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NONCOMMUTATIVE KÖTHE DUALITY

PETER G. DODDS, THERESA K.-Y. DODDS, AND BEN DE PAGTER

Dedicated to W. A. J. Luxemburg on the occasion of his 63rd birthday

Abstract. Using techniques drawn from the classical theory of rearrangement
invariant Banach function spaces we develop a duality theory in the sense of
Köthe for symmetric Banach spaces of measurable operators affiliated with a
semifinite von Neumann algebra equipped with a distinguished trace. A princi-
pal result of the paper is the identification of the Köthe dual of a given Banach
space of measurable operators in terms of normality.

0. Introduction

The study of rearrangement invariant spaces of measurable functions has
long been of central importance in many branches of real analysis as is clear
from the monograph of Krein, Petunin, and Semenov [KPS] and the paper of
Luxemburg [Lu]. Of equal importance in the study of spaces of compact oper-
ators in Hubert space is the notion of singular value [GK] which, for a given
compact operator plays a similar role to that of the decreasing rearrangement of
a measurable function. These ideas admit a common extension in the notion of
a generalized decreasing rearrangement of an arbitrary selfadjoint operator affil-
iated with a given semifinite von Neumann algebra (with a distinguished trace)
which has proved fruitful in many contexts [Gr, Ovl, 2, 3, FA1, 2, FK, Ye2,
3], among others. Based on the theory of noncommutative integration intro-
duced by Segal [Se], Ovcinnikov [Ovl, 2] showed that the setting of semifinite
von Neumann algebras with a trace provides a natural setting for various in-
terpolation theorems, unifying in particular work of Calderón [Ca] in spaces
of measurable functions with analogous results of Russu [Ru] for trace ideals.
Of central importance in this work is the role played by the rearrangement in-
variant structure. Similar ideas occur in the subsequent work of Yeadon [Ye2,
3] motivated by the classical theory of Banach function spaces in the sense of
Luxemburg and Zaanen [Lu, Zal]. More recently, a method of construction of
rearrangement invariant Banach spaces of measurable operators has been given
in [DDP1, 2] which is considerably more general than that permitted by the
methods of [Ov2, Ye3] and it is the intention of this paper to develop these
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ideas further, particularly from the point of view of Köthe duality. For ideals
of compact operators, this study has been initiated by Garling [Ga] and, from
the present viewpoint, by Yeadon [Ye2, 3]. As will become apparent, the tech-
niques needed to establish a satisfactory theory of Köthe duality for spaces of
measurable operators depend crucially on certain methods of interpolation the-
ory related to rearrangement inequalities and to the classical theory of doubly
stochastic matrices, and the earlier results of [Ov2, Ye2, 3] in these directions
do not suffice for our present purposes. In particular, it is necessary to point
out that several key arguments in [Ye2, 3] are not valid as stated. For basic
properties of decreasing rearrangements of measurable operators (for precise
definitions see §1 below), we refer to the paper of Fack and Kosaki [FK], but
otherwise the discussion of the present paper is self-contained for the sake of
unity of method. The first three sections are concerned with the order structure
of the space of all measurable operators affiliated with a given semifinite von
Neumann algebra and various properties of normed rearrangement invariant
operator spaces. These preliminary results complement the discussion of [FK]
and indicate how the present approach via decreasing rearrangements coincides
in familiar examples with other approaches already in the literature as, for ex-
ample, that given by Nelson [Ne] or those given in the monographs [Di, Ta,
SZ], to which we refer as convenient references concerning von Neumann alge-
bras. As in [FK], we adopt throughout the notion of measurability introduced
by Nelson [Ne] which is perhaps more naturally adapted to the present context
than the notion of measurability due to Segal [Se] which requires more detailed
structural knowledge of von Neumann algebras. In fact, for closed operators
affiliated with a semifinite von Neumann algebra equipped with a normal faith-
ful semifinite trace x, the notion of (T-)measurability in the sense of Nelson
is equivalent to requiring the existence of an everywhere finite decreasing rear-
rangement.

The machinery essential to the subsequent duality theory is given in §4 and
here the principal result (Theorem 4.7) is an exact noncommutative extension of
a characterization due to Calderón of the image of a measurable function under
operators which are simultaneous contractions for the Lx and L°°-norms in
terms of a preorder relation which goes back to Hardy, Littlewood, and Pólya
in the context of doubly stochastic matrices. The present approach is based
on a refinement of a rearrangement inequality due to Hardy and Littlewood
(Theorem 4.5) and follows the ideas suggested by Fremlin [Fr] in the commu-
tative setting. The basic Köthe duality theory is presented in §5 and one of
the main results (Theorem 5.11) is a characterization of the Köthe dual of a
given noncommutative space via a Radon-Nikodym type theorem and is an
extension of the well-known fact that the predual of a von Neumann algebra
may be identified with that subspace of the Banach dual consisting of normal
linear functionals. Our method is a considerable refinement of an earlier result
of Yeadon [Ye2, 3] and implies not only the usual duality results for the more
familiar LP-spaces but also applies readily to the identification of the Banach
dual spaces of more general spaces of measurable operators. The paper con-
cludes with an exact extension of the well-known theorem of G. G. Lorentz and
W. A. J. Luxemburg concerning the isometric embedding of a Banach function
space into its Köthe bidual which yields in turn an extension of a reflexivity
criterion of T. Ogasawara.
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1. Order properties of measurable operators

Throughout this paper, we denote by JZ a semifinite von Neumann algebra
in the Hubert space H with given normal faithful semifinite trace x. The
identity in JZ is denoted by 1, and we denote by JZP the set of all (selfadjoint)
projections in JZ. The closed, densely defined linear operator x in H with
domain D(x) is said to be affiliated with JZ if and only if u*xu = x for all
unitary operators u belonging to the commutant JZ' of JZ. The preceding
operator equality is to be understood in the sense that u*xu, x have the same
domain so that u(D(x)) = D(x). If the linear operator x is affiliated with JZ,
then x is said to be x-measurable if and only if, for every e > 0, there exists a
projection e £ JZP for which e(H) Ç D(x) and x(l-e) < e. We denote by JZ
the set of all r-measurable operators, and with sum and product defined as the
respective closures of the algebraic sum and product, the set JZ is a *-algebra.
The sets N(e,8) (e, S > 0) consisting of all x £JZ for which there exists a
projection e £ JZP with e(H) ç D(x), \\xe\\ < e and x(l-e) < Ô form abase
at 0 for a metrizable Hausdorff topology m JZ called the measure topology, and
equipped with the measure topology, JZ is a complete topological *-algebra.
The linear subspace E ç H is called x-dense if for each S > 0, there exists^
a projection e £ JZP for which e(H) ç E and x(l - e) < ô. If x £ JZ
and if F ç D(x) is r-dense, then x is the closure of its restriction to E. For
these facts, together with their proofs, we refer to the papers of Nelson [Ne] and
Terp [Te]. By way of example, we mention first that if JZ is Sf(H), the von
Neumann algebra of all bounded linear operators in H equipped with the usual
standard trace, then JZ coincides with JZ and in this case the measure topology
coincides with the operator norm topology. On the other hand, if t(1) < oo,
then JZ consists of all densely defined closed linear operators affiliated with
JZ.   If JZ is commutative then JZ may be identified with L°°(Q, v) and
x(f) = Jçifidv where (Q, v) is a localizable measure space. In this case, JZ
is the space So(i2) consisting of those measurable complex functions on Q
whichare bounded except on a set of finite measure and the measure topology
on JZ may be identified simply with the familiar topology of convergence in
measure.

If x is any selfadjoint operator in H and if x = J(oo , s de¡J is its spectral
representation, we will write Xb(x) for the spectral projection JBsde¡Z when-
ever B C R is a Borel subset. In particular we note that ef = X(-<x>,s](x).
If x is a closed, densely defined linear operator affiliated with JZ, then the
spectral resolution /.(|jc|) is contained in JZ, and x £JZ if and only if there
exists s £ (-co, oo) such that t(X(S,oo)(\x\)) < oo. If x £ JZ, the function
p.(x): [0, oo) -»• [0, oo] defined by setting

Pt(x) = inf{s > 0: x(x{s,oc)(\x\)) <t},        t>0,
is called the generalized singular value function or decreasing rearrangement of
x . For basic properties of generalized singular value functions in the present
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setting, we refer to the paper of Fack and Kosaki [FK]. It is useful to note, and
easily verified, that a basis of neighbourhoods at zero for the measure topology
is given by the sets

Me>s = {x £ JZ: ßs(x) < e},        e,o>0.

We remark (cf. [FK, Lemma 3.4]) that if {xn} is a sequence in JZ and if
x„ -* x £ J' for the measure topology then ptix„) —► pt(x) whenever t > 0 is
a point of continuity of p(x). In particular p(x„) —► p(x) a.e. (with respect to
Lebesgue measure) on R+ . We now gather some remarks concerning the order
structure of the space JZ.

If x is a self adjoint linear operator in H and if ( , ) denotes the inner
product in H then we write as usual

x > 0   if and only if   (xÇ, f ) > 0,    for all f e D(x).

If jc £ JZ and if E ç D(x) is r-dense then it follows that

x>0   if and only if   (xC,c;)>0   for all £e F,

since x is the closure of its restriction to E. It now follows that JZ is an
ordered vector space with respect to the partial ordering defined by setting

x > y   if and only if   x - y > 0.

Further, if 0 < x £ JZ then also y*xy > 0 for all y £JZ.
If 0 < x is a selfadjoint operator in H, then following [Ka], we denote by

qx the associated sesquilinear form. The domain D(qx) of the form qx is
D(x1/2) and

qx(^,r1) = (xx^,xx/2n),        t\, n £ D(xxl2).

It is not difficult to show that if 0 < x, y £ JZ then 0 < x < y holds if and
only if qx < qy holds in the sense of quadratic forms i.e.,

D(y1'2) ç D(xx'2)   and   \\xl'H\\ < \\yxl2t;\\,       ¿;£D(yx'2).

We now show that the ordered vector space (JZ, <) is in fact order complete
in the sense of the following.

Proposition 1.1. If 0 < xa fa< z holds in JZ then x = supQxa exists in JZ.
Proof. Define the form q by setting

D(q) = {¿: supllxi^lKoo},     q(i, {) = sup||x^||2,        Í £ D(q)

and

9(í» tl) = \(q(Z + ri, Ç+n)-q(Ç-n, ¿l-n) + iq(Ç+in, Ç+in)-iq(Ç-in, Ç-in))

for ¿l, n £ D(q). Since ||xà/2<i|| ÎQ , it is simple to check that
(i) q(i + ri, Ç + n) + q(ci-n, £ - n) = 2q(t\, Ç) + 2q(n, n),
(ii) q(^,^) = \M2q(^,0,

for all £,, n £ D(q) and for all complex numbers A and so by [St, Lemma 6.1]
it follows that q is a symmetric nonnegative form in the sense of [Ka] which
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is densely defined since D(q) D D(zxl2). A standard argument shows that q
is closed in the sense of [Ka] and consequently, it follows from [Ka, Theorems
VI 2.1 and VI 2.23] that there exists a selfadjoint operator 0 < x such that
D(xxl2) = D(q) and

q(t,n) = (xi>2Ç,x1>2ri),        Ç, n £ D(q).

If now u£JZ' is unitary, it follows from the equality ||xi/2^|| = ||Xci/2i/(^|| for
all a, that £ £ D(xxl2) if and only if uÇ £ D(xxl2), in which case q(¿¡, Ç) =
q(uÇ, uc\). Hence

(xx/2uÇ,xx/2un) = (uxc;,un),       Ç £ D(x), n£D(xx/2),

and consequently Ç £ D(x) implies xx/2uÇ £ D(xxl2) and xxl2xx/2uÇ = uxÇ.
Thus x ç u*xu and a similar argument shows that u*xu ç x. Thus x is
affiliated with JZ and so xxl2 is affiliated with ^f^Since D(zxl2) ç D(x1/2)
and D(zxl2) is T-dense it now follows that xxl2 £ J£ and hence x £ JZ. The
definition of x now shows that if zq £ JZ and if z0 > xa for all a, then
D(zl0/2) ç D(xx<2) and qxß, t\) < qz»(c¡, Ç) holds for all £ 6 2r(z¿/2). This
implies that 0 < x < zq and so x = supa xa holds in JZ.   u

The referee has pointed out that the previous Proposition 1.1 has been ob-
tained independently by K. Watanabe, of Niigata University.

The following remark is a consequence of the proof of Proposition 1.1.

Corollary 1.2. If 0 <xa ]a< x holds in J? then x = swoaxa if and only if

D(xxl2) ={¿: sup Hx^ill < oo J

and
\\xxl2tl\\ = sup llx^H,        ct£D(x1/2).

a

Proposition 1.3. If 0 < xa |a x holds in J' then 0 < y*xay fa y*xy holds in
JZ for all y £JZ.
Proof. If y £ JZ then it is clear that 0 < y*xay |a< y*xy holds in JZ, so
that if z = supa y*xay then z £ JZ and 0 < z < y*xy. From the preceding
corollary, it follows that

\\iy*xay)x^\\U\\zl/2a,        Í£D(zxl2),
and

\WJ2<yt)\\ U lk1/2KII
for all <f e D(xxl2y) = F>(|x'/2y|) = D((y*xy)xl2) ç D(zxl2). Since

for all a and all Ç £ D((y*xay)xl2) = 3)(xlJ2y) it follows that \\zx/2c;\\2 =
\\xx'2y^\\2 holds for all Ç £ D((y*xy)xl2) and so (zt\, £) = (y*xyt\,Ç) for all
\ £ D(y*xy). It now follows that z = y*xy since D(y*xy) is T-dense.   D

Proposition 1.4. The positive cone JZ+ is closed for the measure topology.
Proof. If x £ JZ and x belongs to the closure in J~ of JZ+ for the measure
topology then certainly x = x* by the continuity of the adjoint operation on
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JZ for the measure topology. There exists a projection e £ JZp such that
x~ = -exe. If e > 0, S > 0 axe given, there exists y £ JZ+ such that
Hsix - y) < e . Since 0 < x~ < e(y - x)e, it follows that p¿(x~) < e for all
e > 0, S > 0 and this implies that x~ = 0.   D

As usual, we denote by L°(K+) the space of all complex-valued Lebesgue
measurable functions on the half line R+ with the usual identifications.

Lemma 1.5. If 0 < x £ JZ then

pix) = sno{piexe) : e £ JZP, xie) < oo and exe £ JZ},

where the right-hand supremum is taken in L°(R+).
Proof. We denote by w the supremum on the right-hand side. Since piexe) <
p{x) holds for every projection e £ JZP by [FK, Lemma 2.5(vi)], we have
w < p{x). Set aoo = lim^oo pt(x). We first show that w > a^l. It may
clearly be assumed that ctoo > 0. If 0 < a < a^ , then since xiX(a,ß]ix)) -> oo
as ß —► oo, for any natural number n , there exists a projection e £ JZP and
a number ßo > ot such that n < xie) < oo and e < X{a,ß0iix) ■ Since ae <
exe < ßoe, it follows that exe £ JZ and aX\o,n) < aX[o,r{e)) < piexe) < w ,
and it is now clear that w > a^ 1. If we set

t0 = inf{t > 0: ptix) = a,»} ,

then we have w > X{t0,oo)P-ix) ■ Suppose that 0 < t < to. There exists s > t
such that Psix) < pt{x). If y = Psix), then t < iiX(y,oo)ix)) < s. Let S > y
and set e = X{y,S]ix) ■ It then follows that exe £ JZ and so

wir) > priexe) = Xio,T(e))»r+nix),        r-a.e.,

where n = x{X(s ,oo)(*)) • If now S -* oo, it follows that n -» 0 and so

w > XiOMxto^ixmßix) > X\o,t)ßix),
hence w > X[o,tB)ßix), and this clearly suffices to complete the proof.   D

It is now convenient to recall the following special case of [FK, Proposition
2.7].
Lemma 1.6. If 0 < x £ JZ, then t(x) = /[0 . Pt{x) dt holds in the sense that
if either side is finite then so is the other, in which case equality holds.

Proposition 1.7. If 0 < xa îQ x holds in JZ then ptixa) |a ptix) holds for all
t>0.
Proof. If e £ JZp is such that t(e) < oo and exe £ JZ then 0 < exae ]a exe
holds in JZ and consequently 0 < ßiexae) î„ piexe) holds in LX(R+) since

/       p,iexae)dt = x{exae) |a xiexe) = /       ptiexe)dt
J[0, oo) J[0, oo)

which follows from the preceding Lemma 1.6. The statement of the proposition
now follows from Lemma 1.5, and the right continuity of pt{x).   D

The final result of this section is a consequence of the argument of [Di, 1.3.4,
Corollary 5].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONCOMMUTATIVE KÖTHE DUALITY 723

Proposition 1.8. If 0 < x £ JZ, then there exists {xa} ç JZ with x(xa) < oo
for each index a and such that 0 < xa fa x holds in JZ.

2. Rearrangement invariant spaces of measurable operators
In this section we gather some basic properties of normed spaces of measur-

able operators which are the natural analogues to the rearrangement invariant
function spaces studied by Luxemburg [Lu] and the symmetric spaces on the
half-line [0, oo) of Krein, Petunin, and Semenov [KPS]. We begin with the
following definition.

Definition 2.1. A normed linear subspace E ç JZ is called a (normed) rear-
rangement invariant operator space if and only if whenever x £ JZ, y £ E
satisfy p(x) < p(y) it follows that x e E and ||x||£ < ||y||£ .

If E ç JZ is a normed rearrangement invariant operator space then it is a
simple consequence of the definition that

(i) x 6 E <& x* £ E <=> |x| £ E ; and ||x||£ = Hx*^ = || |x| ||£ ,
(ii) x £ E, 0 <u, v £JZ imply that uxv £ E and

\\UXV\\E < ||w||oo|M|oo|MU.

Proposition 2.2. If E çJZ is a normed rearrangement invariant operator space
then the natural inclusion of E into JZ is continuous.
Proof. Let e > 0 be given. We first show that there exists a constant C =
C(e) > 0 such that

e£EnJZp   and   x(e) > e => \\e\\E > C.
Indeed, let

m = inf{x(e): 0^e£jZp}.
First suppose that m = 0. There exists 0//e JZp such that x(f) < e. If
e £ EC\JZP with x(e) > e, then x(fi) < xie) and so \\f\\E < |MU ; we can
take C = jII/Hb . Now suppose m > 0. We show in this case that there exists
C > 0, independent of e, such that

\\e\\E>C,    for all e £ E n JZP.
If this is not true, then there exists a sequence {e„} ç En JZP such that
IknlU —>n 0. In this case, each projection dominates a minimal projection of
finite trace and so we may assume that each en is minimal and of finite trace.
It follows that

e¡ A e}■■ = 0   for i ^ j.
Choose / £ N such that lm > xiex). For each k £ N, we have

x(ek+i V • • • V ek+i) = xiek+x) + ■■■ + xiek+l) >lm> t(<?>) .

It follows that

0 < \\ex \\e < \\ek+ x V • • • V ek+l\\E < \\ek+x \\E + ■• • + \\ek+,\\E,    for all k £ N,

which is a contradiction to the assumption that \\e„\\E —>n 0. Now let 0 <
x £ E be such that  ||x||£ < eC.   We may assume that pe(x) > 0.   If a
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is such that 0 < a < pc(x), then s < T(/(aj00)(x)). From the inequalities
0 < a;t(a,oo)(*) < xX(a,oo)ix), and the assertion in the first part of the proof,
we obtain that aC < a||X(a,oo)(^)l|£ < \\x\\e < sC. It now follows also that
pe(x) < e and this suffices to complete the proof.   D

We remark that the preceding proposition is a simple extension of [DDP1
Lemma 4.4].

Before proceeding, we note the following simple criterion for a normed rear-
rangement invariant operator space to be a Banach space.

Proposition 2.3. A normed rearrangement invariant operator space E çJZ is a
Banach space if and only if each increasing Cauchy sequence in E is convergent.
Proof. The stated condition is clearly necessary. Conversely, suppose that
{x„}£L, ç E is a sequence of selfadjoint elements for which

oo

53l|x„+i -x„\\E <00.
n=X

Setting
n-X n-X

un = Y\,iXi+x-Xi)+,     vn = Y^{Xi+x-Xi)-,        « = 2,3,...,
1=1 " ;=1

it is then clear that the sequences {u„}, {vn} ç E axe increasing Cauchy se-
quences and hence convergent to u, v £ E. It follows that x„ —> xx + u - v
and by this the proof is complete.   D

Corollary 2.4. If E ç JZ is a normed rearrangement invariant operator space
with the property

0<x„UQE,    sup||x„||£ < oo,
n

x = supx„ exists in JZ => x £ E,     \\x\\e = sup ||x„||£,
n n

then E is a Banach space.
Proof. If 0 < x„ î„ç E is || • ||£-Cauchy, then the sequence {x„} is Cauchy and
hence convergent in the measure topology to some x £ JZ. Since the positive
cone of JZ is closed for the measure topology, it follows that x = sup„x„
holds in JZ. Consequently 0 <x £ E and the same argument yields that

II*-*«Hi? = sup{||xm -xn\\E: m > n},

from which it follows that xn —> x holds in E and the proof is complete.   D

We remark that the property stated in the above corollary is (essentially) the
property referred to by Yeadon [Ye3] as the Fatou property.

If x, y £ JZ, we shall say that x is submajorized by y, written x -<-< y, if
and only if

/   pt(x)dt<      Pt(y)dt,    for all a >0.
Jo Jo
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A normed rearrangement invariant operator space E çJZ will be called sym-
metric if and only if

x,y£E   and   x « y =>■ ||x||£ < ||y||£.

We identify L°°(R+) throughout as a commutative von Neumann algebra
acting by multiplication on L2(R+) with trace given by integration with respect
to Lebesgue measure. A normed space E(R+) of almost everywhere finite mea-
surable functions on the half-line R+ will be called a rearrangement invariant
(symmetric) function space on R+ if the corresponding conditions hold with
respect to the von Neumann algebra L°°(R+). If F(R+) is a rearrangement
invariant normed function space on R+ which is a Banach space in its given
norm, then F(R+) will be called a rearrangement invariant Banach function
space.

If F(R+) is a normed rearrangement invariant function space on R+ , we set

E(JZ) = {x£jr: p(x) £ F(R+)},

and if x € E(JZ), we define ||x||£(^) = ||//(x)||£(R+). If, in addition F(R+) is
symmetric, then it can be shown that E(JZ) is a normed, symmetric, rearrange-
ment invariant operator space which is a Banach space if F(R+) is a Banach
space (see [DDP1, DDP3]).

If x £ JZ then it is a simple consequence of [FK, Proposition 2.2] that
x £ JZ if and only if p(x) £ L°°(R+) and in this case ||//(x)||oo = ||x||oo . It
follows simply that the equalities

L°°(JZ)=JZ,        (LxnL°°)(Jr) = Lx(JZ)nJZ,

hold in the sense of Banach spaces. It should also be observed, via Lemma
1.6, that LX(JZ) C\JZ coincides with the two-sided ideal introduced in [Di,
Proposition 1.6.1].

The following result is essentially proved in [FK], remark after Theorem 4.4
and is stated in [Ov2, Theorem 3]. See also [PS].

Proposition 2.5. If x £JZ and if t > 0, then

/     /ií(x)rfj = inf{||y||i + í||z||00:x = y + z, y e LX(JZ), z £JZ}.
J[0,t]

An immediate consequence of the preceding Proposition 2.5 is the Banach
space equality (Lx + L°°)(JZ) = Lx(JZ) + JZ.

It follows immediately from [KPS, Theorem 114.1] that if F(R+) is a sym-
metric rearrangement invariant Banach function space on R+ , then the Banach
space E(JZ) is intermediate for the Banach couple (LX(JZ), JZ), in the sense
of [KPS, Chapter I].

For notational convenience, we will write G(JZ), H(JZ) respectively for the
operator spaces Lx (JZ) +JZ,LX (JZ) n JZ.

Proposition 2.6. If x £JZ then the following statements are equivalent.
(a) x 6 G(JZ).
(b) J[0 a) ptix) dt < oo for some a > 0.
(c) J,0   . Pt(x) dt < oo for all a > 0.
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(d) e\x\e £ LX(JZ) for all projections e £ H(JZ).
Proof. It suffices to prove the equivalence (a) <=> (d). If x e G(JZ) and e £
H(JZ), then from the inequality p(e\x\e) < X[o,T{e))ß(x) it follows immediately
that p{e\x\e) eL'(R+).

Conversely, suppose that x e JZ and that e\x\e £ LX(JZ) for all projections
e £ H(JZ). If x £ JZ, there is nothing to prove. We may therefore assume that
there exists a > 0 such that 0 < t(X(a,oo)i\x\)) < oo. Setting e = X(a,oo)(M) >
it follows that 0 < x(e) < oo and p(e\x\e) = Xio,z{e))Mx) ■ It follows immedi-
ately that L T(e)] Pt(x) dt < oo, and consequently x £ G(JZ) and the proof is
complete.   D

We define

JZo = {x £JZ: ptix) -> 0 as t —> oo}.

Observe that JZo is a linear subspace of JZ which is solid in the sense that if
x £ JZq and if y £ JZ and p(y) < p(x) then also y £ JZo- It is clear that
x £ JZo if and only if t(X(s,oo)(\x\)) < oo for all s > 0. Moreover it is clear
that HiJZ) CJZ0. It is worth noting that if JZ is 2fiH) with standard trace,
then JZo is precisely the ideal of compact operators.

Proposition 2.7. (a) J?o is the closure of H{JZ) in JZ for the measure topology.
(b) The closure of HiJZ) in the space GiJZ) is JZq n GiJZ).

Proof, (a) Let 0 < x £ JZo and set

Xn = xX(X/n, n]ix), «=1,2,....

It is clear that x„ £ HiJZ) and that 0 < x„ < x, «=1,2,.... Since

\\{X-X„)X(-oo,n](x)\\oo <-, «=1,2,...,

and since r(l - X(-<x,n]ix)) —> 0 as « —► oo, it follows that x„ —> x for the
measure topology.

Conversely, suppose that x belongs to the closure of HiJZ) for the measure
topology. If e > 0 is given, there exists y £ HiJZ) such that /^(x-y) < e, and
so Pt+eix) < Peix-y)+ßtiy) < e+ptiy) hold for each t, e > 0. Consequently
lim^oopt{x) <e.

(b) If x e GiJZ) belongs to the closure of HiJZ) in GiJZ), then x belongs
to the closure of H{JZ) in JZ for the measure topology by Proposition 2.2 and
consequently x £ JZo by part (a) preceding. Conversely, if 0 < x £ JZ0r\G{JZ),
set

Xn = XX(X/n, n]ix) , «=1,2,...,

and note that x„ £ HiJZ), «=1,2,.... Since

ßtixX(n,oo)(x)) = *[0,T(z,..oo)W))(í)/*t(*),
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we have xX(n,<x>)(x) £ LxiJZ) and so

Wx-XnWats) = ||x^(n>00)(x) + xx[o,i/„](x)||G(^)
< \\xX(n,oo)(x)\\L'(Jt) + \\xX[0,X/nlix)\U

p(Xin,oo)(x)) 1

< / ptix)dt+-Jo n
—* 0   as « -» oo.   D

The rearrangement invariant Banach function space F(R+) is called minimal
if and only if /Y(R+) is dense in F(R+). We remark [KPS, II §4.5] that F(R+)
is minimal if and only if

ll//(«,oo)l|£-0   and   \\(\f\-nl)+\\E-+Q,
as « -> oo for each / £ E(R+). Further, if F(R+) is minimal then pt(\f\) -» 0
as t -» oo, for each / e F(R+).

Proposition 2.8. If the symmetric rearrangement invariant Banach function space
F(R+) is minimal, then H(JZ) is dense in E(JZ).
Proof. Let 0 < x £ E(JZ) and set

Xn = xX{X/n, n]ix), «=1,2,....

Note that 0 < x„ < «^(i/„,oo)(*), and since x £ JZo by the minimality of
F(R+), it follows also that tiX(xin,oo)(x)) < oo, and so x„ e HiJZ), for « =
1,2,... . Consequently,

II* - x„\\E(jr) < ||x - x A «|U(^r) + ||x A « - x„||£(^r)
< ||(X - «)+||£(^) + \\xX[0,X/nlix)\\E(Jt)

= Wißtix) - n)+\\E + IIZ(Tte(„..oo)W),oo)(OÄWIl£
—> 0   as « -> 0,

by minimality of F(R+).   D

3. Extension of the trace to JZ+

To formulate a natural extension of the well-known dominated convergence
theorem, it is desirable to extend the trace x to the positive cone of JZ. See,
for example, [FK, Theorem 3.5]. In this section we show that the trace extends
naturally to the positive cone JZ+ so that the basic properties, particularly that
of additivity and normality, are preserved. This does not appear to follow
in a direct manner from the approach of [FK]. A number of the necessary
preliminary results which follow are of course well known and may be found,
for example, in [Di].

As in [Di, Proposition 1.6.1], we continue to denote by x the unique linear
extension to H(JZ) of the restriction of x to H(JZ)+ . The linear functional
x is unitarily invariant on H(JZ) and, as shown in [Di, Theorem 1.6.8], if
x 6 H(JZ) and y £JZ then

(a) r(xy) = x(yx), and
(b) |T(X30|<|M|ooT(|x|).

Since the space L'(R+) is minimal, it now follows from Proposition 2.8 that
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LX(JZ) is the completion of H(JZ) with respect to ||-||i so that x extends
uniquely to a bounded linear functional on LX(JZ), which we again denote by
x. It is not difficult to see that the assertions (a), (b) preceding now continue
to hold whenever x £ LX(JZ) and y £JZ . Moreover, if 0 < x e LX(JZ) then
the equality

t(x) = /       pt(x)dt
J[0, oo)

continues to hold. In fact, if x„ = x A « 1, « = 1,2,..., then it is clear that
x„ £ H(JZ), « = 1,2,..., and that

II* - xn || i = || (p(x) - « 1 )+1| i —> 0   as « —> 00 ,
and consequently t(x„) —► t(x) as « —► oo by continuity. Since

p(xn) = p(x) A nl,        « = 1,2,...,
it follows that p(x„) î„ pix), and the stated equality now follows from Lemma
1.6.
Lemma 3.1. If x £ JZ, then x*x £ LX(JZ) if and only if xx* £ LX(JZ), in
which case t(x*x) = t(xx*) .
Proof. This now follows from the equalities

p(x*x) = Ml*|2) - (M*))2 = (M**))2 = M***)
and the above remarks.   D

Proposition 3.2 (Beppo-Levi property). IfiO<xa \aC Lx iJZ) and if supa ||xQ|| i
< oo then x = supaxQ exists in LxiJZ) and, ||x-xQ||i J.Q0. Moreover there
exists a sequence {xa„} ç {xa} such that x = sup„xa„.
Proof. The conditions 0 < xa |a , supQ r(xa) < oo imply that the net {xa} is
Cauchy in LxiJZ) and hence convergent to some element x e LxiJZ). That
x = supQ xa holds is a simple consequence of Corollary 1.4. By the continuity
of x it follows that t(x) = supar(xQ) and this implies that ||x - xa||i |Q 0.
Now t(x) = supa||xa||i, so there exists a sequence {xa„} Ç {xa} such that
0 < xan T„ and sup„ x{xaJ = t(x) . Using the first part and the fact that x
is faithful, it is not difficult to see that x = sup„ xa„, and by this the proof is
complete.   D

It is not difficult to prove exact noncommutative extensions of the familiar
Fatou's Lemma and the Dominated Convergence Theorem of Lebesgue, which
we now state. For the proofs, we refer to [FK, Theorem 3.5]. The reader's
attention is also drawn to the alternative approaches given in [St, Le].
Proposition 3.3 (Fatou's Lemma), (i) If {xn} C LX{JZ) is such that x„ -+ x for
the measure topology and if liminf ||x„||i < oo then x £ LxiJZ) and ||x||i <
liminf ||x„||i.

(ii) (Dominated Convergence Theorem). If {x„} ç LxiJZ) is such that x„ ->
x for the measure topology and if

pixn)<f£LxiR+),    for n = 1,2,...,
then x £ LxiJZ) and \\x„ - x\\x -► 0.

In the trace ideal setting, a restricted version of the following result may be
found in [GK, Theorem III. 8.2].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONCOMMUTATIVE KÖTHE DUALITY 729

Proposition 3.4. If x, y £JZ and if xy, yx £ Lx (JZ), then x(xy) = x(yx). If
in addition, 0 <x £JZo and 0 <y £ JZ then xxl2yxxl2, yxl2xyxl2 e LX(JZ)
and

x(xy) = x(xx'2yxxl2) = x(yx/2xyx'2).

Proof. The first assertion is just [BK, Theorem 17] and we thank the referee for
bringing this to our attention. We prove only the second assertion. We assume
that 0<x £JZ0, that 0<y £JZ and that xy, yx £ Lx (JZ). We set

e = X(o,oc)(xl/2),    e„ = X(x/n,n](xl/2),    «=1,2,....

We observe that enxxl2 = xxl2en £ HiJZ). As in the proof of Proposition
2.7(a), it follows that e„xxl2 = xxl2en —> xx¡2 for the measure topology. We
now note that e„x1/2y £ LxiJZ), « = 1,2, ... . In fact, \en < x1/2 implies
that en < n2x and so

ienxxl2y)*ienxxl2y) =yxxl2enxxl2y < n2yx2y = («xy)*(«xy),

and hence \enxx!2y\ < n\xy\ £ LxiJZ).
Now the inequalities

T(é>„xy) = r(e„x1/2e„x1/2y) = xie„xx/2ye„xx/2)
= xienxxl2yxxl2en),       « = 1,2,...

imply that

0 < xienxxl2yxxl2en) < x(\xy\),        « = 1,2,....

Since enxxl2yxxl2e„ —>n xxl2yxxl2 for the measure topology, Fatou's Lemma
implies that xxl2yxxl2 £ LX{JZ). Since e„xy -^„ xy for the measure topology,
the inequalities

Pienxy) < pixy),    pienxx'2yxx^2en) < pixxl2yxxl2),       «=1,2,...,

together with the Dominated Convergence Theorem imply that

r(x1/2yx1/2) = lim T(e„xl/2yx1/2e„) = lim xienxy) = t(xy).
n—»oo n—»oo

Since
x1/2yx'/2 = (x1/2y1/2)(x1/2y1/2)*,

it follows from Lemma 3.1 that

yXI2xyXI2 = {xXI2yXI2y{xXI2yXI2)

belongs to LX(JZ) and that

T(x1/2yx1/2) = T(y1/2xy1/2),

and by this the proof is complete.   D

Lemma 3.5. If x > xa |Q 0 holds in JZ and if x £ JZo, then pt(xa) [a 0 for
all t>0.
Proof. If « £ N and e = X(x/n,n](x), then e, ex £ H(JZ). Note that

pt(x(l-e))<-
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on (r(x{n,oo)(x)), oo). Now

p)l2(xa) = pt(xxJ2) < ptl2(xxJ2e) + pt/2(xxJ2(l - e))

< p)jl(exae) + p\jl((l - e)xa(l - e))
< p)l2(exae) + p)l2(x(l - e))

< p\'^(exae) + -=.,    foxt£ (2x(x{„,oo)(x)), oo).

Since xe > exae [a 0 and xe £ LX(JZ), it follows that
/•OO

x(exae)=       pt(exae)dt la 0,
Jo

and so pt(exae) [a 0 on (0, oo). Hence infa/u,(xQ) < \ for t > 2x(X(n,oo)(x))
and since x(X(n,oc)(x)) In 0 as « —> oo, it follows that infapt(xa) = 0 on
(0,oo).    D

The norm on the rearrangement invariant Banach function space F(R+) is
said to be order continuous if and only if whenever fi |T 0 holds in E(R+) it
follows that \\fT\\E It 0. Order continuity of the norm on the space E(JZ) is
defined similarly.
Proposition 3.6. If F(R+) is a rearrangement invariant symmetric Banach func-
tion space on R+ with order continuous norm, then the norm on the space E(JZ)
is order continuous.
Proof. The order continuity of the norm on E implies that E(JZ) ç JZo. If
now xQ |a 0 holds in E(JZ) then by the preceding lemma it follows that
ß(xa) I« 0 holds in E and consequently

H*a|U(,#) = ||M*a)||£laO.     Ü
We remark that the preceding Proposition 3.6 has been obtained indepen-

dently by V. I. Chilin and F. A. Sukochev [CS], in the special case that JZ is
nonatomic, in which case the converse is also valid.

We now extend the trace to the positive cone of JZ.

Definition 3.7. If 0 < x e JZ, we define t(x) = supQ r(xa), where {xa} is any
net in H(JZ) such that 0 < xa î x holds in JZ.

The validity of the preceding definition is guaranteed by the following.
Lemma 3.8. If {xa}, {yß} ç H(JZ) and if 0 <xa]ax and 0 <yß]ß x hold
in JZ then

supt(Xa) = supx(yß).
a ß

Proof. If supar(Xa) < oo then x e LX(JZ) from Proposition 3.3, and so
sup^ x(yp) < oo. Hence in this case

t(x) = supt(Xa) = supt(y^).
a ß

The same argument shows that if supQ t(xq) = oo then also sup^ t(y^) =
oo.    D

We remark that the preceding lemma shows that the extension of the trace
to JZ+ given by Definition 3.7 coincides with that given by [FK].
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Proposition 3.9. (a) The functional x : JZ+ —> [0, oo] is additive, positively ho-
mogeneous and unitarily invariant.

(b) If 0< Xaf\a x holds in JZ+ then x(xa) \a x(x).
(c) If x £ JZ, then

x(\x\)= I      pt(x)dt.
J[0,oo)

(d) If x £ JZ0 and if f is any nonnegative Borel function on R+ with f(0) =
0 then

r(fi\x\))= [      fi(Ht(x))dt.

We remark that parts (a), (b) of the above proposition are straightforward
consequences of the definition of t , while part (c) follows from the remarks
preceding Lemma 3.1. The extension of (c) given by (d) has been noted in [FK,
Remark 3.3].

We need the following extension of an inequality due to Hardy and Little-
wood which in the commutative setting may be found in [Lu, Theorem 8.2]
(cf. [DDP1, Proposition 2.3]). The inequality which follows is a consequence
of [Fa, Proposition 4.3(h)] and [FK, Theorem 4.2(iii)], which asserts that if
x,y £JZ, then pixy) -« pix)p(y). While this result is of interest in its own
right the proof given in [FK] via [Fa] is quite involved. Since the estimate which
follows plays such a fundamental role in the subsequent sections, it is desirable
for the sake of completeness and clarity to give a somewhat more direct and
self-contained proof.

Proposition 3.10. If x, y £JZ then

t(|xy|) < /      ptix)ptiy)dt.
•'[O.oo)

Proof. From the equality r(|xy|) = t(| |x| |y*| |), it may be assumed that x > 0
and y > 0. Assume first, in addition, that 0 < x, ye HiJZ). The inequality

(1) r(xy)< /       ptix)p,iy),dt
J[0,oo)

is then proved as in [DDP1, Proposition 2.3], and the inequality

t(|xy|)< /       p,ix)p,iy)dt
J[0,oo)

now follows from (1) and the Cauchy-Schwarz inequality [Di, Lemma 1.6.1],

T(|xy|)2<T(|x*i(;||y|)T(|t(;*x||y*|),

where xy = iu|xy| is the polar decomposition of xy. If now 0 < x £ HiJZ)
and 0 < y £ LX{JZ) then the stated inequality continues to hold since there
exists a sequence {y„} ç HiJZ) for which

||y-y«||i-*0   and   piy„)<piy),       «=1,2,....

We now return to the general case that 0 < x, y £ JZ. It is clear we may
assume that

(2) /      ptix)ptiy) dt < oo,
J[0,oo)
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otherwise there is nothing to prove. It is also clear that it may be assumed that
there exists 5 > 0 such that ps(x) > 0, ps(y) > 0, and so from the inequalities

0 < ps(x)p(y)x[o,s) < ß(x)piy),
0 < ßsiy)ßix)X[o,S) < ß(x)ßiy),

it follows that

/      pt(y)dt < oo,     and     /      pt(x)dt < oo,
JlO,s] J[0,s]

so that 0 < x , y £ G(JZ). Further the condition (2) implies that at least one
of x, y belongs to JZo. For definiteness we suppose that x £ JZo. We set
en =X(x/n,n]ix), n = 1,2, ... , and note that

x(e„) < oo   and   xe„ = enx £ H(JZ),        « = 1,2,....

Since e„x —> x for the measure topology, it follows that e„xy -* xy for the
measure topology. Since y e G(JZ) and x(en) < oo it follows that eny £
Lx (JZ) and so from the first part of the proof

x(\enxy\) = x(\(enx)(eny)\) < p,(x)pt(y)dt,        « = 1,2,...,
J[0,oo)

and the desired conclusion now follows from Fatou's Lemma in the form given
by Proposition 3.3.   D

For the case of trace ideals, the inequality of the preceding proposition may
be found in [GK, Theorem II 4.2] as special case of Horn's inequality, and in
[Ga, Proposition 4].

4. Contractions for the pair (Lx(JZ) , JZ)

The principal aim of this section is to give an exact noncommutative exten-
sion of a well-known characterization due to Calderón [Ca] of spaces which
are interpolation spaces for the (commutative) pair (Lx, L°°). Our approach
follows the ideas of Fremlin [Fr] (see also [KPS, Chapter II]) and is based on a
separation argument resting on a refinement of the Hardy-Littlewood inequality
(Proposition 3.10 above) which is central to the duality theory presented in the
sequel.

We suppose that (Jf, a) is a semifinite von Neumann algebra with faithful
normal semifinite trace a and we denote by ^(Jf, JZ) the space of bounded
linear operators from the Banach couple (Lx(jV), JZ) to the Banach couple
(LX(JZ) ,JZ). We adhere here to the terminology of [KPS, Chapter I]. With
norm defined by setting, for each T £ 2l(yF, JZ),

l|F||5l(^^)=max(||r1||,||roo||),

where Tx, T^ denote the respective restrictions of T to V-'JZ"), Jf, it follows
that 2t(yT, JZ) is a Banach space. If x € JZ and if y e J£, we will write
y « x whenever p.(y) « p(x). We need the following result, the proof of
which follows simply from Proposition 2.5.
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Proposition 4.1. If T: G(JZ) -> G(JZ) is a linear mapping, then T £ %.(JZ, JZ)
if and only if there exists a positive number c such that Tx -« ex, for all
x £ G(JZ), in which case the smallest such positive number c is precisely
l|F||a(./r,,#) ■

Let X and Y be Banach spaces and Y* be the dual of Y. We denote by
S?(X, Y) the linear space of all continuous linear operators from X to Y. If
x £ X and y £ Y, the linear functional x ®y is defined on S?(X, Y*) by
setting

(T,x®y) = (Tx,y),        T£^(X,Y*).
The linear subspace of the algebraic dual SZZ(X, Y*)* generated by functional
of the form x ® y is denoted by X <g> Y. It is well known that the unit ball of
f?(X, Y*) is a(S?(X, Y*),X®Y) compact. Since the von Neumann algebra
JZ can be identified with the Banach dual of LX(JZ) via the canonical pairing
[Ta, Theorem V.2.18] it follows immediately that the unit ball of ^(JZ, JZ)
is a(S?(JZ,JZ),JZ®LX(JZ)) compact.

We denote by X(./f, JZ) the set of all linear maps T £ %(JZ, JZ) for which
\\T\W^,jr,<}.

The following remarks will prove useful in the sequel. It is a consequence of
Proposition 2.7(b) that JZ is dense in G(yf ) and so each element of 2t(yF, JZ)
is uniquely determined by its restriction to JZ. On the other hand, if S e
f£(JZ, JZ) and if there is a constant c > 0 such that

WSxWlhjt) < c\\x\\Li{¡/n,    for all x e H(JZ),
then S has a (unique) extension in %(JZ, JZ). In fact, Proposition 2.8 implies
that H(JZ) is dense in LX(JZ) so that S has a unique extension Sx to LX(JZ)
for which ||5i || < c. If S : G(JZ) -► G(JZ) is then defined by setting

S(x + y) = Sx(x) + S(y),        x£Lx(JZ), y£jz,

then it is simple to check that S is well defined, S £ 2l(yf, JZ) and

\\S\W(jr,*) < vûsx(\\S\seyr,jd > c).
An immediate consequence of these remarks is that, if S £ 5f(JZ, J?), then
5 has a unique extension to an element of X(yf, JZ) if and only if

\x(ySx)\ < \\x\U\\y\\LHje)   and   \x(ySx)\ < ||x||L,m||y|U,
for all x £ H(JZ), y £ H(JZ).
Proposition 4.2.  T.(JZ ,JZ) is o(K(JV ,JZ), G(JZ) ® H(J?)) compact.
Proof. We denote by a: 2t(yT, JZ) \-* ̂ (JZ, JZ) the restriction map. It is
clear that a is a homeomorphism from 2t(yT,^#) onto aif&iJV, JZ)) with
respect to the weak topologies induced by JZ <g> LX(JZ). We show first that
a(Y.(JZ, JZ)) is a oi2?(JZ, JZ), ¿V ® Lx (JZ)) closed subset of the unit ball of
s?ijr,j[). if

{Sß}Ca(Y,(JZ ,JZ))   and   Sß - S
for the topology er(J?'(^ > ̂ ) > ̂  ® F1 (JZ)), then it follows immediately that

|t(ySx)| < ||x|U||y||Li(^)   and   \t(jSx)\ < Ml^M*,
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for all x £ H(JZ), y £ H(JZ). By earlier remarks, it follows that S £
aÇL(JZ, JZ)). It follows therefore that Y,(JZ, JZ) is o(*(JZ, JZ), JZ®LX (JZ))
compact. The proof of the proposition is now completed by observing that the
weak topologies induced by G(Jr)®H(JZ), JZ ®LX(JZ) coincide on bounded
subsets of %(JZ, JZ). This observation is a routine consequence of the fact that
Jf, H(JZ) are (norm) dense in G(JZ), LX(JZ) respectively and the details are
accordingly omitted.   D

Corollary 4.3. For each x £ G(JZ), the subset {Tx : T £ Y.(JZ, JZ)} is
a(G(JZ), H(JZ)) compact.
Proof. It suffices to observe that, for each x £ G(JZ), the evaluation map

T-*Tx,        T£^(JZ,JZ),

is a(lLyy,Jt), G(JZ)®H(JZ)) to o(G(JZ), H(JZ)) continuous.   D

We denote by Y.(JZ, JZ)+ the set of all T £ Z(yF, JZ) with the property
that Fx > 0 in G(JZ) whenever x > 0 in G(JZ).

Lemma 4.4. If a = Y!¡=\ aie¡ wüh ex, ... , en mutually orthogonal projections
in H(JZ) and ax >a2> ■■■ >an>0, and if b = ££, ßjfi with fi,...,fm
mutually orthogonal projections in H(JZ) and ßx > ß2 > • • • > ßm > 0 > then
there exists T £ Yé(JZ, JZ)+ such that

j       pt(a)ßt(b)dt = x(bTa).

Proof. If we write

i
Zj = Y, oiei) »        1 < J < n,

i=i
j

tlj = y£d<fi),        l<j<m,
i=i

and <^o = «o = 0, then
n m

p(a) = Y, «tfft-, ,i,)   and   p(b) = Y ßiXim-un,) ■
1=1 ;=1

We define the linear operator T: G(JZ) -> G(JZ) by setting

»w -1 (tl|{"' ;t w/)' ' m°ixe,))fl •   xeGi'r}-

It is not difficult to show by direct calculation that T has the properties asserted
by the lemma and we omit the details.   G

Theorem 4.5. //0 < x e G(JZ) andifi0<y £ H(JZ) then

Í      ßt(x)ßt(y) dt = sup{r(yFx) : F g IL/K, JZ)+}.
•'[O.oo)
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Proof. Let F £ 1,(JZ, JZ)+ .  Since Tx -<~< x, it follows from the standard
Hardy inequality [KPS, II 2.36] that

/      pt(Tx)pt(y)dt< [      pt(x)pt(y)dt,
J[0,oo) •'[O.oo)

and the inequality

sup{|T(yFx)| : F £ I(yK,JZ)+} < [      pt(x)pt(y)dt
•'[O.oo)

now follows from Proposition 3.10. There exist increasing nets {aa} ç H(JZ),
{bß} Ç H(JZ) with each aa and bß of the form given in Lemma 4.4 for which
0 < aa Ta x and 0 < bß tß y hold in JZ, JZ respectively, and for each a, ß
there exists Fa-^ e I(JZ, JZ)+ such that

/       p,(aa)pt(bß)dt = x(bßTa'ßaa).
•'[O.oo)

Since p(aa) ]a p(x) and ß(bß) \ß p(y) by Proposition 1.7, the assertion of the
theorem now follows.   D

Corollary 4.6. If x £ G(JZ) and if y £ H(JZ) then

ßt(x)ßt{y) dt = sup{Re x(yTx) : T £ I(JZ, JZ)}IJxo'[0,oo)

= sup{|t(yFx)| : F £ I(JZ,JZ)}
= sup{T(|yFx|) : F £ I(JZ, JZ)}.

Proof. For any F £ 1(JZ, JZ), the inequality

Rex(yTx)<[      pt(x)ßt(y)dt
•'[0,oo)

follows as before from the fact that Tx -<^ x.  Conversely, it follows from
Theorem 4.5 that

f      pt(x)pt(y)dt = sup{x(\y\T\x\):T£Z(yr,JZ)+}.
•'[0,oo)

If x = m|x| and y = v\y\ are the polar decompositions of x, y respectively,
and if F e Y.(JZ, JZ)+ , then T(|y|F|x|) = x(yfx), where F € ILdZ, JZ) is
defined by setting

Tz=T(u*z).v*,        z£G(JZ),
and the statement of the corollary now follows easily.   D

For each x £ JZ, we define Yl^(x) = {y £ J?: y <■< x} . We may now state
one of the main results of this section.

Theorem 4.7. If x £ G(JZ), then Ylj?(x) = {Tx:T£ ILS, JZ)} .
Proof If K = {Tx: T £ I(JZ,JZ)}, then it is clear from Proposition 4.1 that
K Ç Qjt(x) ■ Suppose z £ Yljr(x) and z £ K. The set K ç G(JZ) is clearly
convex, balanced and is o(G(JZ), H(JZ)) compact by Corollary 4.3, hence by
the Hahn-Banach theorem there exists y € H(JZ) such that

Re r(yz) > 1   and    Re x(yTx) < 1,    for all F £ X(yT, JZ) ;
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however, by Corollaries 3.10 and 4.6,

|ReT(yz)|<|T(yz)|<T(|yz|)< /      ß,(y)/i,(z)dt < [      p,(y)pt(x)dt
J[0,oo) •'[O.oo)

= sup{Re r(yFx) : F e I(JZ, JZ)} < 1,

which is a contradiction.   D

In the commutative setting, the preceding Theorem 4.7 is due to Calderón
[Ca, Theorems i and 2] for measure algebras which are c-finite and to Frem-
lin [Fr, Theorem 24] for localizable measure algebras. In the noncommuta-
tive setting, a restricted form of Theorem 4.7 has been given (essentially) by
Ovcinnikov [Ov2] (see also Hiai [Hi] and stated, under present assumptions, in
Yeadon [Ye2, Proposition 3.4]; however, the proof given by Yeadon via [Ye2,
Lemma 2.3 and Proposition 3.3] fails in general if the trace is not assumed
finite.

The following consequence of Theorem 4.7 now follows immediately from
Corollary 4.3.
Corollary 4.8. For each x £ G(JZ), fl^r(x) is convex and o(G(JZ), H(JZ))
compact.

If we note that

I(JZ, JZ)+ = {T£ I(JZ,JZ) : x(yTx) > 0,
V0<x£G(JZ), V0<y£H(JZ)},

then it follows that I(JZ, JZ)+ is o(K(JZ, JZ), G(JZ) ® H(JZ)) compact and
that {Tx : T £ Y.(JZ, JZ)+} is o(GiJZ), HiJZ)) compact for each 0 < x £
GiJZ). If we now set

Q^(x)+ = {0 < y € GiJZ) : y ^ x},
for all 0 < x £ G(JZ), then a variant of the argument of the preceding propo-
sition yields the following result.

Proposition 4.9. If0<x£ GiJZ), then
(i) Q,r(x)+ = {Tx:T£ I(JZ, JZ)+},
(ii) £ljf(x)+ is convex and o(G(JZ), H(JZ)) compact.

In the commutative setting, the preceding Corollary 4.8 and Proposition 4.9
are due to Fremlin [Fr, Corollary 7] and are closely related to earlier results of
Luxemburg [Lu, Theorem 15.3] and Ryff [Ry, Theorem 2 of §3].

The following decomposition theorem is now an easy consequence of the
preceding results. It extends a commutative result due to Lorentz and Shimogaki
[LS].
Proposition 4.10. If y £ G(JZ) and x\, x2 £ G(JZ) are such that y <■< xx +x2,
then there exist y., y2 £ G(JZ) such that y = yx +y2, and y¡ -<-< x¡, i = 1,2.
Moreover, if y is positive, then yx, y2 can be taken to be positive.
Proof. If y -<-< xi + x2 then there exists T £ Z(^T, JZ) such that

y = F(xi + x2),

by Theorem 4.7. We simply set yi = Fxi , y2 = Tx2.
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Suppose now that y > 0 and that y -<-< xx +x2. By [AAP] there exist partial
isometries ux,u2£ JZ such that \xx + x2\ < u*x\xx\ux + U2\x2\u2, and so also
0 < y -<-< u\\xx\ux + u\\x2\u2. By Proposition 4.9, there exists F e X(y^, JZ)+
such that y = T(u\\xx\ux +u\\x2\u2). It clearly suffices to set y, = T(u*\x¡\uí) ,
i =1,2.   □

The following sharpening of Proposition 2.5 follows readily from that propo-
sition via Proposition 4.10 preceding.

Corollary 4.11. If x £JZ and if a > 0 then

ßt(x)dt = inffllyll! -l-allzlloo : |x| = y + z, 0 < y £LX(JZ), 0< z £L[0,a]

The following is a consequence of Corollary 4.6, Theorems 4.5, 4.7 and
Proposition 4.9.

Theorem 4.12. (i) If x £ G(JZ) and y £ G(JZ), then

Pt(x)pt(y) dt = sup{|f(xz)| : z £ H(JZ), z -<-< y}•Ao'[0,oo)

= sup{r(|xz|) : z £ H(JZ), z -<-< y},

(ii) If 0 < x £ G(JZ) and y £ G(JZ), then

fJ\o
ßt(x)ßtiy) dt = sup{r(xz) : 0 < z e HiJZ), z «y}.

'[0,oo)

Proof. Since
sup{|t(xz)| : z e HiJZ), z -<■< y}

= sup{|r(|x|z)| : z £ HiJZ), z -<-< y},

we may as well assume that 0 < x. Suppose {xQ} ç HiJZ) satisfies 0 <
xa I« x. If 0 < z £ HiJZ) then zxl2xazx'2 ta zxl2xzx>2 holds in Ll{JZ)
by Propositions 1.3 and 3.2. Consequently t(xz) = limaT(xQz) holds for all
z £ HiJZ). By Proposition 1.7 it follows that

/      ßtixa)ßtiy)dtU /      ptix)ptiy)dt.
J\0,oo) J[0,oo)

The first equality of (i) now follows from Corollary 4.6 and Theorem 4.7. The
second equality follows routinely from the first. The assertion of (ii) follows as
in (i) via Theorem 4.5 and Proposition 4.9.   D

5. KÖTHE DUALITY

The aim of this section is to extend to the noncommutative setting the basic
elements of the well-known Köthe duality theory for Banach function spaces as
given, for example, in [Zal, Lu]. Related ideas in the trace ideal setting may
be found in Garling [Ga] and in [DL]. It is convenient to introduce first some
additional terminology.

A Banach space E CJZ will be called properly symmetric if E is symmetric,
rearrangement invariant and intermediate for the Banach couple iLxiJZ), JZ)
in the sense that HiJZ) CE ç GiJZ) with continuous embeddings.
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It follows from Proposition 1.4 and Proposition 2.2 that if E ç JZ is a
normed rearrangement invariant space then (E, <) is a (complex) ordered
vector space for which the positive cone is closed and from Proposition 1.1, it
follows that E is order complete in the sense that each upwards directed^ubset
with an upper bound in E has at least upper bound in E. If E Ç JZ is a
rearrangement invariant Banach space, it now follows from Ando [An, Theorem
1] that the dual cone generates the Banach dual E* ; moreover it follows from
a well-known argument that each positive linear functional on E is necessarily
continuous.

We remark that it is shown in [KPS] that each rearrangement invariant
Banach function space F(R+) is necessarily intermediate for the pair (L'(R+),
L°°(R+)) so that if in addition F(R+) is symmetric then it follows immedi-
ately that the operator space E(JZ) is properly symmetric. It should be noted
however that a rearrangement invariant symmetric space need not be interme-
diate, even in the commutative setting. By way of example, let Q be the two
point space {1,2} equipped with the measure v defined on 2n by setting
v({l})=l, v({2}) = \, and let E = {x = (xx, x2): x. =0} and ||x||£ = |x2|,
x £ E. It is easily checked that E is rearrangement invariant and symmetric.
It is clear however that E is not properly symmetric. See also [Ov2, Theorem
3]. On the other hand, it is not difficult to see via Proposition 2.6 that any sym-
metric rearrangement invariant operator space E ç JZ is necessarily contained
in G(JZ).
Definition 5.1. If E ç JZ is properly symmetric then the Köthe dual Ex is
defined by setting

Ex = {y £ JF: xy £ LX(JZ) for all x £ E} .
It is clear that Ex is a linear subspace of JZ. We gather first some elementary
properties.

Proposition 5.2. Let E ç JZ be a properly symmetric Banach space,
if) If y £ Ex and x £ JZ then xy,yx £ Ex.
(ii) ye£x« |y|j Ex & y* £ Ex .

(hi) Ex = {ye JZ :yx£Lx iJZ) for all x £ E}.
(iv) If E oí JZo then Ex C LxiJZ).
(v) If x £ E and y £ Ex then x{xy) = r(yx).
(vi) If 0 < x £ E and 0 <y £ Ex , then x'^yx1/2, yxl2xyxl2 £ LxiJZ) and

T(xy) = xixxl2yxxl2) = xiyxl2xyxl2) > 0.

(vii) If y £ Ex then the linear functional x -» r(xy), x £ E, is continuous.
(viii) LxiJZ)x =JZ and JZX =LxiJZ).
(ix) GiJZ)x = HiJZ) and HiJZ)x = GiJZ).
(x) HiJZ) CEX ç GiJZ).

Proof. Statements (i)-(iii) follow by routine arguments. If E <£ JZ0 then 1 £ E
and this implies that Ex ç LxiJZ), and so (iv) follows. Statements (v) and
(vi) are consequences of Proposition 3.4, (vii) follows from (vi) and (x) is a
consequence of (ix). To prove (viii), observe first that if 0 < y € LxiJZ)x ,
then the linear functional 4> defined via

<j)ix) = T(xy),        x £ LX{JZ),
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is continuous by (vii). If y £ JZ then for every X > 0, there exists e £ JZp
such that ye = eye > Xe and so

4>(e) = x(ye)>Xx(e) = X\\e\\x,
and this contradicts the continuity of 4>. Consequently LxiJZ)x ç JZ and
since the reverse inclusion is trivial, it follows that LxiJZ)x = JZ. If now
y £ JZX , then y £ LxiJZ), since 1 £ JZ. The inclusion LX'JZ) ç JZX is
trivial and it follows that JZX = LxiJZ). The first assertion of (ix) follows
directly from (viii) while the second equality of (ix) is a simple consequence of
the characterization given in Proposition 2.6.   D

If the Banach space E ç JZ is properly symmetric and if x £ JZ, we define

||x||£x =sup{T(|xy|):yeF, ||y||£<l}.

Proposition 5.3. Let E C JZ be a properly symmetric Banach space.
(i) If x £ JZ, then

\\x\\E* = sup{T(|xy|) : y £ HiJZ), \\y\\E < 1}

= sup \ í      ptix)ptiy)dt: y £ HiJZ), \\y\\E < 1 \
[J[0,oo) J

= supi /      ptix)ptiy)dt:y£E,\\y\\E<l\ .
\\J[0,oo) J

(ii) If x £JZ, then x £ Ex if and only if ||x||£x < oo, in which case,

||x||£x =sup{|T(xy)|:yeF,||y||£<l}
= sup{|T(xy)|:yeJrF(^),||y||£<l}.

Proof, (i) Let x £JZ. From Proposition 3.10 we may assume that

sup{T(|xy|):ye/f(^),  \\y\\E < 1} < oo;

and so necessarily x 6 GiJZ) and consequently it follows from Propositions
1.7, 1.8 and Theorem 4.12 that

sup{ /       ptix)pt(y)dt:y £ E..
I ■'[O.oo)

-1
= sup { /       ßtix)ßtiy) dt:y£ HiJZ), \\y\\E < 1 \

|/[0,oo) J
= sup{t(|xz|) : 3y e HiJf),  ||y||£ < 1 and z « y}
= sno{xi\xy\):y£HiJZ), ||y||£<l}.

(ii) If x £ JZ and ||x||£x < oo, then it is clear that x £ Ex and that

sup{|T(xy)|: y e E,  \\y\\E < 1} < \\x\\E* .

On the other hand, if x £ Ex and if y £ E, and ||y||£ < 1, let xy = n|xy| be
the polar decomposition of xy ; it follows that

xixyu*) = r(|xy|)   and   ||y«*||£ < 1,
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and from this we obtain

||x||£x < sup{|r(xy)| : y € E,  \\y\\E < 1}.

This latter supremum is finite via Proposition 5.2(vii). The final equality in the
assertion of (ii) is a consequence of the normality of the trace.   D

Proposition 5.4. Let E ç JZ be a properly symmetric Banach space.
(i) If x £ JZ, y £ Ex , and x «y then x £ Ex and ||x||£x < ||y||£x .
(ii) 0 < xa îa x £ JZ implies ||xQ||£x }a ||x||£x .
(iii) (Ex , || • ||£x ) is a properly symmetric Banach space.

Proof^JPaxt (i) follows from Proposition 5.3 and [KPS, II 2.18]. If 0 < xa Ta
x £JZ, then ß(xf) \a pix), and (ii) now follows from Proposition 5.3. Finally,
(iii) follows from (ii) and Corollary 2.4.   D

If E ç JZ is a properly symmetric Banach space then E will be called
maximal if and only if the natural embedding of E into the Köthe bidual
Exx is a surjective isometry. We may now state the following representation-
type result, due in the commutative setting to Luxemburg [Lu], to which we
refer for the essential details.

Theorem 5.5. If E çJZ is a properly symmetric Banach space then there exists
a maximal properly symmetric Banach function space F(R+) such that Ex =
F(JZ).
Proof. It is not difficult to see that F(R+) may be taken to be the linear subspace
of L°(R+) consisting of all / £ F°(R+) for which

£(R+):=sup^/       p,(f)ß,(y)dt:y£E,  \\y\\E<\\<oo.
\J[o,oo) )

The function norm || • ||£(r+) has the (so-called) Fatou property:

0 < fa U fi £ L°(R+)   implies   ||/„||£(R+) }a ||/||£(R+),

and it is well known that this property implies that F(R+) is maximal. For
example, see [KPS] or [Zal].   D

For ease of notation, we write EX(R+) for the Köthe dual of the properly
symmetric Banach function space F(R+).

Theorem 5.6. If E(R+) is a properly symmetric Banach function space on R+,
then the equality Ex (JZ) = E(JZ)X holds in the sense of Banach spaces.
Proof. The inclusion EX(JZ) ç E(JZ)X together with the norm inequality

ll*ll£x(^r) > ll*IU(.#)* .        * £EX(JZ),
follows directly from the relevant definitions and Proposition 5.3. If x £
E(JZ)X , it follows from Theorem 4.12 that

sup j /       pt(x)pt(fi)dt:f£H(R+),  |i/||£(R+) < 11
l/[0,oo) J
= sup{|T(xy)|: y £ H(JZ), 3/e H(R+), \\f ||£(R+) <l, y«f}.
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Since F(R+) is symmetric, this latter supremum is at most

sup{|T(xy)|:ye//(^), \\y\\E(jt) < 1}
which is finite, as follows from Proposition 5.2(vii). It now follows from Propo-
sition 5.3 that x £ EX(JZ) and that ||x||£x(^-) < ||x||£(^f)x .   D

The preceding Proposition 5.6 permits ready identification of the Köthe dual
of a (noncommutative) properly symmetric space, which is constructed from
a given properly symmetric Banach function space on R+ . For example, we
obtain immediately the Banach space equalities

(LX(JZ)+JZ)X =Lx(JZ)nJZ,        (LX(JZ)\-\JZ)X =LX(JZ)+JZ,

which follow via Proposition 5.6 from their corresponding commutative special-
izations, which are standard facts in interpolation theory given, for example, in
[KPS, II, 3.1].

Before proceeding, we mention the following further consequence of Propo-
sitions 5.5 and 5.6.
Corollary 5.7. If E ç JZ is a properly symmetric Banach space then Ex is
maximal.

If E ç JZ is a properly symmetric operator space, it is clear that the mapping
<P: Ex -* E* defined by setting <P(y)(x) = x(xy), x £ E, for each y £ Ex
is an injective isometry onto a linear subspace of the Banach dual E*. It is
moreover not difficult to see that if y £ Ex then 0(y)(x) > 0 for all 0 < x £ E
if and only if y > 0. We turn now to the question of characterizing those
elements of the Banach dual E* which are given by elements of the Köthe dual
via the above pairing. To this end we make the following definition.

Definition 5.8. If E ç JZ is a properly symmetric Banach space and y/ £ E*,
then y/ is called

(i) normal if and only if
xa la 0 ç E   implies   y/(xa) -> 0.

(ii) completely additive if and only if, whenever x £ E,

ea la 0 ç JZP   implies   y/{xea) -» 0   and   i//(eax) ^ 0.

The linear space of normal linear functionals on E will be denoted by E*. It
is well known in the case E = JZ that if y/ £ E* then y/ is normal (respectively
completely additive) if and only if y/ is continuous for the ultra-weak topology
on JZ [SZ, Theorem 5.11], and it then follows from [Di, I 6.10] that there
exists a unique element a £ Lx (JZ) such that y/ = <S>(a). We write H(JZ)P
for JZp n HiJZ).

Lemma 5.9. Let E ç JZ be a properly symmetric Banach space and let F(R+)
be a maximal properly symmetric Banach function space on R+ for which FiJZ)
= Ex . If yi £ E* and if y/ is either normal or completely additive then there
exists f £ F(R+) such that

Mx)\< I      ßtix)fit)dt,
•'[0,oo)

for all x £ E.
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Proof. We show first that there exists 0 < / £ F(R+), such that

\y/(x)\< f      pt(x)fit)dt,
J[0,oo)

for all 0 < x e HiJZ). To this end, if e £ HiJZ)p , observe that the functional
z -» yi{eze), z e JZ, is either normal or completely additive on JZ, and
consequently, there exists a unique element ae £ Lx (JZ) such that

yi(eze) = x(zae) = x(aez),       for all z e JZ.

If now e, e' £ H(JZ)P and if e' < e, then a simple uniqueness argument shows
that aei = e'aee', and from this it follows further that ß(ae') < ß(ae). If now
z £ H(JZ) and ||z||£ < 1, observe that Theorem 4.12(i) implies

/       pt(ae)pt(z)dt<snxy{\x(yae)\:y£H(JZ),  \\y\\E < 1} < \\y/\\.
•/[0,oo)

It follows that the system {ß(ae)} , e £ H(JZ)P , is upwards directed and norm
bounded in F(R+). Since F(R+) is maximal, it follows that there exists 0 <
/ £ F(R+) such that 0 < p(ae) Î / holds in F(R+). If 0 < x £ H(JZ), there
exists e„ î„ç H(JZ)P such that e„x = xen \n x. It then follows that

\y/(enxen)\ = \x(xae„)\ < \       p,(x)pt(aen)dt
J[0,oo)

< I       pt(x)f(t)dt,        « = 1,2,....
•'[O.oo)

It follows from either normality or complete additivity that the inequality

\y/(x)\< [      ßt(x)f(t)dt
•'[O.oo)

holds for all 0 < x £ HiJZ). If y/ is normal, then the above inequality
continues to hold for all 0 < x £ E, as follows from Propositions 1.7, 1.8.
On the other hand, assume that y/ is completely additive. If 0 <x £ JZC\E
and if {ea} Ç HiJZy is any system for which ea |Q 1 then {xea} ç HiJZ)
and complete additivity of y/ now implies that the stated inequality continues
to hold for all 0 < x £ JZ t~\E. Finally, if 0 < x £ E, then there exists a
sequence {e„} of spectral projections of x such that 0 < e„ |„ 1 and such that
xe„ £JZ, «=1,2,..., and the inequality

|V(*)|< /       ßt(x)f(t)dt
J[0,oo)

again follows from the complete additivity of yi. This clearly suffices to prove
the assertion of the lemma.   D

Lemma 5.10. If y/ £ E* and if e £ H(JZ)P , then the functional y/e defined by
setting y/e(x) = y/(ex), x £ JZ, is a normal linear functional on JZ.
Proof. It is not difficult to see that y/e £ JZ*. If x0 > xa |a 0 holds in JZ, then
exae la 0 holds in LX(JZ), and consequently ß(exae) |Q 0 holds in L'(R+).
Suppose that 0 < f £ F(R+) is as given by the preceding Lemma 5.9. Since

p(exa) = ß(xae) = ^2(|xQef ) = ßl/2(ex2e) < llJCbir'V'2^*»*),
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and since px/2(exae) £ H(R+), it follows from the inequalities

\¥e(xa)\ < [      ßtiexa)fit)dt < ||x0||1/2 /      p]l2(exae)f(t)dt,
J[0,oo) •'[0,oo)

that y/e(xa) —> 0, and the proof is complete.   D

Theorem 5.11. If E cJZ is a properly symmetric Banach space and if y/ £ E*,
then the following statements are equivalent.

(i) y/ is completely additive.
(ii) There exists a £ Ex such that y/(x) = x(ax), for all x £ E, in which

case \\y/\\ = \\a\\Ex .
(iii) y/ is normal.

Proof, (ii) =s> (iii). It clearly suffices to assume in addition that a > 0. If 0 <
xa la 0 holds in E then ax!2xaaxl2 |„ 0 holds in LX(JZ), and consequently

x(axa) = x(ax/2xaaxt2) |a 0.

The proof of the implication (ii) => (i) is similar to the proof of the implication
(ii)^(iii).

(iii) =>• (ii). It may be assumed without loss of generality that the functional
y/ £ E* is selfadjoint, that is

y/(x*) = y/(x),       x £ E.

If now e £ H(JZ)P , define y/e by setting

y/e(x) = y/(ex),       x £JZ.

From the preceding Lemma 5.10 it follows that y/e £ JZ*, and consequently
there exists a unique ae e LX(JZ) such that

y/e(x) = y/(ex) = x(aex),    for all x € JZ.

As in the proof of [Yl, Theorem 4.3], a simple argument shows that
(a) ae< = aee' whenever e, e' £ H(JZ)P and é < e.
(b) eae is selfadjoint whenever e £ H(JZ)P .
The operator ao is defined by setting

D(ao) = \J{D(ae) n e(H) : e £ H(JZ)P},

and
a0Ç = aeÇ,    for { e D(ae) n e(H).

The argument of the first part of the proof of [Ye2, Theorem 4.2] shows that
(1) ao is well defined, densely defined, linear and symmetric;
(2) if a is defined to be the closure of ao, then a is symmetric, affiliated

with JZ and ae = ae, for e £ H(JZ)P .
If a = u\a\ is the polar decomposition of a, then |a| is affiliated with JZ

and the spectral resolution of |a| is contained in JZ. To show that a £ JZ,
observe that if e £ H(JZ)P , then

T(e|a|e) = x(u*ae) = yi(eu*) < \\y/\\ \\e\\E.
There exists a constant c > 0 such that

ll*IU < c||x||jí(.#) ,    fox all x £ H(JZ),
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and consequently

r(e\a\e)<c\\^\\msaL{x(e), 1),    for all e £ H(JZ)P.

If X > c\\y/\\ and e £ H(JZ)P satisfies 0 < e < X(k,<x>)i\a\), then

Xx(e) < x(e\a\e) < c\\y/\\ max(t(e), 1).

It follows that x(e) < 1, so that also x(X(x,oo)(\<^\)) < 1 for all X > c\\y/\\. Hence
a £ JZ, and since a is symmetric, it follows as well that a is selfadjoint,
by [Te, Corollary I 15]. Suppose now that 0 < x e HiJZ). There exists
0 < e„ î„ç H(JZ)P such that enx = xe„ \„ x and such that ae„x —► ax for
the measure topology. Writing

\aenx - aemx\ = w„tmiae„x - aemx),

with wntm £JZ a partial isometry for n, m = 1,2, ... , observe that

T(|af?„x - aemx\) = xüae„x - aemx)wm¡n) = y/üenx - emx)wmt„)

< /       p,ie„x - emx)fit) dt,
J[0,oo)

where the function / is as given by Lemma 5.9 above. It follows that

\\ae„x -aemx\\\ —> 0   as«,m-»oo,

and since ae„x —► ax for the measure topology, it follows that ax £ Lx (JZ)
and that

y/(enx) = x(aenx) -» x(ax).

On the other hand, by normality of y/, it follows that y/(e„x) —► y/(x) as
« —* oo and so the equality y/(x) = x(ax) holds for all 0 < x e H(JZ).
The preceding argument shows as well that a £ H(JZ)x = G(JZ). If now
x £ H(JZ), then it follows from Theorem 4.12 that

/       pt(a)p,(x)dt = s\xx){\x(ay)\:y£H(^), y -<-< x} < \\y/\\ ||x||£.
•'[0,oo)

Consequently,

||fl||£x = sup < /       ptia)ptix)dt:x£H{JZ),  ||x||£ < 1 I < oo,
\\J[o,oo) )

and this implies that a £ Ex and that ||a||£x = ||^||, by Proposition 5.3.
Finally, the proof of the implication (i) => (ii) is almost identical to the proof

of the implication (iii) =$■ (ii), with the complete additivity of y/ making an
appeal to Lemma 5.10 unnecessary.   D

The preceding theorem yields an extension of Proposition 3.2, and to formu-
late this extension, it is convenient to introduce the following terminology. If
E ç JZ is properly symmetric, then E is said to have the Beppo-Levi property
if and only if 0 < xa }a ç E, sup ||xa||£ < oo implies supxa exists in E.
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Corollary 5.12. Let F(R+) be a properly symmetric Banach function space on
R+ . If F(R+) has the Beppo-Levi property, then so does E(JZ).
Proof. Assume that 0 < xa Ta Q E(JZ) and that supa ||xa||£ < oo. For 0 <
y £ E(JZ)X , define y/(y) = supaT(xay). The functional y/ is additive and
positively homogeneous on the positive cone of E(JZ)X , and so extends by
linearity to a positive linear functional on E(JZ)X , which we continue to denote
by y/ . A routine calculation shows that 0<^e (E(JZ)x)*n , and that \y/\ <
supQ ||xa||£x x (^) < supa ||xa||£ . Consequently, by Theorem 5.11 and the remark
following Corollary 5.7, there exists 0 < x £ EXX(JZ) such that the equality
x = supxa holds in EXX(JZ). From Proposition 1.7, it follows that p(xa) Î«
p(x) and since F(R+) has the Beppo-Levi property, it follows that p(x) £
F(R+), and this suffices to complete the proof.   D

Special cases of the preceding Corollary 5.12 have been obtained by V. I.
Chilin and F. Sukochev (personal communication; see also [GS] and the refer-
ences contained therein).

Before making some remarks, it is convenient to introduce some further
terminology. The norm on the properly symmetric Banach space E C JZ will
be called order continuous if and only if whenever {xa} ç E and 0 < xa {« 0
holds in E, it follows that ||xa||£ |a 0. It follows from a standard argument
(see, for example, [Za2, Lemma 102.5]) that the norm on E is order continuous
if and only if E* = E* = Ex . Suppose now that F(R+) is a rearrangement
invariant symmetric Banach function space on R+ . If the norm on F(R+) is
order continuous, then it follows from Proposition 3.6 that the norm on E(JZ)
is also order continuous and so Theorem 5.11 combined with Theorem 5.6
shows that the Banach dual E(JZ)* may be identified with the space Ex (JZ).
Since the norm on each of the spaces LP(M.+), 1 < p < oo is order continuous
the usual identification

LP(JZ)* = V(JZ),        l<p<oo,- + - = l,
p   q

follows immediately. To make some further remarks, we suppose that y/ is
an increasing concave function on R+ with ^(0+) = 0 and ^(oo) = oo.
Following [KPS, Chapter II.5], we let A„,(R+), M¥(R+) be the usual Lorentz
and Marcinkiewicz spaces with norms defined by setting

ll/llAr(R+)= /    Pt(fi)v'(t)dt,     /a,(i+),
•'[O.oo)

1 fa
H/l|jiMR+) = sup—- /   p,{f)dt.

a>0 ¥W Jo
It follows from [KPS, Corollary 1 to Theorem II.5.1] that the Lorentz space
A„,(l+) has order continuous norm and so the preceding remarks immediately
imply that the Banach space dual of the noncommutative Lorentz space KviJZ)
is just the noncommutative Marcinkiewicz space MviJZ), a result due to L.
Ciach [Ci]. Similarly, if M°(R+) denotes the linear subspace of Af„,(R+) con-
sisting of all f£M¥(R+) for which

lim   ^T / ßtifi)dt = 0,a->o,oo y/(a) Jo
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then it follows via [KPS, Theorem II.5.4] that M^(JZ)* = AW(JZ). In the case
of trace ideals these results may be found in [GK, Chapter III. 15].

The result which follows is (essentially) an extension of the Luxemburg-
Lorentz theorem [Zal, Theorem 71.1] concerning the embedding of a Banach
function space into its Köthe bidual. To smoothen the presentation, it is con-
venient to introduce the following terminology: if {xa} ç JZ then {xa} is said
to converge locally in measure to x £ JZ if and only if {exae} converges to
exe for the measure topology on JZ for all e £ HiJZ)p .

Theorem 5.13. If E ç JZ is a properly symmetric Banach space, then the fol-
lowing statements are equivalent.

(i) The natural embedding of E into Exx is an isometry.
(Ü)   0 < Xa \a X £ E => ||XQ||£ |Q ||x||£ .
(hi) If {xa} ç E converges locally in measure to x £ E and ||xa||£ < 1 for

all a then ||x||£ < 1.
Proof,  (ii) => (i). For x £ HiJZ) and « = 1,2,...  define

ll*lk = inf{||y|U + »Mi 7,z6 HiJZ), x = y + z}.
Each || • ||£/1, « = 1, 2,... , defines a norm on HiJZ) and || • ||£, < || • ||£2 <
• • • < || • We ■ We will show first that ||x||£n \n ||x||£ for all x £ H(JZ). To this
end, we observe that it is a simple consequence of Proposition 4.10 that

||x||£„ =inf{||y||£ + «||z||1:y, z£HiJZ), x^y + z},

for all x £ HiJZ) and « = 1, 2, ... . From this it follows that {HiJZ), || • ||£J
is a symmetric rearrangement invariant operator space for each « = 1,2,....

Let e\, ... ,en £ JZP be mutually orthogonal projections of finite trace and
let

•/r=    EVi:^i> ...,Ajv€C> ,

which we may consider as a von Neumann algebra on the space eH, where
e = ex H-VeN ■ The restriction of x to JZ is a finite trace on JZ .It should
be observed that if x £ JZ then its decreasing rearrangement as an element of
yT is the same as that when considered as an element of JZ.

Now suppose that x £Jr. We claim that for all «=1,2,...,

||x||£„ =inf{||y||£ + «||z||1:y, z£jZ, x = y + z}.

Indeed, it is clear that the left-hand side is at most the infimum on the right.
For the converse, suppose that x = y + z with y, z £ HiJZ). By Proposition
4.10, there exist y, z £Jr such that x = y + z and y «y, z-«z, and so
||y||£-l-«||z||i < ||y||£+«||z||i, from which the claim follows. For « = 1,2,...,
there exist y„, zn£jZ such that x = y„ + zn and

l|y«ll£ + "l|z„||i<||x||£„ + ^<||x||£ + i.
Clearly ||z„||i -» 0, and since dim. JZ < oo this implies that ||z„||£ —> 0, so
that ||x - y„||£ -► 0 as « -► oo . Hence ||y„||£ -> ||x||£ , and so ||x||£„ -► ||x||£
as « -> oo.
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Now take any 0 < x £ H(JZ). There exists a sequence {x^}^ such that
0 < xk î x in H(jz), where each xk is a finite linear combination of mutu-
ally orthogonal finite trace projections in JZ. So, by the above observations,
\\xk\\En T« II** IU for all k = 1,2,... . Moreover, by the assumption on || • ||£
we have Hx^H^- ffc ||x||£ . Hence

||x||£ = sup ||xfc||£ = sup ||xfc||£„ < sup ||x||£„ < ||x||£,
k n,k n

which shows that ||x||£„ |„ ||x||£ .
Since ||x||£ = |||x|||£ and ||x||£„ = || |x| ||£„ (« = 1,2,...) for all x €

H(JZ), we may conclude that ||x||£„ f„ ||x||£ for all x £ H (JZ).
We denote by Hn(JZ) the normed space (H(JZ), || • ||£J for « = 1, 2, ... .

If y/ £ Hn(JZ)*, then y/ £ H(JZ)*, and the inequality || • ||£„ < «|| • ||i implies
that y/ is normal. By Theorem 5.11, there exists zv £ G(JZ) such that

y/(x) = x(xz¥),    for all x € H (JZ).
The inequalities

\x{xzv)\< ||x||£J^||< ||x||£||^||,    for all x e H(JZ),
now imply via Proposition 5.3 that z¥ £ Ex , and ||z„,||£x < ||^||. Thus, if
x £ H(JZ), then

||x||£ = sup||x||£„ =sup{|Hx)|: V£Hn(M*), \\y,\\ < 1}
n n

<sup{|T(xy)|:||y||£x < 1} = ||x||£xx .

This suffices to show that the inequality ||x||£ < ||x||£xx continues to hold for
all x £ E ; in fact, if x e E, then there exists a net {xa} ç HiJZ) with
0 < xQ îa |x|, and the assertion now follows from property (ii). Finally, we
note that the reverse inequality ||x||£xx < ||x||£ is trivial.

(i) =s> (iii). Assume that {xa} ç E, that {xa} converges locally in measure
to x £ E and that ||xa||£ < 1 for all a. If e £ H{JZ)P , there exists a sequence
{xa„} such that at all points of continuity of piexe),

ßt{exa„e) -> ßtiexe).
It follows from Fatou's Lemma that

/•Ao
ptiexe)ptiy)dt< 1

l[0,oo)

for each e £ HiJZ)p and y € HiJZ), ||y||£x < 1. The system {p{exe): e £
HiJZ)p} is upwards directed and it follows from Lemma 1.5 that p{exe) \e
pix) holds in L°(R+). Consequently

/J\o
ptix)p,iy)dt<l

Z[0,oo)

for each y £ HiJZ), ||y||£x < 1 and (iii) now follows from the assertion of (i)
that

\\x\\E = sup \ i      Ptix)ptiy)dt:y£ HiJZ), ||y||£x < 1 \ .
[J[0,oo) J

(iii) => (ii).   Suppose that {xa} Q E satisfies 0<XaTaxeF.  Ifee
HiJZy then it follows that e(x - xa)e |a 0 holds in JZo and this implies by
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Lemma 3.5 that /i(e(x - xa)e) —> 0. Consequently {xQ} converges locally in
measure to x and (iii) implies that ||x||£ < supa ||xQ||£ . The reverse inequality
is trivial and so (ii) follows.   D

Proposition 5.14. If E c JZ is a properly symmetric Banach space, then the
following statements are equivalent.

(i) The natural embedding of E into Exx is a surjective isometry.
(ii) 0 < xa Ta Q E, suPa||xQ||£ < oo implies x = supa xa exists in E and

ll*l|£ = SUPa||Xa||£. _
(iii) If {xa} c E converges locally in measure to x £ JZ and if ||xa||£ < 1

for all a then x £ E and ||x||£ < 1.
Proof. In view of Corollary 5.12 and Theorem 5.13 preceding, the equivalence
(i) •» (ii) follows by noting that condition (ii) implies Exx ç E. This how-
ever follows immediately by observing that if x e Exx , then there exists
{xa} Q HiJZ) ç E such that 0 < xa \a |x| holds in JZ, and from (ii) it
follows that x £ E. The implications (iii) =► (ii), (i) =>■ (iii) follow from
appropriate modifications of the proofs of the corresponding implications of
Theorem 5.13.   D

The final result of this paper is a reflexivity criterion which in the commu-
tative setting is a special case of a well-known theorem of T. Ogasawara [Za2,
Theorem 114.8].

Theorem 5.15. If E ç JZ is a properly symmetric Banach space, then the fol-
lowing statements are equivalent.

(i) E is a reflexive Banach space.
(ii)(a) 0 < xa Ta- F, supa||xa||£ < oo implies x = supQXa exists in E

and \\x\\E = supa ||x„||£.
(b) The norms on E and Ex are order continuous.

Proof, (ii) =>• (i). Order continuity of the norm on E together with Theorem
5.11 implies that Ex coincides with the Banach dual E*, and order continuity
of the norm on Ex implies that the Banach dual (Fx)* coincides with Exx .
Thus, it follows that E** = Exx . Condition (ii)(a) together with Proposition
5.14 now implies that E = Exx and it follows that E is reflexive.

(i) => (ii). Observe first that if xa |a 0 holds in E, then r/>(xa) I 0 holds
for all 0 < <f> £ E*. In fact, since the positive cone of E* is generating, the net
{xa} is o{E, F*)-Cauchy, and hence er(F, F*)-convergent since the unit ball
of E is weakly compact. Dini's theorem now shows that convergence of the
net {xa} is uniform on the unit ball of E*, and so the norm on E is order
continuous. The same argument now shows that the norm on Ex is order
continuous, and consequently E = E** = Exx . Condition (ii)(a) is now an
automatic consequence of Proposition 5.14.   D

Via Proposition 3.8 we now obtain the following consequence.

Corollary 5.16. Let E{R+) be a properly symmetric Banach function space on
R+ . If F(R+) is reflexive, then E{JZ) is reflexive.

We remark that Proposition 5.15 and Corollary 5.16 preceding have been
obtained independently by Goldstein and Sukochev [GS] in the special case
that JZ is nonatomic and t(1) < oo.
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We mention finally that topological properties such as weak sequential com-
pleteness and weak compactness in properly symmetric operator spaces can be
characterized in terms of order properties. Such characterizations, well known
in the theory of Banach lattices, may be found in [DDP4]. See also [GS].
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