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Noncommutative manifolds

@ Basic device: a spectral triple (A, H, D):
o algebra A of bounded operators on
o a Hilbert space H,
o a self-adjoint operator D with compact resolvent
such that the commutator [D, a] is bounded for all a € A.

e Grading v : 'H — 'H such that
72 =id, D~y +~D =0, va=ay (ac€A)
@ Real structure J : H — H, anti-unitary operator such that
JD =+JD, Jy =%AJ.
defining an A-bimodule structure on H via
(a,b) - = alb*J Yy (¢ € H)
and we require (first order):

[[D,a], JbJ7'] =0



Example: Riemannian spin geometry

Let M be an compact m-dimensional Riemannian spin manifold.
o A= C>®(M)
o H = L?(S), square integrable spinors
e D =y, Dirac operator
@ 7 = Ymy1 if m even (chirality)
e J = C (charge conjugation)

Then D has compact resolvent because @) elliptic self-adjoint.
Also [D, f] bounded for f € C*(M).
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Suppose A ~p; B.
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o Let B ~ End4(&) with & finitely generated projective. Define
H =4 H

Then B acts as bounded operators on H'.
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Morita equivalence

Suppose A ~p; B.
Can we construct a spectral triple on B from (A, H, D)?

o Let B ~ End4(&) with & finitely generated projective. Define
H =4 H

Then B acts as bounded operators on H'.
e Definition of operator D'(n, ) := V(n)y + n @ D requires a
(compatible) connection on &:

V:E—E@49(A)

with respect to the derivation d := [D,.] and the Connes’ differential
one-forms are

Qp(A) =4 > 4D, bj]: aj, b € A

J

@ Then (B, H',D') is a spectral triple [Connes, 1996].



Morita equivalence
with real structure
Again, suppose A ~y B.
o If there is a real structure J on (A, H, D), then instead

H =EQUHR4E
in terms of the conjugate (left .A-) module £ and define
D'(n@y@p)=V(n)p®@p+n® Dy @p+n¢V(p)
where
V:E—E@4Qh(A)
V:E—-QhA)@4E,
and
JH —-H, ne¢vep—peJpen

complete the definition of a real spectral triple (B, H’, D', J").
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Morita self-equivalence

In the case B = A (i.e. £=A) we have of course H' ~ H and J' = J.

However, the operator D is perturbed to D' = Dy = D + A+ JAJ !
with A* = A € Q}(A) the connection one-form (gauge potential) in
V = d + A. These are the so-called inner fluctuations.

The (gauge) group U(.A) of unitary elements in A acts on H in the
adjoint, i.e. via the unitary U = uJuJ™! for u € U(A).

This induces an action of U(.A) on the connection one-form A, since
D’ — UD'U* implies

A — uAu* + u[D, u*]

The element A is the gauge field and it acts as A+ JAJ™! on H, that
is, in the adjoint representation.



Spectral action principle

Given a (real) spectral triple (A, H, D), we define an action functional on
A€ QL(A) and ¢y € H as

SA[A, ¢ = Tr (f(Da/N)) = Tr (F(D/N)) + (¢, Datp)

with f a function on R (...) and A € R a cut-off.
e Gauge invariance: Sp[u*Au + u*[D, u], uyp] = Sp[A,¥].



Spectral action principle

Given a (real) spectral triple (A, H, D), we define an action functional on
A€ QL(A) and ¢y € H as

SA[A, ¢ = Tr (f(Da/N)) = Tr (F(D/N)) + (¢, Datp)

with f a function on R (...) and A € R a cut-off.

e Gauge invariance: Sp[u*Au + u*[D, u], uyp] = Sp[A,¥].
@ The part Tr (f(D/N)) is purely ‘gravitational’ (this terminology is

justified by applying it to the commutative spectral triple associated to
M).



Heat kernel expansion

One obtains an explicit expression for
Tr (f(Da/N))
in terms of the heat expansion for the operator e—t(Da/N)?

@ Assume simple dimension spectrum for D and a heat expansion

Tr e 73 ~ 3" t%a0(Da)  (t—0)



Heat kernel expansion

One obtains an explicit expression for
Tr (f(Da/N))
in terms of the heat expansion for the operator e—t(Da/N)?

@ Assume simple dimension spectrum for D and a heat expansion
Tr e 73 ~ 3" t%a0(Da)  (t—0)
[0
@ Then write f as a Laplace transform of ¢

Tr (f(Da/N)) = . 3(t)e PN dt = 3 F \A"aq(Da)
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Example: Yang—Mills theory

Given a compact 4-dimensional Riemannian spin manifold M, consider

o A= C>®(M)® M,(C)

o H =1%(S)® M,(C)

e D=9p®1

0o V=75®1, J=C® ()~

Proposition (Chamseddine-Connes)
o The self-adjoint operator A+ JAJ™! with A = A* € QL(A) describes
an su(n)-valued one-form on M.
e The gauge group U(A) ~ C>*(M, U(n)) acts on H in the (usual)
adjoint representation.

@ The spectral action is given by

SalA. Y] = / Tr Fa A +Fa+ (6, (9 + adA)p) + O(AY)

242

with F, the curvature of the connection one-form corresponding to A.
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We make two observations.

© The su(n)-valued one-form defines a connection one-form on the trivial
principal bundle M x SU(n).

Is there a spectral triple that describes Yang—Mills

theory on topologically non-trivial principal bundles?




We make two observations.

© The su(n)-valued one-form defines a connection one-form on the trivial
principal bundle M x SU(n).

Is there a spectral triple that describes Yang—Mills

theory on topologically non-trivial principal bundles?

@ With the fermions in the adjoint representation of U/(.A), the above
action is a candidate for defining a supersymmetric theory.

How does supersymmetry appear, and can we ex-

tend it to physically realistic models? (eg. MSSM)




Geometry of Yang—Mills fields

Let P — M be a G-principal bundle. A convenient way to define connections
on P is through covariant derivatives on the associated bundle(s).

@ A covariant derivative (or, connection) on E = P x¢ Vis a map
V1 T9(E) = [(E) ®coe () (M)

satisfying the Leibniz rule V(sf) = V(s)f + s ® df. This implies that
V = Vo + A with A € I°(adP) @ coo(p) Q' (M) for any two V, Vo.
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Geometry of Yang—Mills fields

Let P — M be a G-principal bundle. A convenient way to define connections
on P is through covariant derivatives on the associated bundle(s).

@ A covariant derivative (or, connection) on E = P x¢ Vis a map
V1 T9(E) = [(E) ®coe () (M)

satisfying the Leibniz rule V(sf) = V(s)f + s ® df. This implies that
V = Vo + A with A € I°(adP) @ coo(p) Q' (M) for any two V, Vo.

e The curvature of V is Fy := V2 € I°(adP) @ coc (1) 2%(M).
@ The gauge group Auty(P) ~ I'°(AdP) acts on V

V—gVg!

and, consequently, Fy — gFvg .
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@ Given the above, we may define the Yang—Mills action functional (for
simplicity, assume G = U(n) or SU(n))
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Yang—Mills action

Given the above, we may define the Yang—Mills action functional (for
simplicity, assume G = U(n) or SU(n))

SYM[A] = /MTI" Fv A *Fv

writing V = Vg + A for some fixed connection Vg

This describes the dynamics and self-interactions of a single gauge
boson (eg. photon, W-boson, gluon, ...)

Physical matter (fermions) can be included (on a spin manifold) as

sections of the tensor product of the spinor bundle S the associated
bundles E to P:

(eg. electrons, quarks, ...)

Example: QCD has G = SU(3). Gluons are su(3)-valued one-forms on
M:; quarks are sections of E = P x5y (3) C3. Their dynamics and
interaction are described by Syp + Sy



Yang—Mills theory (non-trivial)
Algebra

Let A be a finitely generated, projective C°>°(M)-module -algebra. Thus,
the module structure is compatible with the x-algebra structure:
f(ab) = (fa)b = a(fb), (fa)* = fa*, et cetera.

Recall that an algebra bundle B — M is a vector bundle with an algebra
structure on the fibers; also, the local trivializations are algebra maps.



Yang—Mills theory (non-trivial)
Algebra

Let A be a finitely generated, projective C°>°(M)-module -algebra. Thus,
the module structure is compatible with the x-algebra structure:

f(ab) = (fa)b = a(fb), (fa)* = fa*, et cetera.

Recall that an algebra bundle B — M is a vector bundle with an algebra
structure on the fibers; also, the local trivializations are algebra maps.
Proposition (Serre-Swan for algebra bundles)

There is a one-to-one correspondence between finite rank (involutive) algebra
bundles on M and finitely generated projective C°°(M)-module (*)-algebras.

The correspondence being A ~ *°(M, B) for an algebra bundle B — M.



Yang—Mills theory (non-trivial)

Hilbert space and Dirac operator

We define a Hilbert space H := A @coo(pr) L*(M, S). Let ¥, be a
(compatible) connection on the finitely generated projective module A:

Vo i A — A@co(my Q5(C(M))

A self-adjoint operator D on H is defined as D =Y, ®1+1® 9.



Yang—Mills theory (non-trivial)

Hilbert space and Dirac operator

We define a Hilbert space H := A @coo(pr) L*(M, S). Let ¥, be a
(compatible) connection on the finitely generated projective module A:

Vo: A— A®ceo(m) ley(COO(M))
A self-adjoint operator D on H is defined as D =Y, ®1+1® 9.

Theorem
® The set of data (Ace(m), H, D) defines a spectral triple.

Also, there exists a grading v = 1 ® 95 (assuming M even dimensional) and
a real structure J = (.)* ® C.
Next, we study the inner fluctuations of this spectral triple.
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Principal bundles

From the transition functions t,s of the algebra bundle B (for which
A ~T>(M,B)) we build a SU(n)-principal bundle:
@ Assume for simplicity that the fiber of B is isomorphic to M,(C).
Then t,p(x) € Aut(M,(C)) = SU(n)
The resulting SU(n)-principal bundle P has as an associated bundle:

B=P XSU(n) Mn((C)

The connection Y, defines a covariant derivative Vg on the associated
bundle B.



Yang—Mills theory (non-trivial)

Principal bundles

From the transition functions t,s of the algebra bundle B (for which
A ~T(M,B)) we build a SU(n)-principal bundle:

Assume for simplicity that the fiber of B is isomorphic to M,(C).
Then t,p(x) € Aut(M,(C)) = SU(n)
The resulting SU(n)-principal bundle P has as an associated bundle:

B=P XSU(n) Mn((C)

The connection Y, defines a covariant derivative Vg on the associated
bundle B.

The inner fluctuations D +— D’ = D + A+ JAJ™! give rise to
connections V on B, such that D’ = v o V. They are parametrized by
elements in Q*(adP).



Yang—Mills theory (non-trivial)
Spectral action
We collect this in a
Theorem
o (Acoe(my, A®coc(myL2(5), D = Vy@1+109, 7 = 1875, = (.)*® ()
is an even real spectral triple.

o The self-adjoint operator A+ JAJ™! with A= A* € QL(A) describes a
section of adP x A}(M).

@ The gauge group U(A) ~ T°°(AdP), and acts on 'H in the adjoint
representation.

@ The spectral action is given by

S/\ [Av ¢]

247 2/ Tr Fa A #Fa+ (¥, (P + adA)p) + O(A™1)

with F4 the curvature of the connection V corresponding to
D+ A+ JAJL




Outlook (Part 1)

@ The noncommutative torus for rational 8 is of the above type.

@ More generally, one can construct from a spectral triple (Ao, Ho, Do)
and a (fin.gen.proj.) Ag-module algebra A, equipped with a
Dy-connection V another spectral triple

(A, AR4 H,V®1+1® Do)

(similar to Morita equivalence)
Relation to the work of Caci¢ (MPIM,Caltech)?

@ Include topological terms through addition of Tr (yf(Da/N)).
Reference: J. Boeijink. Noncommutative geometry of Yang—Mills fields,

Master's thesis, Radboud University Nijmegen.
(http://www.math.ru.nl/~waltervs)
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@ With the fermions 1) € H in the adjoint representation of the gauge
group U(A), it might be possible to exchange 1) <+ A (in some way),
while leaving the spectral action invariant.
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Supersymmetric Yang—Mills theory

Again, consider the spectral triple (C®°(M) ® M,(C), L?(S) ® M,(C),P ®1)
and the spectral action

S/\ [Av ¢]

oy 2/ Tr F A %F + (1, Dap) + O(A 1)

@ With the fermions 1) € H in the adjoint representation of the gauge
group U(A), it might be possible to exchange 1) <+ A (in some way),
while leaving the spectral action invariant.

@ First, we need to obtain the correct degrees of freedom:

o Instead of (1), Datb) we consider

<§a DAQZ)>
in terms of a anti-chiral Y and chiral 17) (this is in accordance with the

usual independent variables ¢ and v in the Lorentzian case [VNW]).
o Write H = L?(S) ® M,(C) ~ L?(S) ®gr u(n) and

(X, Dath) = (Tr X, DTr 9) + (x, Dath)

where 1} =Tr J—&— Y, X = idem is the decomposition according to
u(n) = R @ su(n). Thus, the spinors Tr ¥ and Tr @ decouple:



o We restrict the inner product to x and ¢ in L?(S) ®g su(n) and consider

f(0)

SsymlA, x, ] = 4.2

/ Tr Fa A xFp + <X, DA”l/}>
M
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f(0)
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@ Consider the following supersymmetry transformations

0 = c3Fey ox = caFe_.

with e+ € L2(S) constant spinors such that y5ex = .



o We restrict the inner product to x and ¢ in L?(S) ®g su(n) and consider

f(0)

SsymlA, x, Y] = 4.2

/ Tr Fa A xFp+ <X, DAl/}>
M
@ Consider the following supersymmetry transformations

0 = c3Fey ox = caFe_.

with e+ € L2(S) constant spinors such that y5ex = .

Proposition

For certain constants c; the action functional Ssyy; is invariant under the
supersymmetry transformations:

d
ESSYM[A + t0A, x + tox, ¥ + t(W)] =0
t=0
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Guided by physics: super-QCD

The SU(3)-gauge field A describes what is called a gluon, its
supersymmetric partner ) (together with ) a gluino.

We would like to include also quarks, as well as their superpartners:
squarks, but keep the gauge group to be SU(3).

Quarks are fermions in the defining representation of SU(3) rather then

in the adjoint representation. We therefore extend our finite-dimensional
Hilbert space M3(C) to

V:=C>® Ms(C) o C3

and let M3(C) act on both C3 and Ms3(C) by left matrix multiplication,
and as the identity on C3.
The real structure is now given on V by the map

JV : (qla Ta@) = (q2a T*aﬁ)

(eventually combined with the real structure on M).
Thus, the algebra A = C>°(M) @ M3(C) acts on H = L?(S) @ V and
J = C ® Jy defines an anti-unitary operator on H.
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@ As said, we do not want to change the gauge group SU(3) so the
algebra should remain C*°(M) @ M3(C).
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As said, we do not want to change the gauge group SU(3) so the
algebra should remain C*°(M) @ M3(C).
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Deriving the squarks

@ As said, we do not want to change the gauge group SU(3) so the
algebra should remain C*°(M) @ M3(C).

@ Squarks, being superpartners of quarks, are bosons. We want to obtain
them as inner fluctuations.

e This motivates to replace the operator # ® 1 on H by

D=p®1+~® Dy
with Dy : V — V given by

0 d 0
Dy =1[d* 0 e*
0 e O

with d : M3(C) — C3,g — g-v and e : M3(C) — C3,g +— gt -V for
some vector v € C3.

Proposition
(C®(M)® M3(C), L2(S)® V,D,vs @1, J) defines a real, even spectral trip/eJ




Deriving the squarks
Inner fluctuations
Again, consider (C>®°(M) ® M3(C), L2(S)® V,D,vs ® 1, J).
@ The inner fluctuations Dy = D + A+ JAJ™! of D can be written as
D+ A+ Ag

where A is parametrized by an u(3)-valued one-form and A by an
element g € C°(M) @ C3. In fact, we can write

_ ~ _ =t ~ =
Ai(q1.8,92) = (89,919 +9%02'.8%9)



Deriving the squarks
Inner fluctuations
Again, consider (C>®°(M) ® M3(C), L2(S)® V,D,vs ® 1, J).
@ The inner fluctuations Dy = D + A+ JAJ™! of D can be written as

D+ A+ Az

where A is parametrized by an u(3)-valued one-form and Ag by an
element g € C°(M) @ C3. In fact, we can write

— ~ _ =t ~ =
Ag(01,8,9,) = (89,919 +q32'.8'q)
Proposition
e The gauge group U(A) ~ C>*(M, U(3)) acts on the Hilbert space as:

(qlagvﬁ) = (UCIL UgU*7Tq2)
@ The gauge transformation Dy — UDaU* transforms the gauge fields as

A — uAu* + u[D, u*]; Ay — Az




The spectral action
Interestingly, [ + A, Ag] = Y6, +4,)5-

Proposition

In addition to the Yang—Mills action, we have in the (bosonic) spectral
action:

m2\2

1= (e +3R) W00 + LGOI + 610, + AP dis

v




The spectral action
Interestingly, [ + A, Ag] = Y6, +4,)5-

Proposition

In addition to the Yang—Mills action, we have in the (bosonic) spectral
action:

[ [ (52, +3r) it + S ratr + 610, + Aa | as

v

Proposition

The fermionic action (1), Da1)) contains in addition

(thg, (D + AYbg) + (Xg: (P + adA)g) + (Vg (D + A o)+
<¢q7 ¢g5> + <Xgav Xq> + <X;Z: Jq) + <$q7 ¢;§>

where ¢ = g ® (Vg ® xg) & @q




Interpretation /comparison with the MSSM

So, in addition to the previous SYM terms, we have

1= (S +3R) 0o + (@01 + 610, + A)TR | dists

(g, (D + A)hg) + (Xg: (P + adA)g) + (Vg (D + A o)+
(1hq: ¥gq) + (Xgq Xq) + <X;§7 Eq> + <Eq7 ¢;Z>

We recognize from the MSSM [Kramml]:
e squark kinetic term o< |9,g|°.
@ squark mass term o |q|°.
e squark quartic self-interaction o< [g|*.
e squark-gluon interactions o |(9, + A,)q|?.
°

squark-quark-gluino interaction  (xgq, ¥q)-



Outlook (Part 2)

e Unimodularity to reduce U(n) to SU(n). Fermion doubling. [CCM].

@ An essential further step is to identify the coefficients of the terms just
considered. However, the literature is on the MSSM, whereas we
considered only part of that, namely super-QCD.

@ Future plan is to include the electro-weak sector as well, exploiting the
same ideas. This could lead to a noncommutative geometrical
description of the MSSM, whose Lagrangian is highly non-trivial to
write down. We hope to derive it as the spectral action of some
noncommutative manifold.

Reference: T. van den Broek. Supersymmetric gauge theories in
noncommutative geometry. First steps towards the MSSM, Master's thesis,
Radboud University Nijmegen. (http://www.math.ru.nl/~waltervs)



