to exchange ψ ↔ A (in some way), while leaving the spectral action invariant.
- First, we need to obtain the correct degrees of freedom:
 - Instead of $\langle \psi, D_A \psi \rangle$ we consider

$$\langle \widetilde{\chi}, D_A \widetilde{\psi} \rangle$$

in terms of a anti-chiral $\tilde{\chi}$ and chiral $\tilde{\psi}$ (this is in accordance with the usual independent variables $\bar{\psi}$ and ψ in the Lorentzian case [vNW]).

• Write $\mathcal{H} = L^2(S) \otimes M_n(\mathbb{C}) \simeq L^2(S) \otimes_{\mathbb{R}} \mathfrak{u}(n)$ and

$$\langle \widetilde{\chi}, D_{A}\widetilde{\psi} \rangle = \langle \mathrm{Tr} \ \widetilde{\chi}, D\mathrm{Tr} \ \widetilde{\psi} \rangle + \langle \chi, D_{A}\psi \rangle$$

where $\widetilde{\psi} = \operatorname{Tr} \widetilde{\psi} + \psi$, $\widetilde{\chi} = idem$ is the decomposition according to $\mathfrak{u}(n) = \mathbb{R} \oplus \mathfrak{su}(n)$. Thus, the spinors $\operatorname{Tr} \widetilde{\chi}$ and $\operatorname{Tr} \widetilde{\psi}$ decouple.

• We restrict the inner product to χ and ψ in $L^2(S) \otimes_{\mathbb{R}} \mathfrak{su}(n)$ and consider

$$\mathcal{S}_{SYM}[A,\chi,\psi] = rac{f(0)}{24\pi^2} \int_M {
m Tr} \; F_A \wedge *F_A + \langle \chi, D_A\psi
angle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• We restrict the inner product to χ and ψ in $L^2(S) \otimes_{\mathbb{R}} \mathfrak{su}(n)$ and consider

$$S_{SYM}[A,\chi,\psi] = rac{f(0)}{24\pi^2} \int_M \text{Tr } F_A \wedge *F_A + \langle \chi, D_A\psi
angle$$

• Consider the following supersymmetry transformations

$$\delta A := c_1 \gamma^{\mu} \otimes (\epsilon_-, \gamma_{\mu} \psi) + c_2 \gamma^{\mu} \otimes (\chi, \gamma_{\mu} \epsilon_+)$$

$$\delta \psi := c_3 F \epsilon_+ \qquad \delta \chi := c_4 F \epsilon_-.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $\epsilon_{\pm} \in L^2(S)$ constant spinors such that $\gamma_5 \epsilon_{\pm} = \pm \epsilon_{\pm}$.

• We restrict the inner product to χ and ψ in $L^2(S) \otimes_{\mathbb{R}} \mathfrak{su}(n)$ and consider

$$S_{SYM}[A, \chi, \psi] = rac{f(0)}{24\pi^2} \int_M \text{Tr } F_A \wedge *F_A + \langle \chi, D_A \psi \rangle$$

• Consider the following supersymmetry transformations

$$\delta A := c_1 \gamma^{\mu} \otimes (\epsilon_-, \gamma_{\mu} \psi) + c_2 \gamma^{\mu} \otimes (\chi, \gamma_{\mu} \epsilon_+)$$

$$\delta \psi := c_3 F \epsilon_+ \qquad \delta \chi := c_4 F \epsilon_-.$$

with $\epsilon_{\pm} \in L^2(S)$ constant spinors such that $\gamma_5 \epsilon_{\pm} = \pm \epsilon_{\pm}$.

Proposition

For certain constants c_i the action functional S_{SYM} is invariant under the supersymmetry transformations:

$$\left. \frac{d}{dt} S_{SYM}[A + t\delta A, \chi + t\delta \chi, \psi + t\delta \psi] \right|_{t=0} = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 The SU(3)-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.

- The SU(3)-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be *SU*(3).

- The SU(3)-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be *SU*(3).
- Quarks are fermions in the defining representation of SU(3) rather then in the adjoint representation. We therefore extend our finite-dimensional Hilbert space $M_3(\mathbb{C})$ to

$$V := \mathbb{C}^3 \oplus M_3(\mathbb{C}) \oplus \overline{\mathbb{C}^3}$$

and let $M_3(\mathbb{C})$ act on both \mathbb{C}^3 and $M_3(\mathbb{C})$ by left matrix multiplication, and as the identity on $\overline{\mathbb{C}^3}$.

- The SU(3)-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be *SU*(3).
- Quarks are fermions in the defining representation of SU(3) rather then in the adjoint representation. We therefore extend our finite-dimensional Hilbert space $M_3(\mathbb{C})$ to

$$V := \mathbb{C}^3 \oplus M_3(\mathbb{C}) \oplus \overline{\mathbb{C}^3}$$

and let $M_3(\mathbb{C})$ act on both \mathbb{C}^3 and $M_3(\mathbb{C})$ by left matrix multiplication, and as the identity on $\overline{\mathbb{C}^3}$.

• The real structure is now given on V by the map

$$J_V:(q_1,T,\overline{q_2})\mapsto (q_2,T^*,\overline{q_1})$$

(eventually combined with the real structure on M).

- The SU(3)-gauge field A describes what is called a gluon, its supersymmetric partner ψ (together with χ) a gluino.
- We would like to include also quarks, as well as their superpartners: squarks, but keep the gauge group to be *SU*(3).
- Quarks are fermions in the defining representation of SU(3) rather then in the adjoint representation. We therefore extend our finite-dimensional Hilbert space $M_3(\mathbb{C})$ to

$$V := \mathbb{C}^3 \oplus M_3(\mathbb{C}) \oplus \overline{\mathbb{C}^3}$$

and let $M_3(\mathbb{C})$ act on both \mathbb{C}^3 and $M_3(\mathbb{C})$ by left matrix multiplication, and as the identity on $\overline{\mathbb{C}^3}$.

• The real structure is now given on V by the map

$$J_V:(q_1, T, \overline{q_2})\mapsto (q_2, T^*, \overline{q_1})$$

(eventually combined with the real structure on M).

• Thus, the algebra $\mathcal{A} = C^{\infty}(\mathcal{M}) \otimes \mathcal{M}_{3}(\mathbb{C})$ acts on $\mathcal{H} = L^{2}(S) \otimes V$ and $J = C \otimes J_{V}$ defines an anti-unitary operator on \mathcal{H} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• As said, we do not want to change the gauge group SU(3) so the algebra should remain $C^{\infty}(M) \otimes M_3(\mathbb{C})$.

- As said, we do not want to change the gauge group SU(3) so the algebra should remain $C^{\infty}(M) \otimes M_3(\mathbb{C})$.
- Squarks, being superpartners of quarks, are bosons. We want to obtain them as inner fluctuations.

- As said, we do not want to change the gauge group SU(3) so the algebra should remain $C^{\infty}(M) \otimes M_3(\mathbb{C})$.
- Squarks, being superpartners of quarks, are bosons. We want to obtain them as inner fluctuations.
- ullet This motivates to replace the operator $\partial \otimes 1$ on ${\mathcal H}$ by

$$D = \partial \otimes 1 + \gamma_5 \otimes D_V$$

with $D_V : V \to V$ given by

$$\mathcal{D}_V := egin{pmatrix} 0 & d & 0 \ d^* & 0 & e^* \ 0 & e & 0 \end{pmatrix}$$

with $d: M_3(\mathbb{C}) \to \mathbb{C}^3, g \mapsto g \cdot v$ and $e: M_3(\mathbb{C}) \to \overline{\mathbb{C}^3}, g \mapsto g^t \cdot \overline{v}$ for some vector $v \in \mathbb{C}^3$.

- As said, we do not want to change the gauge group SU(3) so the algebra should remain $C^{\infty}(M) \otimes M_3(\mathbb{C})$.
- Squarks, being superpartners of quarks, are bosons. We want to obtain them as inner fluctuations.
- ullet This motivates to replace the operator $\partial \otimes 1$ on ${\mathcal H}$ by

$$D = \partial \otimes 1 + \gamma_5 \otimes D_V$$

with $D_V: V \to V$ given by

$$D_V := egin{pmatrix} 0 & d & 0 \ d^* & 0 & e^* \ 0 & e & 0 \end{pmatrix}$$

with $d: M_3(\mathbb{C}) \to \mathbb{C}^3, g \mapsto g \cdot v$ and $e: M_3(\mathbb{C}) \to \overline{\mathbb{C}^3}, g \mapsto g^t \cdot \overline{v}$ for some vector $v \in \mathbb{C}^3$.

Proposition

 $(C^{\infty}(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J)$ defines a real, even spectral triple

Inner fluctuations

Again, consider $(C^{\infty}(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J).$

• The inner fluctuations $D_A = D + A + JAJ^{-1}$ of D can be written as

$$D + \mathbb{A} + \mathbb{A}_{\widetilde{q}}$$

where \mathbb{A} is parametrized by an u(3)-valued one-form and $\mathbb{A}_{\tilde{q}}$ by an element $\tilde{q} \in C^{\infty}(M) \otimes \mathbb{C}^{3}$. In fact, we can write

$$\mathbb{A}_{\widetilde{q}}(q_1,g,\overline{q}_2) = (g\widetilde{q},\overline{q}_1\overline{\widetilde{q}}^t + \widetilde{q}\overline{q_2}^t,g^t\overline{\widetilde{q}})$$

Inner fluctuations

Again, consider $(C^{\infty}(M) \otimes M_3(\mathbb{C}), L^2(S) \otimes V, D, \gamma_5 \otimes 1, J).$

• The inner fluctuations $D_A = D + A + JAJ^{-1}$ of D can be written as

$$D + \mathbb{A} + \mathbb{A}_{\widetilde{q}}$$

where \mathbb{A} is parametrized by an u(3)-valued one-form and $\mathbb{A}_{\tilde{q}}$ by an element $\tilde{q} \in C^{\infty}(M) \otimes \mathbb{C}^{3}$. In fact, we can write

$$\mathbb{A}_{\widetilde{q}}(q_1,g,\overline{q}_2) = (g\widetilde{q},\overline{q}_1\overline{\widetilde{q}}^t + \widetilde{q}\overline{q}_2^t,g^t\overline{\widetilde{q}})$$

Proposition

• The gauge group $\mathcal{U}(\mathcal{A}) \simeq C^{\infty}(M, U(3))$ acts on the Hilbert space as:

$$(q_1, g, \overline{q_2}) \mapsto (uq_1, ugu^*, \overline{uq}_2)$$

• The gauge transformation $D_A \rightarrow U D_A U^*$ transforms the gauge fields as

 $\mathbb{A} \mapsto u \mathbb{A} u^* + u[D, u^*]; \qquad \mathbb{A}_{\widetilde{q}} \mapsto \mathbb{A}_{u\widetilde{q}}$

The spectral action

Interestingly, $[\partial + \mathbb{A}, \mathbb{A}_{\widetilde{q}}] = \gamma^{\mu} \mathbb{A}_{(\partial_{\mu} + \mathbb{A}_{\mu})\widetilde{q}}.$

Proposition

In addition to the Yang–Mills action, we have in the (bosonic) spectral action:

$$\int_{\mathcal{M}} \left[-\left(\frac{6f_2}{\pi^2 \Lambda^2} + 3R\right) \Lambda^2 |\widetilde{q}(x)|^2 + \frac{f(0)}{4\pi^2} (8|\widetilde{q}(x)|^4 + 6|(\partial_\mu + A_\mu)\widetilde{q}(x)|^2 \right] d\mu_g(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The spectral action

Interestingly, $[\partial + \mathbb{A}, \mathbb{A}_{\widetilde{q}}] = \gamma^{\mu} \mathbb{A}_{(\partial_{\mu} + \mathbb{A}_{\mu})\widetilde{q}}.$

Proposition

In addition to the Yang–Mills action, we have in the (bosonic) spectral action:

$$\int_{\mathcal{M}} \left[-\left(\frac{6f_2}{\pi^2 \Lambda^2} + 3R\right) \Lambda^2 |\widetilde{q}(x)|^2 + \frac{f(0)}{4\pi^2} (8|\widetilde{q}(x)|^4 + 6|(\partial_\mu + A_\mu)\widetilde{q}(x)|^2 \right] d\mu_g(x) d\mu_g(x)$$

Proposition

The fermionic action $\langle \psi, D_A \psi \rangle$ contains in addition

$$\begin{split} \langle \psi_{q}, (\partial + A)\psi_{q} \rangle + \langle \chi_{g}, (\partial + \mathsf{ad}A)\psi_{g} \rangle + \langle \overline{\psi}_{q}, (\partial + \overline{A})\overline{\psi}_{q} \rangle + \\ \langle \psi_{q}, \psi_{g}\widetilde{q} \rangle + \langle \chi_{g}\widetilde{q}, \chi_{q} \rangle + \langle \chi_{g}^{t}\overline{\widetilde{q}}, \overline{\psi}_{q} \rangle + \langle \overline{\psi}_{q}, \psi_{g}^{t}\overline{\widetilde{q}} \rangle \end{split}$$

where $\psi = \psi_{q} \oplus (\psi_{g} \oplus \chi_{g}) \oplus \overline{\psi}_{q}$

Interpretation/comparison with the MSSM

So, in addition to the previous SYM terms, we have

$$\begin{split} &\int_{M} \left[-\left(\frac{6f_{2}}{\pi^{2}\Lambda^{2}} + 3R\right)\Lambda^{2} |\widetilde{q}(x)|^{2} + \frac{f(0)}{4\pi^{2}} (8|\widetilde{q}(x)|^{4} + 6|(\partial_{\mu} + A_{\mu})\widetilde{q}(x)|^{2} \right] d\mu_{g}(x) \\ & \left\langle \psi_{q}, (\partial + A)\psi_{q} \right\rangle + \left\langle \chi_{g}, (\partial + \operatorname{ad} A)\psi_{g} \right\rangle + \left\langle \overline{\psi}_{q}, (\partial + \overline{A})\overline{\psi}_{q} \right\rangle + \left\langle \psi_{q}, \psi_{g}\widetilde{q} \right\rangle + \left\langle \chi_{g}\widetilde{q}, \chi_{q} \right\rangle + \left\langle \chi_{g}^{t}\overline{\widetilde{q}}, \overline{\psi}_{q} \right\rangle + \left\langle \overline{\psi}_{q}, \psi_{g}^{t}\overline{\widetilde{q}} \right\rangle \end{split}$$

We recognize from the MSSM [Kramml]:

- squark kinetic term $\propto |\partial_{\mu} \widetilde{q}|^2$.
- squark mass term $\propto |\widetilde{q}|^2$.
- squark quartic self-interaction $\propto |\widetilde{q}|^4$.
- squark-gluon interactions $\propto |(\partial_{\mu} + A_{\mu})\tilde{q}|^2$.
- squark-quark-gluino interaction $\propto \langle \chi_{g} \tilde{q}, \psi_{q} \rangle$.

Outlook (Part 2)

- Unimodularity to reduce U(n) to SU(n). Fermion doubling. [CCM].
- An essential further step is to identify the coefficients of the terms just considered. However, the literature is on the MSSM, whereas we considered only part of that, namely super-QCD.
- Future plan is to include the electro-weak sector as well, exploiting the same ideas. This could lead to a noncommutative geometrical description of the MSSM, whose Lagrangian is highly non-trivial to write down. We hope to derive it as the spectral action of some noncommutative manifold.
- Reference: T. van den Broek. *Supersymmetric gauge theories in noncommutative geometry. First steps towards the MSSM*, Master's thesis, Radboud University Nijmegen. (http://www.math.ru.nl/~waltervs)