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Noncommutative Geometry and Reality

Alain CONNES

Abstract. We introduce the notion of real structure in our spectral
geometry. This notion is motivated by Atiyah’s K R-theory and by Tomita’s
involution J. It allows us to remove two unpleasant features of the “Connes-
Lott” description of the standard model, namely the use of bivector potentials
and the asymmetry in the Poincaré duality and in the unimodularity condi-
tion.

I. On the notion of geometric space.

The geometric concepts have first been formulated and exploited in the framework
of Euclidean geometry. This framework is best described using Euclid’s axioms (in their
modern form by Hilbert ([H])). These axioms involve the set X of points p € X of the
geometric space as well as families of subsets: the lines and the planes for 3-dimensional
geometry. Besides incidence and order axioms one assumes that an equivalence relation
(called congruence) is given betwecen segments, i.e. pairs of points (p,q), p,¢ € X and
also between angles. i.e. triples of points (a,0,b); a,0,b € X. These relations eventually
allow to define the length |(p,¢)| of a segment and the size 4 (a,0,b) of an angle. The
geometry is uniquely specified once these two congruence relations are given. They of
course have to satisfy a compatibility axiom: up to congruence a triangle with vertices
a,0,b € X is uniquely specified by the angle < (a,0,b) and the lengths of (a,0) and (0, ),
(Fig.1). Besides the completeness or continuity axiom, the crucial one is the axiom of
unique parallel. The efforts of many mathematicians trying to deduce this last axiom from

the others led to the discovery of non Euclidean geometry.

a

Fig. 1
One can describe non Euclidean geometry using the Klein model or the Poincaré model.

In the Klein model, say for 2-dimensional geometry, the set X of points of the geometry is
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the interior of an ellipse (Fig.2). The lines ¢ are the intersections of Euclidean lines with
X (Fig.2) and the measurements of length and angles are given by

(1) |(p, ¢)| = log (cross ratio (p,g;7,s))

where 7, s are the points of intersection of the Euclidean line p, ¢ with the ellipse, as shown
in Fig.2

(2) J (a,0,b) = 5 log(cross ratio (a, B;6,7))

where o, 3 are the Euclidean lines (0, a) and (0,b) and é,~ are the (imaginary) Euclidean
tangents to the ellipse passing through the point 0.

Fig. 2

In the Poincaré (disk) model the set X is the interior of the unit disk in the Euclidean
plane. The lines are the intersections of Euclidean circles orthogonal to the boundary of
the disk (Fig.3) with the set X. The angles are the usual Euclidean angles between the

circles and the distance between two points (p, ¢) is given by

(3) |(p, ¢)| = log cross ratio (p,g;r,s)

where r, s are as shown in Fig.3.

Fig. 3

The introduction by Descartes of coordinates in geometry was at first an act of violence
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(cf. [W]). In the hands of Gauss and Riemann it allowed to extend considerably the
domain of validity of geometric ideas. In Riemannian geometry the space X™ is an n-
dimensional manifold. Locally in X a point p is uniquely specified by giving n real numbers
2!, ..., 2" which are the -oordiates of p. The various coordinate patches are related by
diffeomorphisms.  The geowetric structure on X is prescribed by a (positive definite)

quadratic form,

(4) Gy dat da?

which specifies the leugth of tangent vectors Y € T(X), Y =Y*#*0,, by
(5) VI = g 1YY

This allows, using intcgration. to define the length of a path 4(¢) in X, t € [0,1] by

1
(6) Length~ = / 17" ()] dt .
0

The analogue of the lines of Euclidean or non Euclidean geometry are the geodesics. The

analogue of the distance between two points p, g € X is given by the formula,
(7) d(p.q) = Inf Length (¥)

where v varies amoug all paths with 4(0) = p, (1) = ¢, (Fig.4). The obtained notion of
“Riemannian space” has been so successful that it has become the paradigm of geometric
space. There are two main rcasons behind this success. On the one hand this notion of
Riemannian space is general enough to cover the above examples of Euclidean and non
Euclidean geometries andl also the fundamental example given by spacetime in general

relativity (relaxing the positivity coudition of {4)).

Pag 4
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On the other hand ir is special enough to still deserve the naimne of geometry, the point
being that through the use of local coordinates all the tools of the differential and integral
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calculus can be brought to bear. As an example let us just mention the equation of

geodesics
d* z? - dz? dz*
8 - o,
®) dt? * gt dt
which yields Newton’s law in a given gravitational potential V provided the goo = —~1 of

flat spacetime is replaced by —(1 + 2V') (cf. [Wei] for a more precise statement).

Besides its success in physics as a model of spacetime, Riemannian geometry plays & key
role in the understanding of the topology of manifolds, starting with the Gauss Bonnet

theorem, the theory of characteristic classes, index theory and the Yang Mills theory.

Thanks to the recent experimental confirmations of general relativity from the data given
by binary pulsars ([D-T]) there is little doubt that Riemannian geometry provides the right
framework to understand the large scale structure of spacetime.

The situation is quite different if one wants to consider the short scale structure of space-
time. We refer to [F], [D-F-R] for an analysis of the problem of the coordinates of an
event when the scale is below the Planck length. In particular there is no good reason to
presume that the texture of spacetime will still be the 4-dimensional continuum at such
scales.

In this paper we shall propose a new paradigm of geometric space which allows to incor-
porate completely different small scale structures. It will be clear from the start that our
framework is general enough. It will of course include ordinary Riemannian spaces but
it will treat the discrete spaces on the same footing as the continuum, thus allowing for
a mixture of the two. It also will allow for the possibility of noncommuting coordinates
([D-F-R)). Finally it is quite different from the geometry arising in string theory but is not
incompatible with the latter since supersymmetric conformal field theory gives a geometric
structure in our sense whose low energy part can be defined in our framework ([G-F]) and

compared to the target space geometry.

What will require the most work is to show that our new paradigm still deserves the name
of geometry. We shall need for that purpose to adapt the tools of the differential and
integral calculus to our new framework. This will be done by building a long dictionary
which relates the usual calculus (done with local differentiation of functions) with the
new calculus which will be done with operators in Hilbert space and spectral analysis,
commutators.... The first two lines of the dictionary give the usual interpretation of
variable quantities in quantum mechanics as operators in Hilbert space. For this reason
and many others (which include integrality results) the new calculus can be called the
quantized calculus ([Co]) but the reader who has seen the word “quantized” overused so

many times may as well drop it and use “spectral calculus” instead.
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Let us now first define a general framework for spectral geometry.

Definition 1. A spectral triple (A, H, D) 1s given by an involutive algebra of operators A
wn a Hilbert space H and a selfadjoint operator D = D* in H such that

a) The resolvent (D — A)™'. A ¢ R of D 13 compact.
B) The commutators [D,a] = Da — aD are bounded, for any a € A.

Furthermore we shall say that such a triple is even if we are given a Z/2 grading of the

Hilbert space H, i.e. an operator v in ‘H, v = v*, ¥2 = 1 such that
(9) vya=a~y YVoe A, Dy=—-yD.

Otherwise we shall say that the triple is odd.

Before we give examples of spectrally defined geometric spaces let us make a number of

small comments on Definition 1.

The algebra A is an algebra of operators in H. Thus each element a € A is a (bounded)
operator in ‘H and,

(10) abe A, N pueR=>Aa+ube A
a,be A= abe A
a€e A=>a*e A

where the third condition, A = A* means that A is involutive for the involution * given
by the adjoint of operators,

(11) (6T n)=(T¢&n) Enen.

We do not necessarily assume that A is stable by multiplication by complex numbers,

though it is in most examples.

The algebra A plays the role of the algebra of coordinates on the space X we are consi-

dering. In the commutative case, i.e. if
(12) ab = ba Va,be A

then the space X is the spectrum of the C*-algebra A obtained as the norm closure of A
in the algebra of bounded operators in H for the norm,

(13) 1] = Sup {IT €]} 5 1€l < 1}.
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This spectrum X is defined abstractly as the space of characters of A, i.e. of * homomor-
phisms x : A — C, i.e. of maps from A to C which preserve the relations (10). When A
contains {A1 ; A € C} the space X of characters, endowed with the topology of simple
convergernce,

(14) Xa = x if  xala) = x(a) Vaed
is a compact space and by Gelfand’s theorem one has the canonical isomorphism
(15) A=C(X)

which to each a € A assigns the function a(y) = x(a), Vx € X. To get a more concrete
picture of X let us assume to simplify that the algebra A is generated by N-commuting
selfadjoint elements z!,...,z". Then X is identified with a compact subset of RY by the
map,

(16) XEX = (x(z'),...,x(z") e RY

and the range of this map is the joint spectrum of ', ..., z". The notion of joint spectrum
of N-commuting selfadjoint operators is quite simple. When H is finite dimensional, one
takes unit vectors £ € H, ||£]| = 1, which are eigenvectors for all the z#. To any such ¢

there corresponds the N-uple of real numbers
(17) (A )p=1,..8 ; xHE=AME.

The joint spectrum is just the set of all such N-uples when ¢ varies among common
eigenvectors. The infinite dimensional case is analogous with a suitable use of ¢’s to say

that A = (A#),=1 .~ is an approximate eigenvalue.

Now when the algebra A is no longer commutative the above picture of an associated
compact space X becomes more subtle. Certainly A will contain commuting selfadjoint

N

elements z!,...,z" as above, but these cannot generate A since the latter is not commu-

tative. The simplest example of what happens in the non commutative case is provided
by the algebra A of 2 X 2 matrices,

(18) A= My(C)={lay]; i, =1,2, a;; € C}.

The subalgebra of diagonal matrices,

(19) B:{[g 2} ;/\,uec}



. . : : . . 0
is commutative and its spectrum X is a two point set given by the characters x, [0 p} =

A, Xe [0 2 = u. These two characters extend as pure states (in the quantum mechanical
terminology) of the algebra A as follows,
~ ayy dig ~ ay; a2
20 X =aj , = agy.
(20) X1 [a?} 022} 115 X2 [am 022] 22

The basic new feature created by non commutativity is the equivalence of the irreducible
representations of A associated to the pure states Y1 and X2. This equivalence is provided
by the off diagonal matrix

(21) u— [(1’ (1)]

whose effect is to interchange 1 and 2.

Thus the naive picture that one can keep in mind in the non commutative case is that
the points of the space X are now replaced by the pure states of A together with the

equivalence relation
(22) i~ P2 iff M1 ™~ Ty

where 7, is the irreducible representation of A associated to ¢ and ~ means unitary

equivalence of representations.

We refer to [Dix] for these gencral notions on C*-algebras. One should not attribute too
much value to this naive picture but remember that in the non commutative case one is

dealing with a space together with an equivalence relation rather than a space alone.

The operator D is by hypothesis a selfadjoint operator in H and has discrete spectrum,
given by eigenvalues A, € R which form a discrete subset of R. This follows from the
hypothesis @) and is just a reformulation of «). The pair given by the Hilbert space H
and the unbounded selfadjoint operator D is entirely characterized by the subset with
multiplicities

(23) SpD={ NeR; 3IeH,£0, DE=)XE}

where we let m(A) = dim{€ € H ; D& = A€} be the multiplicity of A. In the even case
the equality (9) shows that Sp D is even, i.e. m(—X) = m(\) for all X € R.

Two pairs (Hy, D,), (H,, D3) which have the same eigenvalue list are unitarily equiva-
lent and conversely. Moreover given an arbitrary proper eigenvalue list (A, ), with finite

multiplicities there exists an obvious corresponding pair (H, D).
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The notion of dimension of the spectral triple (A, H, D) is governed by the growth of the
eigenvalues A,. This will become clearer when we shall dispose of the quantized calculus
but we can already state that

(24) > m(A) A7 < 0o = Dimension of triple < d.
AESPD
The tractable infinite dimensional case is governed by the #-summability condition
(25) Z m(A) e <00,
AESpD

In fact as we shall see the correct notion of dimension of spectral triples is not given by
a single number but by a subset & C C of the complex numbers. The condition (24) just

implies the following inclusion,
(26) YC{zeC; Rez<d}.

This dimension spectrum accounts for the obvious possibility of taking the union of two
spaces of different dimensions as well as for non integer (fractal) dimension and complex
dimension.

Assuming (24) the condition 8) of Definition 1 gives the upper bound d on the dimension
of the joint spectrum of commuting selfadjoint elements of A. It thus governs the visible
dimension of the space we are dealing with.

Let us end these general comments by observing that in Definition 1 we do not have to be
very careful in defining the algebra A, only its weak closure A" does matter. The point
1s that the various degrees of regularity of elements of A4 such as Lipschitz, C* and real
analytic only use the knowledge of A" and D: Let é be the densely defined derivation
given by

(27) &T)=|D|T -T|D|

where |D] is the positive square root of D2, The derivation § is the generator of the one

parameter group of automorphisms of £(H), the algebra of bounded operators in H, given

by
(28) ay(T) = e®IPlT ¢=8ID1

Of course in general this group does not leave the algebra A" globally invariant but the

various regularities are nevertheless well defined as follows

(29) a € A" is Lipschitz iff [D, a] is bounded.
a of class C (resp. C') iff s — a4(a) is C* (resp. C¥).
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Thus a is of class C iff it belongs to (] Dom é", the intersection of the domains of all
powers of 4. "

An isometry of a spectral triple (A, H, D) is given by a unitary operator U in H such that
(30) UDU*=D,UA"U*=A".

It of course preserves the above notions of smoothness and hence the corresponding sub-

algebras of A".

The isometries form a group and this group endowed with the * strong topology is a compact
group in full generality of spectral triples. At this point it is important to mention that
Definition 1 as such only covers compact spaces. To handle locally compact spaces one
allows the algebra A to be non unital, i.e. one allows that the identity operator does not
belong to A, and one replaces a) by

a')  a(D - X\)7!is compact for any a € A.

This minor modification allows to treat locally compact spaces as well. After these general
preliminaries we shall now give two examples. The first example will simply show that a

Riemannian spin manifold M defines a canonical spectral triple as follows:

We let H be the Hilbert space L?(M, S) of square integrable sections of the spinor bundle
S on M associated to the spin structure. The algebra A of functions on M acts in H by
multiplication

(31) (&)= flp)&lp) VfeA, €L’ (MS), peM.

The operator D is the Dirac operator, a selfadjoint differential operator of order 1, whose

main property for our concern is that its principal symbol is given by

(32) (D, fl =~(df)

where v is the Clifford multiplication, v : Ty X S, — Sp for any p € M and df is the
differential of f.

In particular, using (32) one checks that a measurable function f € A" is Lipschitz iff the
operator [D, f] is bounded in H.

Moreover the Lipschitz norm of f is equal to the operator norm of [D, f] and we thus
obtain the following:

Proposition 2. Let (A, H,D) be the Dirac spectral triple associated to a Riemannian
spin manifold M. Then the locally compact space M 1s the spectrum of the commutative
C*-algebra norm closure of

A={a€ A" ; [D,a] bounded}
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while the geodesic distance on M (given by formula (7)) s

d(p,q) = Sup {|f(p) — f(g)l; f€ A, |[D,fl <1}.

The formula given in Proposition 2 for the geodesic distance between two points is of a
quite different kind than (7) in that it replaces an infimum over arcs, i.e. maps from [0, 1}
to the space we are dealing with, by a supremum involving coordinates or functions on our
space, i.e. maps from our space to C. It is this formula which makes sense in our context
and as we shall see shortly it applies immediately to discrete spaces where points cannot
be connected by arcs.

At this point Proposition 2 shows that we did not lose any information in trading the
Riemannian space M for the associated spectral triple, but we shall see when we dispose
of the quantized calculus that the fundamental concepts which allow to pass from the local
to the global in Riemannian geometry, as well as those of gauge theory are available in the
much greater generality of (finite dimensional) spectral triples.

Let us now describe very simple finite spaces. The simplest is the space X consisting of
two points a, b so that the algebra A is the algebra C @ C whose elements f are given by
a pair of complex numbers f(a), f(b) while

(33) (f1 f2)(a) = fi(a) fa(a) , (f1f2)(b) = f1(b) f2(D).

To obtain a spectral triple we need a representation of A in a Hilbert space H and an
operator D = D* in H. We let H = C & C in which the algebra A acts by diagonal

matrices,

fla) 0
(34 =8
while the operator D i1s given by an off diagonal matrix
_ |0 n
(35) D_L‘ 0] , >0,

The commutator [D, f] is given by the matrix

_ 0 (F(b) - f(a))
(36) D, f1= [—#(f(b)—f(a)) o

and one sees that:
(37) Sup {|f(b) — f(a)| 5 II[D, flll <1} =1/p

10



gives a non zero finite distance between a and b. If we introduce multiplicity in the

representation (34) and replace y by a matrix then (37) gives
(38) d(a,b) =1/X, X = largest eigenvalue of |y].

Let us now give a short list of examples of finite dimensional spectral triples refering to
[Co] and {C-M] for their construction.

1. Riemannian manifolds (with some variations allowing for Finsler metrics and also for
the replacement of |D| by |D|*, o € ]0,1]).

2. Manifolds with singularities. Using the work of J. Cheeger on conical singularities. In
fact, the spectral triples are stable under the operation of “coning”, which is easy to
formulate algebraically.

3. Discrete spaces and their product with manifolds (as in the discussion in [Co] of the

standard model). The spectral triples are of course stable under products.

4. Cantor sets. Their importance lies in the fact that they provide examples of dimension

spectra which contain complex numbers.

5. Nilpotent discrete groups. The algebra A is the group ring of the discrete group
I, and the nilpotency of I' is required to ensure the finite-summability condition
D~! € L) We refer to [Co] for the construction of the triple for subgroups of Lie
groups.

6. Transverse structure for foliations. This example, or rather the intimately related

example of the Diff-equivariant structure of a manifold is treated in detail in [C-M].

These examples show that the notion of spectral triple is fairly general. The spaces involved
do not fully qualify yet as geometric spaces because we did not yet formulate algebraically
what it means to be a manifold. As we shall see this will be achieved by the forthcoming
notion of real structure on a spectral triple, i.e. an antilinear involution J on H satisfying
suitable commutator relations. To explain the conceptual meaning of this notion we first
need to recall classical results from the theory of ordinary manifolds in particular those
of D. Sullivan, which exhibit the central role played by the KO-homology orientation of a
manifold.

The classical notion of manifold. A d-dimensional closed topological manifold X is a com-
pact space locally homeomorphic to open sets in Euclidean space of dimension d. Such
local homeomorphisms are called charts. If two charts overlap in the manifold one ob-
tains an overlap homeomorphism between open subsets of Euclidean space. A smooth
(resp. PL...) structure on X is given by a covering by charts so that all overlap home-
omorphisms are smooth (resp. PL...). By definition a PL homeomorphism is simply a

homeomorphism which is piecewise linear.
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Smooth manifolds can be triangulated and the resulting PL structure up to equivalence

1s uniquely determined by the original smooth structure. We can thus write:
(39) Smooth = PL = Top.

The above three notions of smooth, PL and Topological manifolds are compared using the
respective notions of tangent bundles. A smooth manifold X possesses a tangent bundle
TX which is a real vector bundle over X. The stable isomorphism class of TX in the real

K-theory of X is classified by the homotopy class of a map:
(40) X - BO.

Similarly a PL (resp. Top) manifold possesses a tangent bundle but it is no longer a
vector bundle but rather a suitable neighborhood of the diagonal in X x X for which the
projection (z,y) — = on X defines a PL (resp. Top) bundle. Such bundles are stably
classified by the homotopy class of a natural map:

(41) X — BPL (resp. B Top).
The implication (39) yields natural maps:
(42) BO — BPL — B Top

and the nuance between the three above kinds of manifolds is governed by the ability to
lift up to homotopy the classifying maps (41) for the tangent bundles. (In dimension 4 this
statement has to be made unstably to go from Top to PL.) It follows for instance that
every PL manifold of dimension d < 7 possesses a compatible smooth structure. Also for
d > 5, a topological manifold X admits a PL structure iff a single topological obstruction

6 € H*(X, Z/2) vanishes.

For d = 4 one has Smooth = PL but topological manifolds only sometimes possess smooth
structure (and when they do they are not unique up to equivalence) as follows from the
works of Donaldson and Freedman.

The KO-orientation of a manifold. Any finite simplicial complex can be embedded in
Euclidean space and has the homotopy type of a manifold with boundary. The homotopy
types of manifolds with boundary is thus rather arbitrary. For closed manifolds this is no

longer true and we shall now discuss this point.

Let X be a closed oriented manifold. Then the orientation class ux € H,(X,Z) = Z
defines a natural isomorphism:

(43) a€e H' X aNux € Hyy X

12



which is called the Poincaré duality isomorphism. This continues to hold for any space ¥

homotopic to X since homology and cohomology are invariant under homotopy.

Conversely let X be a finite simplicial complex which satisfies Poincaré duality (43) for
a suitable class px, then X is called a Poincaré complex. If one assumes that X is
simply connected (7;(X) = {e}), then [Mi-S] there exists a unique up to fibre homotopy
equivalence, spherical fibration £ % X over X (the fibers p~1(4), b € X have the
homotopy type of a sphere) which plays the role of the stable tangent Fundle when X
is homotopy equivalent to a manifold. Moreover, in the simply connected case and with
d = dim X > 5, the problem of finding a PL manifold in the homotopy type of X is the
same as that of promoting this spherical fibration to a PL bundle. There are, in general,
obstructions for doing that, but a key result of D. Sullivan (ICM, Nice 1970] asserts that
after tensoring the relevant abelian obstruction groups by Z [%], a PL bundle is the same
thing as a spherical fibration together with a KO orientation. This shows first that the

characteristic feature of the homotopy type of a PL manifold is to possess a K O orientation
(44) vx € KOL(X)

which defines a Poincaré duality isomorphism in real K theory, after tensoring by Z [1/2]:
(45) a€ NKO*(X)y; maNvy € KO.W(X )12

Moreover it was shown that this element vy € KO.(X) describes all the invariants of
the PL manifolds in a given homotopy type, provided the latter is simply connected and
all relevant abelian obstruction groups are tensored by Z [%] Among these invariants
are the rational Pontrjagin classes of the manifold. For smooth manifolds they are the
Pontrjagin classes of the tangent vector bundle, but in general they are obtained from the
Chern character of the O orientation class v x. These classes continue to make sense for

topological manifolds and are homeomorphism invariants thanks to the work of S. Novikov.

We can thus assert that, in the simply connected case, a closed manifold is in a rather
deep sense more or less the same thing as a homotopy type X satisfying Poincaré duality
in ordinary homology together with a preferred element vx € KO,(X) which induces
Poincaré duality in KO theory tensored by Z[1/2]. In the non simply connected case one
has to take in account the equivariance with respect to the fundamental group m;(X) =T
acting on the universal cover X .

Both K-homology and K O-homology have a beautiful operator theoretic interpretation
due to Atiyah Brown Douglas Fillmore and Kasparov, which is at the origin of the notion
of spectral triple. The key definition, which improves on the description of Poincaré duality
of [Co] is based on A" R-homology and is the following refinement on the notion of spectral
triple.

13



Real structure on a spectral triple.

Definition 3. Let (A,'H, D) be an even spectral triple. A real structure of mod 8 dimen-
ston 2k i3 an antilinear isometry J in H such that:

a)JD=DJ, J? =¢c, Jy=e'vJ
B) For any a € A the operators a and [D,a] commute with J A J*.

Here ¢, ¢’ are equal to £1 with values depending on 2k modulo 8, according to the following
table:

d=20 2 4 6
5 1 -1 -1 1

(46) € 1 -1 1 -1

Note that since J is an isometry one has J* = J~! = ¢ J.

Condition ) is a key condition motivated by Tomita’s theorem which for a von Neumann
algebra with cyclic and separating vector in Hilbert space H constructs an antilinear in-
volution J such that J(algebra)J/* = commutant of the algebra.

This condition also says that D is an operator of “order 17 (cf. [Co)).

There is an obvious likeliness between Definition 3 and Atiyah’s KR theory [At,] or rather
the dual KR homology as defined by Kasparov [K].

Before we clarify this relation we just mention an equivalent definition of a real structure

of mod 8 dimension n (not necessarily even). One lets Cp 4 be the real Clifford algebra

(cf. [K]) with p Dirac matrices ’Y;L of square 1 and ¢ of square —1, 7v; all anticommuting
pairwise, and with involution given by,

(47) (7;)" =++F.

Let then (A, H,, D.) be an even spectral triple with an involutive representation = of Ch.q
in H which commutes with A and anticommutes with D, and +

(48) (i) €A Vi, 7(vf)D =-Dr(v¥), n(vF) 7 = — ©(v§).
Let then J be an antilinear isometry in ‘H satisfying 34) as well as,
(49) JD.=D.J, J'=1,Jy=~J, Jn(vE)J=n(v}).

14



Ome checks that such triples correspond canonically, if p — ¢ is even, to the real spectral

triples of dimension p — ¢ mod 8 of Definition 3. We leave the odd case as an exercise.

Let J be a real structure on a spectral triple (A, H, D) of mod 8 dimension 2k then the

commutation relation 33) allows to endow H with the following structure of A-bimodule:
(50) alb=alJb*J*¢ Va,be A, £ €H.

In other words the Hilbert space H is a module over the tensor product .4 ® A% of A by
the opposite algebra A9,

(51) bYby = (b2 b1)" Vb€ A.
We then endow A © A4° with the antilinear involution
(52) T(a®b?) =b*Q® (a*)0

and one can check that one thus obtains an element a of KR?‘k—homology for A® A°
with involution 7. (Using the Clifford algebras C, , as above, the operator F = Sign D
and Kasparov’s definition of K R-homology ((K]).) (The converse is not true since 343) also
involves the commutators (D, a], a € A4). This KR-homology class yields in particular a
Poincaré duality map,

(53) K, (A) — K2=*(4%)
from K -cohomology to K -homology, by the Kasparov cup product with a,
(54) 7€ N (A) > 204a€ K2 *(4%).

The natural bilinear map Ky(A) x Ko(A) - Ko(A® A% given by e, f = e ® f° at the
level of idempotents, together with the Fredholm index pairing:

Ko(A® A 24D 7

thus determine a bilinear form on Ko(A) with values in Z. This form is symmetric in
dimension = 0 mod 4 and antisymmetric in dimension = 2 mod 4 and plays the role of the
signature in our context.

A complete description of Poincaré duality also involves the existence of the inverse of a,
given by a KR-cohomology class 8 for A ® A% (cf. [Co]) but we have not yet found the
exact role of this class, or rather of a specific cocycle representative of this class, in the
general theory.
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The spectral triple (A, H, D) associated to the Dirac operator on a spin Riemannian ma-
nifold M admits a canonical real structure in the above sense. In the even dimensional

case the antilinear isometry J is given by,

(55) (JE)(p)=C&p) VpeM

where C is the charge conjugation operator. The values of C? = ¢ and of ¢’ such that
C~ = €'y C are given by the above table (46).

There is a straightforward notion of product of two real spectral triples and the mod 8

dimensions add. For instance if (A,, H,, Dy, J5) is of mod 8 dimension 0 one obtains,
(56) A=A10A; , H=H,8H, , D=D,®@1+% Dy, J=J,QJ,

which clearly has the same mod 8 dimension as the first triple. After developing in the next
section a calculus of infinitesimals which will be our substitute for the usual differential
and integral calculus, we shall describe a finite geometry whose product with the ordinary
continuum will account for all the experimental information about the fine structure at
small scale of our spacetime (~ (100 Gev)™!) embodied in the Lagrangian of the standard
model of electroweak and strong interactions.

Before we embark in that we shall describe a simple example of a highly non commutative

geometry in the above sense and a small variant of Definition 3.

The 2-dimensional non commutative torus T. In the spectral triple (A, H, D) the algebra
A of operators in ‘H will generate a factor of type II; and the antilinear isometry J will

be, up to a trivial modification, the Tomita involution.

Let us take the notations of [Co] p.580. Thus A = A, is the irrational rotation algebra

where 6 is an irrational number. We let 7y be the canonical normalized trace on Ag and as
in [Co] we let HE = L%(Ag, 79), H = Ht @& H™ being Z/2 graded by v = (1) _01] while
Ayg acts on the left in a diagonal way. The operator D is (cf. [Co]),

0 0 1
aa:_—
o* 0} \/Q_ﬁ(

in terms of the basic derivations 0; of Ag.

(57) D- [ 61— i63)
With these notations, let Jy be the Tomita involution on L?(.Ag, 7o), given by the formula

(58) Joa=a" Vae€ Ay.
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By construction Jy is an antilinear isometric involution of H* which transforms the left
action of Ag into the right one by the automorphism

(59) a — J() a* J() of Alé with Ale .

The formula for the real structure J on the above spectral triple is then the following

(60) J = [—(370 {)"} :

One checks that the conditions of Definition 3 are fulfilled with dimension equal to 2
modulo 8.

When we shall come to gauge theories this last example will be quite interesting for 6

irrational since then, unlike in the commutative case, the adjoint action
(61) (0, ) s ulu*=uJuJ*¢
of the unitary group U of A4 on H will be non trivial.

S°-real structure. To end this section we shall explain how the general principle of coef-
ficient theories developped by Atiyah in [At,] Section 3 allows to formulate a very useful
special case of the above notions. We let $° be the 0-dimensional sphere {#i} with invo-
lution given by the antipodal map (S? is noted S0 in [At1]),

(62) (ki) =Fi (e 7(2)=7 VzeS).

To take coefficients in S° we just replace the KR homology by the bivariant theory of
Kasparov [K], thus we deal here with

(63) KR (A® A%, C(5%)
(where of course the second term is the algebra C(S°) of continuous function on $° with
the antilinear involution f(+i) = f(F1)).

It is straightforward to check that the obtained notion of S°-real spectral triple can be
formulated equivalently as:

(64) A spectral triple (A, H, D), with real structure J and an operator ¢, e* = ¢, 2 = 1
which commutes with any a € A, with D and v and anticommutes with J.

(The operator ¢ corresponds to the action in M of the function f € C(S%) which satisfies
f(£2) = £1).
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(65) A spectral triple (A ® A° H,;, D;) satisfying the order 1 condition
[[D;,a],b"] =0 Vae A, b° e A°.

To pass from (64) to (65) one lets the bimodule H; be simply the fiber of H over ¢ in
(64), i.e. the range of the projection %5 The operator D; is the restriction of D to H,.
Conversely given (65) one forms the induced C(S%) module, i.e. H = H; & H; and one
endows H; with the dual bimodule structure (cf. [Co] Definition 19, p.535) given by

(66) afb=(b*"€a*)” Va,be A, £ € H;.

One then lets J be the real structure given by J(€,7) = (n,€) on the spectral triple
(A,H,D),D=D;®D,.

It is a matter of taste to decide which of the two presentations is best. The second is more

economical but as in [At4] the first is more conceptual.
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II. A calculus of infinitesimals.

We shall develop in this section a calculus of infinitesimal real and complex variables
based on operators in Hilbert space. Let us first explain why the formalism cf non standard

analysis is inadequate. Let us consider the following simple question:

Suppose that a dart is thrown to the target of Fig.5; then what is the probability of hitting
a given point.

Clearly this probability p cannot be a positive real number since one easily shows that
p < € for any € > 0, yet to say that it is zero violates the intuitive feeling that after all
there is some chance of hitting the point.

Fig. 5

We have extracted this discussion from [B-W] where it is claimed that the sought for in-
finitesimal makes sense, as a non standard positive real. The problem with this proposed
solution is that there is no way one can exhibit this infinitesimal. Indeed to any non
standard number corresponds canonically a subset of [0, 1] which is not Lebesgue measur-
able and hence cannot be exhibited. Thus the practical use of such a notion is limited
to computations in which the final result is independent of the exact value of the above
infinitesimal. This is the way non-standard analysis and ultraproducts are used but it
leaves untouched the above intuitive question.

Our theory of infinitesimal variables is completely different, and it will give a precise
computable answer to the above question. The stage of our calculus is fixed by a separable
Hilbert space H together with a decomposition of H as the direct sum of two infinite
dimensional subspaces. To encode this decomposition we let F be the linear operator in
H which acts as the identity on the first subspace and as minus identity (F ¢ = —£) on
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the second. One has by construction
(1) F=F* F*=1,

At this point the stage is empty. it contains no information since any two couples (H, F)
are unitarily isomorphic. This follows because all separable infinite dimensional Hilbert
spaces are pairwise isomorphic.

We shall now write the beginning of a long dictionary showing how the classical notions

appear in our “quantum mechanical” or spectral stage:

CLASSICAL QUANTUM
Complex variable Operator in H
Real variable Selfadjoint operator in H
Infinitesimal Compact operator in H
Infinitesimal Compact operator in H whose characteristic
of order « values p, satisfy u, = O(n™%), n — oo

Differential of real

or complex variable df =[F,f]=Ff - fF
Integral of infinitesimal Dixmier trace.
of order 1

Let us explain in detail this part of the dictionary. The first two entries are just the
basic notions of quantum mechanics. The range of a complex variable corresponds to the
spectrum Sp(7T) of an operator T in H. The holomorphic functional calculus for operators
in H gives meaning to f(T') for any holomorphic function f defined on the spectrum Sp T
and the spectral mapping theorem of von Neumann controls the spectrum of f(T). The
holomorphic functions f are the only ones to act in that generality and this reflects the
basic difference between complex analysis and real analysis where arbitrary borel functions
act. Indeed when the operator T is selfadjoint f(T') now makes sense for any borel function
f on the line. At this point let us note that a usual real random variable X on a probability
space (2, P) can in a trivial way be considered as a selfadjoint operator in Hilbert space.
One lets H = L%(Q, P) and T be the multiplication operator by X,

(2) (T'&)(p)=X(p)&(p) VpeQ.
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The spectral measure of T' then gives back the probability P and no information has been
lost in trading the probabilistic description for its Hilbert space counterpart. Of course all

measure classes and multiplicity functions appear for selfadjoint operators T in H.

Let us now describe the third entry of the dictionary. We wish to find non zero “infinite-
simal variables”, i.e. operators T in Hilbert space such that

(3) T < ¢ Ve > 0.

Here the norm ||T'|| is the operator norm, Sup{||T¢||; ||€|| = 1}. If we take (3) literally we
of course get ||T|| = 0 and T = 0. But we can slightly weaken it as follows,

(4) For any ¢ > 0 there exists a finite dimensional subspace

E C H such that ||T/E*| < ¢.
Here we let E+ be the orthogonal complement of E,
(5) Et={¢eH; (§m) =0 VneE}

which is a subspace of finite codimension in H. The symbol T/E+ means the restriction

of T to EL,
(6) T/E+:E+ - H.

The operators in H satisfying condition (4) are the compact operators, i.e. are characterized
by the compactness for the norm topology of the image of the unit ball in H. An operator
T is compact iff its absolute value |T| = v/T* T is compact and this holds iff the spectrum
of |T| is a sequence (pn), pin — 0. The eigenvalues y, of |T| arranged in decreasing order
(cf. Fig.6) are called the characteristic values of T and one has,

(7) pn(T) = Inf {||T — R|| ; R operator of rank < n}.
Thus po(T) is ||T||, the norm of T and

(8) pn(T) = Inf {||T/E*|| ; dim E =n}.

HtH—H—t————t+ ——t t
0 Hy Wy Mo

Fig. 6

The compact operators form a two sided ideal in the algebra L(H) of bounded operators in
H and this ideal K is the largest two sided ideal of £(H). Thus the sum of two infinitesimal
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variables is still infinitesimal as well as the products infinitesimal x bounded and bounded
x infinitesimal. These algebraic facts are easy to check using (7).

We are now ready to discuss the 4" entry of the dictionary. The size of the infinitesimal
T € K is governed by the rate of decay of the sequence p,(T) as n — oo. In particular for

each positive real number a the condition,
(9) pn(T) =0(n"%) when n — oo

(i.e. there exists C' < oo such that pn(T) < Cn™® Vn > 1) defines the infinitesimals of

order . They form again a two sided ideal as is easily checked using (7) and moreover
(10) T; of order «; = T Ty of order a; + ay .

Thus again the intuitive properties (except for commutativity) of infinitesimals are fulfilled.
(For a < 1 the corresponding ideal is a normed ideal which is obtained by real interpolation
between the ideal L' of trace class operators and the ideal X (cf. [Co]).) At this point,
since the size of infinitesimals is governed by a sequence i, (4, — 0, it could seem that
we may dispense with operators altogether and replace the above discussion of the ideal
K in L(H) by that of the ideal Cy(N) in the algebra ¢*°(N) of bounded sequences. A
variable would just be a bounded sequence and an infinitesimal a sequence (i, 4, — 0,
n — oo. However we would immediately lose the existence of variables with continuous
range since all elements of £>°(N) have pure point spectrum and counting spectral measure,

while operators in ‘H can have arbitrary spectral measures.

In fact the next entry of the dictionary exploits in a crucial way the lack of commutativity
of L(H). We replace the differential df of a real or complex variable, usually given by the
differential geometric expression,

of
df =¥ —— da*
(11) If o dx

by the operator theoretic expression

(12) af =[F.f].

The transition from (11) to (12) is entirely similar to the transition from the Poisson
bracket {f, g} of two observables of classical mechanics to the commutator (fo9gl=fg—9gf
of quantum mechanical observables. In order to be able to do calculations of a differential
geometric nature we just need an algebra A of real or complex variables, i.e. an (involutive)
algebra A of operators in H and we need to assume that these variables are differentiable
inasmuch as

(13) [F,fle K Vie A.
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The equality F? = 1 shows that &(¢f) = 0 for any f, i.e. that [F, f] anticommutes with
F. The dimension of the differential space one is dealing with is governed by the degree
of regularity of the variables f € A, i.e. by the size of their differentials ¢f In dimension
p one has:

(14) df of order 11—) forany f € A.

We shall come to concrete examples involving Julia sets and Hausdorff dimension very soon
but we just briefly mention that it is equation (12) together with elementary manipulations
on the functional

(15) Trace(f'af'...af™) nodd, n>p

which led to cyclic cohomology. It allowed in particular to transpose the ideas of differential
topology to our framework and prove purely topological results using the above calculus
and exploiting the integrality properties of the cocycle (15).

However if the dictionary would stop here we would still miss an essential feature of the
ordinary differential calculus, namely the possibility of neglecting all infinitesimals of order
> 1 when doing a computation. In our case the infinitesimals of order > 1 form a two
sided ideal whose elements satisfy

(16) pa(T) =0 (3)

where the little o has the usual meaning, i.e. here that n u,(T) — 0 when n — co.

But if we use the trace, as in (15), to integrate our infinitesimals then two things go wrong:
a) The infinitesimals of order 1 are not in the domain of the trace.

b) The trace of higher order infinitesimals does not vanish.
Let us discuss these two points more carefully.

The natural domain of the trace is the two sided ideal £! of trace class operators, i.e. of

compact operators T such that,
(17) Zun(T) < oo.
0

The trace of an operator T € £L!(H) is given by the sum

(18) Trace(T) = Y (T &n,En)
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which is independent of the choice of the orthogonal basis (€,) of H. Moreover it is equal

to the sum of the eigenvalues of T and in particular when T is positive one has,

(19) Trace(T) = Z pn(T) for T >0.

1}

Now when T is an infinitesimal of order 1. say T > 0, the only control that we have on the

size of p,(T) is
(20) (T =0 (%)

and this does not suffice to ensure the finiteness of (19). This shows the nature of the
problem a) and similarly for b) since the trace does not vanish on the smallest of all ideals
in £(’H) namely the ideal R of finite rank operators.

Both of these problems are resolved by the Dixmicr trace which is the 6 entry of our
dictionary. For an infinitesimal of order 1 the sum (19) 1s at most logarithmically divergent
since using (20) one has

N
(21) Z}L“(T) < (ClogN.
0

We shall now describe in some detail the remarkable additivity property of the coeflicient

of the logarithmic divergency and more precisely of the cut off sums,

1

log N

(22)

N
Y Ty T>0.
0

In fact it is convenient to use any positive real number A as a cut off instead of Just the

integers NV and there is a nice formula which achieves this. Let for T a compact operator
(23) oMT) =Inf {flelly + Myl : 0 +y =T}

where || [[1 is the £ norm, |||} = Trace|e!  and || ||a is the operator norm. Then at

integer values of A one has

N—1
(24) onil) = Z /ln(T) .
0
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Moreover one can show that the function A — o(T) is the affine interpolation between
its values on N C R* (Fig.7).

O3

o 2 (D)
EEE g
Fig. 7
The partial sums o have the following properties
(25) oA +T2) Soa(Th) +ox(T2) VI, T €K, AERS
(26) On+xa(TL+T2) 2 05 (Th) + 0x,(To) if Ty, T, >0

and for any Ay, A; € RY.

The remarkable additivity property of the coefficient of the logarithmic divergence (22) is
expressed as follows, where T}, T, are positive and satisfy (21)

log log A
(27) InA(Th + Ty) = 7a(Ty) — ma(T2)| < 3C 1ng§‘"
where for any T > 0 one lets
(28) (T) 1 /A ou(T) du
T = — —
A logh J, logu wu

be the Cesaro average of 2= in the multiplicative group R of cut off scales.
og u

The inequality (21) shows that the value of 75(T) is bounded independently of A € R:,
0 < 7A(T) < C for T > 0 satisfying (21) and as A — oo the functionals T\ become more
and more linear by the inequality (27).
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The Dixmier trace Tr,, is defined as any limit point of the functionals 7y

(29) Tr, = lin 7y

A—oG
where the choice of the limit poiut is encoded by the index w.
In practice this choice 1s not important because in all relevant examples the following
measurability condition is satisfied

(30) T ) 1S convergent when A — oo .

The Dixmier trace Tr,, is extended by linearity to the two sided ideal of infinitesimals of
order 1 and enjoys the following properties. which cure the defects a) and b) of the ordinary

trace,

a) Try, is a linear positive trace with domain the two sided ideal of infinitesimals of order
1, thus

Tro(MTr+ A Ty) = Ay Tr (T )+ Ay Tro(Ty) VA €C
(31) Tr (ST) =Tr(TS) for any bounded S

Tr,(T) >0 whenever T > 0

B) Tr,(T) = 0 whenever the order of T is > 1. in fact

(32) Tro(T)=0 if p,(T)=o (

) .

For measurable operators T the value of Tr_(T) is independent of w and this common value

is the appropriate integral of T" in the new calculus. We shall denote it by - 7.

3=

For instance if the operator T is a pscudodifferential operator on a manifold M and has
the appropriate order, it is measurable and the common value of  T' coincides with the
Manin-Wodzicki-Guillemin residue of T This residue has very simple expressions in local
terms both for the distribution kernel k. y). v,y € M of T and for its symbol. When T
1s infinitesimal of order 1 the kernel A{x.y) has at most a logarithmic divergence on the

diagonal of M x M, of the form
(33) klroy) = alx)logle —y| 4+ 0(1)

where |z —y/| is some Riemannian metric whose choice is irrelevant, while a(z) is a 1-density

on M. The residue is then the iutegral over M of this 1-density, thus

(34) /Y = / ala).
' JA



In terms of the principal symbol o of the operator T the residue is given by the integral on
the unit cosphere bundle S$* M of M (for any choice of Riemannian metric) of the closed
differential form of degree 2n — 1, n = dim M given by

(35) a=1ipop

where p is the symplectic volume form on T* M, o the principal symbol of T and i is
the contraction by the Euler vector field E which generates the one parameter group of
diffeomorphisms of T* M,

(36) e'B(z,6) = (z,et€) V(z,8) e T* M.

It is a great fact, due to M. Wodzicki, that the residue extends uniquely as a trace on
all pseudodifferential operators (of arbitrary order) and continues to be given by the same
formulae.

We shall come to this point and to its role in our scheme only later. We have now completed

our description of the dictionary and we now come to examples.

Let us first dispose of the question raised by the game of darts (Fig.5) and the infinitesimal
probability of hitting a point of the target 2. We take the latter to be given by the operator

(37) G=A"!

where A is the Dirichlet Laplacian in Q (acting in the Hilbert space H = L?(2)). One
checks from the H. Weyl theorem on the asymptotic behaviour of the eigenvalues of A
that G is indeed a positive infinitesimal of order 1. Moreover since the planar coordinates
1,z and any continuous function f(z;, ;) of them, make sense as an operator in H we
can ask to compute the integral,

(38) ][f(xl,xg)G.

One can show that fG is indeed measurable and compute the value of (38), it gives
fn f(z1,z2)dz; A dza, ie. the ordinary Lebesgue integral of f with respect to the area
measure on {2.

In this answer to our original question on the game of darts we did not use the 5t entry of
the dictionary, i.e. differentiation. To see how this works and allows operations not doable
in distribution theory we shall discuss our calculus in the case of functions of a single real
variable, i.e. the space we are discussing is X = R.

There is (up to unitary equivalence and multiplicity) a unique way to quantize the calculus

on R in a translation and scale invariant manner. It is given by the representation of
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functions f on R as multiplication operators in L*(R), while the operator F in H = L*(R)
is the Hilbert transform,

. o oy . 1 S
(39) (fFO(s)=f(s)€ls) VEe LAR) . se R, (F&)t) = — f(j—)tds-
One can give an equivalent description for $' = P(R), with H = L%(S!) while F is again
the Hilbert transform,

(40) Fen:sign(n)(” ol = expin b vhe St (SignO:l).

Using (39) one readily computes the kerniel (s, #) given by the differential [F, f], it is given,
up to the constant %, by

(41) ki t) = f_@’_:_;_(_fl _

The first virtue of the new calculus 1s that df continues to make sense, as an operator in
L?(S1) for an arbitrary measurable f € L™>(S"). This of course would also hold if we define
df using distribution theory but the essential difference is the following. A distribution is
defined as an element of the topological dnal of the locally convex vector space of smooth
functions, here C'°°(S'). Thux ounly the latrer lincar structure on C°°(S1) is used, not
the algebra structure of C>(S' ). 1t w consequently not surprising that distributions are
incompatible with pointwise procdhicet or absolute vaiue. Thus more precisely while, with f
non differentiable, df makes scuse a< o distiibution. we cannot make any sense of |df| or
powers |df [P as distributions on S' Ler us give a conerete example where one would like
to use such an expression for nou ditferentiable f. Let ¢ be a complex number and let J be
the Julia set given by the compley dvienenl system @ — 22 4 ¢ = 2(z). More specifically
J 1s here the boundary of tiie sct 3

& Cosup [p"(2)] < oo}, For small values of ¢ as
nelN
the one chosen in Fig.8, the Julia set / is a Jordan curve and B is the bounded component

of its complement. Now the Riemann mapping theorem provides us with a conformal
equivalence Z of the unit disk. D = {- € C; |z| < 1} with the inside of B, and by a result
of Caratheodory, the conformal mapping Z extends continuously on the boundary S! of
D to a homeomorphism, which we still denote by Z. from S! to J. By a known result of
D. Sullivan, the Hausdorft dimension p of the Julia set is strictly bigger than 1, 1 < p< 2
and is close to 2 for instance. in the example of Fig.8. This shows that the function Z is
nowhere of bounded variation on S' and forbids a distribution interpretation of the naive

expression:

(42) / fLZdz)P YfecC(J)
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that would be the natural candidate for the Hausdorff measure on J.

|"'| ’

It turns out that the above expression, i.e. +f f(Z)|d8Z|P makes sense in the quantized

calculus and that it does give the Hausdorff measure on the Julia set J
(43) frzyiazp =» [ ran,.
J

The first essential fact is that as ¢Z = [F, Z] is now an operator in Hilbert space one can,
irrespective of the regularity of Z, talk about |¢Z|, it is the absolute value IT| = (T*T)/?
of the operator T = [F, Z]. This gives meaning to any function h(|@Z|) where h is a
bounded measurable function on the spectrum of |#Z| and in particular to |¢Z|?. The
next essential step is to give meaning to the integral of f(Z)|dZ|[P. The latter expression is
an operator in L?(S?) and we use a result of hard analysis due to V.V. Peller, together with
the homogeneity properties of the Julia set to show that the operator f(Z)|dZ|P belongs
to the domain of definition of the Dixmier trace Tr,, i.e. is an infinitesimal of order 1.
Moreover, if one works modulo infinitesimals of order > 1 the rules of the usual differential

calculus such as:

(44) [@(Z)]P = |"(Z)IP |2z
turn out to be valid and show that the measure:

(45) f = Tl £(2)122]) Vf € C(J)
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has the right conformal weight and is a non zero multiple of the Hausdorff measure. The
corresponding constant A governs the asymptotic expansion in n € N for the distance, in
the sup norm on S, between the function Z and restrictions to S! of rational functions

with at most n poles outside the unit disk.

For smooth functions on S' there is a feature which is specific to dimension one and will
not occur for higher dimensional manifolds, that df = [F, f] for f smooth is not orly of

order 1 = (dim S')~! but is in fact a trace class operator. Moreover,
(46) Toace(f ') = [ f7art i e (s,
st

In fact the size of df = [F, f] for f smooth can be as small as to belong to the smallest

ideal R of finite rank operators and a classical result of Kronecker reads as follows ([P]),

(47) df e R f(s) = SES; 1s a rational fraction.

On the other extreme side of regularity, classical results of analysis due to Douglas, Fef-

ferman and Sarason ([P]) give
(48) adf e K < fis VMO

i.e. f has vanishing mean oscillation.

The quantized calculus applies in a similar manner to the projective space Py(K) over
any local field I (i.e. any non discrete locally compact field, commutative or not). The
obtained calculus is invariant under the group SL(2, K) of projective transformations. The
special cases of K = C and K = H (the field of quaternions) will be covered and generalized

by our next example of oriented even dimensional conformal compact manifolds.
Thus let M2™ be such a manifold, of dimension 2n.

The * operation on differential forms of degree n = %dimM only depends upon the
oriented conformal structure of M. We let H be the Hilbert space of these square integrable
forms,

(49) H=L*M,A"T")

with the canonical inner product,

(50) (W],WQ) :—/ Wi A * Wo .
M
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The algebra of functions on M acts by multiplication operators in H,

(51) (f&)(z) = f(z)€(z), VE€LAMA"T"), zeM

and it just remains to describe the operator F, F = F*, F2 =1, in H. We just let
(52) F =2P —1, P = orthogonal projection on exact forms.

A form is exact iff it belongs to the image of the exterior differentiation d.
We shall now describe two applications of this quantized calculus for conformal manifolds.

The simplest instance of the above construction is when n = 1, i.e. when M is a Riemann
surface: a compact complex curve. The complex structure on M is equivalent to its oriented
conformal structure. For any smooth function f on M the commutator df = [F, f] is an

infinitesimal of order 3 = (dim M)~! and one obtains,

(53) ][d“fd‘g:_?l/df/\*dg.

Let then X be a smooth map from M to the target space RY endowed with a Rieman-
nian metric g,, de* dz¥. The components X* of the map X are functions on M and it
immediately follows from (53) that

-1
(54) ][gw(X)d‘X“ dXv = ——/ Guy dX* AxdX".
T JMm

Now the right hand side is Polyakov’s form of the Nambu action which is the starting point
of string theory.

Let us now consider the case of 4-manifolds M*. Then the right hand side, written as
Ja uv (dX#,dX") is not conformally invariant. We shall see that the left hand side
continues to make sense thanks to the quantized calculus and gives a much more subtle, and
conformally invariant analogue of the Polyakov action in the 4-dimensional case. Indeed
the quantized calculus on M* only depends upon its conformal structure so the value of
F 94 (X)dX# dX¥ is necessarily conformal. It does make good sense thanks to the result

of M. Wodzicki, mentioned above, which extends the domain of -f to all pseudodifferential
operators.

After a lengthy calculation one obtains,
(55) ][g,“,(X)dX” axX? = (16 7r2)"1/ guv(X) {%r (dX*,dX")
M
_A(dX*,dX") + (VdX*, VdX") - %(AX")(AX")} dv
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where to write down the right hand side one has used a Riemannian structure on M
compatible with the given conformal structure. In the right hand side the scalar curvature
r, the Laplacian A and the Levi-Civita connection V all refer to this additional Riemannian

metric, but the result is independent of its choice.

We shall come back to (55) later in our discussion of metrics and of the Einstein-Hilbert
action. When the g,, are constant independent of X the above quadratic action is given by
the Paneitz operator on M. This operator has order 4 and plays the role of the Laplacian in
4-dimensional conformal geometry (cf. [B-O]). The conformal anomaly for its determinant
has been computed by T. Branson [B].

We also note that a similar discussion relates the p-adic string action ([V-V-Z]) with the
quantized calculus over P;(K) with K the field Q, of p-adic numbers. This situation being
0-dimensional the -f integral is replaced by the trace.

Let us now describe a second application of our construction, it provides local formulae
for Pontrjagin classes of topological manifolds ([C-S-T]). By the deep results of S. Novikov
and D. Sullivan ([N][S]) any compact topological manifold M™, n # 4 admits a quasicon-
formal structure, i.e. a collection of local charts whose overlap homeomorphisms ¢ are
quasiconformal, i.e. satisfy, for some K < oo,

(56) H,(z) = limsup max [o(z) — (y); le —y| =17

- < K , Vz € Domainy.
r—o  min|p(z) —e(y);lz —y| =r

It turns out that this quality of a manifold M, being quasiconformal, is exactly what is
needed to quantize the calculus on M. (It is of course much less than smoothness since
many topological manifolds cannot be smoothed (cf. [Mi-S] for instance).) To see this we
shall explain how the above quantized calculus on a conformal manifold M is modified by
a change of the conformal structure within the same quasiconformal class. For simplicity
we begin by the 2-dimensional case. Let us note that since we are in the even case there
is a natural Z/2 grading 7 of the Hilbert space (49) of middle dimensional forms, given by

(57) TwW o= 2 * W

Now, in the 2-dimensional case, a change of the conformal (or complex) structure of M is

provided exactly by a Beltrami differential u, i.e. with a local complex coordinate z,
(58) w(z,7)dz/dz | |pu(2,7)] < 1.

To obtain the new conformal structure at z € M one uses, in order to define angles at z,
the map

X € To(M) — (X,dz + p(2,7)dz) € C
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instead of the map X — (X, dz).

The new conformal structure is in the same quasiconformal class as the old one iff u is

measurable and satisfies

(59) llloo <1

where || ||o is the L norm of p(z,%), a meaningful notion independently of local coordi-

nates.

Next recall that our Hilbert space H is in this case the space of square integrable 1-forms,
H = L*(M,A'T*). The Z/2 grading v gives the decomposition of H in forms of type (1,0)
on which 4 = 1 and of type (0,1) on which v = —1.
To a Beltrami differential y corresponds an operator in ‘H, namely the endomorphism g of
the bundle A! T* given by the matrix,

0 (z,%)dz/dz

(60) i(=7) =
u(z,z)dz/d= 0

Moreover one obtains in this manner exactly all operators in H which satisfy:
(61) e =", iy=—vii, [l <1

where A’ is the commutant of the algebra A of functions on M,

(62) A'={TeL(H); Ta=aT Va € A}.

The quantized calculus on M obtained from the new conformal structure is obtained from
the old one by a beautiful general formula. One leaves the Hilbert space H and the
representation of 4 in H untouched. One only modifies F' by a Moebius transformation,
the new F' is given by

(63) F'=(aF+B)(BF+a)™!

where the operators a, 8 are o = (1—-?)~"1/2, 8 = ﬁ(l—ﬁz)—l/z. The key point then is the
following formula which relates the differentials in the old and new conformal structures,
(64) [ f)=Y[F,f]Y*, Y* = (BF+a)”

which shows that the order of the infinitesimal [F) f] is independent of the change of

conformal structure (cf. [Col).

All these facts extend to higher dimension and using them for the sphere S$%" one shows
([C-S-T]) that the construction (49)-(52) of the quantized calculus on a conformal mani-
fold applies to any bounded measurable conformal structure on a quasiconformal manifold.
Using cyclic cohomology and Alexander Spanier cohomology instead of the Chern-Weil cur-

vature calculations one obtains the desired formulae for the topological Pontrjagin classes

([C-5-TY)).
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II1. Gauge theory and the standard model.

Let us now return to our spectrally defined spaces of Section I and explain how to use
the above calculus of infinitesimals.

Given a spectral triple (A4, H, D) we let F be the sign of D,
(1) F =SignD = D|D|™!

where by convention sign(0) = 1.

Since D is selfadjoint this makes good sense and moreover one has
(2) F=F* F'=1,

Thus a spectral triple gives in particular an involutive algebra represented in the Hilbert
space H and an operator F in H satisfying (2) which is the stage of the quantized calculus.
Moreover the basic conditions ) ) of Definition 1 show that,

(3) [F,a) € K Vae A.
Let us now explain the meaning of the remaining data, namely
(4) |D| = (D?)!/?

which appears in the spectral triple.

In order to do geometry we not only need our algebra of coordinates A acting in the stage
(M, F') of the quantized calculus. We also need an infinitesimal unit of length ¢ = “ds” to
which the differentials da = [F, a] of elements of A can be compared. Since infinitesimals
are compact operators in ‘H we need a positive compact operator in ‘H. Its relation with
|D| is the following,

(5) (=|D|".

(The value of £ on the finite dimensional kernel of |D| is irrelevant. )

Giving the operator D is the same thing as giving the pair of operators F' and ¢, and note
that since F' and |D| commute one has:

(6) d=[F=0.

For elements of A which are in the domain of the derivation § (formula 27 of Section I)
the two operators [F,a] |D| and [|D|,a] are bounded which means that the size of da is
controlled by that of £ and that the size of [¢,a] is of the order of 2.
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Due to noncommutativity the relevant choice for the ratio of da with £ is the combination

[D, a] which we already used in Section I to measure distances in the spectrum of A by

(7) d(p, ) = Sup{le(a) —¢(a)| ; a € A, [[[D,q]|| <1}
for any pair ¢, 9 of states on A (commutative or not).

The quantized calculus now gives us the general analogue of integration with respect to
the Riemannian volume element. In a spectral triple (A, H, D) of dimension p > 0 the
unit of length ¢ = |D|™! is an infinitesimal of order 1/p and the analogue of the volume
integral is

(8) ][fep Vfe A.

In the usual Riemannian case (I1.31) this gives indeed the right answer (with a numerical

coefficient in front). In general it gives a positive trace on A, i.e. a functional 7 such that
(9) r(f*f)>0 Vfe A, r(ab) =7(ba) Va,be A.

We shall now proceed in two steps to develop geometric concepts for spectral triples. The
first step will develop the analogue of the matter Lagrangian of Q.E.D. The second step
will go towards the gravitational Lagrangian by giving a general local formula for the global

index information contained in the operator D.

Let us thus begin by gauge theory. Since A is an involutive algebra it has a well defined
unitary group,

(10) U={ued; vu* =u"u=1}.

For instance when A is the algebra of (complex valued) functions on a manifold M one
has,

(11) U = Map(M,U(1))
while when A is the algebra of N x N matrix valued function on M one has,
(12) U = Map(M,U(N))

the group of all maps (with a given degree of smoothness) from the manifold M to the Lie
group U(N).

Since the algebra A acts in ‘H, this provides a natural representation of ¢ in H given by
(13) (u, &) = ué Yueld, Ee€eH.
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The action functional given by

(14) ¢ — (€, D¢)

1s not invariant under the gauge transformation (13) since the operator D does not commute
with the algebra A, thus

(15) uDu™# D in general, for u € U .

To restore the gauge invariance one introduces vector potentials and an affine action of
the group U on the space of vector potentials as follows. A vector potential A is simply
an arbitrary selfadjoint (bounded) operator in H of the form,

(16) A=Ya;[D,b] a;j, b, € A.

Thus A = A* and the space of vector potentials is by construction a linear space of
selfadjoint operators in H. It is the selfadjoint part of the linear space of all operators of
the form (16). One checks that the latter space § is a bimodule over A, i.e. that

(17) YEQ, abc A=aVbhen

as follows from the equality [D,b;]b = [D, b, b] — b, [D,b]. The gauge transformations on
vector potentials are given by,

(18) Yu(A) =u[D,u*] + uAu* VA=A AeQ,uecl

and it follows from (17) that v,(A4) is a vector potential, i.e. a self-adjoint element of (.
Moreover the following action functional is now gauge invariant,

(19) £,4 = (6,(D + 4)¢)

since one has D + v,(A4) = u(D + A)u* YueclU.

We now need to write down the selfinteraction of the vector potential A and the first
question is to find the field strength or curvature . Given 4 = % ai[D, b;] we postulate

(20) 0 =3 [D,a;][D,b;]+ A2.

We shall first ignore the problem that 4 can have several inequivalent representations as
A = Y a;[D, b;] creating an ambiguity in the formula (20). Thus we shall compute what is
the curvature 6 for the gauge transformed vector potential v,(A4),

(21) Yu(A) = u[D,u"] + Swua; ([D,b; u*] — b; [D, u*])
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where we wrote [D, b u* = [D, b;u*] — b; [D,u*].

Thus the new curvature 6’ is given, using (20), by

(22) 60 = [D,u][D,u*] + 2 [D,ua;][D,biu*] — £[D,ua;b)[D,u*] + (v (4))2.

Now vu(A)? = (u[D,u*] + u Au*)? = (u[D,u*])* + u[D,u*]u Au* + u A[D,u*] + u AZu*.
A straightforward computation shows that,

(23) 0 =ubu*.

Thus curvature transforms in a covariant way and we define the selfinteraction of the vector

potential A by,
(24) ][ 2P

1.e. by the integration (formula (8)) of the square of the curvature. It is gauge invariant
by construction. Let us now take care of the ambiguity in the definition of . First we
only deal with selfadjoint elements A of Q and in writing A = Y a;[D, b;] we can always
assume the following,

(25) Yajbj=0, Za;0b; =Lb! Qal (in AR A).

(Replace £ a;®b; by £a;®b;,~ (% a; b;)®1 for the first condition and by 3 2(a;®@b;+b®a})
for the second.)

Under these conditions (25) the curvature 6 satisfies § = 6* which shows that (24) is
positive. The curvature 6 belongs to the selfadjoint part of the .A-bimodule,

(26) 0?2 = {E A;B;; A;,B; € Q}
Note that,
(27) Q% = {Za;[D,b][D,ci] ; ai,bi,c; € A}.

The ambiguity in 6 is given exactly by the selfadjoint part of the following subspace of 0?,
(28) J = {Z[D,a,‘] [D,b,‘] ; anb;e A, Ta; [D,b,’] :0}.

The simplest way to remove this ambiguity is to replace 8 in (24) by its orthogonal pro-
jection P(8) on the orthogonal J+ of J in Q2 where we endow Q2 with the positive inner
product,

(29) (X,Y) = ][ Xye
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As J is a subbimodule of Q2. i.e. satisfies
(30) aybe J VyeTd,abe A

one gets that P(a X b) = a P(X)b Va,be A, X € Q?, which ensures the gauge invariance
of the unambiguous functional

(31) ][P(6)2€”.

One obtains an equivalent theory if one keeps the ambiguity and introduces the auziliary
field given by the orthogonal decomposition

(32) a=6—Pb).

Clearly a can be any selfadjoint element of J, and the full action (24) now reads,

(33) (A,a) — ][P((})zé” +][a2€” = ][9241’.

The equations of motion for this action sets the a to the value a = 0, and thus it is a
matter of taste whether we keep the a’s or not. The action of the gauge group U on these
auxiliary fields is:

(34) Yu(a) =uvau* VaeJ ,a=a",ueld.

The full Q.E.D action can now be written,

(35) Foeviemeag.

In the simplest example, of the Dirac spectral triple on a spin Riemannian manifold M the
action (35) is the (Euclidean version of the) action of massless quantum electrodynamics.
In the next simplest example of the algebra of N x N matrices of functions on M acting
in the Hilbert space L2(M,S ® CV) while D = @y ® 1, the action (35) is the Yang Mills

action for a massless fermion in the fundamental representation of the gauge group U(N).

The first remarkable fact about the action (35) is that if we compute it for the product
of a Riemannian space M by the finite geometry Y of example of Section I (with y a
non trivial matrix) we obtain a Lagrangian with 5 terms which reproduce the Glashow
Weinberg Salam model for leptons, with its Higgs sector with quartic symmetry breaking
selfinteraction and the parity violating Yukawa coupling with fermions (cf. [Co] for more

detail). The computation is complicated but the underlying idea is simple.
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The Higgs fields appear as the finite difference part of the vector potential. Indeed dif-
ferentiation in the space M x Y involves differentiation on each copy of M as well as the
finite difference in the Y direction, so that a vector potential A decomposes as a sum of a
component of differential type A(}%) and a component of finite difference typz A(®1) which
gives the Higgs fields.

Similarly the field strength or curvature 6 has 3 components of respective type (2,0), (1,1)
and (0, 2). They yield respectively the three terms Lg, Lgr, L of the GWS Lagrangian,
where L¢ is the Yang Mills selfinteraction, Lgy the minimal coupling with the Higgs and
Ly the quartic Higgs selfinteraction.

The geometric picture that emerges is that of a space with two sides, with opposite
orientations, each point p; of one side having a corresponding point pg on the other, with
distance of the order of the inverse of the mass scale of the theory, d(pr,pr) ~ 1/p where
i is the largest eigenvalue of the matrix.

But the true standard model also involves quarks, with a non zero mass for the up quarks,

as well as the strong forces.

We described in [C-L] and [Co] how to modify the above simple picture in order to ob-
tain the Lagrangian of the standard model, but there was still some artificial part in our
construction, namely the use of “bivector potentials” (cf. [Co|] p.594) and of the “uni-
modularity condition” (cf. [Co] p.609). We shall explain here how these two problems are
solved and how the symmetry is restored in the Poincaré duality of [Co].

At first sight the action functional (35) is similar to the supersymmetric pure Yang Mills

functional, but looking more closely there is a basic and crucial difference:
In (35) the fermions are in the fundamental representation (of the gauge group).

As is well known this is not what happens in pure Yang Mills supersymmetry where the
fermions are Majorana spinors in the adjoint representation.

As we shall see now a real structure J on a spectral triple (A, H, D) provides us with an

analogue of the adjoint representation for the unitary group U of A. Let us first recall the
Definition 3 of Section I.

Definition 3. Let (A, H, D) be an even spectral triple. A real structure of mod 8 dimen-
ston 2k 18 an antilinear isometry J in H such that:

Q) JD=DJ, JP=c, Jy=c~J
B) For any a € A the operators a and [D,a] commute with J AJ*.

where the table of signs for ¢,c' is given in Section I.
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As in the theory of operator algebras, where J is Tomita’s involution, (cf. [Co] V Appendix
B) it is convenient to use the following notation for the A-bimodule structure of H coming
from J,

(36) alb=alJb*J* ¢ Va,be A VEeH.

The commutation of a with J b* J* for any a,b € A is then encoded in the equality

(37) a(€b) = (al)b

which is a familiar rule for the standard representation of a von Neumann algebra (cf.

[Co)).

The natural adjoint action of the unitary group & of A on the Hilbert space ‘H is thus
given by the unitary operator

(38) E—ulu*=uJuJ*¢ VéEe H

associated to any u € U.

If for instance the mod 8 dimension is such that J? = 1 then these unitaries preserve the
real subspace {£;J£ = £}. Now if we conjugate the operator D by this adjoint action of
U on 'H we obtain, using a) ) of Definition 3,

(39) (uJuJ*)D(uJuJ*)* =D+ u[D,u*] + J(u[D,u*]) J*.

More generally we see that the gauge transformation (8) of vector potentials, Yu(A) =
u[D,u*] +u Au* has the following compatibility with the adjoint action (38),

(40) (uJuJ*)(D+ A+ T AT (uJuJ*)* =D+ vu(A) + J yu(4) J*

for any vector potential 4 and u € U.

Thus, we obtain an analogue in our context of the pure Yang Mills action with Fermions
in the adjoint representation as follows

(41) (A,f)-a][GQé"’+(£,(D+A+JAJ*)§).

The action (41) is gauge invariant for the adjoint action (38) on fermions. As an example
one can compute what it gives for the spectral triple where A is the algebra of n x n
matrices of functions on a Riemannian spin manifold M, acting on the left in the Hilbert
space H = L*(M,S @ M,(C)). One uses the left action of matrices on themselves. The
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operator D is @#,, ® 1. The real structure J comes from the adjoint operation T' — T*
on matrices and the charge conjugation C' on spinors. One obtains, using J to impose
a Majorana condition on spinors, the pure Yang Mills supersymmetric action with gauge
group SU(n).

We shall now show that the standard model action is obtained by the action (41) on the

product of the usual continuum of dimension 4 by a finite spectral triple.

We shall first describe in detail the finite real spectral triple which is needed to obtain the
standard model action.

The algebra Ais A = C & H® M;3(C), i.e. it is the direct sum of complex numbers,
quaternions and 3 x 3 complex matrices. The involution on A is given by (\,¢,m) —
(A,7,m*) where 7 is the usual conjugate of the quaternion ¢ (cf. [Ats]).

Let H = £ @ £, where £ is the finite dimensional Hilbert space whose basis is labelled by
all elementary fermions (Fig.9). Here £ denotes the complex conjugate Hilbert space, i.e.
elements of € are of the form €, € € £, with,

(44) AE=(X6)~  Wrec.

We now describe the action of A on H, it is dictated by the natural apparent symmetries
of Fig.9 whose disposition is due to J. Ellis ([Co]). Both £ and € are globally invariant
under this action, which is thus specified by its restrictions to £ and to € which we now

describe.
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For £ the action of (), ¢, m) does not use m € M;(C). For weak isospin singlets such as

(;ﬁ) or eg it uses only A which acts by

(45) v (0 = (32) -+ Aew = (Ten)

For weak isospin doublets such as (Zi) or (:i) one simply acts by the quaternion ¢ =
a+ 7 viewed as a 2 x 2 matrix,

Rl w

(46) 0=

} acting on each doublet.

For £ the action of (A, g,m) does not use ¢ and the action is by A on leptons and by m

acting on the color indices for the quarks. It is clear that we thus have an action of A on

H.

Next the antilinear involution J is given by,

Finally the operator D in H is given by

Y 0 : =
(48) D_[O -)7-] mH=EBE
where Y is the Yukawa coupling matrix in the Hilbert space £. It is an explicit matrix
which combines the masses of elementary fermions together with the Kobayashi Maskawa

mixing angles.

One then proves that the above triple (4, H, D) satisfies the conditions of Definition 3 for
dim = 0 mod 8. The Z/2 grading v, is just +1 for left handed and —1 for right handed
particles.

Indeed by construction one has DJ = J D, J? = 1, J~v = J and one has to check that
for any a € A both a and [D, a] commute with J A J, i.e. with J b* J for any b € A. In fact
let us first check that this commutation holds on £ since all operators involved: a, [D,d]
and J b* J do leave £ globally invariant. For b = (), ¢, m) the action of J b* J on £ is given
by multiplication by A on the subspace of £ generated by leptons and by multiplication by
m* on the subspace of £ generated by quarks. Thus the commutation with a and (D, d]
follows exactly as in [Co] VL.5.6.

It follows that for any elements a, b of A the restrictions to & of J a J,[D,JalJ]|=J[D,a]J,

commute with b. Thus exchanging the roles of a and b we see that a commutes with JbJ
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on & and that a commutes with [D, JbJ] on £ which implies that [D,a} commutes with
JbJonE.

We have thus shown that J defines a real structure of dimension 0 modulo 8 on the spectral
triple (A,€ @ &, D).

In fact this value of the mod 8 dimension is not really significant (its evenness is) since,
looking more closely, we see that the obtained spectral triple is § O_real in the sense of the
last part of Section I

The representation in H of C(S?) is simply given by

(49) fec(s® - [fél) } actingin H=E®E.

f(=2)
This allows to modify at will the mod 8 dimension of the spectral triple and shows that
all the information is contained in the A-bimodule £ with operator the restriction of D to

E,ie. Y.

We shall now consider the product of ordinary 4-dimensional Euclidean geometry by the
above finite geometry F encoded by the S%-real spectral triple (A, H, D) above, in which we
shall use the index F to avoid confusion, and explain how the standard model is obtained

from the action (41). The product geometry is encoded by the following spectral triple

(50) A=C>P[R* Ar) , Ar = COH® M;3(C) as above
H=L*R*S)@Hr =L*R* SQHF)

where Hp = £ @ € as above

(51) D:@®1+’}/5®DF,DF:|:}(; %] as above.

The Z/2 grading is as usual the tensor product of the Z/2 gradings vs ® yr-

The real structure is obtained from the real structure C on the Euclidean geometry, given
by the charge conjugation operator which in dimension 4 (Euclidean) satisfies C? = —1,
C vs = v5 C, and from the real structure Jg of the finite geometry. One has:

(52) J=C®Jp.

In particular the dimension is still 4 (mod 8) and the conditions «) §) of Definition 1.3
follow from general facts about tensor products of real spectral triples. The obtained triple
is S%-real and the action of C(S5?) is given by

(53) fec(s®) - [fgi) f((iz.)]
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in the decomposition H = H; & H_;, where H; = L*(R*,S®E),and H_; = L?(R*, S®E).

We shall now explain why the action (41) gives automatically the bivector potentials of
[Co] and the unsymmetric half of the unimodularity condition of (Co] (VL5.€).

To obtain exactly the standard model Lagrangian we still need the other half of the uni-
modularity condition and its meaning remains to be fully clarified.

The unitary group U of the algebra A is given by smooth maps from R* to U(1)x SU(2) x
U(3) and the unimodularity condition will reduce it to maps from R* to U(l) x SU(2) x
SU(3) while giving the exact hypercharge assignment to all particles. Let us explain how
the computation of the vector potentials A and of their selfinteraction (41) can be easily

reduced to the computations already done in [Co]. First, given a vector potential
A= Z(L,‘[D,b,‘] ai,b,‘ eA

its restriction to the invariant subspace H; = L*(R*,§ @ £) will only use the subalgebra
C®H of Ap and its computation will be identical with that of [Co] VL.5.6 p.606. Thus its
restriction there is given by

a) An ordinary U(1) vector potential B
B) An SU(2) vector potential W
¥) A pair ¢ = a + 8 of complex scalar fields.

The term B corresponds to the ordinary 1-form
BZE/\Jd/\; for aj:(/\j,qj,mj) y bJZ( ;,q;,m;)

and thus it uses the first Cin A = CHH@ M3(C). The term W uses similarly H, while
the Higgs fields come from the finite difference component as in [Co].

Let us now look at the restriction of A to the complementary invariant subspace, namely
H_; = L*(R*, S ® £). As we have seen above, the action of Ap on £ commutes with Dp
and thus there is no component of A of finite difference type coming from its restriction

to this complementary subspace. The computation of the restriction of A Just gives two
terms

a) The vector potential B above (B = ¥ Ajd)}) acting on the subspace L%(R*, S ®
glepton)

b) An U(3) gauge potential V, given by V = Ymjdm} acting on the subspace
Lz(R43S ®?quark)-

It is important to note that the U(1) gauge potential B which appears in a) is the same
as In a) since both come from the same subalgebra C &0 ® 0 of Ap. In [Co] there were
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two algebras, one acting on the left the other on the right and each of them had a C.
The equality of the associated U(1) gauge fields was then imposed by the unimodularity
condition, more precisely at the level of the gauge group, by the equality A = u of p.610
(VI.5.€). It is now automatic.

Let us now compute the curvature § = dA+ A%. Again both of the above subspaces, H; and
H_; are globally invariant. The computation of § and 6 ¢* on the first one is identical
to that of [Co] VI.9.6. The computation of § and  §2 £* on the second one corresponds
exactly to what is called 6 in [Co| VI.5.. Thus the curvature 8 is the direct sum 6, 6_;
of its restrictions to H; and H_; respectively and the C(SO)—module structure makes it
natural to introduce independent coupling constants A;, A_; for the action (41):

(54) ][(/\ief S ALi62) 6 4 (6, D(A+ JAT)E).

Instead of imposing a Majorana condition on £ we equivalently restrict to £ € H;. To obtain
exactly the standard model action functional we still need to eliminate the U(1) gauge field
on R* given by the trace of the gauge field A+ J A J* (in S® £). This trace is given by the
orthogonal projection in ‘H, of A+ J A J* on the central 1-forms Z = {w € Q; Jw =w J}.

To eliminate it we thus need to restrict to vector potentials A which are orthogonal to Z
on Hy; (equivalently such that A + J AJ* is orthogonal to Z on H;). With the above
notations (B, W, V') for our gauge fields, the trace of A+ J A J* on H; is indeed given (up
to multiplicity) by the U(1) gauge field

(55) —B +trace V.

Thus the orthogonality to Z means that trace V = Band V' =V — %B 1s now an
SU(3) gauge field. We thus obtain exactly the standard model Lagrangian with the correct
hypercharges for all particles.

1 1 1
L= 7(CuaGe") + {(Fu F*) + 1 (Huy HyY)
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Final remarks.

We have eliminated in this paper two of the unpleasant features of the C — L presentation
of the standard model. The only unpleasant feature that remains now is that we have to

remove the trace of the gauge potential by a unimodularity condition.

We no longer have two algebras as in C — L but a single one and the finite geometry F
is described by an S°-real spectral triple whose symmetries should be explored. Since the
geometry F' is non commutative (the algebra A is C @ H@ M3(C)) it is narural to look for

a finite quantum group G of symmetries.

We shall now formulate a number of properties of the finite geometry F' which ought to
be relevant in the search for a possible G.

1. Poincaré duality.

Let (A,H,D) be a real spectral triple. Then H is an A ® A°-module and the Fredholm

index of D determines an additive map
(1) Ko(A® A% 24 7.

Using the natural map e, f € Proj(A) — ¢ ® f° € Proj(A ® A°) of Ky(A) x Ko(A) to
Ko(A ® A°) one thus obtains a Z-bilinear map of Ko(A) x Ko(A) to Z. The involution
Tof A® A%, 7(a ® b°) = b* ® (a*)° is implemented in H by J - J* which preserves D
and commutes (resp. anticommutes) with the Z/2 grading 7 if the mod 8 dimension is
divisible by 4 (resp. = 2 mod 4). Thus the above bilinear form ¢ is symmetric (resp.
antisymmetric) if the mod 8 dimension is divisible by 4 (resp. = 2 mod 4). If the triple is
of dimension = 0(4) and is S°-real then the symmetric bilinear form ¢ is even.

Let us check that the form ¢ is nondegenerate in the case of the finite geometry F. It is
enough to do the computation for one generation. The K-group Ko(A), A = M;(C)oHaC,
is a free abelian group on 3 generators a, 8,y which correspond respectively to a minimal
projection in M3(C), the unit 1y of H and the unit 1¢ of C. To compute the quadratic
form ¢ one just has to symmetrize the bilinear form given by e, f — Super trace (e ® f?)
in the A-bimodule £. This is easy to compute and for one generation, in the above basis
«, 3,7 we obtain:

0 1 -1
(2) g=2 |11 0 1 |=2Q
-1 1 -1

where the discriminant of Q is equal to —1. In the integral basis & — v, 8+, v the matrix
of Q is diagonal with diagonal entries (1,1, ~1).
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2. The A-bimodule £.
Let (A,H,D) be a real spectral triple. Then H is an A-bimodule and the theory of

composition of correspondences ([Co] V Appendix B) gives meaning to the tensor powers

HRAHR4 ... 04 H of H over A.

When the spectral triple is S%real the bimodule H is a direct sum
(3) H=H,dH_,

of the A-bimodule H; and its complex conjugate H_; = H; where (cf. [Co] V Appendix
B Definition 19) the complex conjugate (or contragradient) bimodule is defined by

(4) zfy=(y"€a*)" Ve,ye A, E€H,;.

Then the A-bimodules H; and H,; generate, using composition of correspondences, direct
sum and stable isomorphism a (not necessarily commutative) ring canonically associated
to the S%-real spectral triple. Elements of this ring are formal differences of stable isomor-
phism classes of A-bimodules (correspondences). This ring has a natural involution given
by (4). Moreover, in the even case the bimodule H; is Z/2 graded, which gives rise to two
bimodules ’H;t such that:

(5) H,‘ZH;}-@'H:.

In this case it is thus natural to investigate the ring of correspondences over 4 generated
by Hif and their contragradient. For the finite geometry F we use the notation £% for the
stable isomorphism class of the A-bimodule £* and we let * be the involution given by

(4).

One can show that the ring generated by £* and (£%)* is the involutive ring of 4 x 4
matrices with integral entries, while £% are given by the following nilpotent triangular
matrices:

(6) £t = , &0 =

[en i an B e B el
OO OO
OO OO
OO =~
OO OO
OO O
OO = =
jen R ee B e B e ]

and where (£%)* are given by the adjoint matrices. The subring generated by £* has rank
4 and any element in this ring satisfies z° = 0.

The ring generated by £ (= £* @ £7) and £* is also non abelian and one has £3 = 0.

The above “fusion rules” should play an important role in determining the finite quantum
group G.
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As a motivating example of quantum symmetry let us consider the following subalgebra
B of the (finite dimensional) Hopf algebra H describing the finite quantum group SU(2);
(i.e. SU(2) at the cubic root of 1) given by

(7) B subalgebra of H generated by K?, EK,F

where F, F, K are the canonical generators of H with relations

K- K1

(8§ KE=jEK, KF=jFK, |[E,F]=— "~
J—17

,E3=F3=0, K®=1.
The coproduct A on H is given by the usual formulas

(9) AE=E®1+KQFE, AF=FQK '4+19F, AK=KQ®K
and 1t is easy to check that

(10) A(B)yCB®H.

It follows that the restriction of A to B defines a coaction of SU(2); on B. The algebra B
is not semisimple and the quotient B/J by its nilpotent radical J is

(11) B/J = C & M,y(C) @ M;(C)

which is close to our algebra A. Of course in our case the situation is more involved,
our algebra A = C @ H @ M3(C) is not an algebra over C but contains C as a natural
subalgebra {(A, A\, A); A € C}, and we have to keep track of the bimodule €, but the above
example shows what we expect to obtain as finite quantum symmetries of the model. It is
also important to note that we do not expect that the quantum symmetry G will preserve
the operator D but that it will act on the space of all possible D. The latter is exactly
charaterized by Definition 3 ) and the commutation with C C A.

3. The adjoint representation and supersymmetry computations.

The form of the action functional (41) of section III is similar to that of pure Yang Mills
supersymmetric theory in the usual QFT framework. At the very beginning of super-
symmetry one writes down infinitesimal transformations of the Z/2 graded algebra F of
functions of bosonic and fermionic fields, with the key property that they preserve the
Lagrangian £ € F. The general form of such transformations, with parameter ¢ is as
follows

(12) SAL=Fy, N, 6N = (10 Fly+ivs D) e
§D' =1Eys(P+ A) N
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where A is the vector potential, the ) is a Fermion in the adjoint representation and D is
the auxiliary field.

We just want to point out that analogous formulae can be written in our general framework.
Our auxiliary fields @ of equation III 32 play the same role as the D of (12), the formula
for 6 \* reads, up to normalization,

(13) §)\=6¢

where we think of both A\ and ¢ as vectors in the Hilbert space H, 6 is the curvature
(II1.20) while & should satisfy extra conditions characterizing Killing spinors. The term
which is more delicate to interpret is the variation § A since in (12) it invokes a bilinear
expression £v, A' in Z and A. It is at this point that the real structure J on H plays a
role. Indeed H is now an A-bimodule (cf. Definition 3) and we can form the composition
of correspondences, ([Co] V B),

(14) HeosH.

Let 7 be the positive trace on A determined by equation 8 of Section III,
(15) = fre viea

We assume that 7 is the restriction to A of a normal trace (still noted 7) on the double
commutant A" of A. This is true in all relevant examples. Then by [Co] V B.§ we have a
natural bilinear map,

(16) LEmE@r P2, eeH, teH

of’Hx_ﬁto’H@A’}_{.

Finally when H (or rather H* = N Dom |D|"™) is a finite projective module over A, we can
n

identify (14) with the commutant 4’ in H of the right action of A4, i.e. with endomorphisms
of the right module H over A, with the inner product,

(17) mjw:fﬂﬁ%.

By condition 8) of Definition 3 all relevant operators, such as the vector potential A or
the curvature 6 belong to the commutant A’ of A in H so that an analogue of the formula
for § A can now be written. We hope that these remarks will be useful in extending
ideas of supersymmetry to our context, giving up of course the Z/2 graded commutativity
underlying usual supersymmetry.
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4. Towards curvature and Pontrjagin classes, the Levi- Civita spin connection.

We refer the reader to [C-M] and [Co,] for the development in our general framework of the
analogue of the pseudodifferential calculus (based on the one parameter group |D|t-| D]~
and ideas from the modular theory of operator algebras), of the Wodzicki residue (based on
the notion of dimension spectrum) and of the local index formula. In the general framework
of spectral triples the index formula, though local, is not yet in the explicit form given
by polynomials in the analogue of the Pontrjagin classes. It turns out however that the
Levi-Civita spin connection makes sense and is canonical in the general case of simple
dimension spectrum. In the case of real spectral triples one should combine the ideas of
[C-M] [Co,] with those of [C-J-G] and also [G-F] in order to get curvature expressions for
the local formula of [C-M] for the local cyclic cocycle index. Such computations ought to
be a prerequisite for the understanding of the relation between the local and the global
in noncommutative geometry as well as for the analogue of the Einstein Hilbert gravity
action.

We shall end these remarks by giving the general formula for the analogue of the Levi-
Civita spin connection in our framework. We let (4, H, D) be a spectral triple of dimension
p, with simple dimension spectrum, and denote by + the extension of the Dixmier trace
to pseudodifferential operators (cf. [C-M]). Recall that given an element A = T a;[D, b;]
of (2 the operator “dA” = T [D, a;][D, b;] is ambiguous, the ambiguity being an arbitrary
auxiliary field 8 € J. The covariant differentiation V4 is defined as the unique operator
of the form

(18) Va==(DA+ AD — “dA”)

N =

such that the following orthogonality to J holds

(19) ][avAeP=o VaeJ.

Condition (19) removes the ambiguity in (18).

In the case of the Dirac spectral triple on a manifold one has
(20) Va=Vyx

where V x is the Levi-Civita spin connection evaluated on the vector field X dual to A,
Le. Xkt =g" A4,

We shall explore the general properties of V in a forthcoming paper.
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