
Noncommutative geometry and particle physics

Walter D. van Suijlekom
(joint with Jord Boeijink/Thijs van den Broek)

September 10, 2009



Contents

Spectral action

The (noncommutative) geometry of Yang–Mills fields

Supersymmetry in noncommutative geometry



Noncommutative manifolds
Basic device: a spectral triple (A,H,D):

algebra A of bounded operators on
a Hilbert space H,
a self-adjoint operator D with compact resolvent
such that the commutator [D, a] is bounded for all a ∈ A.

Grading γ : H → H such that

γ2 = id, Dγ + γD = 0, γa = aγ (a ∈ A)

Real structure J : H → H, anti-unitary operator such that

JD = ±JD, Jγ = ±γJ.

defining an A-bimodule structure on H via

(a, b) · ψ = aJb∗J−1ψ (ψ ∈ H)

and we require (first order):

[[D, a], JbJ−1] = 0
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Example: Riemannian spin geometry

Let M be an compact m-dimensional Riemannian spin manifold.

A = C∞(M)

H = L2(S), square integrable spinors

D = ∂/ , Dirac operator

γ = γm+1 if m even (chirality)

J = C (charge conjugation)

Then D has compact resolvent because ∂/ elliptic self-adjoint.
Also [D, f ] bounded for f ∈ C∞(M).



Morita equivalence
Suppose A ∼M B.
Can we construct a spectral triple on B from (A,H,D)?

Let B ' EndA(E) with E finitely generated projective. Define

H′ = E ⊗A H

Then B acts as bounded operators on H′.

Definition of operator D ′(η, ψ) := ∇(η)ψ + η ⊗ Dψ requires a
(compatible) connection on E :

∇ : E → E ⊗A Ω1
D(A)

with respect to the derivation d := [D, .] and the Connes’ differential
one-forms are

Ω1
D(A) =

∑
j

aj [D, bj ] : aj , bj ∈ A


Then (B,H′,D ′) is a spectral triple [Connes, 1996].
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Morita equivalence
with real structure

Again, suppose A ∼M B.

If there is a real structure J on (A,H,D), then instead

H′ := E ⊗A H⊗A E

in terms of the conjugate (left A-) module E and define

D ′(η ⊗ ψ ⊗ ρ) = ∇(η)ψ ⊗ ρ+ η ⊗ Dψ ⊗ ρ+ η ⊗ ψ∇(ρ)

where

∇ : E → E ⊗A Ω1
D(A)

∇ : E → Ω1
D(A)⊗A E ,

and

J ′ : H′ → H′, η ⊗ ψ ⊗ ρ 7→ ρ⊗ Jψ ⊗ η

complete the definition of a real spectral triple (B,H′,D ′, J ′).



Morita self-equivalence

In the case B = A (i.e. E = A) we have of course H′ ' H and J ′ ≡ J.

However, the operator D is perturbed to D ′ = DA ≡ D + A± JAJ−1

with A∗ = A ∈ Ω1
D(A) the connection one-form (gauge potential) in

∇ = d + A. These are the so-called inner fluctuations.

The (gauge) group U(A) of unitary elements in A acts on H in the
adjoint, i.e. via the unitary U = uJuJ−1 for u ∈ U(A).

This induces an action of U(A) on the connection one-form A, since
D ′ 7→ UD ′U∗ implies

A 7→ uAu∗ + u[D, u∗]

The element A is the gauge field and it acts as A± JAJ−1 on H, that
is, in the adjoint representation.
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Spectral action principle

Given a (real) spectral triple (A,H,D), we define an action functional on
A ∈ Ω1

D(A) and ψ ∈ H as

SΛ[A, ψ] := Tr (f (DA/Λ))− Tr (f (D/Λ)) + 〈ψ,DAψ〉

with f a function on R (...) and Λ ∈ R a cut-off.

Gauge invariance: SΛ[u∗Au + u∗[D, u], uψ] = SΛ[A, ψ].

The part Tr (f (D/Λ)) is purely ‘gravitational’ (this terminology is
justified by applying it to the commutative spectral triple associated to
M).
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Heat kernel expansion

One obtains an explicit expression for

Tr (f (DA/Λ))

in terms of the heat expansion for the operator e−t(DA/Λ)2
.

Assume simple dimension spectrum for D and a heat expansion

Tr e−tD2
A ∼

∑
α

tαaα(DA) (t → 0)

Then write f as a Laplace transform of φ

Tr (f (DA/Λ)) =

∫
t>0

φ(t)e−t(DA/Λ)2
dt =

∑
α

f−αΛ−αaα(DA)
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Example: Yang–Mills theory
Given a compact 4-dimensional Riemannian spin manifold M, consider

A = C∞(M)⊗Mn(C)
H = L2(S)⊗Mn(C)
D = ∂/ ⊗ 1
γ = γ5 ⊗ 1, J = C ⊗ (.)∗.

Proposition (Chamseddine-Connes)

The self-adjoint operator A + JAJ−1 with A = A∗ ∈ Ω1
D(A) describes

an su(n)-valued one-form on M.

The gauge group U(A) ' C∞(M,U(n)) acts on H in the (usual)
adjoint representation.

The spectral action is given by

SΛ[A, ψ] =
f (0)

24π2

∫
M

Tr FA ∧ ∗FA + 〈ψ, (∂/ + adA)ψ〉+O(Λ−1)

with FA the curvature of the connection one-form corresponding to A.
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We make two observations.

1 The su(n)-valued one-form defines a connection one-form on the trivial
principal bundle M × SU(n).

Is there a spectral triple that describes Yang–Mills
theory on topologically non-trivial principal bundles?

2 With the fermions in the adjoint representation of U(A), the above
action is a candidate for defining a supersymmetric theory.

How does supersymmetry appear, and can we ex-
tend it to physically realistic models? (eg. MSSM)
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Geometry of Yang–Mills fields

Let P → M be a G -principal bundle. A convenient way to define connections
on P is through covariant derivatives on the associated bundle(s).

A covariant derivative (or, connection) on E = P ×G V is a map

∇ : Γ∞(E )→ Γ∞(E )⊗C∞(M) Ω1(M))

satisfying the Leibniz rule ∇(sf ) = ∇(s)f + s ⊗ df . This implies that
∇ = ∇0 + A with A ∈ Γ∞(adP)⊗C∞(M) Ω1(M) for any two ∇,∇0.

The curvature of ∇ is F∇ := ∇2 ∈ Γ∞(adP)⊗C∞(M) Ω2(M).

The gauge group Aut1(P) ' Γ∞(AdP) acts on ∇

∇ 7→ g∇g−1

and, consequently, F∇ 7→ gF∇g−1.
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Yang–Mills action

Given the above, we may define the Yang–Mills action functional (for
simplicity, assume G = U(n) or SU(n))

SYM [A] =

∫
M

Tr F∇ ∧ ∗F∇

writing ∇ = ∇0 + A for some fixed connection ∇0

This describes the dynamics and self-interactions of a single gauge
boson (eg. photon, W-boson, gluon, ...)

Physical matter (fermions) can be included (on a spin manifold) as
sections of the tensor product of the spinor bundle S the associated
bundles E to P:

SM [A, ψ] = 〈ψ, γ ◦ ∇ψ〉
(eg. electrons, quarks, ...)

Example: QCD has G = SU(3). Gluons are su(3)-valued one-forms on
M; quarks are sections of E = P ×SU(3) C3. Their dynamics and
interaction are described by SYM + SM .
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Yang–Mills theory (non-trivial)
Algebra

Let A be a finitely generated, projective C∞(M)-module ∗-algebra. Thus,
the module structure is compatible with the ∗-algebra structure:

f (ab) = (fa)b = a(fb), (fa)∗ = f a∗, et cetera.

Recall that an algebra bundle B → M is a vector bundle with an algebra
structure on the fibers; also, the local trivializations are algebra maps.

Proposition (Serre-Swan for algebra bundles)

There is a one-to-one correspondence between finite rank (involutive) algebra
bundles on M and finitely generated projective C∞(M)-module (∗)-algebras.

The correspondence being A ' Γ∞(M,B) for an algebra bundle B → M.
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Yang–Mills theory (non-trivial)
Hilbert space and Dirac operator

We define a Hilbert space H := A⊗C∞(M) L2(M,S). Let ∇/ 0 be a
(compatible) connection on the finitely generated projective module A:

∇/ 0 : A → A⊗C∞(M) Ω1
∂/ (C∞(M))

A self-adjoint operator D on H is defined as D = ∇/ 0 ⊗ 1 + 1⊗ ∂/ .

Theorem

The set of data (AC∞(M),H,D) defines a spectral triple.

Also, there exists a grading γ = 1⊗ γ5 (assuming M even dimensional) and
a real structure J = (.)∗ ⊗ C .
Next, we study the inner fluctuations of this spectral triple.
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Yang–Mills theory (non-trivial)
Principal bundles

From the transition functions tαβ of the algebra bundle B (for which
A ' Γ∞(M,B)) we build a SU(n)-principal bundle:

Assume for simplicity that the fiber of B is isomorphic to Mn(C).

Then tαβ(x) ∈ Aut(Mn(C)) = SU(n)

The resulting SU(n)-principal bundle P has as an associated bundle:

B = P ×SU(n) Mn(C)

The connection ∇/ 0 defines a covariant derivative ∇0 on the associated
bundle B.

The inner fluctuations D 7→ D ′ = D + A + JAJ−1 give rise to
connections ∇ on B, such that D ′ = γ ◦ ∇. They are parametrized by
elements in Ω1(adP).
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Yang–Mills theory (non-trivial)
Spectral action

We collect this in a

Theorem

(AC∞(M),A⊗C∞(M) L2(S),D = ∇/ 0⊗1+1⊗∂/ , γ = 1⊗γ5, J = (.)∗⊗C )
is an even real spectral triple.

The self-adjoint operator A + JAJ−1 with A = A∗ ∈ Ω1
D(A) describes a

section of adP × Λ1(M).

The gauge group U(A) ' Γ∞(AdP), and acts on H in the adjoint
representation.

The spectral action is given by

SΛ[A, ψ] =
f (0)

24π2

∫
M

Tr FA ∧ ∗FA + 〈ψ, (∂/ + adA)ψ〉+O(Λ−1)

with FA the curvature of the connection ∇ corresponding to
D + A + JAJ−1.



Outlook (Part 1)

The noncommutative torus for rational θ is of the above type.

More generally, one can construct from a spectral triple (A0,H0,D0)
and a (fin.gen.proj.) A0-module algebra A, equipped with a
D0-connection ∇ another spectral triple

(A,A⊗A0 H,∇⊗ 1 + 1⊗ D0)

(similar to Morita equivalence)
Relation to the work of Ćaćić (MPIM,Caltech)?

Include topological terms through addition of Tr (γf (DA/Λ)).

Reference: J. Boeijink. Noncommutative geometry of Yang–Mills fields,
Master’s thesis, Radboud University Nijmegen.
(http://www.math.ru.nl/∼waltervs)



Supersymmetric Yang–Mills theory
Again, consider the spectral triple (C∞(M)⊗Mn(C), L2(S)⊗Mn(C), ∂/ ⊗ 1)
and the spectral action

SΛ[A, ψ] =
f (0)

24π2

∫
M

Tr F ∧ ∗F + 〈ψ,DAψ〉+O(Λ−1)

With the fermions ψ ∈ H in the adjoint representation of the gauge
group U(A), it might be possible to exchange ψ ↔ A (in some way),
while leaving the spectral action invariant.

First, we need to obtain the correct degrees of freedom:

Instead of 〈ψ,DAψ〉 we consider

〈χ̃,DAψ̃〉

in terms of a anti-chiral χ̃ and chiral ψ̃ (this is in accordance with the
usual independent variables ψ and ψ in the Lorentzian case [vNW]).
Write H = L2(S)⊗Mn(C) ' L2(S)⊗R u(n) and

〈χ̃,DAψ̃〉 = 〈Tr χ̃,DTr ψ̃〉+ 〈χ,DAψ〉

where ψ̃ = Tr ψ̃ + ψ, χ̃ = idem is the decomposition according to
u(n) = R⊕ su(n). Thus, the spinors Tr χ̃ and Tr ψ̃ decouple.
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We restrict the inner product to χ and ψ in L2(S)⊗R su(n) and consider

SSYM [A, χ, ψ] =
f (0)

24π2

∫
M

Tr FA ∧ ∗FA + 〈χ,DAψ〉

Consider the following supersymmetry transformations

δA := c1γ
µ ⊗ (ε−, γµψ) + c2γ

µ ⊗ (χ, γµε+)

δψ := c3F ε+ δχ := c4F ε−.

with ε± ∈ L2(S) constant spinors such that γ5ε± = ±ε±.

Proposition

For certain constants ci the action functional SSYM is invariant under the
supersymmetry transformations:

d

dt
SSYM [A + tδA, χ+ tδχ, ψ + tδψ]

∣∣∣∣
t=0

= 0
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Guided by physics: super-QCD

The SU(3)-gauge field A describes what is called a gluon, its
supersymmetric partner ψ (together with χ) a gluino.

We would like to include also quarks, as well as their superpartners:
squarks, but keep the gauge group to be SU(3).

Quarks are fermions in the defining representation of SU(3) rather then
in the adjoint representation. We therefore extend our finite-dimensional
Hilbert space M3(C) to

V := C3 ⊕M3(C)⊕ C3

and let M3(C) act on both C3 and M3(C) by left matrix multiplication,
and as the identity on C3.

The real structure is now given on V by the map

JV : (q1,T , q2) 7→ (q2,T
∗, q1)

(eventually combined with the real structure on M).

Thus, the algebra A = C∞(M)⊗M3(C) acts on H = L2(S)⊗ V and
J = C ⊗ JV defines an anti-unitary operator on H.
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Deriving the squarks
As said, we do not want to change the gauge group SU(3) so the
algebra should remain C∞(M)⊗M3(C).

Squarks, being superpartners of quarks, are bosons. We want to obtain
them as inner fluctuations.

This motivates to replace the operator ∂/ ⊗ 1 on H by

D = ∂/ ⊗ 1 + γ5 ⊗ DV

with DV : V → V given by

DV :=

 0 d 0
d∗ 0 e∗

0 e 0


with d : M3(C)→ C3, g 7→ g · v and e : M3(C)→ C3, g 7→ g t · v for
some vector v ∈ C3.

Proposition

(C∞(M)⊗M3(C), L2(S)⊗V ,D, γ5⊗ 1, J) defines a real, even spectral triple
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Deriving the squarks
Inner fluctuations

Again, consider (C∞(M)⊗M3(C), L2(S)⊗ V ,D, γ5 ⊗ 1, J).

The inner fluctuations DA = D + A + JAJ−1 of D can be written as

D + A + Aeq
where A is parametrized by an u(3)-valued one-form and Aeq by an
element q̃ ∈ C∞(M)⊗ C3. In fact, we can write

Aeq(q1, g , q2) = (gq̃, q1q̃
t

+ q̃q2
t , g t q̃)

Proposition

The gauge group U(A) ' C∞(M,U(3)) acts on the Hilbert space as:

(q1, g , q2) 7→ (uq1, ugu∗, uq2)

The gauge transformation DA → UDAU∗ transforms the gauge fields as

A 7→ uAu∗ + u[D, u∗]; Aeq 7→ Aueq
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The spectral action
Interestingly, [∂/ + A,Aeq] = γµA(∂µ+Aµ)eq.

Proposition

In addition to the Yang–Mills action, we have in the (bosonic) spectral
action:∫

M

[
−
(

6f2

π2Λ2
+ 3R

)
Λ2|q̃(x)|2 +

f (0)

4π2
(8|q̃(x)|4 + 6|(∂µ + Aµ)q̃(x)|2

]
dµg (x).

Proposition

The fermionic action 〈ψ,DAψ〉 contains in addition

〈ψq, (∂/ + A)ψq〉+ 〈χg , (∂/ + adA)ψg 〉+ 〈ψq, (∂/ + A)ψq〉+
〈ψq, ψg q̃〉+ 〈χg q̃, χq〉+ 〈χt

g q̃, ψq〉+ 〈ψq, ψ
t
g q̃〉

where ψ = ψq ⊕ (ψg ⊕ χg )⊕ ψq
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Interpretation/comparison with the MSSM

So, in addition to the previous SYM terms, we have∫
M

[
−
(

6f2

π2Λ2
+ 3R

)
Λ2|q̃(x)|2 +

f (0)

4π2
(8|q̃(x)|4 + 6|(∂µ + Aµ)q̃(x)|2

]
dµg (x)

〈ψq, (∂/ + A)ψq〉+ 〈χg , (∂/ + adA)ψg 〉+ 〈ψq, (∂/ + A)ψq〉+
〈ψq, ψg q̃〉+ 〈χg q̃, χq〉+ 〈χt

g q̃, ψq〉+ 〈ψq, ψ
t
g q̃〉

We recognize from the MSSM [Kramml]:

squark kinetic term ∝ |∂µq̃|2.

squark mass term ∝ |q̃|2.

squark quartic self-interaction ∝ |q̃|4.

squark-gluon interactions ∝ |(∂µ + Aµ)q̃|2.

squark-quark-gluino interaction ∝ 〈χg q̃, ψq〉.



Outlook (Part 2)

Unimodularity to reduce U(n) to SU(n). Fermion doubling. [CCM].

An essential further step is to identify the coefficients of the terms just
considered. However, the literature is on the MSSM, whereas we
considered only part of that, namely super-QCD.

Future plan is to include the electro-weak sector as well, exploiting the
same ideas. This could lead to a noncommutative geometrical
description of the MSSM, whose Lagrangian is highly non-trivial to
write down. We hope to derive it as the spectral action of some
noncommutative manifold.

Reference: T. van den Broek. Supersymmetric gauge theories in
noncommutative geometry. First steps towards the MSSM, Master’s thesis,
Radboud University Nijmegen. (http://www.math.ru.nl/∼waltervs)


